
Refining Labeling Functions with Limited Labeled Data
Chenjie Li

University of Illinois Chicago
Chicago, IL, USA
cl206@uic.edu

Amir Gilad
Hebrew University
Jerusalem, Israel

amirg@cs.huji.ac.il

Boris Glavic
University of Illinois Chicago

Chicago, IL, USA
bglavic@uic.edu

Zhengjie Miao
Simon Fraser University
Burnaby, BC, Canada

zhengjie@sfu.ca

Sudeepa Roy
Duke University
Durham, NC, USA

sudeepa@cs.duke.edu

Abstract
Programmatic weak supervision (PWS) significantly reduces hu-
man effort for labeling data by combining the outputs of user-
provided labeling functions (LFs) on unlabeled datapoints. However,
the quality of the generated labels depends directly on the accuracy
of the LFs. In this work, we study the problem of fixing LFs based on
a small set of labeled examples. Towards this goal, we develop novel
techniques for repairing a set of LFs by minimally changing their
results on the labeled examples such that the fixed LFs ensure that
(i) there is sufficient evidence for the correct label of each labeled
datapoint and (ii) the accuracy of each repaired LF is sufficiently
high. We model LFs as conditional rules, which enables us to refine
them, i.e., to selectively change their output for some inputs. We
demonstrate experimentally that our system improves the quality
of LFs based on surprisingly small sets of labeled datapoints.

CCS Concepts
• Information systems→ Data cleaning.

Keywords
weak supervision; labeling functions; label repair; rule refinement;
label quality

ACM Reference Format:
Chenjie Li, Amir Gilad, Boris Glavic, Zhengjie Miao, and Sudeepa Roy. 2025.
Refining Labeling Functions with Limited Labeled Data. In Proceedings of
the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3711896.3737102

KDD Availability Link:
The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.15558280.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/10.1145/3711896.3737102

def key_word_star(v): #LF-1
words = ['star', 'stars ']
return POS if words.intersection(v) else ABSTAIN

def key_word_waste(v): #LF-2
return NEG if ('waste ' in v) else ABSTAIN

def key_word_poor(v): #LF-3
words = ['poorly ', 'useless ', 'horrible ', 'money ']
return NEG if words.intersection(v) else ABSTAIN

(a) Three example LFs for amazon reviews
'star'or 'stars'in v

ABSTAIN

false
'one' in v

POS

false
NEG

true

true

(b) Refined rule for LF-1

words.intersection(v)

ABSTAIN

false
'yes' in v

NEG

false
POS

true

true

(c) Refined rule for LF-3

Figure 1: LFs before / after refinement by RuleCleaner

1 Introduction
Programmatic weak supervision (PWS) [25, 34] is a powerful tech-
nique for creating training data. Unlike manual labeling, where
labels are painstakingly assigned by hand to each training data-
point, data programming assigns labels by combining the outputs
of labeling functions (LFs) — heuristics that take a datapoint as
input and output a label — using a model. This approach dramati-
cally reduces the human effort required to label data. To push this
reduction even further, recent approaches automate the genera-
tion of LFs [4, 7, 11, 30]. For example, Witan [7] creates LFs from
simple predicates that are effective in differentiating datapoints,
subsequently guiding users to select and refine sensible LFs. Guan et
al. [11] employ large language models (LLMs) to derive LFs based on
a small amount of labeled data, further reducing the dependency on
human intervention. One advantage of PWS over weak supervision
with a black box model is that LFs are inherently interpretable.

Regardless of whether LFs are manually crafted by domain ex-
perts or generated by automated techniques, users face significant
challenges when it comes to repairing these LFs to correct issues
with the resulting labeled data. The black-box nature of the model
that combines LFs results obscures which specific LFs are responsi-
ble for mislabeling a datapoint, and large training datasets make it
difficult for users to manually identify effective repairs. While ex-
planation techniques for PWS [12, 35] can identify LFs responsible

https://orcid.org/[OPTIONAL-ORCID]
https://orcid.org/[OPTIONAL-ORCID]
https://doi.org/10.1145/3711896.3737102
https://doi.org/10.5281/zenodo.15558280
https://doi.org/10.5281/zenodo.15558280
https://doi.org/10.1145/3711896.3737102

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chenjie Li, Amir Gilad, Boris Glavic, Zhengjie Miao, and Sudeepa Roy

LF labels: old (new)id text true
label

old predicted
label by Snorkel

new predicted
label by Snorkel 1 2 3

0 five stars. product works fine P P P P - -
1 one star. rather poorly written needs more content and an editor N P N P (N) - N
2 five stars. awesome for the price lightweight and sturdy P P P P - -
3 one star. not my subject of interest, too dark N P N P (N) - -

4 yes, get it! the best money on a pool that we have ever spent. really cute and
holds up well with kids constantly playing in it P N P - - N (P)

Table 1: Products reviews with ground truth labels ("P"ositive or "N" egative), predicted labels by Snorkel [25] (before and after
rule repair), and the results of the LFs from Figure 1 ("-" means ABSTAIN). Results for repaired rules are shown in blue.

for erroneous labels, determining how to repair the LFs to fix these
errors remains a significant challenge.

In this work, we tackle the challenge of automatically suggesting
repairs for a set of LFs based on a small set of labeled datapoints. Our
approach refines an LF by locally overriding its outputs to alignwith
expectations for specific datapoints. Rather than replacing human
domain expertise or existing automated LF generation, our method,
RuleCleaner, improves an existing set of LFs. Our approach is
versatile, supporting arbitrarily complex LFs, and various black box
models that combine them such as Snorkel [25], FlyingSquid [8] or
simpler models like majority voting. RuleCleaner is agnostic to
the source of LFs, enabling the repair of LFs generated by tools like
Witan [7], LLMs [11], and those created by domain experts.

To address the challenge of refining LFs expressed in a general-
purpose programming language, we model LFs as rules, represented
as trees. In these trees, inner nodes are predicates, Boolean condi-
tions evaluated on datapoints, and leaf nodes correspond to labels.
Such a tree encodes a cascading series of conditions, starting at the
root, each predicate directs navigation to a true or false child until a
leaf node is reached, which assigns the label to the input datapoint.
This model can represent any LF as a rule by creating predicates that
match the result of the LF against every possible label (see [18]).

Example 1. Consider the Amazon Review Dataset from [7, 14]
which contains reviews for products bought from Amazon and the
task of labeling the reviews as POS or P (positive), or NEG or N
(negative). A subset of LFs generated by the Witan system [7] for this
task are shown in Figure 1a. key_word_star labels reviews as POS
that contain either “star” or “stars” and otherwise returns ABSTAIN
(the function cannot make a prediction). Some reviews with their
ground truth labels (unknown to the user) and the labels predicted
by Snorkel [26] are shown in Table 1, which also shows the three LFs
from Figure 1a. Reviews 1, 3, and 4 are mispredicted by the model
trained by Snorkel over the LF outputs. Our goal is to reduce such
misclassifications by refining the LFs. We treat systems like Snorkel
as a blackbox that can use any algorithm or model to generate labels.

Suppose that for a small set of reviews, the true label is known
(Table 1). RuleCleaner uses these ground truth labels to generate
a set of repairs for the LFs by refining LFs to align them with the
ground truth. Table 1 also shows the labels produced by the repaired
LFs (updated labels shown in blue), and the predictions generated by
Snorkel before and after LF repair. RuleCleaner repairs LF-1 and
LF-3 from Figure 1a by adding new predicates (refinement). Figure 1b
and 1c show the refined rules in tree form with new nodes highlighted
in green. Consider the repair for LF-1. Intuitively, this repair is sensible:
a review mentioning “one” and “star(s)” is likely negative.

Our RuleCleaner system produces repairs as shown in the
example above. We make the following contributions.

• The PWS Repair Problem. We introduce a general model for
PWS as programmatic weak supervision systems (PWSSs), where
interpretable LFs (rules) are combined to predict labels for a
dataset X (Section 2). We formalize the problem of repairing LFs
in PWSS through refinement, proving the problem to be NP-hard.
To avoid overfitting, we (i) minimize the changes to the outputs
of the original LFs and (ii) allow some LFs to return incorrect
labels for some labeled datapoints.
• Efficient Rule Repair Algorithm. In spite of its hardness,
in practice it is feasible to solve the repair problem exactly as
the number of labeled examples is typically small. We formal-
ize this problem as a mixed-integer linear program (MILP) that
determines changes to the LF output on the labeled examples
(Section 3). To implement these changes, we refine individual
rules to match the desired outputs (Section 4). To further de-
crease the likelihood of overfitting and limit the complexity of
the fixed rules, we want to minimize the number of new predi-
cates that are added. This problem is also NP-hard. We propose a
PTIME information-theoretic heuristic algorithm (Section 4.2).
• Comprehensive Experimental Evaluation. We conduct exper-
iments on 11 real datasets using Snorkel [25] over LFs generated
byWitan [7] or LLMs [11] (Section 5). Furthermore, we compare
against using LLMs directly for labeling and for repairing LFs.
RuleCleaner significantly improves labeling accuracy using a
small number of labeled examples. While direct labeling with
LLMs achieves impressive accuracy for advanced models like
GPT-4o, it is also prohibitively expensive.

2 The RuleCleaner Framework
As shown in Figure 2, we assume as input a set of LFs modeled
as rules R, the corresponding labels produced by an PWSS for
an unlabeled dataset X, and a small subset of labeled datapoints
X∗ ⊂ X. RuleCleaner refines specific LFs based on this input,
generating an updated set of rules R∗. Finally, the PWSS applies
these revised rules to re-label the dataset.

2.1 Rules and PWSSs
To be able to repair a LF by selectively overriding its output based
on conditions that hold for an input datapoint, we model LFs as
a set of cascading conditions. A rule 𝑟 is a tree where leaf nodes
represent labels from a set of labels Y and the non-leaf nodes are
labeled with Boolean predicates from a space of predicates P. Each
non-leaf node has two outgoing edges labeled with true and false.
A rule 𝑟 assigns a label 𝑟 (𝑥) to an input datapoint 𝑥 by evaluating

Refining Labeling Functions with Limited Labeled Data KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Figure 2: TheRuleCleaner framework for repairing LFs (rules
R). After running an PWSS (e.g., Snorkel) on the rule outputs,
RuleCleaner fixes the rules R using labeled examples X∗.
Finally, the PWSS is rerun on the output of the refined rules
R∗ on the whole dataset X to produce the repaired labels.

['star', 'stars'].intersection(v)

blackbox_lf(𝑣) = POS

blackbox_lf(𝑣) = NEG

ABSTAIN

false

NEG

true

false

POS

true

false

POS

true

Figure 3: Translating a LF wrapping parts into a blackbox
function

the predicate at the root, following the outgoing edge true if the
predicate evaluates to true and the false edge otherwise. Then
the predicate of the node at the end of the edge is evaluated. This
process is repeated until a leaf node is reached. The label of the leaf
node is the label assigned by 𝑟 to 𝑥 .

Example 2. Figure 4 shows the rule for a LF that returns NEG if
the review contains the word ‘waste’ and returns ABSTAIN otherwise.
In [18], we show how to translate any LF written in a general-purpose
programming language into a rule in PTIME.

To demonstrate that RuleCleaner can support arbitrary LFs,
including those with complex components, consider an LF that first
checks whether the input text contains the keywords ‘star’ or
‘stars’. If so, it returns the label POSITIVE. Otherwise, it calls
an external sentiment analysis function, returning POSITIVE only
if the sentiment score exceeds 0.7, and ABSTAIN otherwise. The
first condition is directly translated into a predicate in the rule
tree, while the sentiment analysis branch is wrapped as a black-
box component blackbox_lf. The translated tree rule is shown in
Figure 3. Any black-box LF can be translated into a rule tree using
our Translate-BBox algorithm [18]. From here on, we will use the
terms LF and rule interchangeably.

'waste'in v

ABSTAIN

false

NEG

true

Figure 4: Rule form of the LF keyword_word_waste (Figure 1a)

Consider a set of input datapoints X and a set of discrete labels
Y. For a datapoint 𝑥 ∈ X, 𝑦∗𝑥 denotes the datapoint’s (unknown)
true label. A PWSS takes X, the labels Y, and a set of rules R as
input and produces a modelMR,X as the output that maps each
datapoint inX to a label inY. Without loss of generality, we assume
the presence of an abstain label 𝑦0 ∈ Y that is used by the PWSS
or a rule to abstain from providing a label to some datapoints.

Definition 1 (PWSS). Given a set of datapoints X, a set of labels
Y, and a set of rules R, a PWSS takes R(X) as input and produces a
modelMR,X : X → Y that maps datapoints 𝑥 ∈ X to labels

MR,X (𝑥) = 𝑦𝑥 .

In the following, we will often drop R and X fromMR,X when
they are irrelevant to the discussion.

2.2 The Rule Repair Problem
Rule Refinement Repairs.We model a repair of a set of rules R
as a repair sequence Φ = 𝜙1, . . . , 𝜙𝑘 of refinement steps 𝜙𝑖 and
use R∗ = {𝑟 ′1, . . . , 𝑟

′
𝑚} to denote Φ(R). We repair rules by refining

them by replacing a leaf node with a new predicate to achieve a
desired change to the rule’s result on some datapoints. Consider a
rule 𝑟 , a path 𝑃 ending in a node 𝑛, and a predicate 𝑝 and two labels
𝑦1 and 𝑦2. The refinement refine(𝑟, 𝑃, 𝑝,𝑦1, 𝑦2) of 𝑟 replaces 𝑛 with
a new node labeled 𝑝 and adds the new leaf nodes for 𝑦1, 𝑦2:

𝑟

𝑛 ←
𝑝

𝑦1

false

𝑦2

true


For example, Figure 1b shows the result of refinement where a

leaf POS was replaced with the subtree highlighted in green.
Desiderata. Given the labeled training data X∗, we would like
the repaired rules to provide sufficient information about the true
labels for datapoints in X∗ to the PWSS without overfitting to the
small number of labeled datapoints in X∗. Specifically, we want the
repair to fulfill the following desiderata:
Datapoint Evidence. We define the evidence for a datapoint 𝑥𝑖
as the fraction of non-abstain labels (≠𝑦0) the datapoint receives
from the𝑚 rules in R. The repaired rules should provide sufficient
evidence for each datapoint 𝑥𝑖 , such that the PWSS can make an
informed decision about 𝑥𝑖 ’s label.

Evidence(𝑥𝑖) =
∑

𝑗 1[𝑟 ′𝑗 (𝑥𝑖) ≠ 𝑦0]
𝑚

Datapoint Accuracy. The accuracy for a datapoint 𝑥𝑖 is defined
below. The accuracy of the repaired rules that do not abstain on 𝑥𝑖
should be high.

Acc(𝑥𝑖) =

∑
𝑗 : 𝑟 ′

𝑗
(𝑥𝑖)≠𝑦0 1[𝑟

′
𝑗
(𝑥𝑖) = 𝑦∗𝑥𝑖]

𝑚

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chenjie Li, Amir Gilad, Boris Glavic, Zhengjie Miao, and Sudeepa Roy

Rule Accuracy. In addition, the rules should have high accuracy.
The accuracy of a rule 𝑟 𝑗 ∈ R∗ is defined as the fraction of the 𝑛
datapoints in X∗ on which it returns the ground truth label.

Acc(𝑟 ′𝑗) =

∑
𝑖: 𝑟 ′

𝑗
(𝑥𝑖)≠𝑦0 1[𝑟

′
𝑗
(𝑥𝑖) = 𝑦∗𝑥𝑖]

𝑛

Repair Cost. For a repair sequence Φ and R∗ = Φ(R) we define
its cost as the number of labels that differ between the results of
R = {𝑟1, . . . , 𝑟𝑚} and R∗ = {𝑟 ′1, . . . , 𝑟

′
𝑚} on X∗. Optimizing for low

repair cost avoids overfitting to X∗ and preserves rule semantics
where feasible.

𝑐𝑜𝑠𝑡 (Φ) =
∑︁

1[𝑟 𝑗 (𝑥𝑖) ≠ 𝑟 ′𝑗 (𝑥𝑖)]

We state the rule repair problem as an optimization problem: min-
imize the number of changes to labeling function results (𝑐𝑜𝑠𝑡 (Φ))
while ensuring the desiderata enforced by thresholds 𝜏𝐸 (evidence),
𝜏𝑎𝑐𝑐 (accuracy), and 𝜏𝑟𝑎𝑐𝑐 (rule accuracy).

Definition 2 (Rule repair problem). Consider a black-box
modelMR,X that uses a set of𝑚 rules R, a dataset of 𝑛 datapoints
X, output labelsY, and ground truth labels for a subset of datapoints
X∗. Given thresholds 𝜏𝑎𝑐𝑐 ∈ [0, 1], 𝜏𝐸 ∈ [0, 1], and 𝜏𝑟𝑎𝑐𝑐 ∈ [0, 1], the
rule repair problem is to find a repair sequence Φ such that:

argminΦ 𝑐𝑜𝑠𝑡 (Φ)
subject to ∀ 𝑖 ∈ [1, 𝑛] : Acc(𝑥𝑖) ≥ 𝜏𝑎𝑐𝑐 ∧ Evidence(𝑥𝑖) ≥ 𝜏𝐸

∀ 𝑗 ∈ [1,𝑚] : Acc(𝑟 ′𝑗) ≥ 𝜏𝑟𝑎𝑐𝑐

Note that since we treat the PWSS as a black box, we can, in
general, not guarantee that the PWSS’s performance on the unla-
beled dataset X will improve. Nonetheless, we will demonstrate
experimentally in Section 5 that significant improvements in the
accuracy of rules on X can be achieved based on 10s of training
examples. This is due to the use of predicates in rule repairs that
generalize beyond X∗. While finding an optimal repair is NP-hard,
we can still solve this problem exactly as X∗ is expected to be small.

Theorem 1. The rule repair problem is NP-hard in the size of R.

3 Ruleset Repair Algorithm
We now present an algorithm that solves the rule repair problem
in two steps. In the first step, we use an MILP to determine desired
changes to the outputs of rules, and in the second step, described
in Section 4, we implement these changes by refining individual
rules to return the desired output on X∗.

3.1 MILP Formulation
In the MILP, we use an integer variable 𝑜𝑖 𝑗 for each datapoint
𝑥𝑖 ∈ X∗ and rule 𝑟 𝑗 that stores the label that the repaired rule 𝑟 ′

𝑗

should assign to 𝑥𝑖 . That is, in combination these variables store
the desired changes to the results of rules that we then have to
implement by refining each rule 𝑟 𝑗 to a rule 𝑟 ′

𝑗
. We restrict these

variables to take values in [0, | Y | − 1] where value 𝑖 represents
the label 𝑦𝑖 ∈ Y with 0 encoding 𝑦0. To encode the objective
(minimizing the changes to the outputs of rules on X∗) we use a
Boolean variable𝑚𝑖 𝑗 for each rule 𝑟 𝑗 and datapoint 𝑥𝑖 that is 1 iff

𝑜𝑖 𝑗 ≠ 𝑟 𝑗 (𝑥𝑖) (the output of 𝑟 ′𝑗 on 𝑥𝑖 is different from 𝑟 𝑗 (𝑥𝑖)). The
objective is then to minimize the sum of these indicators𝑚𝑖 𝑗 .

To encode the side constraints of the rule repair problem, we
introduce additional indicators: 𝑐𝑖 𝑗 is 1 if 𝑜𝑖 𝑗 = 𝑦∗𝑥𝑖 , and 𝑒𝑖 𝑗 is 1 if
𝑜𝑖 𝑗 ≠ 𝑦0. To ensure that the accuracy for each datapoint 𝑥𝑖 is above
𝜏𝑎𝑐𝑐 , we have to ensure that out of rules that do not return 𝑦0 on 𝑥𝑖 ,
i.e., all 𝑗 ∈ [1,𝑚] where 𝑒𝑖 𝑗 = 1, at least a fraction of 𝜏𝑎𝑐𝑐 have the
correct label (𝑐𝑖 𝑗=1). This can be enforced if

∑
𝑗 𝑐𝑖 𝑗 −

∑
𝑗 𝑒𝑖 𝑗 ·𝜏𝑎𝑐𝑐 ≤ 0

or equivalently
∑

𝑗 𝑐𝑖 𝑗 ≥
∑

𝑗 𝑒𝑖 𝑗 · 𝜏𝑎𝑐𝑐 . A symmetric condition is
used to ensure LF accuracy using the threshold 𝜏𝑟𝑎𝑐𝑐 and summing
up over all datapoints instead of over all rules. Finally, we need to
ensure that each datapoint 𝑥𝑖 receives a sufficient number of labels
≠ 𝑦0. Recall that 𝑒𝑖 𝑗 encodes whether LF 𝑟 ′𝑗 returns a non-abstain
label. Thus, for𝑚 rules we have to enforce: ∀𝑖 ∈ [1, 𝑛] : ∑𝑗 𝑒𝑖 𝑗 ≥
𝑚 ·𝜏𝐸 . The full MILP is shown below. The non-linear constraints for
indicator variables can be translated into linear constraints using
the so-called Big M technique [10].

minimize
∑
𝑖

∑
𝑗 𝑚𝑖 𝑗 subject to

∀𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1,𝑚] :
𝑜𝑖 𝑗 ∈ [0, | Y | − 1]
𝑚𝑖 𝑗 = 1[𝑜𝑖 𝑗 ≠ 𝑟 𝑗 (𝑥𝑖)]
𝑐𝑖 𝑗 = 1[𝑜𝑖 𝑗 = 𝑦∗𝑥𝑖]
𝑒𝑖 𝑗 = 1[𝑜𝑖 𝑗 > 0]

∀𝑖 ∈ [1, 𝑛] :
∑︁
𝑗

𝑐𝑖 𝑗 ≥
∑︁
𝑗

𝑒𝑖 𝑗 · 𝜏𝑎𝑐𝑐

∀𝑖 ∈ [1, 𝑛] :
∑︁
𝑗

𝑒𝑖 𝑗 ≥ 𝑚 · 𝜏𝐸

∀𝑗 ∈ [1,𝑚] :
∑︁
𝑖

𝑐𝑖 𝑗 ≥
∑︁
𝑖

𝑒𝑖 𝑗 · 𝜏𝑟𝑎𝑐𝑐

As we show next, the solution of the MILP is a solution for the
rule repair problem as long as the expected changes to the LF results
on X∗ encoded in the variables 𝑜𝑖 𝑗 can be implemented as a repair
sequence Φ. As we will show in Section 4 such a repair sequence is
guaranteed to exist as long as we choose the space of predicates to
use in refinements carefully.

Proposition 1. Consider rulesR,X∗, and the output 𝑜𝑖 𝑗 produced
as a solution to the MILP. If there exists a repair sequence Φ such that
for R∗ = Φ(R) the output on X∗ is equal to 𝑜𝑖 𝑗 for all 𝑖 ∈ [1, 𝑛] and
𝑗 ∈ [1,𝑚], then Φ is a solution to the rule repair problem.

MILP Size. The number of constraints and variables in the MILP
is both in 𝑂 (𝑛 ·𝑚) where 𝑛 = | X∗ | and𝑚 = | R |. While solving
MILPs is hard in general, we demonstrate experimentally that the
runtime is acceptable for | X∗ | ≤ 200.

Example 3. Consider a set of 3 datapoints X∗ = {𝑥1, 𝑥2, 𝑥3} with
ground truth labels 𝑦∗𝑥1 = 2, 𝑦∗𝑥2 = 1, 𝑦∗𝑥3 = 2, and three rules 𝑟1 to 𝑟3
labels Y = {0, 1, 2} where 𝑦0 = 0 and assume that these rules return
the results on X∗ shown below on the left where abstain (incorrect)
labels are highlighted in blue (red). Assume that all thresholds are set
to 50%. That is, each datapoint should receive at least two labels ≠ 𝑦0,
and the accuracy for datapoints and rules is at least 50% (1 correct
label if 2 non-abstain labels are returned and 2 correct labels for no
abstain label). The minimum number of changes required to fulfill
these constraints is 4. One possible solution for the MILP is shown
below on the right with modified cells (with correct labels) shown with
a black background.

𝑟1 𝑟2 𝑟3
𝑥1 1 1 2
𝑥2 0 1 0
𝑥3 0 1 0

𝒐𝒊𝒋 𝑖 = 1 𝑖 = 2 𝑖 = 3
𝑗 = 1 2 1 2
𝑗 = 2 0 1 1
𝑗 = 3 2 2 0

Refining Labeling Functions with Limited Labeled Data KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Given the outputs 𝑜𝑖 𝑗 of the MILP, we need to find a repair
sequence Φ such that for R∗ = Φ(R) = {𝑟 ′1, . . . , 𝑟

′
𝑚} we have

𝑟 ′
𝑗
(𝑥𝑖) = 𝑜𝑖 𝑗 for all 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1,𝑚]. An important ob-

servation regarding this goal is that as rules operate independently
of each other, we can solve this problem one rule at a time.

4 Single Rule Refinement
We now detail our approach for refining a single rule.

4.1 Rule Repair
We now formalize the problem of generating a sequence of re-
finement steps Φ of minimal size for a rule 𝑟 𝑗 such that for a set
of datapoints and labels Z = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1, 𝑟

′
𝑗
= Φ(𝑟 𝑗) we have

𝑟 ′
𝑗
(𝑥𝑖) = 𝑦𝑖 for all (𝑥𝑖 , 𝑦𝑖) ∈ Z. We can use this algorithm to imple-

ment the changes to rule outputs computed by the MILP from the
previous section using:Z = {(𝑥𝑖 , 𝑜𝑖 𝑗) | 𝑥𝑖 ∈ X∗}. For a sequence
of refinement repairs Φ we define its cost as 𝑟𝑐𝑜𝑠𝑡 (Φ) = | Φ |.

Definition 3 (The Single Rule Refinement Problem). Given a
rule 𝑟 , a set of datapoints with desired labelsZ, and a set of allowable
predicates P, find a sequence of refinements Φ𝑚𝑖𝑛 using predicates
from P such that for 𝑟 𝑓 𝑖𝑥 = Φ(𝑟) we have:

Φ𝑚𝑖𝑛 = argmin
Φ

𝑟𝑐𝑜𝑠𝑡 (Φ) subject to ∀(𝑥,𝑦) ∈ Z : 𝑟 𝑓 𝑖𝑥 (𝑥) = 𝑦

Let 𝑃𝑓 𝑖𝑥 denote the set of paths (from the root to a label on a
leaf) in rule 𝑟 that are taken by the datapoints fromX. For 𝑃 ∈ 𝑃𝑓 𝑖𝑥 ,
X𝑃 denotes all datapoints from X for which the path is 𝑃 , hence
also X =

⋃
𝑃∈𝑃𝑓 𝑖𝑥

X𝑃 . Similarly, Z𝑃 denotes the subset of Z for
datapoints 𝑥 with path 𝑃 in rule 𝑟 . The algorithm for solving the
single rule repair problem we will present in the following exploits
two important properties of this problem.
Independence of path repairs. As any refinement in a minimal
repair will only extend paths in 𝑃𝑓 𝑖𝑥 (any other refinement does
not affect the labels for X) and refinements at any path 𝑃1 do not
affect the labels of datapoints in X𝑃2 for a path 𝑃2 ≠ 𝑃1, a solution
to the single rule repair problem can be constructed one path at a
time (see [18] for the formal proof).
Existence of path repairs. In [18], we show that path repairs with
a cost of at most | X𝑃 | are guaranteed to exist as long as the space
of predicates is partitioning. That is, for any two datapoints 𝑥1 and
𝑥2 we can find a predicate 𝑝 such that 𝑝 (𝑥1) ≠ 𝑝 (𝑥2). Note that
for textual data, even a simple predicate space that only contains
predicates of the form𝑤 ∈ 𝑥 where𝑤 is a word is partitioning as
long as any two datapoints (documents in the case of text data) will
differ in at least one word. Intuitively, this guarantees the existence
of a repair as for any two datapoints 𝑥1 and 𝑥2 withZ(𝑥1) ≠ Z(𝑥2)
that share the same path (and, thus, also label) in a rule 𝑟 we can
refine 𝑟 using an appropriate predicate 𝑝 with 𝑝 (𝑥1) ≠ 𝑝 (𝑥2) to
assign the desired labels to 𝑥1 and 𝑥2.

The pseudocode for SingleRuleRefine is given in Algorithm 1.
Given a single rule 𝑟 , this algorithm determines a refinement-based
repairΦ𝑚𝑖𝑛 for 𝑟 such thatΦ𝑚𝑖𝑛 (𝑟) returns the designed labelZ(𝑥)
for all datapoints specified inZ by refining one path at a time using
a function RefinePath. The problem solved by RefinePath is NP-
hard. Next, we introduce an algorithm implementing RefinePath

Algorithm 1: SingleRuleRefine
Input :Rule 𝑟 , Labelled datapointsZ.
Output :Repair sequence Φ such that Φ(𝑟) fixesZ

1 𝑌 ← ∅,Φ← ∅
2 𝑃𝑓 𝑖𝑥 ← {𝑃 [𝑟, 𝑥] | 𝑥 ∈ X}
3 𝑟𝑐𝑢𝑟 ← 𝑟

4 foreach 𝑃 ∈ 𝑃𝑓 𝑖𝑥 do /* Fix one path at a time */

5 /* Fix path 𝑃 to return correctly labels on Z */

6 Z𝑃 ← {(𝑥,𝑦) | (𝑥,𝑦) ∈ Z ∧ 𝑃 [𝑟, 𝑥] = 𝑃}
7 𝜙 ← RefinePath(𝑟𝑐𝑢𝑟 , 𝑃,Z𝑃)
8 𝑟𝑐𝑢𝑟 ← 𝜙 (𝑟𝑐𝑢𝑟)
9 Φ← Φ.append(𝜙)

10 return Φ

Algorithm 2: EntropyPathRepair
Input :Rule 𝑟 , Path 𝑃𝑖𝑛 , Ground truth labelsZ𝑃𝑖𝑛

Output :Repair sequence Φ which fixes 𝑟 wrt.Z𝑃𝑖𝑛

1 𝑡𝑜𝑑𝑜 ← [(𝑃𝑖𝑛,Z𝑃𝑖𝑛)]
2 Φ← []
3 𝑟𝑐𝑢𝑟 ← 𝑟

4 P𝑎𝑙𝑙 ← GetAllCandPredicates(𝑃𝑖𝑛,Z𝑃𝑖𝑛)
5 while 𝑡𝑜𝑑𝑜 ≠ ∅ do
6 (𝑃,Z𝑃) ← 𝑝𝑜𝑝 (𝑡𝑜𝑑𝑜)
7 𝑝𝑛𝑒𝑤 ← argmin𝑝∈P𝑎𝑙𝑙 𝐼𝐺 (Z𝑃 , 𝑝)
8 𝑍false ← {(𝑥,𝑦) | (𝑥,𝑦) ∈ Z𝑃 ∧ ¬𝑝 (𝑥)}
9 𝑍true ← {(𝑥,𝑦) | (𝑥,𝑦) ∈ Z𝑃 ∧ 𝑝 (𝑥)}

10 𝑦𝑚𝑎𝑥 ← argmax𝑦∈Y | {𝑥 | 𝑍true (𝑥) = 𝑦} |
11 𝜙𝑛𝑒𝑤 ← refine(𝑟𝑐𝑢𝑟 , 𝑃, 𝑝, 𝑌 [𝑃], 𝑦𝑚𝑎𝑥)
12 𝑟𝑐𝑢𝑟 ← 𝜙𝑛𝑒𝑤 (𝑟𝑐𝑢𝑟)
13 Φ← Φ.𝑎𝑝𝑝𝑒𝑛𝑑 (𝜙𝑛𝑒𝑤)
14 if | Y𝑍false | > 1 then
15 𝑡𝑜𝑑𝑜.𝑝𝑢𝑠ℎ((𝑃 [𝑟𝑐𝑢𝑟 , 𝑍false], 𝑍false))
16 if | Y𝑍true | > 1 then
17 𝑡𝑜𝑑𝑜.𝑝𝑢𝑠ℎ((𝑃 [𝑟𝑐𝑢𝑟 , 𝑍true], 𝑍true))

18 return Φ

that utilizes an information-theoretic heuristic that does not guar-
antee that the returned repair is minimal but works well in practice.

4.2 Path Repair: EntropyPathRepair
Given a rule 𝑟 , a path 𝑃𝑖𝑛 ∈ 𝑃𝑓 𝑖𝑥 , and the datapoints and desired
labels for this pathZ𝑃𝑖𝑛 , our algorithm EntropyPathRepair avoids
the exponential runtime of an optimal brute force algorithm Brute-
ForcePathRepair that enumerates all possible refinements (see [18]).
We achieve this by greedily selecting predicates that best separate
datapoints with different labels at each step. To measure the quality
of a split, we employ the entropy-based Gini impurity score 𝐼𝐺 [16].
Given a candidate predicate 𝑝 for splitting a set of datapoints and
their labels at path 𝑃 (Z𝑃), we denote the subsets ofZ𝑃 generated

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chenjie Li, Amir Gilad, Boris Glavic, Zhengjie Miao, and Sudeepa Roy

by splittingZ𝑃 based on 𝑝:

𝑍false = {(𝑥,𝑦) | (𝑥,𝑦) ∈ Z𝑃 ∧ ¬𝑝 (𝑥)}
𝑍true = {(𝑥,𝑦) | (𝑥,𝑦) ∈ Z𝑃 ∧ 𝑝 (𝑥)}

Using 𝑍false and 𝑍true we define the score 𝐼𝐺 (Z𝑃 , 𝑝) for 𝑝:

𝐼𝐺 (Z𝑃 , 𝑝) =
| 𝑍false | · 𝐼𝐺 (𝑍false) + | 𝑍true | · 𝐼𝐺 (𝑍true)

| Z𝑃 |

𝐼𝐺 (𝑍) = 1 −
∑︁

𝑦∈Y𝑍
𝑝 (𝑦)2 𝑝 (𝑦) = | {𝑥 | 𝑍 (𝑥) = 𝑦} |

| 𝑍 |

For a set of ground truth labels 𝑍 , 𝐼𝐺 (𝑍) is minimal if Y𝑍 = {𝑦 |
∃𝑥 : (𝑥,𝑦) ∈ 𝑍 } contains a single label. Intuitively, we want to
select predicates such that all datapoints that reach a particular leaf
node are assigned the same label. At each step, the best separation
is achieved by selecting a predicate 𝑝 that minimizes 𝐼𝐺 (Z𝑃 , 𝑝).

Algorithm 2 first determines all candidate predicates using func-
tion GetAllCandPredicates. Then, it iteratively selects predicates
until all datapoints are assigned the expected label by the rule. For
that, we maintain a queue of paths paired with a set Z𝑃 of data-
points with expected labels that still need to be processed. In each
iteration of the algorithm’s main loop, we pop one pair of a path 𝑃

and datapoints with labelsZ𝑃 from the queue. We then determine
the predicate 𝑝 that minimizes the entropy ofZ𝑃 . Afterward, we
determine two subsets of datapoints from X𝑃 : datapoints fulfilling
𝑝 and those that do not. We then generate a refinement repair step
𝜙𝑛𝑒𝑤 for the current version of the rule (𝑟𝑐𝑢𝑟) that replaces the last
element on 𝑃𝑐𝑢𝑟 with predicate 𝑝 (𝑌 [𝑃] denotes the label of the
node at the end of 𝑃). The child at the true edge of the node for 𝑝
is then assigned the most prevalent label 𝑦𝑚𝑎𝑥 for the datapoints
at this node (the datapoints from 𝑍true). Finally, unless they only
contain one label, new entries for 𝑍false and 𝑍true are appended
to the queue. As shown below, EntropyPathRepair is correct (the
proof is shown in [18]).

Theorem 2 (Correctness). Consider a rule 𝑟 , ground-truth la-
bels of a set of datapointsZ𝑃 , and partitioning space of predicates P.
Let Φ be the repair sequence produced by EntropyPathRepair for path
𝑃 . Then we have: ∀(𝑥,𝑦) ∈ Z𝑃 : Φ(𝑟) (𝑥) = 𝑦

5 Experiments
We evaluate the runtime of RuleCleaner and its effectiveness in
improving the accuracy of rules produced by Witan [7] and LLMs.
Additionally, we analyze the trade-offs introduced by the three
path repair algorithms proposed in this work. Our experiments
use Snorkel [25] as the default PWSS. To demonstrate that Rule-
Cleaner is agnostic to the choice of PWSS, we also test it with
alternative PWSSs from [36], measuring improvements in global
accuracy. We assess both the runtime and the quality of the re-
finements produced by RuleCleaner across several parameters.
RuleCleaner is implemented in Python, and all experiments are
conducted on Oracle Linux Server 7.9 with 2 x AMD EPYC 7742
CPUs and 128GB RAM.
Datasets and rules. The datasets used in the experiments are
listed in Table 2. Note that because of the complexity of and the
nature of multi-class labels, the LFs we used for CmPt are all from
[33], which has 26 LFs. We give a brief description of each dataset:

Dataset #row #word Y #𝐿𝐹𝑠𝑤𝑖𝑡𝑎𝑛 #𝐿𝐹𝑠𝑙𝑙𝑚
Amazon 200000 68.9 pos/neg 15 23
AGnews 60000 37.7 busi/tech 9 21

PP 54476 55.8 physician/prof 18 20
IMDB 50000 230.7 pos/neg 7 20
FNews 44898 405.9 true/false 11 20
Yelp 38000 133.6 neg/pos 8 20
PT 24588 62.2 prof/teacher 7 19

CmPt 16075 27.9 10 relations - -
PA 12236 62.6 painter/architect 10 18

Tweets 11541 18.5 pos/neg 16 18
SMS 5572 15.6 spam/ham 17 16

MGenre 1945 26.5 action/romance 10 14

Table 2: LF dataset statistics.

Amazon: product reviews from Amazon and their sentiment label
[14]. AGnews: categorized news articles from AG’s corpus of news
articles. For this dataset, we chose a binary class version from [7].
PP : descriptions of biographies, each labeled as a physician or a
professor [6]. IMDB: IMDB movie reviews [21]. FNews: Fake news
identification [1]. Yelp: Yelp reviews [38]. PT : descriptions of indi-
viduals, each labeled as a professor or a teacher.[6]. PA: descriptions
of individuals, each labeled a painter or an architect. [6]. Tweets:
classification of tweets on disasters [22]. SMS: classification of SMS
messages [2]. MGenre: movie genre classification based on plots
[30]. CmPt: chemical-protein relationship classification from [17].
Unless stated otherwise, the experiments in this section are run
with EntropyPathRepair. We present a detailed evaluation of all
path repair algorithms in Section 5.4.

5.1 Refining labelling functions
In this experiment, we investigate the effects of several param-
eters on the performance and quality of the rules repaired with
RuleCleaner for several datasets.
Varying the number of labeled examples. We evaluate how
the size of X∗ affects global accuracy. Global accuracy is defined
as the accuracy of the labels predicted by the trained PWSS using
the LFs compared to the ground truth labels. Given the limited
scalability of MILP solvers in the number of variables, we used at
most | X∗ | = 150 datapoints. The labeled datapoints are randomly
sampled from X, with 50% correct predictions by PWSS and 50%
wrong predictions within each sample. The reason for sampling in
this manner is to provide sufficient evidence for correct predictions
and predictions that need to be adjusted. Even if we have no control
over the creation of X∗, we can achieve this by sampling from a
larger set of labeled examples. Figure 6a shows the global accuracy
after retraining a Snorkel (PWSS) model with the rules refined by
RuleCleaner. The repairs improve the global accuracy on 8 out
of 9 datasets, even for very small sample sizes. The variance of
the new global accuracy also decreases as the amount of labeled
examples increases.
Varying thresholds. We evaluate the relationships between 𝜏𝑎𝑐𝑐 ,
𝜏𝐸 , 𝜏𝑟𝑎𝑐𝑐 and new global accuracy. We used Tweets with 20 labeled
examples. The details of the experiments and analysis are shown
in Appendix B.2. Based on the experiments, we recommend setting
all of the thresholds to ∼ 0.7.

Refining Labeling Functions with Limited Labeled Data KDD ’25, August 3–7, 2025, Toronto, ON, Canada

5.2 Runtime
Runtime breakdowns for a subset of the experiments from Sec-
tion 5.1 are shown in Figure 7. For the breakdown of the other
datasets, please refer to Appendix B.1. The total runtime increases
as we increase the amount of labeled examples. The runtime of
the refinement step is strongly correlated with the average length
of the texts in the input dataset, i.e., the longer the average text
length (as presented in average # words in Table 2), the more time
is required to select the best predicate using EntropyPathRepair.

It is important to note that the runtime changes for both snorkel
run after refinement and MILP do not exhibit a strictly linear pat-
tern. The reason for such non-linearity arises from the fact that
the labeled datapoints are randomly sampled from X, and the com-
plexity of solving the MILP problem depends on the sparsity of the
solution space. The same reason applies for retraining with Snorkel
using the refined rules. Some sets of labeled examples result in
more complex rules even when the sample size is small, increasing
the time required for Snorkel to fit a model.

5.3 LLMs vs RuleCleaner
In this section, we compare our approach against LLMs.We consider
three setups: (i) using the LLM as a labeler (without any use of
LFs) and (ii) using the LLM to generate LFs based on with labeled
examples; and (iii) using the LLM to repair labeling functions (refer
to Appendix C). For (ii), we then investigate whether RuleCleaner
can successfully improve the LFs generated by the LLM.
The LLM as a labeler.We compare the performance and quality
of RuleCleaner with Snorkel and LLMs as a standalone labeler. In
this experiment, we use GPT-4o and Llama-3-8B-instruct (Llama
3 8B), using a zero-shot prompt to describe the task. Both LLMs
receive the possible labels along with the sentences, but not the LFs.
To optimize API usage, we batch 10 datapoints per call for GPT-4o,
whereas for Llama-3-8B-instruct, we label one sentence per call
to maintain response validity. Experiments were conducted on a
Mac Studio (Apple M2 Max, 12-core CPU, 64GB unified memory,
SSD storage). The setup with RuleCleaner (RC for short shown
in the plot) is the default setup from Section 5.1. The runtime and
quality comparisons are presented in Figure 5. We did set a 48-
hour time limit, including only datasets where all three competitors
completed the task within this time limit. GPT-4o achieves the high-
est accuracy in 6 out of 7 datasets. However, for dataset CmPt,
RuleCleaner with Snorkel (37.9%) outperforms GPT4-o (27.4%).
Upon further analysis, we speculate that GPT-4o’s poor perfor-
mance could stem from the specialized terminology and complex do-
main knowledge required for labeling in ChemProt. Unlike general-
purpose datasets where LLMs excel, ChemProt contains highly
domain-specific biomedical entity interactions, which may be chal-
lenging for zero-shot prompting. Using LLMs as an end-to-end
labler comes at an unacceptable computational/monetary cost. The
experiments with GPT-4o did cost $254.42 for API usage. While we
do not know the precise computational resources that were required,
our local experiments with Llama-3-8B-instruct, a significantly
smallermodel that also cannot competewith RuleCleaner in terms
of accuracy on most datasets, demonstrate the high computational
cost of using an LLM for this purpose. In fact, RuleCleaner is ∼ 2
to ∼ 4 orders of magnitude faster than Llama-3-8B-instruct. In

summary, while large models like GPT-4o, but not smaller models
like Llama-3-8B-instruct, can achieve high accuracy as label-
ers, this comes at a prohibitively high computational cost. Rule-
Cleaner outperforms Llama-3-8B-instruct in terms of accuracy
on most datasets and between 56x to 1,312x in terms of runtime.
Furthermore, LFs have the additional advantage of being inherently
interpretable which is not the case for labeling with LLMs.

Figure 5: Comparison of 3 labelers

The LLM as a LF generator.We investigate whether LLMs can
generate effective LFs and whether RuleCleaner can fix such
functions to improve their accuracy. The use of LLMs for generating
LFs has been explored in recent years [11, 19]. We adapted these
existing methods to generate LFs. For an example prompt, see
[18]. In each prompt, we sample a small set of sentences along
with their ground truth labels and provide two LF templates based
on keywords and regular expressions. Since the number of LFs is
determined by how many times we query the LLM, we scale the
number of LFs logarithmically in the dataset size. The number of
LFs produced for each dataset is reported as #𝐿𝐹𝑠𝑙𝑙𝑚 in Table 2.

To evaluate the quality of generated LFs 𝐿𝐹𝑠𝑙𝑙𝑚 , we use the
same experimental setup described in Section 5.1. The results are
shown in Figure 6b. Out of the nine datasets used in this experiment,
three exhibit higher original global accuracy after training with
Snorkel compared to using 𝐿𝐹𝑠𝑤𝑖𝑡𝑎𝑛 . After refinement using labeled
datapoints, we observe improvements in eight out of nine datasets.

Two datasets, SMS and Tweets, show significant improvement.
Upon further inspection, we observed that some of the LFs gener-
ated by the LLM assign incorrect labels. For example, in SMS, one LF
is defined as follows: return HAM if any(x in text for x in
['sorry', 'please', 'home', 'call', 'message', 'buy',

'talk', 'problem', 'help', 'ask']) else ABSTAIN. Some of
these keywords, such as “call" and “message", frequently appear
in spam messages. RuleCleaner successfully refines this LF by
correcting its label assignment, thereby improving accuracy.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chenjie Li, Amir Gilad, Boris Glavic, Zhengjie Miao, and Sudeepa Roy

5.4 Path Repair Algorithms
Next, we compare the three path repair algorithms discussed in
Section 4.2. In this experiment, we used the Tweets dataset and
randomly selected between 2 and 10 labeled examples. We show
𝑐𝑜𝑠𝑡 , the repaired rule size in terms of number of nodes and the
runtime in Figure 8. Note that for 10 labeled examples, the repair
runtime for BruteForcePathRepair exceeded the time limit we set
for this experiment (600 secs) and, thus, is absent from the plot. The
runtime of BruteForcePathRepair is prohibitory large even for just
8 datapoints. EntropyPathRepair achieves almost the same repair
cost as BruteForcePathRepair while being significantly faster. While
GreedyPathRepair is the fastest algorithm, this comes that the cost
of a significantly higher repair cost.

It is obvious that the runtime for BruteForcePathRepair is sig-
nificantly higher than the other 2 algorithms. GreedyPathRepair
is the fastest since it picks the first available predicate without
any additional computation. In terms of rule sizes after the repairs,
BruteForcePathRepair generates the smallest rules since it will ex-
haustively enumerate all the possible solutions and is guaranteed
to find the smallest possible solution. It is worth noting that En-
tropyPathRepair is only slightly worse than BruteForcePathRepair
while being significantly faster.

5.5 Complexity of Refined LFs
To analyze the evolution of rule complexity during refinement, we
conducted experiments using labeling functions generated by GPT-
4o. We varied the number of labeled data points (20 and 40) and
evaluated the resulting rule trees across multiple random samples.
Table 3 reports the average tree depth and node count for three
representative datasets. We observe a consistent increase in rule
complexity (depth) with more input data, while the tree size (in
terms of both depth and node count) grows sublinearly with respect
to the input size. This suggests that the refinement process increases
expressiveness efficiently without leading to overfitting.

Dataset Input Size Depth Node Count
AGnews 20 7.52 16.48
AGnews 40 11.54 28.06
IMDB 20 4.95 11.67
IMDB 40 7.48 20.21
SMS 20 7.08 14.24
SMS 40 11.08 25.47

Table 3: Average depth and node count of refined LFs.

5.6 Other PWSSs
In addition to using Snorkel as PWSS, we also tested models from
[36] using the datasets from Table 2. The results are shown in
Table 4. RuleCleaner consistently improves global accuracy across
all PWSSs, The most substantial relative gains are observed for
MetaL (+15.5%), DawidSkene (+10.5%), and FlyingSquid (+6.9%),
while Majority Voting sees a modest improvement of +0.7%.

Model Before After Rel. Gain
MetaL 0.538 0.693 +15.5%

DawidSkene 0.566 0.672 +10.5%
FlyingSquid 0.619 0.688 +6.9%
Majority 0.685 0.690 +0.7%

Table 4: Global accuracy improvements of PWSSs after re-
finement.

6 Related Work
We next survey related work on tasks that can be modeled as PWSSs
as well as discuss approaches for automatically generating rules
for PWSSs and improving a given rule set.
Programmatic weak supervision (PWS).Weak supervision is
a general technique of learning from noisy supervision signals,
widely applied for data labeling to generate training data [25, 26, 30]
(the main use case we target in this work), data repair [27], and
entity matching [24]. Its main advantage is reducing the effort of
creating training data from unlabeled data. The programmatic weak
supervision paradigm pioneered in Snorkel [25] has the additional
advantage that the labeling functions are interpretable. However,
as such LFs are typically noisy heuristics, systems like Snorkel
combine the output of LFs using a model.
Automatic generation and fixing labeling functions. While
PWS proves effective, asking human annotators to create a large
set of high-quality labeling functions requires domain knowledge,
programming skills, and time. As a result, the automatic generation
or improvement of labeling heuristics has received much atten-
tion from the research community. Some existing methods demand
interactive user feedback in creating labeling functions [4, 9].Wi-
tan [7] asks a domain expert to select the automatically generated
LFs and assign labels to the LFs. While the LFs produced by Witan
are certainly useful, we demonstrate in our experimental evaluation
that applying RuleCleaner to Witan LFs can significantly improve
accuracy. Other methods generate LFs without requiring user an-
notations. Snuba [30] fits classification models, such as decision
trees and logistic regressions, as LFs on a small labeled training
set, followed by a pruning process to determine the final set of LFs.
Datasculpt [11] prompts a large language model (LLM) with a small
set of labeled training data and keyword- or pattern-based LFs as
in-context examples. The LLM then generates LFs for unlabeled
examples based on this input. Evaporate [3] uses an LLM to gener-
ate data extraction functions, and then applies weak supervision to
filter out low-quality functions and aggregate the results.

Hsieh et al. [15] propose Nemo, a framework for selecting data
to guide users in developing LFs. It estimates the likelihood of
users proposing specific LFs using a utility metric for LFs and a
model of user behavior. Nemo tailors LFs to the neighborhood
of the data, assuming that user-developed LFs are more accurate
for data similar to those used for LFs creation. However, unlike
RuleCleaner, Nemo lacks a mechanism for the user to provide
feedback on the labeling results, preventing the automatic deletion
and refinement of LFs. ULF [29] is an unsupervised system for ad-
justing LFs for unlabeled samples (instead of repairing them) using
k-fold cross-validation, extending previous approaches addressing
labeling errors [23, 31].

Refining Labeling Functions with Limited Labeled Data KDD ’25, August 3–7, 2025, Toronto, ON, Canada

(a) Change in Global accuracy, WITAN LFs (b) Change in Global accuracy, GPT-4 generated LFs

Figure 6: Impact of repairs on global accuracy (the red dotted line is accuracy before the repair) for LFs generated by Witan and
GPT-4. We vary the number of labeled examples X∗.

Figure 7: Runtime, varying the size of X∗.

Explanations for weakly supervised systems. There is a large
body of work on explaining the results of weak-supervised sys-
tems that target improving the final model or better involving
human annotators [4, 5, 12, 32, 35, 35, 37]. For instance, [35] uses
influence function to identify LFs responsible for erroneous labels;
WeShap [12] measures the Shapley value of LFs to rank and prune

Figure 8: Comparing path repair algorithms

LFs. However, most of this work has stopped short of repairing
the rules in a PWSS and, thus, are orthogonal to our work. Still,
explanations provided by such systems might guide users in se-
lecting what datapoints to label. People have also studied using
human-annotated natural language explanations to build LFs [13].

7 Conclusions and Future Work
We study repairs for LFs in PWS based on a small set of labeled ex-
amples. Our algorithm is highly effective in improving the accuracy
of PWSSs by improving rules created by a human expert or auto-
matically discovered by a system like Witan [7]. In future work, we
will explore the application of our rule repair algorithms to other
tasks that can be modeled as PWSS, e.g., information extraction
based on user-provided rules [20, 28].

8 Acknowledgments
This work is supported in part by NSF Awards IIS-2420577, IIS-
2420691, and IIS-2147061, and by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) under award numbers
RGPIN-2025-04724 and DGECR-2025-00373. The work of Amir Gi-
lad was funded by the Israel Science Foundation (ISF) under grant
1702/24, the Scharf-Ullman Endowment, and the Alon Scholarship.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chenjie Li, Amir Gilad, Boris Glavic, Zhengjie Miao, and Sudeepa Roy

References
[1] Hadeer Ahmed, Issa Traoré, and Sherif Saad. 2018. Detecting opinion spams and

fake news using text classification. Secur. Priv. 1, 1 (2018).
[2] Tiago A. Almeida, José María Gómez Hidalgo, and Akebo Yamakami. 2011. Con-

tributions to the study of SMS spam filtering: new collection and results. In ACM
Symposium on Document Engineering. ACM, 259–262.

[3] Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Ho-
jel, Immanuel Trummer, and Christopher Ré. 2023. Language Models Enable
Simple Systems for Generating Structured Views of Heterogeneous Data Lakes.
Proceedings of the VLDB Endowment 17, 2 (2023), 92–105.

[4] Benedikt Boecking, Willie Neiswanger, Eric Xing, and Artur Dubrawski. 2021.
Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling. In
International Conference on Learning Representations.

[5] Bradley Butcher, Miri Zilka, Darren Cook, Jiri Hron, and Adrian Weller. 2023. Op-
timising Human-Machine Collaboration for Efficient High-Precision Information
Extraction from Text Documents. arXiv preprint arXiv:2302.09324 (2023).

[6] Maria De-Arteaga, Alexey Romanov, Hanna M. Wallach, Jennifer T. Chayes,
Christian Borgs, Alexandra Chouldechova, Sahin Cem Geyik, Krishnaram Ken-
thapadi, and Adam Tauman Kalai. 2019. Bias in Bios: A Case Study of Semantic
Representation Bias in a High-Stakes Setting. In FAT, danah boyd and Jamie H.
Morgenstern (Eds.). 120–128.

[7] Benjamin Denham, Edmund M.-K. Lai, Roopak Sinha, and M. Asif Naeem. 2022.
Witan: Unsupervised Labelling Function Generation for Assisted Data Program-
ming. PVLDB 15, 11 (2022), 2334–2347.

[8] Daniel Fu, Mayee Chen, Frederic Sala, Sarah Hooper, Kayvon Fatahalian, and
Christopher Ré. 2020. Fast and three-rious: Speeding up weak supervision with
triplet methods. In International conference on machine learning. PMLR, 3280–
3291.

[9] Sainyam Galhotra, Behzad Golshan, and Wang-Chiew Tan. 2021. Adaptive Rule
Discovery for Labeling Text Data. In SIGMOD. 2217–2225.

[10] Igor Griva, Stephen G Nash, and Ariela Sofer. 2008. Linear and Nonlinear Opti-
mization 2nd Edition. SIAM.

[11] Naiqing Guan, Kaiwen Chen, and Nick Koudas. 2025. DataSculpt: Cost-Efficient
Label Function Design via Prompting Large Language Models. In Proceedings 28th
International Conference on Extending Database Technology, EDBT 2025, Barcelona,
Spain, March 25-28, 2025. OpenProceedings.org, 226–232.

[12] Naiqing Guan and Nick Koudas. 2024. Weshap: Weak Supervision Source Evalu-
ation With Shapley Values. CoRR abs/2406.11010 (2024). arXiv:2406.11010

[13] Braden Hancock, Martin Bringmann, Paroma Varma, Percy Liang, Stephanie
Wang, and Christopher Ré. 2018. Training classifiers with natural language
explanations. In ACL, Vol. 2018. 1884.

[14] Ruining He and Julian J. McAuley. 2016. Ups and Downs: Modeling the Visual
Evolution of Fashion Trends with One-Class Collaborative Filtering. InWWW,
Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks, and Ben Y.
Zhao (Eds.). 507–517.

[15] Cheng-Yu Hsieh, Jieyu Zhang, and Alexander J. Ratner. 2022. Nemo: Guiding and
Contextualizing Weak Supervision for Interactive Data Programming. PVLDB
15, 13 (2022), 4093–4105.

[16] Sotiris B. Kotsiantis. 2013. Decision Trees: a Recent Overview. Artif. Intell. Rev.
39, 4 (2013), 261–283.

[17] Martin Krallinger, Obdulia Rabal, Saber A Akhondi, Martın Pérez Pérez, Jesús
Santamaría, Gael Pérez Rodríguez, Georgios Tsatsaronis, Ander Intxaurrondo,
José Antonio López, Umesh Nandal, et al. 2017. Overview of the BioCreative
VI chemical-protein interaction Track. In Proceedings of the sixth BioCreative
challenge evaluation workshop, Vol. 1. 141–146.

[18] Chenjie Li, Amir Gilad, Boris Glavic, Zhengjie Miao, and Sudeepa Roy. 2025.
Refining Labeling Functions with Limited Labeled Data. arXiv:2505.23470 [cs.LG]
https://arxiv.org/abs/2505.23470

[19] Chenjie Li, Dan Zhang, and Jin Wang. 2024. LLM-assisted Labeling Function
Generation for Semantic Type Detection. In Proceedings of Workshops at the 50th
International Conference on Very Large Data Bases, VLDB 2024, Guangzhou, China,
August 26-30, 2024.

[20] B. Liu, L. Chiticariu, V. Chu, HV Jagadish, and F.R. Reiss. 2010. Automatic Rule
Refinement for Information Extraction. PVLDB 3, 1 (2010).

[21] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In
Association for Computational Linguistics: Human Language Technologies, Dekang
Lin, Yuji Matsumoto, and Rada Mihalcea (Eds.). 142–150.

[22] Hussein Mouzannar, Yara Rizk, and Mariette Awad. 2018. Damage Identification
in Social Media Posts using Multimodal Deep Learning. In International Confer-
ence on Information Systems for Crisis Response and Management, Kees Boersma
and Brian M. Tomaszewski (Eds.). ISCRAM Association.

[23] Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. 2021. Confident Learning:
Estimating Uncertainty in Dataset Labels. J. Artif. Intell. Res. 70 (2021), 1373–1411.

[24] Fatemah Panahi, Wentao Wu, AnHai Doan, and Jeffrey F Naughton. 2017. To-
wards Interactive Debugging of Rule-based Entity Matching.. In EDBT. 354–365.

[25] Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason A. Fries, Sen
Wu, and Christopher Ré. 2020. Snorkel: rapid training data creation with weak
supervision. VLDBJ 29, 2-3 (2020), 709–730.

[26] Alexander J. Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher
Ré. 2016. Data Programming: Creating Large Training Sets, Quickly. In NIPS.
3567–3575.

[27] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:
Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017), 1190–
1201.

[28] Sudeepa Roy, Laura Chiticariu, Vitaly Feldman, Frederick R Reiss, and Huaiyu
Zhu. 2013. Provenance-based dictionary refinement in information extraction.
In SIGMOD. 457–468.

[29] Anastasiya Sedova and Benjamin Roth. 2022. ULF: Unsupervised Labeling
Function Correction using Cross-Validation for Weak Supervision. CoRR
abs/2204.06863 (2022).

[30] Paroma Varma and Christopher Ré. 2018. Snuba: Automating Weak Supervision
to Label Training Data. PVLDB 12, 3 (2018), 223–236.

[31] Zihan Wang, Jingbo Shang, Liyuan Liu, Lihao Lu, Jiacheng Liu, and Jiawei Han.
2019. CrossWeigh: Training Named Entity Tagger from Imperfect Annotations.
In EMNLP-IJCNLP. 5153–5162.

[32] Peilin Yu and Stephen Bach. 2023. Alfred: A System for Prompted Weak Supervi-
sion. arXiv preprint arXiv:2305.18623 (2023).

[33] Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo Zhao, and Chao Zhang. 2020.
Fine-tuning pre-trained language model with weak supervision: A contrastive-
regularized self-training approach. arXiv preprint arXiv:2010.07835 (2020).

[34] Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. 2022.
A Survey on Programmatic Weak Supervision. CoRR abs/2202.05433 (2022).
arXiv:2202.05433

[35] Jieyu Zhang, Haonan Wang, Cheng-Yu Hsieh, and Alexander J. Ratner. 2022.
Understanding Programmatic Weak Supervision via Source-aware Influence
Function. In Advances in Neural Information Processing Systems 35: Annual Con-
ference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

[36] Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and
Alexander Ratner. 2021. WRENCH: A comprehensive benchmark for weak
supervision. arXiv preprint arXiv:2109.11377 (2021).

[37] Xiaoyu Zhang, Xiwei Xuan, Alden Dima, Thurston Sexton, and Kwan-Liu Ma.
2023. LabelVizier: Interactive Validation and Relabeling for Technical Text An-
notations. In 2023 IEEE 16th Pacific Visualization Symposium (PacificVis). IEEE,
167–176.

[38] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level Convo-
lutional Networks for Text Classification. In NeurIPS, Corinna Cortes, Neil D.
Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (Eds.). 649–657.

A Path Refinement Repairs - Proofs and
Additional Details

A.1 GreedyPathRepair
The function GreedyPathRepair is shown Algorithm 3. This algo-
rithm maintains a list of pairs of paths and datapoints at these
paths to be processed. This list is initialized with all datapoints X𝑃
fromZ𝑃 and the path 𝑃 provided as input to the algorithm. In each
iteration, the algorithm picks two datapoints 𝑥1 and 𝑥2 from the
current set and selects a predicate 𝑝 such that 𝑝 (𝑥1) ≠ 𝑝 (𝑥2). It
then refines the rule with 𝑝 and appends X1 = {𝑥 | 𝑥 ∈ X𝑃 ∧ 𝑝 (𝑥)}
and X2 = {𝑥 | 𝑥 ∈ X𝑃 ∧ ¬ 𝑝 (𝑥)} with their respective paths to the
list. As shown in [18], this algorithm terminates after adding at
most | X𝑃 | new predicates.

To ensure that all datapoints ending in path 𝑃 get assigned the
desired label based onZ𝑃 , we need to add predicates to the end of
𝑃 to “reroute” each datapoint to a leaf node with the desired label.
As mentioned above, this algorithm implements the approach from
[18]: for a set of datapoints taking a path with prefix 𝑃 ending in a
leaf node that is not pure (not all datapoints in the set have the same
expected label), we pick a predicate that “separates” the datapoints,
i.e., that evaluate to true on one of the datapoints and false on the
other. Our algorithm applies this step until all leaf nodes are pure
wrt. the datapoints from X𝑃 . For that, we maintain a queue of path

https://arxiv.org/abs/2406.11010
https://arxiv.org/abs/2505.23470
https://arxiv.org/abs/2505.23470
https://arxiv.org/abs/2202.05433

Refining Labeling Functions with Limited Labeled Data KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Algorithm 4: BruteForcePathRepair
Input :Rule 𝑟

Path 𝑃

Datapoints to fix X𝑃
Expected labels for datapointsZ𝑃

Output :Repair sequence Φ which fixes 𝑟 wrt.Z𝑃

1 𝑡𝑜𝑑𝑜 ← [(𝑟, ∅)]
2 P𝑎𝑙𝑙 = GetAllCandPredicates(𝑃,X𝑃 ,Z𝑃)
3 while 𝑡𝑜𝑑𝑜 ≠ ∅ do
4 (𝑟𝑐𝑢𝑟 ,Φ𝑐𝑢𝑟) ← 𝑝𝑜𝑝 (𝑡𝑜𝑑𝑜)
5 foreach 𝑃𝑐𝑢𝑟 ∈ 𝑙𝑒𝑎𝑓 𝑝𝑎𝑡ℎ𝑠 (𝑟𝑐𝑢𝑟 , 𝑃) do
6 foreach 𝑝 ∈ P𝑎𝑙𝑙 − P𝑟𝑐𝑢𝑟 do
7 foreach 𝑦1 ∈ Y ∧ 𝑦1 ≠ 𝑙𝑎𝑠𝑡 (𝑃𝑐𝑢𝑟) do
8 𝜙𝑛𝑒𝑤 ← refine(𝑟𝑐𝑢𝑟 , 𝑃𝑐𝑢𝑟 , 𝑦1, 𝑝, true)
9 𝑟𝑛𝑒𝑤 ← 𝜙𝑛𝑒𝑤 (𝑟𝑐𝑢𝑟)

10 Φ𝑛𝑒𝑤 ← Φ𝑐𝑢𝑟 , 𝜙𝑐𝑢𝑟
11 if Acc(𝑟𝑛𝑒𝑤 ,Z𝑃) = 1 then
12 return Φ𝑛𝑒𝑤

13 else
14 𝑡𝑜𝑑𝑜.𝑝𝑢𝑠ℎ((𝑟𝑛𝑒𝑤 ,Φ𝑛𝑒𝑤))

Algorithm 3: GreedyPathRepair
Input :Rule 𝑟

Path 𝑃

datapoints to fix X𝑃
Expected labels for assignmentsZ𝑃

Output :Repair sequence Φ which fixes 𝑟 wrt.Z𝑃

1 𝑡𝑜𝑑𝑜 ← [(𝑃,Z𝑃)]
2 Φ = []
3 while 𝑡𝑜𝑑𝑜 ≠ ∅ do
4 (𝑃,Z𝑃) ← 𝑝𝑜𝑝 (𝑡𝑜𝑑𝑜)
5 if ∃𝑥1, 𝑥2 ∈ X𝑃 : Z𝑃 (𝑥1) ≠ Z𝑃 (𝑥2) then
6 /* Determine predicates that distinguish assignments

that should receive different labels for a path */

7 𝑝 ← GetSeperatorPred(𝑥1, 𝑥2)
8 𝑦1 ←Z𝑃 (𝑥1)
9 𝜙 ← refine(𝑟𝑐𝑢𝑟 , 𝑃,𝑦1, 𝑝, true)

10 X1 ← {𝑥 | 𝑥 ∈ X𝑃 ∧ 𝑝 (𝑥)}
11 X2 ← {𝑥 | 𝑥 ∈ X𝑃 ∧ ¬𝑝 (𝑥)}
12 𝑡𝑜𝑑𝑜.𝑝𝑢𝑠ℎ((𝑃 [𝑟𝑐𝑢𝑟 , 𝑥1],X1))
13 𝑡𝑜𝑑𝑜.𝑝𝑢𝑠ℎ((𝑃 [𝑟𝑐𝑢𝑟 , 𝑥2],X2))
14 else
15 𝜙 ← refine(𝑟𝑐𝑢𝑟 , 𝑃,Z𝑃 (𝑥))
16 𝑟𝑐𝑢𝑟 ← 𝜙 (𝑟𝑐𝑢𝑟)
17 Φ.𝑎𝑝𝑝𝑒𝑛𝑑 (𝜙)
18 return Φ

and datapoint set pairs which tracks which combination of paths

and datapoint sets still have to be fixed. This queue is initialized
with 𝑃 and all datapoints X𝑃 for 𝑃 . The algorithm processes sets
of datapoints until the todo queue is empty. In each iteration, the
algorithm greedily selects a pair of datapoints 𝑥1 and 𝑥2 ending in
this path that should be assigned different labels (line 5). It then
calls method GetSeperatorPred (line 7) to determine a predicate
𝑝 which evaluates to true on 𝑥1 and false on 𝑥2 (or vice versa). If
we extend path 𝑃 with 𝑝 , then 𝑥1 will follow the true edge of 𝑝
and 𝑥2 will follow the false edge (or vice versa). This effectively
partitions the set of datapoints for path 𝑃 into two sets X1 and X2
whereX1 contains 𝑥1 andX2 contains 𝑥2. We then have to continue
to refine the paths ending in the two children of 𝑝 wrt. these sets of
datapoints. This is ensured by adding these sets of datapoints with
their new paths to the todo queue (lines 12 and 13). If the current set
of datapoints does not contain two datapoints with different labels,
then we know that all remaining datapoints should receive the
same label. The algorithm picks one of these datapoints 𝑥 (line 14)
and changes the current leave node’s label toZ𝑃 (𝑥).
Generating Predicates.The implementation of GetCoveringPred
is specific to the type of PWSS. In [18] we present implementations
of this procedure for weak supervised labeling that exploit the
properties of these two application domains. However, note that,
as we have shown in [18], as long as the space of predicates for an
application domain contains equality and inequality comparisons
for the atomic elements of datapoints, it is always possible to gen-
erate a predicate for two datapoints such that only one of these two
datapoints fulfills the predicate. The algorithm splits the datapoint
set X𝑃 processed in the current iteration into two subsets, which
each are strictly smaller thanX𝑃 . Thus, the algorithm is guaranteed
to terminate and by construction assigns each datapoints 𝑥 in X𝑃
its desired labelZ𝑃 (𝑥).

A.2 BruteForcePathRepair
The brute-force algorithm (Algorithm 4) is optimal, i.e., it returns
a refinement of minimal cost (number of new predicates added).
This algorithm enumerates all possible refinement repairs for a
path 𝑃 . Each such repair corresponds to replacing the last element
on 𝑃 with some rule tree. We enumerate such trees in increasing
order of their size and pick the smallest one that achieves perfect
accuracy onZ𝑃 . We first determine all predicates that can be used
in the candidate repairs. As shown in [18], there are only finitely
many distinct predicates (up to equivalence) for a given set X𝑃 . We
then process a queue of candidate rules, each paired with the repair
sequence that generated the rule. In each iteration, we process one
rule from the queue and extend it in all possible ways by replacing
one leaf node, and selecting the refined rule with minimum cost that
satisfies all assignments. As we generate subtrees in increasing size,
as shown in [18], the algorithm will terminate and its worst-case
runtime is exponential in 𝑛 = | X𝑃 | as it may generate all subtrees
of size up to 𝑛.

B Additional Experiment Details
B.1 runtime breakdown
The runtime breakdown for the remaining datasets from Section 5.2
are shown in Figure 9a.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Chenjie Li, Amir Gilad, Boris Glavic, Zhengjie Miao, and Sudeepa Roy

(a) Runtime, varying the size of X∗.

(b) Pairwise interaction heatmaps for New Global Acc.

Figure 9: Additional experimental results

dataset repairer fix% preserv% global acc. new global acc.
FNews RC 1 1 0.71 0.92
FNews LLM 0.9 0.65 0.71 0.81
Amazon RC 1 1 0.6 0.77
Amazon LLM 0.9 0.5 0.6 0.7

Table 5: LLM vs RuleCleaner (RC) quality rule refinement
comparison

B.2 MILP thresholds
The effects on global accuracy of the pairwise relationships of
𝜏𝑎𝑐𝑐 , 𝜏𝐸 , and 𝜏𝑟𝑎𝑐𝑐 are shown in Figure 9b. The color of a square
represents global accuracy after the repair. Based on these results,
it is generally preferable to set the thresholds higher as discussed
in Section 2.2. However, larger thresholds reduce the amount of
viable solutions to the MILP and, thus, can significantly increase
the runtime of solving the MILP and lead to overfitting to X∗.

C Repairing LFs with LLMs
In this section, we compare RuleCleaner against a baseline using a
large language model (LLM). We designed a prompt instructing the
LLM to act as an assistant and refine the LFs given a set of labeled
datapoints. In this experiment, we used the FNews dataset with 40
labeled datapoints and Amazon dataset with 20 labeled examples.

We used GPT-4-turbo as the LLM. A detailed description of the
prompt and responses from the LLM are presented in the [18].

We manually inspected the rules returned by the LLM to en-
sure that they are semantically meaningful. The quality of results
after running Snorkel with the refined LFs from LLM and Rule-
Cleaner are shown in Table 5. fix%measures the percentage of the
wrong predictions by Snorkel that are fixed after retraining Snorkel
with the refined rules. preserv% measures the percentage inputs
correctly predicted by Snorkel that remain valid after retraining
with the refined rules. RuleCleaner outperforms the LLM in both
global accuracy and accuracy on labeled input data. We observe
that the LLM tends to preserve the semantic meaning of the origi-
nal LFs in the repairs it produces. For example, in one of the rules
from FNews, the original rule is if "talks" in text: REAL else
ABSTAIN and the repaired rule was if any(x in text for x in

['discussions', 'negotiations', 'talks']). In one of the
rules from Amazon, the original rule if any (x in text for
x in ['junk','disappointed','useless']):NEGATIVE else

ABSTAIN mainly covers negative reviews. The LLM did add more
negative words such as 'defective' whereas RuleCleaner could
possibly add opposite sentiment conditions based on the solutions
provided by the MILP. For example, it is possible for RuleCleaner
to refine a rule with negative sentiment by adding else if 'great
' in text: POSITIVE else ABSTAIN. The returned refined func-
tions for FNews can be found in [18].

	Abstract
	1 Introduction
	2 The RuleCleaner Framework
	2.1 Rules and rbbm
	2.2 The Rule Repair Problem

	3 Ruleset Repair Algorithm
	3.1 MILP Formulation

	4 Single Rule Refinement
	4.1 Rule Repair
	4.2 Path Repair: EntropyPathRepair

	5 Experiments
	5.1 Refining labelling functions
	5.2 Runtime
	5.3 llm vs RuleCleaner
	5.4 Path Repair Algorithms
	5.5 Complexity of Refined LFs
	5.6 Other rbbms

	6 Related Work
	7 Conclusions and Future Work
	8 Acknowledgments
	References
	A Path Refinement Repairs - Proofs and Additional Details
	A.1 GreedyPathRepair
	A.2 BruteForcePathRepair

	B Additional Experiment Details
	B.1 runtime breakdown
	B.2 MILP thresholds

	C Repairing LFs with LLMs

