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ABSTRACT

In this work, we demonstrate CaJaDE (Context-Aware Join-Aug-

mented Deep Explanations), a system that explains query results

by augmenting provenance with contextual information from other

related tables in the database. Given two query results whose differ-

ence the user wants to understand, we enumerate possible ways of

joining the provenance (i.e., contributing input tuples) of these two

query results with tuples from other relevant tables in the database

that were not used in the query. We use patterns to concisely ex-

plain the difference between the augmented provenance of the two
query results. CaJaDE, through a comprehensive UI, enables the

user to formulate questions and explore explanations interactively.
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1 INTRODUCTION

In today’s data-drivenworld, data is analyzed using complex queries

to search for trends and anomalies, and subsequently to make de-

cisions based on data. Interpreting results of such queries is a

challenging task which requires the analyst to explore possible root

causes for a result. Provenance [3], information about what input

data was used to derive a result, provides a natural foundation for

several “explanation” frameworks that have been proposed by the

database community [5–8]. However, real world data exhibits inter-

table relationships that connect the provenance of a query with data

that has not been accessed by the query. Current approaches do not

take these crucial relationships into account. Thus, the explanations

they produce may lack important contextual information from parts

of the database that do not belong to the query’s provenance.

In this demonstration, we showcase CaJaDE (Context Aware

Join Augmented Deep Explanations), a novel explanation sys-

tem that augments the provenance of a query using relations not
accessed by this query. CaJaDE is open source and is available on
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. Using database constraints and user-provided information

2

about how tables in the database are connected, CaJaDE searches

for ways to augment the provenance of a query (i.e., contributing

input tuples) by joining it with tuples from other unused tables

while obeying these constraints. The augmented provenance pro-

duced by a particular join graph, which captures one possible way

to augment the provenance, is then summarized using selection pat-

terns. Specifically, a pattern consists of conjunctions of equality and
inequality predicates and represents the tuples in the augmented

provenance that satisfy the pattern. In CaJaDE, we mainly focus

on explaining differences between two query result tuples 𝑡1 and 𝑡2
selected by the user. Thus, a pattern with good quality should sum-

marize the difference between the join-augmented provenance of

𝑡1 and 𝑡2. Summarizing provenance with patterns is already expen-

sive [8]. With the expansion of the search space caused by consid-

ering context, designing the tractable search process becomes even

more challenging. We leverage a collection of optimizations and

heuristics that will be described briefly later. For more a detailed

description of the ideas presented in this demonstration, please

refer to our research paper published in SIGMOD’21 [4].

Example 1. Consider a simplified NBA (National Basketball As-
sociation) database [1] with the following relations (the keys are
underlined). We will use a full version of this dataset in the demon-
stration with several additional tables [4]. Some example tuples from
these two relations are shown in Figure 1.
• Game(game_date, home, away, home_pts, away_pts, winner,

season): information for each game such as the competing teams
(home and away), scores for each team, and game date.

• PlayerGameStats(game_date,home, pts, rebs, mins): the
points, rebounds, and minutes played for each player in each game.

Query 𝑄1 shown below returns the number of wins of team GSW

(Golden State Warriors) per season.

SELECT winner as team , season , count (*) as win

FROM Game

WHERE winner = 'GSW'

GROUP BY winner , season

As shown in Figure 1c, GSW won 73 games in the 2015-16 season,
which is the greatest number of games won in a single season by any
team in history (𝑡2). Compared with just 3 seasons ago in 2012-13 with
47 wins (𝑡1), GSW has drastically improved its winning record. Notice
that in 𝑄1, only Game table (1a) was accessed. This table provides the
user with information about each game. However, such information
is not enough for understanding why GSW won more games in the
2015-16 season than in the other seasons, because in each season a

1
https://github.com/IITDBGroup/CaJaDe/

2
Such information can also be obtained automatically using join discovery techniques,

e.g., [9].
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game_date home away home_pts away_pts winner season
𝑔1 2016-04-13 GSW MEM 125 104 GSW 2015-16
𝑔2 2012-12-01 GSW IND 103 92 GSW 2012-13
𝑔3 2016-03-18 DAL GSW 112 130 GSW 2015-16
𝑔4 2017-02-25 GSW BKN 112 95 GSW 2016-17

(a) Game Table

player game_date home pts rebs mins
𝑝1 S.Curry 2016-04-13 GSW 46 4 29.78
𝑝2 D.Green 2016-04-13 GSW 11 9 29.78
𝑝3 D.Green 2012-12-01 GSW 2 1 11.10
𝑝4 D.Green 2016-03-18 DAL 15 4 36.13

(b) PlayerGameStats table

team season win
𝑡1 𝐺𝑆𝑊 2012-13 47

𝐺𝑆𝑊 2013-14 51
𝐺𝑆𝑊 2014-15 67

𝑡2 𝐺𝑆𝑊 2015-16 73
𝐺𝑆𝑊 2016-17 67

(c) Result of𝑄1

Figure 1: Simplified example NBA dataset.

𝑈𝑄1 : Why did𝐺𝑆𝑊 win 73 games in 2015-16 (𝑡2) compared to 47 games in 2012-13 (𝑡1).

(a) User question𝑈𝑄1

Condition on 𝑒1 = (PT.game_date=P.game_date ∧
PT.home=P.home)

(b) Example join graph with pattern for𝑈𝑄1

(c) Legend

Figure 2: Example user question and explanation.

team plays the same number of games, and roughly the same number
of times against each opponent. That is, data provenance, which for
this query only contains tuples from the Game table, is insufficient for
explaining the difference between the outcome for the two seasons.

The scenario from Example 1 demonstrates the need to consider

contextual information that is not contained in the provenance to

generate meaningful explanations. This is what CaJaDE is built for.

The explanation shown below gives a flavor of the top explanations

produced by CaJaDE to differentiate 𝑡1, 𝑡2 in Figure 1c.

GSW won more games in season 2015-16 because player

D.Green played >15.5 minutes and had >3 rebounds in

72 out of 73 games in 2015-16 compared to 9 out of 47 games

in 2012-13.

Given this explanation, the user can infer that D.Green was one

of the key contributors for the improvement of GSW’s winning

record since his playing minutes and rebounds significantly im-

proved in the 2015-16 season compared with the 2012-13 season.

In CaJaDE, this explanation is represented using a join-graph as

shown in Figure 2b, which augments the provenance table (PT in

Figure 2b, contains only the Game table) with the PlayerGameStats
table not accessed by the query. The join graph shows the pattern’s

predicates that apply to different tables (player=D. Green, mins

> 15.5, rebs > 3) alongside the difference in statistics (72 out of 73

tuples in 2015-16 vs. 9 out of 47 tuples in 2012-13 in the augmented

provenance of 𝑡2 and 𝑡1 satisfy the pattern, respectively).

2 CAJADE OVERVIEW

2.1 Augmented Provenance using Join Graphs

User questions. Given two tuples 𝑡1 and 𝑡2 in the result of a query

𝑄 evaluated over a database 𝐷 , we find explanations that concisely

summarize the difference between the provenance of 𝑡1 and 𝑡2
augmented with additional contextual information.

Provenance Tables. We define the provenance table (PT) for a

SELECT-FROM-WHERE-GROUP BY query as a subset of the join

result of the relation(s) accessed by the query, i.e., the joined re-

lations that contribute to the query result. We use PT (𝑄, 𝐷) to
denote the provenance table for query 𝑄 and database 𝐷 . In Exam-

ple 1, query 𝑄1 accesses a single table: Game, therefore, PT (𝑄1, 𝐷)
contains all the tuples from Figure 1a where 𝐺𝑆𝑊 is the winner.

For a result tuple 𝑡 ∈ 𝑄 (𝐷), we use PT (𝑄,𝐷, 𝑡) ⊆ PT (𝑄1, 𝐷) to
denote the provenance of 𝑡 . In Example 1, PT (𝑄1, 𝐷, 𝑡1) contains
all tuples from table Game where GSW won in the 2012-13 season.

Schema Graphs. To augment the provenance of a query with

contextual information, we need to explore plausible options of

joining the tables from the query’s provenance with other tables in

the database providing context. CaJaDE expects as input a schema
graph, a graphwhose vertices represent the relations in the database
and whose edges encode what join conditions can be used. CaJaDE

can automatically generate a schema graph from the foreign key

constraints of a database. Additionally, the user can specify the

graph manually, e.g., using existing data discovery tools [9] to

determine what tables can be joined. The problem of discovering

join-ability of tables is orthogonal to the problem we address in

CaJaDE: how to efficiently compute explanations with context.

Join Graphs. While the schema graph encodes all possible ways
the provenance table can be augmented by joining with other tables

in the database, a join graph encodes a single augmentation using

a subset of tables as permitted by the schema graph. A join graph

contains a distinguished node 𝑃𝑇 representing the relations from

𝑄 , i.e., the Game table from Figure 2. The other nodes of a join graph

are labeled with relations, e.g., PlayerGameStats from Figure 2.

Edges in a join graph are labeled with join conditions allowed by

the schema graph. Each join graph encodes one of the possible

ways of how to augment PT (𝑄, 𝐷).
Augmented Provenance. Given a provenance table PT (𝑄, 𝐷)
and a join graph, we derive an augmented provenance table (APT)
by joining PT (𝑄, 𝐷) with other relations in the join graph using

the join conditions encoded by the edges of the join graph. The

APT produced by augmenting PT (𝑄1, 𝐷) (i.e., the Game table in

Figure 1a) using the join graph in Figure 2b includes each game

paired with the players participating in this game, i.e., the pairs

(𝑔1, 𝑝1), (𝑔1, 𝑝2), (𝑔2, 𝑝3), (𝑔3, 𝑝4).

2.2 Patterns as Explanations

InCaJaDE, an explanation includes (a) a join graph and (b) a pattern

(conjunction of predicates) that summarizes sets of tuples from the

APT produced by the join graph. Intuitively, a pattern with good

quality matches as many tuples as possible from the augmented

provenance PT (𝑄, 𝐷, 𝑡1) of one result tuple 𝑡1 appearing in the

user question, and as few tuples as possible from the augmented

provenance PT (𝑄,𝐷, 𝑡2) of the other result tuple 𝑡2. We adapt the

notion of F-score as the scoring metric. A tuple 𝑡 from the APT

matches a pattern if 𝑡 satisfies all predicates of the pattern. For

example, in Example 1, the pattern (player=D.Green, mins >
15.5, rebs > 3), matches tuples (𝑔1, 𝑝2) and (𝑔3, 𝑝4) in the APT.

Over the full NBA dataset, this pattern matches 72 out of 73 tuples

from the 2015-16 season and 9 out of 47 tuples in the 2012-13

season. Thus, for 𝑡2 in comparison with 𝑡1, the “recall” is 72

73
and the

“precision” is 72

72+9 = 72

81
. The F-score for this explanation pattern

distinguishing 𝑡2 from 𝑡1 is 2 × (72/73)×(72/81)
(72/73)+(72/81) ≈ 0.94.
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Figure 3: CaJaDE’s Main GUI: After connecting to the database, the corresponding schema graph is shown in 5○. The user

runs an aggregation query in 2○ over the schema shown in 1○, formulates a question by selecting two result tuples in 3○, can

browse explanations (patterns) through their descriptions shown in 4○ and endorse/dislike explanations to refine them further,

explore explanations produced by different join graphs shown in 7○, visualize an explanation in terms of its join graph in 6○,

and explore distribution of attributes covered by a pattern as histograms in 9○.
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Figure 4: CaJaDE’s system architecture

2.3 Implementation and Optimizations

The architecture of CaJaDE is shown in Figure 4. CaJaDE takes

provenance produced by GProM (https://github.com/IITDBGroup/

gprom) and the schema graph as inputs. The join graph generator

enumerates the join options based on the schema graph and the

relations from the query’s provenance. The provenance augmen-

tation component takes each join graph and PT to materialize the

augmented provenance table (APT). The pattern miner mines pat-

terns from the APTs. Finally, CaJaDE ranks the patterns based on

a weighted score combining the F-score and diversity.

Note that even for a single join graph, the search space for pat-

terns is large: polynomial in the number of distinct values per

attribute, but exponential in the number of attributes. Further-

more, even for moderately-sized schema graphs, the number of

join graphs (subgraphs of the schema graph) for a given query can

be huge. We apply a suite of novel optimizations and heuristics to

enable CaJaDE to scale to large datasets. These include: (i) cluster-

ing similar or correlated attributes to reduce the search space of

patterns and avoid redundant explanations (e.g., if a pattern with

birth date is produced then a pattern with age can be ignored); (ii)

we train a classifier to determine which attributes are most pre-

dictive of the difference between the two query results appearing

in the user question to prune additional attributes from pattern

generation; (iii) Given an APT, we use a variant of the LCA (Least

Common Ancestor) method from [2] that handles categorical at-

tributes. Intuitively, this step will help identify the most frequently

appearing combinations of attribute values as pattern candidates.

We then refine the subset of these pattern candidates that have suffi-

ciently high recall by adding numerical attributes. Since the search

space for numerical predicates is significantly larger than the search

space for categorical predicates, it is beneficial to avoid refining un-

promising patterns (with low recall); (iv) we enumerate join graph

candidates by size by iteratively extending previously explored join

graphs one edge at a time. This enables us to not further extend a

join graph if extensions are unlikely to yield good patterns. For a

detailed description of our techniques and optimizations see [4].

3 DEMONSTRATION

In this demonstration, we will use real world datasets including

this NBA dataset [1], which contains statistics about teams, players,

games etc. from the 2009-10 season to the 2018-19 season. The main

user interface using the NBA dataset is shown in Figure 3. The
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(a) (b) (c)

Figure 5: (a) An explanation (pattern and its join graph). Predicates of the pattern (orange background) are connected to the

table they apply to. (b) The user can up- and downvote patterns. (c) Distribution of the values of one attribute from a pattern

predicate (values matching the predicate are shown in red and values not matching the predicates are shown in blue).

system with multiple datasets to select from will be accessible to

the users as a web application during the demonstration. A typical

user session is described below.

1. Run aggregate query and formulate question. After connect-

ing to the database, the user can familiarize themselves with the

database schema ( 1○) and the schema graph encoding allowable

join paths ( 5○). Once the user has gained an initial understanding of

the schema, the user can run a group-by/aggregate query ( 2○). After

the query is executed, the query results are shown in 3○. Users can

inspect these results, and if they want to understand the difference

between two output tuples of interest, they can choose the tuples

by clicking (will be highlighted in two different colors).

2. Join graphs and explanations. CaJaDE produces results in-

crementally so that the user can start exploring explanations right

away without waiting. While CaJaDE is running in the background,

the list of join graphs ( 7○) along with their top-k explanation pat-

terns ( 4○) are continuously updated. Histograms of the F-scores of

patterns are plotted above each join graph to give user an overview

of the pattern quality for each join graph. The overall distribution

of F-scores of the patterns is shown in 8○. Users can hover over an

explanation to see the pattern description. Furthermore, selecting a

join graph in 7○ restricts the patterns shown in 4○ to patterns for

this join graph.

3. Interpreting a pattern and stating preferences. We provide

additional ways to help the user interpret an explanation pattern.

First, when the user selects a pattern, the join graph along with

the pattern predicate is shown in 6○. As shown in Figure 5a, the

selected example pattern has a join graph with 3 nodes (tables): the

provenance table (PT), player_game_stats, and player. The pat-
tern predicates applying to attributes from each table 𝑅 are shown

as nodes in the graph connected to 𝑅 (Figure 5a). Furthermore, this

visualization shows the fraction of tuples satisfying the patterns

for the two selected output tuples in their corresponding colors (in

green and purple, saying that 9 out of 47 and 72 out of 73 tuples

from the provenance satisfy the explanation pattern for the green

(𝑡1) and purple (𝑡2) result tuples selected in 3○). The user can state

their preference for or against patterns as shown in 4○ in Figure 3

and Figure 5b by clicking thumbs up/down. Internally, CaJaDE will

prioritize patterns that are similar to patterns upvoted by the user

and dissimilar to patterns downvoted by the user. Finally, based on

the feedback we got from our previously user study [4], in order

to help the user understand how the constant from a predicate in

a pattern compares with other values from the attribute’s domain

(e.g., how frequently do we encounter 15.48 mins playtime or 3.25

rebounds), we let the user select one of the predicates from the

current pattern as shown in 9○ in Figure 3 and Figure 5c. We then

plot two histograms showing the distribution of the values for the

attribute used in the predicate, one for each of the output tuples

𝑡1, 𝑡2 selected in the user question. In this example, we are looking

at player Draymond Green’s minutes played per game for the two

seasons involved in the user question: the selected pattern predi-

cate is minutes>15.48. As shown in the histogram, Green played
all the games over 25 minutes in the 2015-16 season, whereas in

the 2012-13 season, he played for a significantly lower number of

minutes in the majority of the games (and in fact played for < 15.48

minutes in many games as shown in blue). This difference may

contribute towards the significantly better performance of GSW in

2015-16 compared to 2012-13 (Green is known to be an important

player for GSW). CaJaDE is the first system that automatically

finds such interesting explanations and helps users to better un-

derstand the difference of two query results incorporating relevant

contextual information from tables that are unused in the query.
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