
Implementing Unified Why- and Why-Not
Provenance through Games

Seokki Lee1, Sven Köhler2, Bertram Ludäscher3, and Boris Glavic1

1 Illinois Institute of Technology
slee195@hawk.iit.edu, bglavic@iit.edu

2 University of California, Davis
svkoehler@ucdavis.edu

3 University of Illinois at Urbana-Champaign
ludaesch@illinois.edu

Abstract. Using provenance to explain why a query returns a result or
why a result is missing has been studied extensively. However, the two
types of questions have been approached independently of each other.
We present an efficient technique for answering both types of questions
for Datalog queries based on a game-theoretic model of provenance called
provenance games. Our approach compiles provenance requests into Dat-
alog and translates the resulting query into SQL to execute it on a rela-
tional database backend. We apply several novel optimizations to limit
the computation to provenance relevant to a given user question.

1 Introduction

Explaining the existence and absence of query results through provenance re-
spective missing answer techniques can help users to, e.g., debug and understand
their data and queries. Recently, the two techniques have been unified [3] in a
single framework based on a game-theoretic notion of provenance for queries
with negation, particularly, for non-recursive Datalog¬. 4 The provenance game
for a query Q and database instance I explains for each existing and missing
query result how the rules of the query succeeded (respective failed) to derive it
and why the derivation succeeded (respective failed), i.e., which tuples present
or absent in the database instance caused rule derivations to succeed (respective
fail). Typically, a user would not be interested in explanations for all answers
and non-answers, but rather would like to understand why a particular tuple is
(not) in the result. Given such a user question Q(t), our approach computes a
subgraph of the full game that answers precisely the user question. While prove-
nance games provide a solid underlying theoretical foundation, these games are
not necessarily the most user-friendly representation of provenance, i.e., they
require some background in game theory to be interpreted correctly. Our system

4 Intuitively, asking why a tuple t is absent from Q is equivalent to explaining why
t is present in ¬Q. Thus, a provenance model with support for negation in queries
enables why and why-not questions to be treated uniformly.



Relation L
S T

jane jane x1

jane peter x2

jane alice x3

jane maya x4

alice jane x5

peter jane maya

alice

x1

x2

x3

x4

x5

Result of
Query Q

S
jane
alice

Fig. 1: Example database

Q(jane)

r0(jane, peter) r0(jane, alice) r0(jane, jane) r0(jane,maya)

g0 g0 g0 g0

L(jane, peter) L(jane, alice) L(jane, jane) L(jane,maya)

Q(maya)

r0(maya, peter) r0(maya,maya) r0(maya, jane) r0(maya, alice)

g0 g0 g0 g0

L(maya, peter) L(maya,maya) L(maya, jane) L(maya, alice)

Fig. 2: Provenance explaining why Q(jane) and why-not Q(maya).

also supports several simpler forms of provenance that can be derived from a
provenance game by graph transformations, e.g., we support graphs that encode
provenance polynomials [2] for positive queries. Importantly, the core of our
technique is independent of how provenance is represented eventually and, thus,
new types of provenance representations can be added easily. The conventional
method [3] for computing provenance games is not suited well for computing
the part of the provenance game explaining a single answer or non-answer Q(t),
because it has to instantiate the full game which is prohibitively expensive, even
for small instances. For example, for a database with 1000 values and a query
with a single rule using 5 variables, the full game will contain more than 1015

nodes. Our approach computes the provenance bottom-up and only instantiates
parts of the game if they may be relevant to answer the user question.

Example 1 Consider relation L in Fig. 1, which stores links between personal
webpages. For example, the tuple (jane,peter) denotes that Jane’s webpage con-
tains a link to Peter’s webpage. A webpage may contain links to other parts of
the page (a self-loop). Consider a query Q expressed in Datalog that returns
webpages that have outgoing links: r0 : Q(X) :− L(X,Y ). Given such a query, a
user may be interested in understanding why or why-not a webpage occurs in
the result of query Q. Fig. 2 shows the simplified provenance graphs produced by
our approach for several why- and why-not questions. For instance, tuple (jane)
is in the result (denoted by the green background), because there is a link from
her webpage to Alice’s (tuple x3) which causes rule derivation r0(jane, alice) to
succeed. Tuple (maya) is not in the result, because none of the four possible links
connecting her webpage to any of the other webpages in the database exists. Thus
all possible derivations of Q(maya) using rule r0 have failed.

2 Efficiently Generating Provenance Games

The input to our approach for computing provenance games is a Datalog program
and either a why or why-not question, i.e., why is tuple t in the result respective



missing from the result. Furthermore, the user can select whether one of the
simplified provenance representations should be returned. Based on these inputs,
we construct a new Datalog program that computes the edge relation of the
provenance game graph for t as detailed in the following.

1) Unify program with provenance request. We first unify the program
with the question Q(t) by propagating the constants in t to replace variables
throughout the program in order to limit the computation to relevant parts of
the game. For example, to explain why Q(jane) (on the left in Fig. 2), we only
have to consider rule bindings where X = jane.

2) Annotated rules. We then determine for which nodes in the graph we can
infer their success/failure state based on the user question. For instance, we only
need to consider successful instantiations of rule r0 to explain why Q(jane). We
store this information as annotations on rules and goals in the Datalog program.

3) Capture rule derivations. Based on the annotated and unified game cre-
ated in the previous steps, we generate rules capturing variable bindings for
successful and failed rule instantiations (the annotations enable us to determine
whether we can focus on successful or failed instantiations only) in order to con-
struct the subgraph of a provenance game corresponding to a rule derivation.
We call these rules firing rules.

Successful derivations. Reconsider question why Q(jane) from Example 1. The
firing rule capturing successful bindings of r0, the only rule of query Q, is derived
from r0 by adding Y (the only existential variable in r0) to the head, renaming
the head predicate as Fr0,T, and replacing each goal with its firing version. Firing
rules are created after the unification with the user question. Thus, for the ex-
ample question, we would start from r0 : Q(jane, Y ) :− L(jane, Y ). Positive firing
rules for edb predicates simply copy the predicate.

Fr0,T(jane, Y ) :− FL,T(jane, Y ) FL,T(jane, Y ) :− L(jane, Y )

Failed derivations. To construct a provenance graph fragment corresponding
to a missing tuple, we find failed derivations with this tuple in the head and
ensure that no successful derivations of the tuple exist (otherwise we may capture
the irrelevant failed derivations of existing tuples). Furthermore, we need to
determine which goals failed for each failed rule instantiation because only failed
goals will be connected to the failed rule instantiations in the provenance game.
For the why-not question Q(maya) shown in Fig. 2 (on the right side), we are only
interested in failed instantiations of rule r0 with X = maya. The generated firing
rules are shown in Fig. 3. A negative firing rule (capturing failed derivations) is
constructed by replacing every goal in the body with its F/T firing version. An
F/T firing rule captures both existing and missing tuples and uses an additional
boolean variable (V1 in Fig. 3) in the head to record whether a tuple is existing
or missing. We also add a firing rule for the negated head atom to the body
to only capture bindings for missing tuples. Since query Q (in the Example 1)
has only one goal, we simply capture whether this goal is won or lost for each
rule instantiation using boolean variable V1. As mentioned above, we use a F/T
firing rule for relation L to determine whether a tuple exists in L.



FQ,F(maya) :−¬ FQ,T(maya)

FQ,T(maya) :− Fr0,T(maya, Y )

Fr0,F(maya, Y, V1) :− FQ,F(maya),

FL,F/T(maya, Y, V1)

Fr0,T(maya, Y ) :− FL,F/T(maya, Y, true)

FL,F/T(maya, Y, true) :− L(maya, Y )

FL,F/T(maya, Y, false) :− adom(Y ),¬ L(maya, Y )

Fig. 3: Firing rules for failed derivations Fig. 4: GProM Implementation

4) Filter out false positives. To be in the result of one of the firing rules
obtained in the previous step is a necessary, but not sufficient condition for the
provenance graph fragment corresponding to this rule binding to be connected
to the user question. To guarantee that only relevant fragments are returned, we
need to check for each fragment whether it is actually connected. We introduce
additional rules that check connectivity one hop at a time.

5) Compute edge relation. We compute the edge relation of the provenance
game based on the rule binding information that the firing rules have captured.
In addition to full game provenance, we support simplified provenance represen-
tations including the ones shown in Fig. 2.

Implementation. The generated Datalog program constructs and solves the
provenance game simultaneously in a bottom-up manner. We have implemented
this algorithm in our provenance middleware called GProM [1] that executes
provenance requests using a database backend. The process of computing a prov-
enance game for a user request is shown in Fig. 4. Our system also visualizes the
resulting graph using Graphviz (http://www.graphviz.org/).

3 Conclusions

We present an efficient approach for explaining answers and non-answers to
Datalog queries using provenance games. Our approach limits the computation
to parts of the provenance relevant to a user question by constructing the game
bottom-up and pruning unrelated parts from the computation.

References

1. Arab, B., Gawlick, D., Radhakrishnan, V., Guo, H., Glavic, B.: A generic provenance
middleware for database queries, updates, and transactions. In: TaPP (2014)

2. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS. pp.
31–40 (2007)

3. Köhler, S., Ludäscher, B., Zinn, D.: First-order provenance games. In: In Search of
Elegance in the Theory and Practice of Computation, pp. 382–399. Springer (2013)

http://www.graphviz.org/

