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Abstract

It is common practice to spend considerable time refining source data to
address issues of data quality before beginning any data analysis. For ex-
ample, an analyst might impute missing values or detect and fuse duplicate
records representing the same real-world entity. However, there are many sit-
uations where there are multiple possible candidate resolutions for a data
quality issue, but there is not sufficient evidence for determining which of the
resolutions is the most appropriate. In this case, the only way forward is to
make assumptions to restrict the space of solutions and/or to heuristically
choose a resolution based on characteristics that are deemed predictive of
“good” resolutions. Although it is important for the analyst to understand
the impact of these assumptions and heuristic choices on her results, evalu-
ating this impact can be highly non-trivial and time consuming. For several
decades now, the fields of probabilistic, incomplete, and fuzzy databases have
developed strategies for analyzing the impact of uncertainty on the outcome
of analyses. This general family of uncertainty-aware databases aims to model
ambiguity in the results of analyses expressed in standard languages like
SQL, SparQL, R, or Spark. An uncertainty-aware database uses descriptions
of potential errors and ambiguities in source data to derive a correspond-
ing description of potential errors or ambiguities in the result of an analysis
accessing this source data. Depending on technique, these descriptions of
uncertainty may be either quantitative (bounds, probabilities), or qualita-
tive (certain outcomes, unknown values, explanations of uncertainty). In this
chapter, we explore the types of problems that techniques from uncertainty-
aware databases address, survey solutions to these problems, and highlight
their application to fixing data quality issues.
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1 Introduction

Data quality is increasingly relevant to all facets of data management, from
small-scale personal sensing applications to large corporate or scientific data
analytics. In these and many other settings, sources of uncertainty include
inaccuracies and failures of sensors, human data entry errors, systematic er-
rors during fusion of data from heterogeneous sources, and many others. A
prevalent problem when identifying data quality issues is that typically avail-
able information is insufficient to determine with certainty whether a fluke
detected in the data is a quality issue or simply an unusual fact. For exam-
ple, a high blood pressure value may be due to a medical problem or may
as well be a measurement error — without further information it is impos-
sible to distinguish between these two cases. Even if a quality issue can be
detected with certainty this does not imply that we can find a unique or even
any correct resolution for this issue. For instance, consider an employment
dataset with records storing for each employee a unique identifier like a so-
cial security number (SSN), their name, and the department they work in. A
single person might occur multiple times in this dataset if the person works
for more than one department. If we assume that unique identifiers are truly
unique, one type of data quality issue that is easy to detect (for this dataset)
is when multiple records corresponding to the same identifier have differ-
ent names'. While this condition is easy to check, it is not straightforward
to repair a dataset with records that share identifiers but have conflicting
names. For example, assume that our dataset contains two conflicting records
(7T77-777-7T777, Peter Smith, Sales) and (777-777-7777, Bob Smith,
Marketing). These records indicate that a person with SSN 777-777-7777
is working in both Sales and Marketing, and is either named Peter Smith
or Bob Smith. The correct way to fix this conflict depends on what caused
the error, and requires us to have additional information that is not readily
available. If we assume that two people with the same SSN must have the
same name, then there are four ways we could fix the error: 1. We could
assume that one of the records was created mistakenly and delete it; 2. We
could assume that our analysis will be minimally affected by this error and
leave the records as-is; 3. We could assume that the name attribute of one
(or both) of the records is incorrect and update them accordingly; and/or
4. We could assume that the SSN attribute of one (or both) of the records
is incorrect, and update them accordingly. In absence of further information,
there is no way for us to determine what the correct fix for the problem is.

1 In database terminology, we would say that a functional dependency id — name holds
for the dataset, i.e., the ‘id’ value of a record determines its name value. Or put differently,
there are no two records that have the same SSN, but a different name. The intricacies
of functional dependencies are beyond the scope of this paper. The interested reader is
referred to database textbooks (e.g., [1]). Furthermore, see, e.g., [12] for how constraints
like functional dependencies are used to repair data errors.
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A typical approach for resolving this kind of ambiguity is to correlate the
information in our dataset with externally available sources of high quality
data, often called master data, to determine what fix to apply. For instance,
we may have access to a reliable list of what name corresponds to which
SSN. Such information is useful, because it allows us to make SSNs consistent
with names. However, it is not sufficient for figuring out whether the issue
arose from incorrect name(s) or from incorrect SSN(s) and, thus, whether the
correct solution is to repair SSN or name value(s). This example demonstrates
that even trivial data quality issues can have hard- or impossible-to-determine
resolutions.

In a typical analytics workflow, problems like this are addressed at the
start: a task we call data curation. Common approaches to data curation
include: 1. If redundant data sources can be found, the curator can manually
repair errors; 2. If records are irreperable, the curator may remove them from
the dataset outright; 3. If removing records with errors would create bias
or leave too few records, the curator can apply heuristic techniques (e.g.,
imputation) to repair errors. 4. If the errors are deemed to not affect the
analysis, the curator may simply choose to not address them. For example,
we might train a classifier to find records in our master data most similar to
Peter and Bob Smith, and then use it to fix the name and/or SSN fields of
our erroneous data set.

A common assumption is that once curation is complete, the data is “cor-
rect,” at least to the point where specific analyses run over it will produce
valid results. However, such assumptions can produce misleading analytical
results. The most straightforward of these are the consequences of incorrect
choices during curation — for example selecting a classifier that is inappro-
priate for the available data. However, there is a more subtle possibility: The
data being curated might be insufficient or of insufficient quality — regardless
of curation technique — to support some or all of the analyst’s goals.

Existing data management systems: Relational Databases, Graph Data-
bases, Spark, NoSQL Systems, R, and others, are built on the assumption
that data is exact. These systems can not distinguish low-confidence informa-
tion derived of incomplete data or heuristic guesswork from high-confidence
information grounded in verifiable data fused from multiple redundant data
sources. In extreme cases, such misinterpretations ruin lives. For example,
credit report errors can severely limit a person’s access to financial services
and job opportunities.

Ezample 1. Consider an example bank’s loan database shown in Figure 1. Ta-
ble customers stores the SSN, name, income, and assets for each customer.
Furthermore, we record for each customer the number of mortgages this cus-
tomer has and whether they own property or not. Table applications stores
loan applications (a customer’s SSN and the amount of loan they requested).
The bank uses the following formula to determine the maximum amount
Maxg they are willing to loan to a customer.

Maxg = 0.3 - income + 0.2 * assets — 10,000 - numMortgages + 40,000 - ownsProperty
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The bank might use a SQL query such as the one shown below to deter-
mine which loan applications it should grant and which applications will be
rejected.

SELECT SSN, name, CASE WHEN maxAllow >= requestedAmount
THEN ’yes’ ELSE ’no’
END AS grantLoan
FROM (SELECT 0.3 * income + 0.1 * assets - 10000 * numMortgages
+ CASE WHEN ownsProperty THEN 20000 ELSE O END AS maxAllow,
loanAmount AS requestedAmount
FROM customer c, applications a WHERE c.SSN = a.SSN) sub

For readers unfamiliar with SQL, this query (1) retrieves the customer infor-
mation for each loan request, then (2) computes Maxg based on the customer
information, and (3) returns the SSN and the name of the customer request-
ing the loan as well as a column grantLoan whose value is yes if the amount
requested is lower than Mazxg or no otherwise.

Unfortunately, the customers table contains missing values (in SQL the
special value NULL is used to denote that the value of an attribute is miss-
ing). For example, we do not know whether Alice owns property or not,
or what Peter’s income is. These missing values prevent us from determining
whether Alice’s loan should be approved or not. As mentioned above, one way
to resolve this issue is to train a classifier, such as a decision tree. The classi-
fier is trained on records that have all their attribute values. Given the values
of the other attributes (SSN, name, income, assets, and #mortgages) for a
record, the trained classifier predicts the missing value of the ownsProperty
attribute.

Classifier Result for Alice Query Result
ownProperty |probability SSN | name |grantLoan
yes 0.4 TT-TTT-7777| Alice Alison no
no 0.6 111-111-1111|Peter Peterson yes

Assume that the classifier predicts that the value of ownsProperty for
Alice’s record is yes with 40% probability and no with 60% probability. The
NULL value is replaced with no, the value with the highest probability. If
the dataset curated in this way is used to determine Alice’s elegibility to
receive the loan, then the bank would deny her loan application — even if
she does in fact own property and should be eligible. In this case, the bank
does not have enough information to decide whether to give Alice a loan,
but by treating imputed missing values as fact, this lack of information is
obscured.

As we will explain in more detail in the remainder of this chapter,
uncertainty-aware approaches to data management can expose this lack of
information. In the example, this would allow the bank’s computer to pro-
duce a third response: “I don’t know”, exposing the uncertainty in the ana-
lytical result. Depending on what technique for uncertain data management
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customers
SSN | name |income| assets |numMortgages ownsProperty
TTT-TT7-7777|  Alice Alison | $60,000 |$200,000 0 NULL
333-333-3333| Bob Bobsen |$102,000| $15,000 0 no
111-111-1111| Peter Petersen | NULL | $90,000 1 yes
555-555-5555| Arno Arnoldson| $95,000 | $30,000 0 yes

applications

SSN |loanAm0unt
TTT-TTT-T707 $90,000
111-111-1111 $10,000

Fig. 1: Example for resolving a data quality issue and how this affects the
trustworthiness of analysis results. The input data contains missing values
and needs to be imputed.

is applied, it might also be feasible to determine exactly what information is
necessary to produce a definitive answer to the bank’s question.

Uncertain data management techniques can help to expose implicit biases
introduced during data curation, as well as the impact that these biases have
on the quality and trustworthiness of analytical results. In this chapter, we
provide an introduction to uncertain data management techniques developed
by the database community and their use in data curation and analysis.
While there are excellent surveys on probabilistic data management, e.g., [39]
and [8], these surveys aim to describe the technical challenges involved. In
contrast, we give a more goal-oriented introduction to the topic targetted
at helping practitioners identify suitable techniques for their needs, and to
clarify the connection to practical applications of these techniques for data
quality.

Making uncertainty a first-class primitive in data management has been
the goal of so-called uncertain and probabilistic query processing [39], or PQP.
There have been significant efforts in this space, aiming to produce efficient
algorithms for some of the most computationally challenging tasks involved
in managing uncertain data [7]. While great progress has been made, some
tasks in PQP are too computationally intensive to be widely applied. Thus,
having practical applications in mind we also survey light-weight approaches
which produce less detailed and/or approximate descriptions of uncertainty,
at the benefit of reduced computational complexity. Though they are approx-
imations, these simpler representation of uncertainty are also often easier to
interpret than more complex models.

The remainder of this chapter is organized as follows. We introduce core
concepts of uncertain data management in Section 2. We then cover data
models that encode uncertainty in one form or another in Section 3. Section 4
covers methods for computing the results of queries and evaluating general
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programs over uncertain data. Afterwards, we discuss methods for presenting
uncertainty to endusers in Section 5. Finally, we conclude in Section 6.

2 Core Concepts: Incomplete and Probabilistic
Databases

We begin with the broadest assumptions about the workflows applied by
an analyst, before narrowing our scope to particular models of computa-
tion (mostly declarative query languages) when discussing specific solutions.
Specifically, we assume that the analyst has specified her analysis as a pro-
gram @ expressed in some suitable form such as an imperative programming
language (e.g., Python or C) or a database query language (e.g., SQL or
Spark). When applied to some dataset D, this program produces a result
Q(D). For instance, for our running example, the program ) is the SQL
query shown in Figure 1, D is the cleaned version of the loan dataset (after
imputing the missing ownsProperty value of Alice’s record), and Q(D) is the
query result shown in Figure 1.

2.1 Posstble World Semantics

A well-established model for uncertainty in such an analysis is the so-called
possible world semantics. Under the possible worlds semantics we forsake the
existence of single deterministic dataset and instead consider a set of possible
datasets, the possible worlds. Each possible world is a dataset that could exist
under certain assumptions. Formally, an uncertain dataset is a (potentially
infinite) set of datasets D. We refer to D as an incomplete database, and its
members as possible worlds.

Ezample 2. Continuing with our running example, recall that we used a clas-
sifier to impute the missing ownsProperty attribute of Alice’s record. In the
previous example we did pick the most likely value predicted by the classifier
(no) and saw how this incorrect choice caused Alice’s loan to be rejected. The
heuristic underlying this choice is the classifier; We assume that it will always
pick the correct replacement value — in general a quite strong assumption.
Instead we can model the output of the missing value imputation as a set
of possible worlds D = {D;, Ds}. In this example there are two worlds that
are shown in Figure 2: either Alice does not own property (possible world
D, shown on top) or Alice does own property (possible world Dy shown on
the bottom). In this possible world model, it is evident that we are uncertain
about whether Alice owns property or not, as the only difference between the
two possible worlds is the ownsProperty attribute value for Alice’s record.
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Possible World D; (p = 0.6)

customers
SSIN | name |income| assets |#mortgages ownsProperty
TTT-T77-7777|  Alice Alison | $60,000 |$200,000 0 no
333-333-3333| Bob Bobsen [$102,000| $15,000 0 no
111-111-1111| Peter Petersen | NULL | $90,000 1 yes
555-555-5555 | Arno Arnoldson| $95,000 | $30,000 0 yes
Possible World D» (p = 0.4)
customers
SSN | name |income| assets |#mortgages ownsProperty
777-777-7777|  Alice Alison | $60,000 [$200,000 0 yes
333-333-3333| Bob Bobsen [$102,000| $15,000 0 no
111-111-1111| Peter Petersen | NULL | $90,000 1 yes
555-555-5555| Arno Arnoldson| $95,000 | $30,000 0 yes

Fig. 2: Possible Worlds Representation of the Cleaned Loan Dataset Created
Based on the Possible Imputed Values for the Missing ownsProperty Value
Predicted by the Classifier.

When an analysis program @ is evaluated over an incomplete database D,
the result is not one, but a set of possible results: the set of all results that
could be obtained by evaluating @) in some possible world:

QD) :={QD) |[DeD}

That is, the result of evaluating an analysis program ) over an incomplete
database is itself an incomplete database.

Ezxample 3. Evaluating our loan query over the incomplete database from
Figure 2, we get two possible results shown below. We are sure that Peter
should be granted a loan, but there are two possible outcomes for Alice’s
loan application. If Alice owns property (possible world D) then we would
consider her to be eligible for this loan (possible result Q(D3)). Otherwise,
(possible world D7) we should reject her loan application Q(D1).

Q@) QD2)
SSN | name | grantLoan SSN | name | grantLoan
TTT-TTT-7777| Alice Alison no TTT-T7T-7777| Alice Alison yes
111-111-1111|Peter Peterson yes 111-111-1111|Peter Peterson yes

2.2 Certain and Possible Records

It is often useful to reason about a dataset D as a collection of records r € D,
or a table. When using this model, we also treat analytical results as sets of
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records r € Q(D). We then may want to reason about what facts (records)
we know for certain to be true, what facts are potentially true, and which
facts are known to be untrue. For instance, in our running example we know
with certainty that Peter’s loan should be granted, since regardless of which
possible world represents the true state of the world, the loan application
will be granted. For incomplete databases, we say that a record is certain if
the record appears in every possible world. Note that, because the result of
analysis over an incomplete database is again an incomplete database, we can
apply the same concept to analysis results. A record is certainly in the result
of an analysis if it is present in the result irrespective of which possible world
correctly describes the true state of the world. Formally, a record r is certain
in an incomplete database D if VD € D : r € D. We use certain(D) to
denote the set of all certain records in D. Analogously, the certain answers to
a question Q(D), which we write as certain(Q(D)) are the set of all certain
records in the incomplete result Q(D).

ris certainly in D := VDeD:reD

certain(Q(D))={r |[VDeD:reD }

Conversely, we say that a record is possible if the record appears in at least
one possible world (resp., possible result). The possible answers of a question
(possible(Q(D))) are defined symmetrically.

ris possibly in D := dIDe€D:re D
possible(Q(D))={r |3DeD:reD }

Ezample 4. For instance, (111-111-1111,Peter Peterson,yes) is a certain
answer in our running example since it is in the result for every possible
world, but (777-777-7777,Alice Alison,yes) is not since this record is
not in Q(D;). Conversely, (7T77-777-7777,Alice Alison,yes) is possible
while (777-777-7777,Alice Peterson,yes) is not.

2.3 Multisets

Many database systems use bags (multisets) of records to represent data. That
is, bag databases allow for multiple records that have all attribute values in
common. For example, if we allow multiple loan applications by the same
person, then it may be possible that two applications from the same person
are requesting the same amount, i.e., are duplicates.

Example 5. Consider the bag table applications shown below. Here both
Alice (SSN 777-777-7777) and Peter (SSN 111-111-1111) have submitted two
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applications. Alice’s applications are both for a loan of $90,000, i.e., there is a
duplicate of the record (777-777-7777, $90,000) in the applications table.
SSN | loanAmount
TT-TTT-T7T7 $90,000
TTT-TTT-17TY $90,000
111-111-1111 $10,000
111-111-1111 $3,000

We write D[r| (resp., Q(D)[r], R[r]) to denote the number of occurrences,
or the multiplicity of record r in database D (resp. result Q(D) or record set
R). We can now define the multiplicities of an uncertain record as a set of
multiplicities for each possible world.

Dlr]={D[] | DeD }

Libkin et. al [19] generalize the notion of certain and possible results to reason
about bounds on these multisets (or bags).

certain(D][r]) = min(D]r]) possible(D[r]) = max(D[r])

Observe that when a multiset D encodes a set (i.e., when D[r] € {0,1}),
multiset possible and certain answers behave as their set-based counterparts.

2.4 Incorporating Probability

An incomplete database may be supplemented with a probability measure
P :D — [0,1] over the set of possible worlds requiring that ), P(D) = 1.
The pair { D, P ) of incomplete database and probability measure is called
a probabilistic database [16]. When a question @ is asked of an probabilis-
tic database (D, P ), we can derive a marginal distribution over the set of
possible results { R; }:

plQ(DP) = Ri] := > P(D)

DeD s.t. Q(D)=R;

When the result is a set (resp., bag) of records, we derive the marginal prob-
ability of any possible record in the result similarly (where M € N is a record
multiplicity).

plr € QD)) := > P(D)
DeD s.t. reQ(D)
p[QD)[r] = M] = > P(D)

DeD s.t. Q(D)[r]=M
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We will sometimes use p(r) as a notational shortcut for p[r € Q(D)] when
(@ and D are understood from the context.

Ezxample 6. Recall that the classifier we have trained predicts that Alice owns
property with 40% probability and that she does not own property with
60% probability. Thus, possible world D; has probability p(D;) = 0.6 and
possible world D5 has probability p(Ds) = 0.4. Then based on this probability
distribution of the input possible worlds, the probabilities of the two possible
query results are determined. The probability of the result where Ann’s loan
application is rejected is 0.6 while the one where Ann’s loan is granted is 0.4.
Given this result, we can compute the marginal probability of an analysis
result record, i.e., the likelihood that this particular record exists in the result
as the sum of the probabilities of possible worlds containing this record. Let
r1 be the record corresponding to the loan granted to Peter. Since this record
appears in both possible worlds we get p(r1) = p(D1)+p(D2) = 0.44+0.6 = 1.
That is, the record has probability 1.

Observe that there is a strong connection between the concepts of certain/-
possible records and the marginal probability of a record. Given a record r,
we have:

plr € Q(D)] =1 & r € certain(Q(D))
plr € Q(D)] > 0 & r € possible(Q(D))

Records which are certain (occur in every possible world) must have
marginal probability 1 (the probabilities of all possible worlds have to sum
up to 1) while records that are possible must have a non-zero probability
(they occur in at least one possible world).

3 Uncertainty Encodings

Possible worlds provide us with a convenient, intuitive model for uncertain
data processing that is independent on the choice of language for expressing
analysis tasks. However, the full set of possible worlds (and the corresponding
probability distributions) may be extremely large (or even infinite). This may
not be obvious from our running example, but observe that in our example
there was only one missing value to impute and we only had two possible re-
placements for this missing value. Consider a moderately sized version of our
running example dataset with 100k records and assume that there 100 miss-
ing ownsProperty values. Then there are 21% possible worlds - one for each
choice of values for these 100 missing values. To make analysis of uncertain
data feasible or even to store such a large number of possible worlds, a more
compact representation is needed. A variety of uncertain data encodings have
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been developed that compactly represent sets of possible worlds. We now fo-
cus our discussion exclusively on representations of collections (sets or bags)
of records. Broadly, we categorize encodings of uncertain collection datasets
into two classes: (1) Lossless encodings, which exploit independence proper-
ties to factorize the set of possible worlds, and (2) Sampled encodings, which
represent a finite subset of the possible worlds at the cost of information loss.

3.1 Lossless, Factorized Encodings for Incomplete
Data

Independence can be exploited to create compact, factorized representations
of uncertain data. For example, consider a record r; that is present in exactly
half of the possible worlds of D, where the remaining possible worlds (modulo
r1) are identical. Writing D’ to denote the possible worlds without r; (D' =
{D|DeD,rs €D }), we can call record r; independent iff

D=D U{{r}uD |D' €D}

Intuitively, the above condition checks that the choice of including r; or
not has no effect on the inclusion of any the other possible records. A natural
consequence of r1’s independence is that the possible worlds encoding of D
need to store two full copies of D’. Lossless encodings exploit such redundancy
caused by independence to create more compact representations where this
redundancy is factorized out. We will outline three lossless encodings: Tuple-
Independent Databases, Disjoint-Independent Databases, and C-Tables, each
a more expressive generalization of the previous one. For instance, in our
running example the record encoding that Peter’s loan is granted appears
in both possible worlds while Alice’s record, even through it also appears
in both possible worlds, occurs with different ownsProperty values. Based
on this observation a more compact representation of Dy and Dy from our
running example is as a single database containing both Peter’s and Alice’s
record, but to record separately that there are two options (yes and no) for
the ownsProperty attribute value for Alice’s record.

3.1.1 Tuple-Independent Databases

We first consider an encoding that is only applicable if the following simple,
but strong condition holds: all records are independent of one another. An in-
complete database that satisfies this constraint is called a tuple-independent
incomplete database [4, 40]. Note that tuple is the formal term used to de-
note records in a database. A tuple-independent incomplete database can be
represented as a collection of records Dy € dom(r) x B, where each record



12 Oliver Kennedy and Boris Glavic

is annotated with a boolean attribute that indicates whether (or not) it is
certain. Note that here dom(r) denotes the domain of records, i.e., the set of
all possible records. That is:

certain(Dr;) ={r | {r,TRUE ) € Dp; }

possible(Dy;) ={r | (r,_) €Dy }

The incomplete database D represented by Dp; is defined as the set of all
databases that are subsets of the set of all possible records and supersets of
the set of certain records.

D ={D | D Cpossible(Dr;) A D D certain(Dr;) }

The second requirement (D 2 certain(Dr;)) is based on the fact taht certain
records appear in every possible world. Thus, any possible world represented
by Dy is a superset of the set of certain records as well.

Note that this type of factorization can not be used to compress the in-
complete database from our running example, because the two versions of
Alice’s record are not independent of each other (a possible world including
the tuple recording that Alice owns property cannot also contain the tuple
recording that Alice does not own property).

Ezxzample 7. To illustrate tuple-independent databases consider a modified
version of our running example where Alice’s record only exists if she owns
property. This modified version of our running example can be represented as
a tuple-independent incomplete database (Peter’s record is certain while the
tuple storing that Alice does own property is only possible) as shown below:

SSN | name |grantLoan | | isCertain
TT7-T777-7777| Alice Alison
111-111-1111|Peter Peterson

yes _
yes H TRUE

When using probabilities, we make a similar assumption that the probabil-
ities of individual tuples are independent. Accordingly, for any probabilistic
database ( D, P ) fulfilling this condition, we can define a tuple-independent
encoding Dprp € dom(r) x [0, 1] by annotating each tuple with its probability
instead of a boolean value:

Drip={{(r,P(r e D)) | r € possible(Dr;) }

In the probabilistic representation, certain answers are those records with a
probability of 1, and possible answers are any records with a nonzero proba-
bility.

certain(Drrp) ={r | (r,1.0) € Drrp }

pOSSible(DT]p> = { r | <7“,p> € Drrp A (p > O) }



Analyzing Uncertain Tabular Data 13

Observe that a tuple-independent incomplete or probabilistic database with
n tuples represents 2" possible worlds: for each tuple we can either choose the
tuple to be included in the possible world or not and all these choices are inde-
pendent of each other. There are n boolean decisions resulting in 2™ possible
options. That is, a tuple-independent incomplete or probabilistic database
can be exponentially more concise than its possible world representation.

3.1.2 Disjoint-Independent Databases

The tuple-independent model assumes that records are entirely independent,
but says nothing about the contents of those records. It is assumed that
each record is identical in all possible worlds where it appears. The disjoint-
independent model of incomplete databases (sometimes called x-tuples) gen-
eralizes tuple-independent databases by allowing a record to take multiple
forms in different possible worlds. Under this model, an z-tuple r is simply a
set of records { 71, ...,ry } called its instantiations. We say that r is disjoint-
independent in database D iff we can define a subset of the possible worlds
D'={D|(DeD)A(rnD=1{) } that do not contain elements of r, such
that D can be defined as the cartesian product of r and D’. That is, r is
disjoint independent iff:

D={Du{r} |DeD'Arer} or D={DU{r} |DeD Arer JuD’

Note the two definitions: In the former case, some instantiation of r appears
in all possible worlds, while in the latter some set of possible worlds D’ do not
contain any instantiation of r. Accordingly, in the former case r is certain,
while in the latter it is merely possible. Note that if an x-tuple r is certain
in a disjoint-independent database, this x-tuple may have different values in
different possible worlds. Applying our previous definition of certainty which
requires that a record r appears in all possible worlds to disjoint-independent
databases a record r is certain if there exists an x-tuple r = {r}.

Observe that disjoint-independent databases generalize tuple-independent
databases in the following sense: a tuple-independent database can be mod-
elled as a disjoint-independent database where each x-tuple has a single in-
stantiation r = {r} for certain records and r = {r, L} for records that are
not certain. However, the opposite direction does not hold, there are disjoint-
independent databases that cannot be represented as tuple-independent in-
complete databases, e.g., a database with two possible worlds D; = {r} and
Dy = {ra} where r; # ry can be encoded using a single x-tuple r = {ry,72}.
However, this incomplete database cannot be encoded as a tuple-independent
database.

As before, we define an encoding Dp; € for any database
known to contain exclusively disjoint-independent records. Specifically, the
encoding is a collection of x-tuples (sets of records). The presence of a special

22dnm(r)U{L}
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distinguished value L in an x-tuple indicates that the x-tuple is not certain.
Hence, the incomplete database D corresponding to Dpy is defined as follows
(using [] to denote a cartesian product of sets).

D= H{f|r€r} where fz{{} ifr=1

i {r} otherwise

Ezample 8. Our original running example database can be encoded as a
disjoint-independent database as shown below consisting of two x-tuples ry
and ro where ry (Peter’s record) is certain and has one instantiation 71, while
ra has two instantiations (Alice owns property or not) rs, and r9,:

record instantiation =~ SSN | name |grantLoan
1 71, 111-111-1111|Peter Peterson yes
, ro, T77-777-7777| Alice Alison yes
2 T2, TT7-TT7-7777| Alice Alison no

The disjoint-independent encoding of incomplete databases can be ex-
tended to also support probabilistic databases. A disjoint-independent prob-
abilistic database Dpp : 22" — (24em(m) — [0,1]) is a function that map
every possible x-tuple r (a subset of dom(r)) to a probability mass function
over r (a function associating a probability from [0, 1] with individual instan-
tiations of x-tuple r ). Note that this does not mean that we require that
every possible x-tuple r exists. For non-existing x-tuples we would set the
probability of all of its instantiations r; to 0. While the domain dom(r) of
the function Dp;p that encodes a disjoint-independent probabilistic database
may be infinite, Dp;p is finitely representable as long as each possible world
is finite, which is a typically assumed to be the case. A finite representation
is achieved by only recording the output of function Dp;p for input records
with a total probability mass larger than 0. We use p, to denote the prob-
ability distribution associated by Dprp to an x-tuple r, i.e., pr, = Dprp(r).
Observe that, we have eliminated the need for a distinguished element L to
denote the x-tuple’s absence by allowing its probability mass function to sum
to less than 1. That is, we define:

PreD] = Zpr(r) and Plr =r] = pe(r)

These probability mass functions give us natural definitions for both certain
and possible records:
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Zpr(r) =1 }

rer

Zpr(r) >0 }

rTEr

certain(DDlp) = { r

possible(Dp;p) = { r

Again, for a record r to be certain in the sense we defined for possible world
semantics, the singleton r = {r} has to be mapped to the probability dis-
tribution py(r) = 1 by Dprp.2 While the representation of an incomplete
database as a tuple-independent database is unique this does not hold for
disjoint-independent database since the same instantiation may occur in dif-
ferent tuples.

3.1.3 C-Tables

Like the tuple-independent model, the disjoint-independent model can not
capture arbitrary correlations between records. Originally proposed by Imielin-
ski and Lipski, the C-Tables model [21] allows incomplete databases to be
factorized, without requiring that their records be independent or otherwise
uncorrelated. We use V to denote an alphabet of variable symbols v € V.
A C-Tables D¢ is a collection of records ( r, f(v1,...,vn) ) € D¢, where
every record r is annotated with a boolean expression f, over variables
v1...vn € V. This expression is sometimes termed a local condition. The set
of possible worlds defined by a C-table is based on assignments o : V — B
of boolean values to each variable. We use A to denote the set of all such
assignments. Specifically, for each assignment o € A there exists a possible
world D, defined by this assignment as the set of records in D¢ that are
annotated with an expression that evaluates to true after replacing variables
with their values assigned by a.

Do={r|{(r frlvi,...;on) ) €D A f(a(v1),...a(vy)) }

Given some boolean expression F(vy,...,vx), termed the global condition®,
the full set of possible worlds is defined by the set of assignments that cause
F to evaluate to true:

D={Dy |ac AANF(a(v)),...,a(vK)) }

2 The reader may wonder whether it is possible to encode a certain record r as multiple
x-tuples that all have r as an instantiation and where for each such x-tuple r we have
pr(r) < 1. However, recall that x-tuples are assumed to be independent of each other.
Thus, there would exist a possible world with a non-zero probability that does not contain
r constructed by choosing an instantiation r’ # r or no instantiation for every x-tuple r
with r € r.

3 Note that global conditions are not strictly necessary for expressive power, but they may
allow for a more compact/convenient representation of a probabilistic database.
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C-tables are more expressive than the tuple-independent and disjoint-inde-
pendent databases. In fact, any finite set of possible worlds can be encoded
as a C-table.

Probabilistic C-Tables. This representation admits a straightforward ex-
tension to the probabilistic case, originally proposed by Green et. al. [16].
This approach defines a probability distribution P : A — [0, 1] over the space
of assignments.> A probabilistic C-Table (or PC-Table) is defined as a pair
of database and probability distribution Dpe = ( D¢, P ) Hence, the proba-
bility of a database and record can be defined as typical for possible worlds
semantics:

P[D, € (D¢, P)] = P(v) Plre(De,P)l= Y Pla)
a€A:reD,

The distribution P can be encoded using any standard approach for com-
pactly encoding multivariate distributions, such as a graphical model [34].

Ezample 9. Continuing the running example, we can model the analysis result
as a C-Table. There is one uncertain decision that affects the set of possible
worlds: Whether or not Alice owns property. We define a single boolean
variable v; to denote the outcome of this decision. Records in the C-Table
encoding the result are annotated with boolean expressions ¢ over V.= { vy }:

Query Result (Simple C-Table)

SSN | name |grantLoan || 10)
TTT-7T7-T777| Alice Alison no v
TTT-7T77-7777| Alice Alison yes -1
111-111-1111|Peter Peterson yes T

The two possible assignments { v; — T } and { v; — F } define the two
possible worlds. A separately provided (joint) distribution over the variable(s)
in V assigns a probability to each possible world.

p(a){0'6 ifa={v—~T}

104 ifa={v—F}

4 Consider an incomplete database D with 2™ possible worlds D; ... Dan. (the construction
has to be modified slightly is the number of possible worlds is not a power of 2). Then we
use n variables: v1,...,v,. An assignment to these variables is interpreted as a number 7 in
binary identifying one possible world D;. For example, if there are 4 = 22 possible worlds,
then we would use two variables v; and vz and the assignment vy — T and vy — F
represents the possible world 1 - 2! 4 020 = 2. The database constructed contains all
records that are possible in D. For an assignment «, let n(a) denote the number encoded
by «. Then the local condition for record r is va:reDn(a> /\j:a('u]-):T vj.

5 Note that [16] used per variable distributions which is less general.
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Each possible world contains only records with boolean expressions that are
true under the corresponding assignment. Hence the first two rows (with
conditions vy and —w; respectively) are mutually exclusive.

Non-Boolean Variables and Assignments. For C-Tables to efficiently
model a disjoint-independent database, it is necessary to create local con-
ditions that alternate between mutually exclusive options. Such conditions
can be modeled with boolean formulas, as in Example 9.5 However, it is of-
ten both convenient and more efficient to express alternatives with a single
integer- or real-valued variable. In this form, records are still annotated with
boolean expressions, albeit over comparisons (=, <, <, etc...) over variables.

Ezxample 10. Continuing the example, we could express the same result using
integer-valued variables. The result C-Table and corresponding distribution

are as follows:
Query Result (Integer-Valuation C-Table)

SSN | name |grantLoan| | 1) .
TTT-TT7-7777| Alice Alison no (vi =1) pla) = {0.6 ifa={vi—1}
TTT-T77-7777| Alice Alison yes (v1 =2) 04 ifa={vi—2}
111-111-1111|Peter Peterson yes T

Taking the process even further, we can replace attributes with placeholders
(often called “labeled” nulls or skolem terms) indicating that their value is to
be given by the valuation. The result is an even more compact representation,
as records that were previously conditionally in the result can now be treated
as certain.

Ezample 11. Having two assignments with nonzero probability: { v; —
’no’ } and { v — ’yes’ }, we can replace the result C-table as follows:

Query Result (General C-Table)

SSN | name |grantL0an| | 10}
TT-777-7777| Alice Alison V1 T
yes T

111-111-1111|Peter Peterson
Observe that the grantLoan attribute of Alice’s record has been replaced
by a placeholder. This value gets filled in by the assignment that defines each
possible world.

This generalized form of assignments and the use of variable-valued at-
tributes were originally proposed by Imielinski and Lipski as part of the orig-
inal C-Tables formalism [21]. It has been used successfuly by several systems,
most notably ORCHESTRA [18, 22] and Pip [26]. In fact, as we will discuss
in Section 17, Pip [26] further generalizes this model by allowing symbolic
expressions (formulas) over variables as attribute values.

6 Note that more than two options can be modeled by multiple boolean variables. For
example, 4 alternatives can be modeled with annotations v; A va, =v1 A v2, v1 A —w2, and
—wv1 A w2, respectively.
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3.1.4 U-Relations and World-Set Decompositions

Antova et. al. proposed a more backwards-compatible implementation of C-
Tables called U-Relations [20]. A U-Relation is a database table that encodes
a C-Table under the following restrictions: 1. No variable-valued attributes.
2. Local conditions must be pure conjunctions. 3. Atoms of local conditions
must be equality comparisons between a variable and a value. To support ar-
bitrary arbitrary boolean expressions, multiple copies of a record are allowed
in the U-Relation, each annotated by a different local condition. When the
full expression is needed, copies of each record are grouped and their local
conditions are combined by disjunction (into disjunctive normal form).

To encode a U-Relation in a classical relational database, we first deter-
mine the maximal number of conjunctive clauses in any record. We then add
twice as many integer-valued annotation fields to the record. Half are used
to identify variables, while the other half identify the values.

Ezxample 12. To encode the C-Table from Example 10, we would first see that
there is at most one conjunctive atom in any local condition in the record.
We add two new annotation attributes to the record: var1 identifying the
variable, and vall identifying the corresponding value in the equality.

Query Result (U-Relation)

SSN | name |grantL0an| | varl vall
TT7-777-7777| Alice Alison no 1 1
TT7-T77-7777| Alice Alison yes 1 2
111-111-1111|Peter Peterson yes 0 0

The special variable vy is always equal to 0, so unused fields can be filled in
by the tautological expression vy = 0, as in the third row of the U-Relation.

‘World-Set Decompositions. Without variable-valued attributes, U-Relations
introduce significant redundancy as attributes that do not vary between pos-
sible worlds are still repeated. To mitigate this redundancy, Antova et. al.
propose [3] using a columnar data layout [38] in a strategy that they call
World-Set Decompositions. Specifically, each record is assigned a unique iden-
tifier (e.g., a key attribute or database ROWID) while columns are stored in-
dependently.

Ezample 13. Using world set decompositions with SSN as a row identifier, the
query result from the prior example would be decomposed into 2 separate
tables:

Query Result.grantLoan

Query Result.Name
SSN | SSN grantLoan| | Varl vall

name TII-TTI-TTT7| | no H

T, T
T eter Feterson 441 111-1111
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Observe that there is no uncertainty in the decomposed Name table, and
there are no longer two copies of Alice’s name being stored.

3.2 Lossy, Sampling-Based Encodings for Incomplete
Data

Certain types of analysis — what are called unsafe queries [7] — can not be
performed both efficiently and correctly on lossless encodings of probabilis-
tic data. In such cases, results can be approximated by using Monte-Carlo
methods. The most straightforward way to accomplish this is to select some
finite set of samples D C D from the set of possible worlds; uniformly for
incomplete databases or according to P(D = D) for probabilistic databases.
Analytical questions are evaluated in parallel on all possible worlds from the
sample set:

Q) ={am) |ped}

Because of the sampling process, sampling-based encodings do not distinguish
between incomplete, or probabilistic databases. However, we observe that
many statistical measures that might be computed over the set of results (e.g.,
the expectation) have no meaning for incomplete databases. We introduce
two approaches to encoding sets of samples: (1) World-Annotated databases,
which admit a more computationally efficient implementation using classical
relational databases, and (2) Tuple Bundles, which encode uncertain data
more compactly.

Note that both certain and possible are ill defined on samples. By defi-
nition the certain records are a subset of records across all samples, and the
possible records are a superset.

certain(D) C ﬂ D possible(D) C U D
DeD DeD

However, these are only bounds on the sets of certain and possible records.

3.2.1 World-Annotated Sample Sets

To store a set of N samples, our first, naive approach creates a single database
Dw 4 € dom(r) x [1, N], annotating each record with the index of the sample
it appears in. Accordingly, the sample-set is defined by de-multiplexing the
records. R

D={{r|(ri)eDwa}|ic[LN]}
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3.2.2 Tuple-Bundles

The size of Dy 4 is generally linear in the number of samples (i.e., O(N)).
Unsurprisingly, the computational cost of analysis typically scales linearly as
well. As with lossless encodings, eliminating redundancy can create more com-
pact and efficient representations. One approach to eliminating redundancy
is a type of record called a tuple bundle, originally proposed by Jampani et.
al. [23]. We assume that a record r = ( a1,...,ax ) is defined by k attribute
values a; Accordingly, a tuple bundle r = ( ay,...,ak, ¢ ) is defined by a set
of attributes a; and a sample-vector ¢. Each attribute may either be a single
value or a vector of size N.

aj = Clj
(aij,....an; )

In the first case, the value a; is constant across all samples, while the latter
case defines explicit values for the attribute a; ; in each sample. The sample
vector ¢ € BY is a vector of B boolean values (bits) ¢[i]. Bit j being set
to true (resp., false) indicates that the record is present in (resp., absent
from) sample j. The corresponding sample set is defined by filtering on ¢
and plugging in attribute values.

ﬁ:{{(ai71,...ai7K> |((al,...,aK,¢)€DTB)A¢[i] } |i€[1,N] }

a; ifa; =a;
where a;; = { ’ / /

a;; otherwise

4 Computing with Uncertain Tabular Data

Assume that we are given an encoding D (resp., Dp) that corresponds to
an incomplete (resp., probabilistic) database D (resp., ( D, P )). We want to
compute the answer to a question Q(D). However, answering this question
directly on D using possible worlds semantics is impractical, as the number
of worlds is usually large. In this section we discuss techniques for computing
answers more efficiently by directly manipulating the encodings D.

4.1 Relational Algebra

Queries over tabular data are expressed through a range of different lan-
guages: SQL, SparQL, R, Spark, and others. To streamline our discussion,
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we focus on a tabular data processing language called relational algebra. Re-
lational algebra is comparatively straightforward to reason about and also
captures the core data manipulation functionality of each of these other lan-
guages. Before we discuss evaluation techniques for uncertain data, we first
present a short overview of normal relational algebra’. We then introduce
strategies for evaluating relational algebra expressions over encoded uncer-
tain databases. We follow the focus on probabilistic databases exhibited by
most of the work on uncertain databases, but also note when probabilistic
techniques apply to incomplete databases as well. We also focus on lossless
encodings, as query evaluation over lossy encodings is a straightforward ex-
tension of classical query evaluation [23].

Operator Notation SQL
Table R SELECT [DISTINCT] * FROM R;
Projection Ta,B,...(R) SELECT A, B, ... FROM R;
Selection oy (R) SELECT * FROM R WHERE t;
Product Rx S SELECT * FROM R, S;
Union RUS SELECT * FROM R UNION [ALL] SELECT * FROM S;
Aggregate|a,...mrcan...(R) [FRoM R GRovp BV 'K, .5

Fig. 3: Relational algebra

Relational algebra concerns itself with sets (resp., bags) of records called
tables (R, S, T, ...). An individual record r € R is a set of attribute/value
pairs 1 = ( A:va,B:vp,...), and we assume that all records in a table
have identical sets of attributes. We refer to this set of attributes as the
table’s schema sch(R). Relational algebra, as we use it, defines 6 operators,
summarized in Figure 3: Input Tables, Projection, Selection, Product, Union,
and Aggregate. Apart from the table operator, each operator takes one or
more other operators as input and produces an output that may be saved as
a table or passed to another operator. Hence, operators can be linked together
to express complex computations.

Projection transforms each record of its input, producing records with at-
tributes given by a set of target columns (A, B, ...). When working with sets,
projection also ensures that the output is free of duplicates.

Selection filters its input down to records that satisfy the condition ).

Product pairs every record in one of its inputs with every record in the
other. The combination of Selection and Product operators (o, (R x 5)), is
often called a Join (R <y, S)).

Union merges records from two input tables. If working with sets, Union
also ensures that there are no duplicates in the inputs.

7 For a more thorough introduction, we refer the interested reader to a textbook by

Garcia-Molina et. al. [14]
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(Group-By) Aggregate creates groups of records according to a list of
attributes (A, B, ...). Records in each group are summarized by one or more
aggregate functions («; € {SUM, COUNT, AVG,MIN,...}), and one record per
group is output. If no grouping attributes are given, aggregation treats its
entire input as a single group.

4.2 Extensional Evaluation

We first consider the Tuple-Independent model [4, 40, 39]. Recall that a
Tuple-Independent probabilistic database is encoded by annotating each
record with an extra field ¢ € [0,1] denoting the independent probability
of this record being in any given possible world. Naively, we might try mod-
ifying relational algebra operators to preserve these annotations, a strategy
called “Extensional” evaluation [40, 39] of relational algebra. That is, for
each operator, we define an evaluation strategy that ensures that each out-
put row is annotated with the independent probability of the result. Figure 4
illustrates this strategy for queries evaluated over sets. We next discuss these
operators — we omit Aggregation for the moment.

Projection. For projection, we eliminate duplicate rows using a group-
by query. Each resulting record exists if any records that share projection
attributes exist. Assuming that each row in the input is independent, the
corresponding probability is a disjunction of independent events (1 — (1 —
p(t1)) - (L =p(t2)) - -..)

Selection. Selection has no impact on probabilities of records. Records that
are filtered out are excluded from the result regardless of their probability.
Records that are not filtered out appear in the result with their original
probabilities.

Product. For a row to appear in the output of a product, it must have
resulted from one row in each of the product’s inputs. Assuming that the
inputs are independent, the probability of each output row can be computed
as a conjunction of 2 independent events (p(t1) - p(t2)).

Union. Union itself does not affect the probability of its inputs. However,
during duplicate removal union may need to merge record probabilities. It
does this in the same way as during duplicate removal for projection.

Modifying a relational algebra expression to maintain the probability an-
notation attribute ¢ through extensional evaluation adds minimal computa-
tional overhead. However, extensional evaluation has several serious limita-
tions that all stem from its use of the Tuple-Independent model to represent
state in between operators. First, the Tuple-Independent model can not effi-
ciently represent the outputs of the aggregate operator: The size of the output
grows exponentially with the size of the input. Second, even if the input to
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Original Operator|Probabilistic Implementation

7wa,B,.. (R) SELECT A, B, ..., 1 - PROD(1-¢) FROM R GROUP BY A, B, ...;
oy (R) SELECT * FROM R WHERE 1);
Rx S SELECT *, R.¢ * S.¢ AS ¢ FROM R, S;
SELECT *, 1 - PROD(1-¢) FROM (
RUS SELECT * FROM R UNION SELECT * FROM S
) GROUP BY *;

Fig. 4: Extensional evaluation implemented in SQL

a relational algebra expression is independent, the expression may introduce
correlations between rows of output.

Ezample 1. Continuing our running example, consider the loan approval ta-
ble and another table of homes available for purchase scraped from websites
and government records. Scraping is an imprecise process, and the record at
45 Bassett may not actually represent a home available for purchase.

possible(forSale)
address |price|| 1)
123 Acacia| 200k ||1.0
45 Bassett | 150k ||0.9
possible(Q(D) x forSale)

SSIN | name |grantLoan| address |price|| )
TTT-T77-7777| Alice Alison yes 123 Acacia| 200k || 0.4
TTT-TTT-7777| Alice Alison yes 45 Bassett | 150k [[0.36
TTT-T77-7777| Alice Alison no 123 Acacia| 200k || 0.6
TTT-TTT-7777| Alice Alison no 45 Bassett | 150k ||0.54

111-111-1111|Peter Peterson yes 123 Acacia| 200k || 1.0
111-111-1111|Peter Peterson yes 45 Bassett | 150k || 0.9

Consider the product of this new table with the result table from our
running example (obtained via Extensional evaluation). There are two types
of correlations in the result records. The presence of the second, fourth, and
sixth possible records depends on whether or not the record for 45 Bassett
is present in forSale. Meanwhile the first two records must always appear
together, and are mutually exclusive with the third and fourth result records.
The records are not independent, and the measure ¢ annotating each record
can no longer be used to compute the probability of worlds containing the
record. Note however, that for this example the probabilities annotating each
record do correspond to the marginal probability of that record being in the
result.

Relational algebra introduces correlations, and program outputs are not
guaranteed to be tuple-independent. Thus, it is possible that the resulting
probability annotations will be meaningless. Fortunately that is not always
the case. Dalvi and Suciu identified a particular class of relational algebra
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expressions termed “safe” [39, 7], as well as a procedure for (1) rewriting
expressions into equivalent safe forms, or (2) determining that there is no
equivalent safe expression. When a safe expression is evaluated using the
extensional rules, every output record will be annotated with the record’s
confidence (marginal probability of being in the result). Extensional evalu-
ation also has value for unsafe expressions. As shown by Gatterbauer and
Suciu [15], extensional evaluation can be used to establish bounds on the
actual confidence values.

4.3 Intensional FEvaluation

For computing with unsafe relational algebra expressions, we need an eval-
uation strategy that takes into account potential inter-row correlations. Our
next approach, called “Intensional” evaluation, uses C-Tables as an underly-
ing data representation. Recall that records in C-Tables are annotated with
a boolean formula (f,.(v1,...,vN)), parameterized by variable symbols (v;).
Possible worlds are defined by assignments of values to variables; Records
are included in a result in worlds that assign values that satisfy the boolean
expression.

Intensional query evaluation [39, 21] is closely related [17] to the prove-
nance (i.e., lineage or pedigree) of query answers. Under intentional evalua-
tion, each operator annotates output records with the conditions that need
to hold on the assignment for the record to be in the result. Hence, corre-
lations are explicitly captured in the query results as variables that appear
repeatedly in a formula or across the annotations of multiple records.

Original Operator |Probabilistic Implementation

7a 5. (R) SELECT A, B, ..., BOOLEAN_OR(¢) FROM R GROUP BY A, B, ...;
oy (R) SELECT * FROM R WHERE 1;
Rx S SELECT *, BOOLEAN_AND(R.¢, S.¢) AS ¢ FROM R, S;
SELECT *, BOOLEAN_OR(¢$) FROM (
RUS SELECT * FROM R UNION SELECT * FROM S
) GROUP BY *;

Fig. 5: Intensional evaluation implemented in SQL

For Intensional evaluation (a possible implementation is shown in Fig-
ure b), operators follow a virtually identical pattern to extensional evaluation,
except that the resulting annotation ¢ is a boolean formula. In the proba-
bilistic database literature, this type of formula is often called Lineage. Once
the result is computed, the problem of computing marginal probabilities be-
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comes one of simple inference. For each tuple, we are given boolean formula
and a distribution over binary variables appearing in the formula. We need
to compute the marginal probability of this boolean formula being true 8.

The problem of inference has been well studied in the general context [28].
The specific problem of computing marginals under constraints belongs to
the general problem of counting solutions to boolean formulas. Exact solu-
tions are exponential in the size of the input (complexity class #P [33]) and
numerous approximation schemes have been developed. However, probabilis-
tic databases admit several specializations of general techniques. We next
discuss several of these.

KLM Estimators. It is well known that any relational algebra expression
which exclusively uses the operators we have introduced here can be rewritten
into a normal form which consists of a union of conjunctive queries (or UCQ
for short). A conjunctive query (CQ), is a query without union which consists
of a projection over the result of a selections which in turn is applied to the
result of zero or more cross-products. After such a rewriting, it is trivial to see
that boolean formulas annotating results are guaranteed to be in disjunctive
normal form, because the final union will connect the formulas produced
by individual CQs through OR while the formulas produced by a CQ are
conjunctions (hence the name). As observed by Olteanu et. al. [32], this makes
a form of gibbs sampling proposed by Karp, Luby, and Madras [24] ideal for
probabilistic databases. The KLM scheme begins with a disjunction C; VC5V
...V Cy of conjunctive clauses C;. It initially assumes that each conjunctive
clause is disjoint:

p(C1VCyV...VCy)=p(C1) +p(C2)+ ...+ p(Cn)

This assumption is an over-estimate, as variable assignments that satisfy 2
(or more) of the conjunctive clauses are counted twice (or more). The scheme
then attempts to derive a corrective factor by repeatedly sampling clauses
at random, and computing the expected number of clauses that a satisfying
assignment for the clause would also satisfy. An approach by Dagum et. al. [6]
improves on this approach by bounding the number of samples required to
estimate record confidence within desired € — § bounds.

Anytime Approximation. Another distinction to be found in this setting,
is that data analytics are often interactive processes. The process of approxi-
mating confidence values can also be made interactive, allowing the analyst to
decide on-the-fly when a result is “accurate enough” before terminating the
process. One such approach, proposed by Olteanu et. al. [13], alternates be-
tween using an approximate estimator like KLM, and repeated refinement of
the boolean formula towards an one consisting exclusively of disjoint clauses
through Shannon expansion. Given enough time, this approach eventually
converges to an exact value for a record’s confidence.

8 Observe that a binary version of this problem can be applied in the case of incomplete
databases. A tuple is certain if its local condition is implied by the global condition.
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Top-K Estimation. One particular specialization of probabilistic databases
that is of interest is finding the most likely records in the output of a relational
algebra expression [30, 35] For example, given uncertain inputs describing
existing findings of protein-protein interactions, we might wish to predict
other likely interactions [10]. In general, this problem can be framed as the
task of finding the K most probable records (the Top-K records) from the
result. In this case, our computational job is easier, as exact probabilities
are not required. We only need a sufficient approximation of each probability
to decide whether the record belongs in the Top-K or not. One family of
approaches proposes using early cutoffs in approximations [35, 37]. A related
approach by Gatterbauer and Suciu uses intensional evaluation to establish
bounds on the probability of a record [15], allowing for early cutoffs as well.
A final approach by Li et. al. [30] attacks a further specialization aiming at
the “Best” results. Here, the notion of “best” is formalized by one of several
different strategies for combining a user-provided ranking function over result
records with the probability of records being in the result.

Attribute-Level Uncertainty. Thus far, most of our discussions have
centered around record-level uncertainty: the presence of a specific record
with a specific set of attribute/value pairs in the result set. However in many
situations it is not the record that is uncertain, but rather one of the values
of an attribute of that record. For example, when computing an aggregate
over an incomplete or probabilistic table, aggregate values are likely to be
uncertain, while the groups to which they belong need not be. Although most
work on probabilistic databases focuses on record-level uncertainty, several
efforts have attempted to encode uncertainty appearing in attributes. The
original Imielinski and Lipski formalization of C-Tables [21] allows variable
symbols to appear in place of values in tabular data — variable assignments
with non-boolean values as well are used to assign values to these variables.
Notably, this means that selection can modify the formula annotating selected
records. Singh et. al. [36] allows attributes to take values defined by normal
distributions. Antova et. al. [3] propose a strategy that fragments records in
tables, replacing the table with a set of tables, one per field. Finally, Kennedy
et. al. [25] builds on the C-Tables formulation to construct formulas for the
values of uncertain attribute fields, which can be evaluated after variables
are replaced by an assignment.

4.4 Virtual C-Tables

A recently proposed evaluation strategy based on C-Tables instead virtualizes
uncertainty. This approach uses a generalization of C-Tables called Virtual
C-Tables (or VC-Tables for short). We first introduce this generalization and
then explain the evaluation strategy that utilizes it.
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Recall that in a C-Table, the attribute values of a tuple are constants
or variables from a set V and the local condition of a tuple is a boolean
formula over comparisons between variables and constants. While C-Tables
are quite powerfule, there still exist operators whose result are complicated
or impossible to express as C-tables.

Ezxample 15. Assume we want to require customers to pay an application fee
for every loan application they make that is 1% of the requested loan amount
and that we want to automatically accept loan applications if this fee is higher
than $10,000. Using the applications table (attributes SSN and loanAmount),
we can determine the set of loans that will be automatically approved as
follows:

SELECT SSN, loanAmount, loanAmount * 0.01 AS fee
FROM applications
WHERE loanAmount * 0.01 > 10000.0;

Consider the C-Table applications shown below where we do not know
what the loan amount for the customer with SSN 111-777-2222 which is
encoded by setting the value of attribute loanAmount for this record to a
variable, say v;.

SSIN |10anAm0unt || ¢
777-777-7777‘ 200,000 HT
1 T

111-777-2222 v

The loan for the customer with SSN 111-777-2222 will be automatically
approved if vy * 0.01 (the fee) is larger than $10,000. In this case the fee
attribute of the result record has to be set of v; * 0.01. This correlation
between the loanAmount and fee attribute is hard to express in a standard
C-Table since there is no support for arithmetic operations. In fact, it can
only be represented if the domain of the loanAmount is finite. In this case, we
would have to represent each possible loanAmount and fee pair that fulfills
the condition as a separate tuple. Some of these tuples are shown below.

SSIN |loanAmount| fee || ¢
111-777-2222| 1,000,001 [10,000.01||v; = 1,000,001
111-777-2222( 1,000,002 [10,000.02||v; = 1,000,002
111-777-2222( 1,000,003 [10,000.03||v; = 1,000,003

VC-Tables overcome this limitation of C-Tables by allowing attribute val-
ues and inputs to comparions in local and global conditions to be symbolic
expressions using arithmetic operators, conditionals (if-then-else), constants,
and variables. Possible worlds are still defined over variable assignments. The
only difference is that the attribute values of a tuple in a possible world are
determined by evaluating the symbolic expressions of the tuple under the
assignment « corresponding to the possible world. For details of the formal
definition of these expressions see [41, 26].
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Ezample 16. Continuing with the previous example, we can compactly rep-
resent the query result as a VC-Table as follows:

SSN |loanAmount| fee || )
111-777-2222| v1 [v1 % 0.0L[[v1 *0.01 > 10000

For example, for the assignment v; = 1,500,000 we get the possible world:

SSN |loanAmount| fee
111-777-2222| 1,500,000 |15,000

We can extend VC-Tables to support probabilistic databases by defining
a probability distribution over possible variable assignments.

Having introduced VC-Tables, we now explain how the Mimir PQP mid-
dleware [41, 31] uses such encodings to virtualizes PQP. Mimir rewrites prob-
abilistic queries into deterministic queries over a deterministic encoding of
uncertain data such that the rewritten queries faithfully preserve the seman-
tics of the probabilistic queries. To accomplish this, Mimir uses an extended
form of relational algebra called Variable-Generating Relational Algebra, or
VG-RA [25].

Using VG-RA, uncertainty is introduced into deterministic data through
queries. A VG-RA expression defines VC-Tables by allowing expressions to
generate variable symbols through special functions called Variable-Generating
or VG-Terms. A VG-Term denoted VG(+) can appear in any boolean or arith-
metic expression in any Project, Select, or Aggregate operator in a VG-RA
query. The input of a VG-Term controls the name of the variable generated
by VG-RA for a given input record. For instance, a VG-Term VG (name)
would return a unique variable for each name attribute value from the input
of the operator where the VG-Term is used. The result of a VG-RA expres-
sion is an incomplete database — a VC-Table. Essentially, once a variable is
introduced by a VG-Term, expressions involving this VG-Term are evaluated
symbolically. VG-RA allows the generated variables to be associated with a
(potentially joint) distribution over possible assignments (we do not show the
language constructs for this here).

Ezxample 17. Recall the customers table from Figure 1. Although this table is
missing several values, there is no uncertainty about this fact. Mimir allows
users to create a cleaned “view” over the data; For the customers table,
Mimir would use the following query:
SELECT SSN, name, assets, numMortgages,
CASE WHEN income IS NULL THEN VG(’income’, RID)
ELSE income END AS income,
CASE WHEN ownsProperty IS NULL THEN VG(’ownsProperty’, RID)
ELSE ownsProperty END AS ownsProperty
FROM customers;

For each of the two attributes with missing values, Mimir replaces NULL by
using the SQL fragment

CASE WHEN x IS NULL THEN VG(°x’, RID) ELSE x
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If the value is present, the fragment leaves it unchanged. If it is nuLL, the
fragment replaces it with a variable created by the VG Term vc(’x’, RID),
where RID uniquely identifies each row of the table. By being keyed on the
attribute name, as well as a unique row identifier, one fresh variable is in-
stantiated for every column and row. Independently, Mimir trains a model
on the same data, uses interpolation, or any other imputation technique. The
resulting models are then linked to the new variables. For instance, omitting
the probability distributions over assignments, the result of the query shown
above over the database from Figure 1 (assuming an additional attribute RID
as supported by many database systems) would be:

RID|| SSN | name | income | assets |numM| ownsP ||¢
1 |[777-777-7777| Alice Alison | $60,000 [$200,000] 0 [0/ownsproperty’ 1 ||T
2 333-333-3333| Bob Bobsen $102,000 | $15,000 0 no T
3 ||111-111-1111| Peter Petersen |v/;pcome’,3| $90,000 1 yes T
4 ||555-555-5555|Arno Arnoldson| $95,000 | $30,000 0 yes T

In most probabilistic databases, queries are assumed to be deterministic
and the data is non-deterministic (i.e., Q(D)). Conversely, in Mimir the re-
verse is true, as all uncertainty is introduced through VG-Terms (i.e., as part
of Q(D)). In addition to the other benefits in terms of compact representa-
tion of the result of arithmetic expression brought by VC-Tables, this allows a
evaluation strategy to be chosen at query time. This is important in practice
since different evaluation strategies and approximations may exhibit vastly
different performance and performance may be affected significantly by the
structure of the query that is evaluated. Thus, by allowing the strategy to
be chosen per query is critical to trade performance against accuracy of the
result using the techniques introduced in this section and Section 5.

5 Presenting Uncertain Tabular Data

We next survey techniques for presenting uncertain tabular data to users [29],
develop a taxonomy of presentation strategies, and relate these strategies to
algorithms for computation over uncertain data. That is, we discuss tech-
niques that allow us to communicate to a user the set (resp., distribution) of
possible worlds represented by an incomplete database D (resp., probabilistic
database ( D, P )) or an encoding D thereof (resp., Dp).
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5.1 Tuple Identity

We have introduced two forms of uncertainty: Record-level uncertainty (is
a record part of a result or not), and Attribute-level uncertainty (what is
the value of a specific attribute). There is a tension between these two forms
of uncertainty: At what point are the attributes of two records from differ-
ent possible worlds sufficiently similar to be considered the same record? If
they are considered the same record, then (with respect to the two possible
worlds) we have one certain record with uncertain attributes. Conversely, if
the records are different, then we have two uncertain records, with no uncer-
tainty about their attributes.

To resolve this tension, different uncertainty management systems define
— often indirectly — a record identity function id(r). id(r) assigns to every
record an identifier that is unique within a possible world of the database
D. The primary role of identifiers is to gather instances of the same records
from different possible worlds, while allowing the precise definition of record
“sameness” to vary based on the needs of the representation. Record iden-
tifiers allow us to define, for a particular possible world D € D, the set of
identifiers appearing in the possible world. We refer to the set of possible
worlds that contain a tuple with the same identifier as a tuple r as the sup-
port of r and denote it as sup(r, D).

ids(D) ={4d(r) |r €D } sup(r,D)={ D | D € DAid(r) € ids(D) }
The support of r, in turn, gives us definitions for possible and certain records.
r is certainly in D := [ sup(r,D) = D]

r is possibly in D := [ |sup(r,D)| > 1]

Likewise, we can define the set of possible values of a record r’s attribute A
as the set of values of A in all records with the same identity.

possible(r[A] € D) := { r'[4] | id(r) =id(r') A7 e DAD €D }

This in turn allows us to say that a record r’s attribute A is certain if and
only if it has exactly one possible value, or that it is bounded if its possible
values satisfy some constraint.

r[A] is certain in D := [ |possible(r[A] € D)| =1]

r[A] is bounded by [/, h] in D :=Va € possible(r[A] € D) : £ <a < h

If the set of possible worlds has an associated probability measure p(D),
we can define the confidence of a record as the marginal probability over all
possible worlds with a record with the same identifier.
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conf(r € D) := Z p(D)

Desup(r)

We call any subset of records S C (Jpep D a summary if no pair of
records in S share an id. We call a summary complete if every identifier in D
is represented. That is, S is a complete summary of D if and only if:

SC|UD A Vri#EreSiidm)#idr) A ids(S) = | ) ids(D)

DeD DeD

5.2 Compact Encodings of Possible Worlds

With this terminology in place, we are now ready to describe the space of
the representational schemes used by existing uncertain and probabilistic
database systems. A specific representation is the result of three categories of
representational features. (1) Equivalence, or how the scheme decides which
tuples to place in a specific tuple group, (2) Filtering, or what subset of the
complete summary relation the scheme incorporates, and (3) Statistics, or
how the scheme summarizes properties of each tuple group. When appropri-
ate, we also distinguish between tuple-level, and attribute-level statistics.
Figure 6 illustrates how existing PQP schemes relate to these features.

Alg. Family Example Systems |Equivalence| Filtering Statistics
Monte Carlo |[MCDB [23], Jigsaw [27] Implicit Samples Agg, Conf.
Chase Data Exchange [11] Set Certain None

MayBMS [3, 20],

Local Condition Orchestra [18, 22] Set Possible Enum, Conf.
. Top-K [37],

Pruning Dissociation [15] Set Top-K Post. None
PC-Tables PIP [26], Orion [36] Implicit Possible | Agg, Enum, Conf
VC-Tables Mimir [41, 31] Implicit Best Guess |Taint, Top-K Prior

Model Velox [5], MauveDB [9] Implicit Possible Conf

Fig. 6: PQP systems in terms of the representational semantics used to com-
municate uncertain tables.

5.2.1 Record Equivalence: Assigning Identifiers

Record identifiers eliminate redundancy in the summary by allowing us to
represent certain forms of conflicts through attribute-level uncertainty. To
date, existing probabilistic and incomplete database systems have adopted
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one of two approaches to identifiers that we call Set- and Implicit-identity.
The vast majority of literature on probabilistic databases (e.g., [37, 32, 4,
13, 39, 7, 15, 16] ignores attribute level uncertainty. In this approach, which
we term Set-identity, the entire record is used as an identifier. Under Set-
identity, two records have the same identity if and only if the values of their
attributes are identical.

Conversely, systems [26, 23, 36, 40, 41] that support attribute-level uncer-
tainty typically give each tuple an implicit identifier. In this approach, which
we term Implicit identity, each record in input tables is assigned a unique
identifier (analogous to the ROWIDs of popular database systems). This iden-
tifier is propagated through relational algebra expressions in a manner that
mimics database provenance [17] (i.e., lineage or pedigree) as illustrated in
Figure 7. Projection and selection preserve the identity of a record. Prod-
uct deterministically derives a new identifier for each output record from the
identifiers of the records used to derive it. Union deterministically derives
new identifiers for each output record based on the input record’s identifiers,
and which side of the union it came from ?. Aggregates produce entirely
new records. We identify the resulting records by deriving an identifier from
the grouping attributes, or using a default attribute if there are no grouping
attributes.

Ezample 18. Consider the customers table in the two possible worlds D;
and Dy of Figure 2. Set-identity schemes (e.g., u-relations [2] or semiring
annotations [16]) assign identity based on record values. The records for Bob,
Peter, and Arno are each assigned one identifier across both worlds, while each
of the two possible records for Alice is assigned its own identifier. Accordingly,
records for Bob, Peter, and Arno are certain, while the other records are only
possible.

Conversely, implicit-identity schemes (e.g., MCDB [23], Pip [26], or Mimir [41,
31]) might use a key attribute like SSN as an identifier for the row. In such
schemes, all four records are certain and only Alice’s ownsProperty attribute
is uncertain.

5.2.2 Filtering Uncertain Records

It is often helpful to further summarize possible relations by filtering out
low-importance record identities. The most general approach to filtering is
based on a record’s support. Most incomplete database systems intended for
Data Exchange, Cleaning, or Fusion (e.g., [11]) return only certain tuples of
a query result. Conversely, many probabilistic database systems present the
complete set of possible results [2].

Certain and possible results represent two extremes of a spectrum. The
former may omit potentially valuable information, while the latter might

9 This prevents repeated identifiers if a record appears on both sides
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Operator Notation SQL

Table R SELECT *, ROWID FROM R;
Projection ma,B,...(R) SELECT A, B, ..., ROWID FROM R;
Selection oy (R) SELECT * FROM R WHERE 1);
Product RxS SELECT *, MERGE_IDS(R.ROWID, S.ROWID)

AS ROWID FROM R, S;
SELECT *, MERGE_IDS(R.ROWID, ‘1°¢)

. AS ROWID FROM R UNION [ALL]
Union RUS SELECT *, MERGE_IDS(S.ROWID, ¢2°¢)
AS ROWID FROM S;
SELECT A, ...,apmAS M, ...,
Aggregate|va,... M—ayy,...(R) MERGE_IDS(A, B, ...) AS ROWID

FROM R GROUP BY A, B, ...;

Fig. 7: Deriving implicit row identifiers

produce many records, overwhelming the user. The search for an intermediate
‘sweet spot’ has led to the emergence of a variety of semantics that is a
superset of certain answers and a subset of possible answers. (1) sample
filtering [23, 27], includes a union of all records from a (lossy) sampled set of
possible worlds. (2) threshold filtering includes all records with a support or
confidence that larger than a threshold size or probability. (3) top-k prior
filtering [41, 31] includes all records that appear in the results for the k most
likely possible worlds. We call the special case of the top-1 prior best guess
filtering, as these are the results from the most likely possible world. Finally,
(4) top-k posterior results include only the top-k records, as ranked by the
confidence or support of the result itself [10, 30].

Note the distinction between the two top-k filtering strategies: top-k prior
filters before marginalizing, while top-k posterior filters afterwards. The top-
k posterior filtering strategy is particularly appropriate for settings where
the user is searching for the most likely result. For example a user examining
a medical diagnostic query result is probably interested in the most likely
diagnosis. We note that although this is appropriate for such specialized use
cases like diagnostic or recommender systems, such representations can lead
to a confusing proliferation of semantics [30].

5.2.3 Statistics for Uncertain Attributes

The final point to consider when designing a summary representation is how
to represent the records themselves. For this, we need to convey both record-
and attribute-level uncertainty.

Record-level statistics. Uncertain result records do not appear in all pos-
sible worlds. When communicating this information to the user, we effectively
wish to communicate some features of the record’s support. Although some
schemes are capable of enumerating the set of all worlds that a record ap-
pears in, this capability is typically expensive. Rather, most PQP schemes
compute or approximate a record’s confidence[7, 13, 15]. A simpler approach
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uses taint annotations [41, 31, 29] to differentiate between certain and pos-
sible records.

Attribute-level statistics. Unless set-identity is being used, records may
have uncertain attributes as well. Most probabilistic and incomplete database
schemes assume that we are only interested in summarizing individual at-
tributes and not more general properties. The most common strategy is to
construct aggregate summaries of the attribute’s values across the record.
Histograms [23], expectations [26, 23], confidence bounds [27], or hard bounds
have been used as aggregate summaries. Another approach is to summarize
an attribute of a record by one, or a set of possible values [41, 10]. Any record
filtering strategies can be leveraged to decide which possible values to include,
e.g., top-1 prior [41] or top-k posterior [10, 37].

6 Conclusions

In this paper, we explain how uncertainty arises in detection and resolving of
data quality issues, and how this uncertainty may cause data quality issues in
analysis results which often remain undetected. Such untrustworthy analysis
results can in turn have severe adverse real world effects such as unfounded
scientific discoveries, financial damages, or even affect people’s physical well-
being (e.g., medical decisions based on data with low quality). The main
purpose of this work is to give an overview of uncertain datamanagement
techniques and raise awareness of how these techniques can be applied to
explain how heuristic resolutions to data quality problems affect the quality
and trustworthiness of analysis results.
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