
A SQL-Middleware Unifying Why and Why-Not
Provenance for First-Order Queries

Seokki Lee∗ Sven Köhler† Bertram Ludäscher‡ Boris Glavic∗
∗Illinois Institute of Technology. {slee195@hawk.iit.edu, bglavic@iit.edu}
‡University of Illinois at Urbana-Champaign. {ludaesch@illinois.edu}

†University of California at Davis. {svkoehler@ucdavis.edu}

Abstract—Explaining why an answer is in the result of a query
or why it is missing from the result is important for many
applications including auditing, debugging data and queries,
and answering hypothetical questions about data. Both types of
questions, i.e., why and why-not provenance, have been studied
extensively. In this work, we present the first practical approach
for answering such questions for queries with negation (first-
order queries). Our approach is based on a rewriting of Datalog
rules (called firing rules) that captures successful rule derivations
within the context of a Datalog query. We extend this rewriting
to support negation and to capture failed derivations that explain
missing answers. Given a (why or why-not) provenance question,
we compute an explanation, i.e., the part of the provenance that is
relevant to answer the question. We introduce optimizations that
prune parts of a provenance graph early on if we can determine
that they will not be part of the explanation for a given question.
We present an implementation that runs on top of a relational
database using SQL to compute explanations. Our experiments
demonstrate that our approach scales to large instances and
significantly outperforms an earlier approach which instantiates
the full provenance to compute explanations.

I. INTRODUCTION

Provenance for relational queries records how results of a
query depend on the query’s inputs. This type of information
can be used to explain why (and how) a result is derived by a
query over a given database. Recently, approaches have been
developed that use provenance-like techniques to explain why
a tuple (or a set of tuples described declaratively by a pattern)
is missing from the query result. However, the two problems
of computing provenance and explaining missing answers
have been treated mostly in isolation. A notable exception
is [23] which computes causes for answers and non-answers.
However, the approach requires the user to specify which
missing inputs to consider as causes for a missing output.
Capturing provenance for a query with negation necessitates
the unification of why and why-not provenance, because to
explain a result of the query we have to describe how existing
and missing intermediate results (via positive and negative
subqueries, respectively) lead to the creation of the result. This
has also been recognized by Köhler et al. [20]: asking why a
tuple t is absent from the result of a query Q is equivalent
to asking why t is present in ¬Q. Thus, a provenance model
that supports queries with negation naturally supports why-not
provenance. In this paper, we present a framework that answers
why and why-not questions for queries with negation. To this
end, we introduce a graph model for provenance of first-order
(FO) queries (i.e., non-recursive Datalog with negation) and
an efficient method for explaining a (missing) answer using
SQL. Our approach is based on the observation that typically

r1 : Q(X,Y ) : −Train(X,Z), Train(Z, Y ),¬Train(X,Y )

s c

nw

Relation Train
fromCity toCity
new york washington dc
new york chicago
chicago seattle
seattle chicago

washington dc seattle

Result of query Q
X Y

washington dc chicago
new york seattle

seattle seattle
chicago chicago

Fig. 1: Example train connection database and query
Q(n, s)

r1(n, s, w)

g11(n,w)

T (n,w)

g21(w, s)

T (w, s)

g31(n, s)

T (n, s)

r1(n, s, c)

g11(n, c)

T (n, c)

g21(c, s)

T (c, s)

Fig. 2: Provenance graph explaining WHY Q(n, s)

only a part of provenance, which we call explanation in this
work, is actually relevant for answering the user’s provenance
question about the existence or absence of a result.

Example 1. Consider the relation Train in Fig. 1 that stores
train connections in the US. The Datalog rule r1 in Fig. 1 com-
putes which cities can be reached with exactly one transfer, but
not directly. We use the following abbreviations in provenance
graphs: T = Train; n = New York; s = Seattle; w = Washington
DC and c = Chicago. Given the result of this query, the user
may be interested to know why he/she is able to reach Seattle
from New York (WHY Q(n, s)) with one intermediate stop but
not directly or why it is not possible to reach New York from
Seattle in the same fashion (WHYNOT Q(s, n)).

An explanation for either type of question should justify
the existence (absence) of a result as the success (failure) to
derive the result through the rules of the query. Furthermore,
it should explain how the existence (absence) of tuples in the
database caused the derivation to succeed (fail). Provenance
graphs providing this type of justification for WHY Q(n, s) and
WHYNOT Q(s, n) are shown in Fig. 2 and Fig. 3, respectively.
There are three types of graph nodes: rule nodes (boxes labeled
with a rule identifier and the constant arguments of a rule
derivation), goal nodes (rounded boxes labeled with a rule
identifier and the goal’s position in the rule’s body), and tuple
nodes (ovals). In these provenance graphs, nodes are either
colored as green (successful/existing) or red (failed/missing).

Example 2. Consider the explanation (provenance graph in
Fig. 2) for question WHY Q(n, s). Seattle can be reached from
New York by either stopping in Washington DC or Chicago



Q(s, n)

r1(s, n, w)

g11(s, w)

T (s, w)

g21(w, n)

T (w, n)

r1(s, n, c)

g21(c, n)

T (c, n)

r1(s, n, s)

g11(s, s)

T (s, s)

g21(s, n)

T (s, n)

r1(s, n, n)

g11(s, n) g21(n, n)

T (n, n)

Fig. 3: Provenance graph explaning WHYNOT Q(s, n)

and there is no direct connection between these two cities.
These two options correspond to two successful derivations for
rule r1 with X=n, Y=s, and Z=w (or Z=c, respectively).
In the provenance graph, there are two rule nodes denoting
these successful derivations of Q(n, s) by rule r1. A derivation
is successful if all goals in the body evaluate to true, i.e.,
a successful rule node is connected to successful goal nodes
(e.g., r1 is connected to g11 , the 1st goal in the rule’s body). A
positive (negated) goal is successful if the corresponding tuple
is (is not) in the database. Thus, a successful goal node is
connected to the node corresponding to the existing (green) or
missing (red) tuple justifying the goal, respectively.

Supporting negation and missing answers is quite challeng-
ing, because we need to enumerate all potential ways of deriv-
ing a missing answer (or intermediate result corresponding to a
negated subgoal) and explain why each of these derivations has
failed. An important question in this respect is how to bound
the set of missing answers to be considered. Under the open
world assumption, provenance would be infinite. Using the
closed world assumption, only values that exist in the database
or are postulated by the query are used to construct missing
tuples. As is customary in Datalog, we refer to this set of values
as the active domain adom(I) of a database instance I . We
will revisit the assumption that all derivations with constants
from adom(I) are meaningful later on.

Example 3. The explanation for WHYNOT Q(s, n) is shown in
Fig. 3, i.e., why it is not true that New York is reachable from
Seattle with exactly one transfer, but not directly. The tuple
Q(s, n) is missing from the query result because all potential
ways of deriving this tuple through the rule r1 have failed. In
this example, adom(I)={c, n, s, w} and, thus, there exist four
failed derivations of Q(s, n) choosing either of these cities as
the intermediate stop between Seattle and New York. A rule
derivation fails if at least one goal in the body evaluates to
false. In the provenance graph, only failed goals are connected
to the failed rule derivations explaining missing answers.
Failed positive goals in the body of a failed rule are explained
by missing tuples (red tuple nodes). For instance, we cannot
reach New York from Seattle with an intermediate stop in
Washington DC (the first failed rule derivation from the left
in Fig. 3) because there exists no connection from Seattle to
Washington DC (a tuple node T(s, w) in red), and Washington
DC to New York (a tuple node T(w, n) in red). Note that the
successful goal ¬ T(s, n) (there is no direct connection from
Seattle to New York) does not contribute to the failure of this
derivation and, thus, is not part of the explanation. A failed
negated goal is explained by an existing tuple in the database.
That is, if a tuple (s, n) would exist in the Train relation, then
an additional failed goal node g31(s, n) would be part of the
explanation and be connected to each failed rule derivation.

Overview and Contributions. Provenance games [20], a
game-theoretical formalization of provenance for first-order
(FO) queries, also supports queries with negation. However,
the approach is computationally expensive, because it requires
instantiation of a provenance graph explaining all answers and
missing answers. For instance, the provenance graph produced
by this approach for our toy example already contains more
than 64 (=43) nodes (i.e., only counting nodes corresponding
to rule derivations), because there are 43 ways of binding
values from adom(I)={c, n, s, w} to the 3 variables (X , Y ,
and Z) of the rule r1. Typically, most of the nodes will not
end up being part of the explanation for the user’s provenance
question. To efficiently compute the explanation, we generate
a Datalog program which computes part of the provenance
graph of an explanation bottom-up. Evaluating this program
over instance I returns the edge relation of an explanation.

The main driver of our approach is a rewriting of Datalog
rules that captures successful and failed rule derivations. This
rewriting replaces the rules of the program with so-called firing
rules. Firing rules for positive queries were first introduced
in [19]. These rules are similar to other query instrumentation
techniques that have been used for provenance capture such as
the rewrite rules of Perm [13]. One of our major contributions
is to extend this concept for negation and failed rule deriva-
tions which is needed to support Datalog with negation and
missing answers. Firing rules provide sufficient information
for constructing explanations. However, to make this approach
efficient, we need to avoid capturing rule derivations that will
not contribute to an explanation, i.e., they are not connected
to the nodes corresponding to the provenance question in the
provenance graph. We achieve this by propagating information
from the user’s provenance question throughout the query to
prune rule derivations early on 1) if they do not agree with
the constants in the question or 2) if we can determine that
based on their success/failure status they cannot be part of the
explanation. For instance, in our running example, Q(n, s) can
only be connected to successful derivations of the rule r1 with
X=n and Y=s. We have presented a proof-of-concept version
of our approach as a poster [22]. Our main contributions are:

• We introduce a provenance graph model for full first-order
(FO) queries, expressed as non-recursive Datalog queries
with negation (or Datalog for short).
• We extend the concept of firing rules to support negation

and missing answers.
• We present an efficient method for computing explana-

tions to provenance questions. Unlike the solution in [20],
our approach avoids unnecessary work by focusing the
computation on relevant parts of the provenance graph.
• We prove the correctness of our algorithm that computes

the explanation to a provenance question.
• We present a full implementation of our approach in

the GProM [1] system. Using this system, we compile
Datalog into relational algebra expressions, and translate
these expressions into SQL code that can be executed by
a standard relational database backend.

The remainder of this paper is organized as follows. We
formally define the problem in Sec. II, discuss related work in
Sec. III, and present our approach for computing explanations
in Sec. IV. We then discuss our implementation (Sec. V),
present experiments (Sec. VI), and conclude in Sec. VII.



II. PROBLEM DEFINITION

We now formally define the problem addressed in this
work: how to find the subgraph of a provenance graph for
a given query (input program) P and instance I that explains
existence/absence of a tuple in/from the result of P .

A. Datalog

A Datalog program P consists of a finite set of rules
ri : R( ~X) :− R1( ~X1), . . . , Rn( ~Xn) where ~Xj denotes a tuple
of variables and/or constants. We assume that the rules of
a program are labeled r1 to rm. R( ~X) is the head of the
rule, denoted head(ri), and R1( ~X1), . . . , Rn( ~Xn) is the body
(each Rj( ~Xj) is a goal). We use vars(ri) to denote the
set of variables in ri. In this paper, consider non-recursive
Datalog with negation, so goals Rj( ~Xj) in the body are literals,
i.e., atoms A( ~Xj) or their negation ¬A( ~Xj). Recursion is not
allowed. All rules r of a program have to be safe, i.e., every
variable in r must occur positively in r’s body (thus, head
variables and variables in negated goals must also occur in a
positive goal). For example, Fig. 1 shows a Datalog query with
a single rule r1. Here, head(r1) is Q(X,Y ) and vars(r1) is
{X,Y, Z}. The rule is safe since the head variables and the
variables in the negated goal also occur positively in the body
(X and Y in both cases). The set of relations in the schema
over which P is defined is referred to as the extensional
database (EDB), while relations defined through rules in P
form the intensional database (IDB), i.e., the IDB relations
are those defined in the head of rules. We require that P has
a distinguished IDB relation Q, called the answer relation.
Given P and instance I , we use P (I) to denote the result of
P evaluated over I . Note that P (I) includes the instance I , i.e.,
all EDB atoms that are true in I . For an EDB or IDB predicate
R, we use R(I) to denote the instance of R computed by P
and R(t) ∈ P (I) to denote that t ∈ R(I) according to P .

We use adom(I) to denote the active domain of instance
I , i.e., the set of all constants that occur in I . Similarly, we
use adom(R.A) to denote the active domain of attribute A of
relation R. In the following, we make use of the concept of a
rule derivation. A derivation of a rule r is an assignment of
variables in r to constants from adom(I). For a rule with n
variables, we use r(c1, . . . , cn) to denote the derivation that is
the result of binding Xi=ci. We call a derivation successful
wrt. an instance I if each atom in the body of the rule is true
in I and failed otherwise.

B. Negation and Domains

To be able to explain why a tuple is missing, we have to
enumerate all failed derivations of this tuple and, for each such
derivation, explain why it failed. As mentioned in Sec. I, the
question is what is a feasible set of potential answers to be
considered as missing. While the size of why-not provenance
is typically infinite under the open world assumption, we have
to decide how to bound the set of missing answers in the closed
world assumption. We propose a simple, yet general, solution
by assuming that each attribute of an IDB or EDB relation has
an associated domain.

Definition 1 (Domain Assignment). Let S = {R1, . . . , Rn} be
a database schema where each Ri(A1, . . . , Am) is a relation

schema. Given an instance I of S, a domain assignment dom
is a function that associates with each attribute R.A a domain
of values. We require dom(R.A) ⊇ adom(R.A).

In our approach, the user specifies each dom(R.A) as a
query domR.A that returns the set of admissible values for
the domain of attribute R.A. We provide reasonable defaults
to avoid forcing the user to specify dom for every attribute,
e.g., dom(R.A)=adom(R.A) for unspecified domR.A. These
associated domains fulfill two purposes: 1) to reduce the
size of explanations and 2) to avoid semantically meaningless
answers. For instance, if there would exist another attribute
Price in the relation Train in Fig. 1, then adom(I) would
also include all the values that appear in this attribute. Thus,
some failed rule derivations for r1 would assign prices to the
variable representing intermediate stops. Different attributes
may represent the same type of entity (e.g., fromCity and
toCity in our example) and, thus, it would make sense to
use their combined domain values when constructing missing
answers. For now, we leave it up to the user to specify attribute
domains. Using techniques for discovering semantic relation-
ships among attributes to automatically determine feasible
attribute domains is an interesting avenue for future work.

When defining provenance graphs in the following, we
are only interested in rule derivations that use constants
from the associated domains of attributes accessed by the
rule. Given a rule r and variable X used in this rule, let
attrs(r,X) denote the set of attributes that variable X is
bound to in the body of the rule. For instance, in Fig. 1,
attrs(r1, Z)={Train.fromCity, Train.toCity}. We say a
rule derivation r(c1, . . . , cn) is domain grounded iff ci ∈⋂
A∈attrs(r,Xi)

dom(A) for all i ∈ {1, . . . , n}.

C. Provenance Graphs

Provenance graphs justify the existence (or absence) of
a query result based on the success (or failure) to derive it
using a query’s rules. They also explain how the existence
or absence of tuples in the database caused derivations to
succeed or fail, respectively. Here, we present a constructive
definition of provenance graphs that provide this type of
justification. Nodes in these graphs carry two types of labels: 1)
a label that determines the node type (tuple, rule, or goal) and
additional information, e.g., the arguments and rule identifier
of a derivation; 2) the success/failure status of nodes.

Definition 2 (Provenance Graph). Let P be a first-order (FO)
query, I a database instance, dom a domain assignment for I ,
and L the domain containing all strings. The provenance graph
PG(P, I) is a graph (V,E,L,S) with nodes V , edges E, and
node labelling functions L : V → L and S : V → {T , F}
(true for T and false for F ). We require that ∀v, v′ ∈ V :
L(v) = L(v′)→ v = v′. PG(P, I) is defined as follows:

• Tuple nodes: For each n-ary EDB or IDB predicate R
and tuple (c1, . . . , cn) of constants from the associated
domains (ci ∈ dom(R.Ai)), there exists a node v labeled
R(c1, . . . , cn). S(v) = T iff R(c1, . . . , cn) ∈ P (I) and
S(v) = F otherwise.

• Rule nodes: For every successful domain grounded
derivation ri(c1, . . . , cn), there exists a node v in V la-
beled ri(c1, . . . , cn) with S(v) = T . For every failed do-
main grounded derivation ri(c1, . . . , cn) where head(ri



(c1, . . . , cn)) 6∈ P (I), there exists a node v as above but
with S(v) = F . In both cases, v is connected to the tuple
node head(ri(c1, . . . , cn)).

• Goal nodes: Let v be the node corresponding to a
derivation ri(c1, . . . , cn) with m goals. If S(v) = T , then
for all j ∈ {1, . . . ,m}, v is connected to a goal node vj
labeled gji with S(vj) = T . If S(v) = F , then for all
j ∈ {1, . . . ,m}, v is connected to a goal node vj with
S(vj) = F if the jth goal is failed in ri(c1, . . . , cn). Each
goal is connected to the corresponding tuple node.

Our provenance graphs model query evaluation by con-
struction. A tuple node R(t) is successful in PG(P, I) iff
R(t) ∈ P (I). This is guaranteed, because each tuple built
from values of the associated domain exists as a node v in the
graph and its label S(v) is decided based on R(t) ∈ P (I). Fur-
thermore, there exists a successful rule node r(~c) ∈ PG(P, I)
iff the derivation r(~c) succeeds for I . Likewise, a failed rule
node r(~c) exists iff the derivation r(~c) is failed over I and
head(r(~c)) 6∈ P (I). Fig. 2 and 3 show subgraphs of PG(P, I)
for the query from Fig. 1. Since Q(n, s) ∈ P (I) (Fig. 2),
this tuple node is connected to all successful derivations with
Q(n, s) in the head which in turn are connected to goal nodes
for each of the three goals of rule r1. Q(s, n) /∈ P (I) (Fig. 3)
and, thus, its node is connected to all failed derivations with
Q(s, n) as a head. Here, we have assumed that all cities can be
considered as starting and end points of missing train connec-
tions, i.e., both dom(T.fromCity) and dom(T.toCity) are
defined as adom(T.fromCity) ∪ adom(T.toCity). Thus, we
have considered derivations r1(s, n, Z) for Z ∈ {c, n, s, w}.

An important characteristic of our provenance graphs is
that each node v in a graph is uniquely identified by its label
L(v). Thus, common subexpressions are shared leading to
more compact provenance graphs. For instance, observe that
the node g31(n, s) is shared by two rule nodes in the explanation
shown in Fig 2.

D. Questions and Explanations

Recall that the problem we address in this work is how
to explain the existence or absence of (sets of) tuples using
provenance graphs. Such a set of tuples is called a provenance
question (PQ) in this paper. The two questions presented in
Example 1 use constants only, but we also support provenance
questions with variables, e.g., for a question Q(n,X) we would
return all explanations for existing or missing tuples where
the first attribute is n, i.e., why or why-not a city X can be
reached from New York with one transfer, but not directly. We
say a tuple t′ of constants matches a tuple t of variables and
constants written as t′ 2 t if we can unify t′ with t, i.e., we
can equate t′ with t by applying a valuation that substitutes
variables in t with constants from t′.

Definition 3 (Provenance Question). Let P be a query, I an
instance, and Q an IDB predicate. A provenance question PQ
is an atom Q(t) where t = (v1, . . . , vn) is a tuple consisting of
variables and constants from the associated domain (dom(Q.A)
for each attribute Q.A). WHYQ(t) and WHYNOTQ(t) restrict
the question to existing and missing tuples t′ 2 t, respectively.

In Example 2 and 3, we have presented subgraphs of
PG(P, I) as explanations for PQs, implicitly claiming that

these subgraphs are sufficient for explaining the PQs. Below,
we formally define this type of explanation.

Definition 4 (Explanation). The explanation EXPL(P,Q(t), I)
for Q(t) (PQ) according to P and I , is the subgraph of
PG(P, I) containing only nodes that are connected to at least
one node Q(t′) where t′ 2 t. For WHYQ(t), only existing
tuples t′ are considered to match t. For WHYNOTQ(t) only
missing tuples are considered to match t.

Given this definition of explanation, note that 1) all nodes
connected to a tuple node matching the PQ are relevant for
computing this tuple and 2) only nodes connected to this
node are relevant for the outcome. Consider t′ where t′ 2 t
for a question Q(t). If Q(t′) ∈ P (I), then all successful
derivations with head Q(t′) justify the existence of t′ and these
are precisely the rule nodes connected to Q(t′) in PG(P, I). If
Q(t′) 6∈ P (I), then all derivations with head Q(t′) have failed
and are connected to Q(t′) in the provenance graph. Each
such derivation is connected to all of its failed goals which
are responsible for the failure. Now, if a rule body references
IDB predicates, then the same argument can be applied to
reason that all rules directly connected to these tuples explain
why they (do not) exist. Thus, by induction, the explanation
contains all relevant tuple and rule nodes that explain the PQ.

III. RELATED WORK

Our provenance graphs have strong connections to other
provenance models for relational queries, most importantly
provenance games and the semiring framework, and to ap-
proaches for explaining missing answers.

Provenance Games. Provenance games [20] model the evalu-
ation of a given query (input program) P over an instance I as
a 2-player game in a way that resembles SLD(NF) resolution.
If the position (a node in the game graph) corresponding to
a tuple t is won (the player starting in this position has a
winning strategy), then t ∈ P (I) and if the position is lost,
then t 6∈ P (I). By virtue of supporting negation, provenance
games can uniformly answer why and why-not questions for
queries with negation. However, provenance games may be
hard to comprehend for non-power users as they require some
background in game theory to be understood, e.g., the won/lost
status of derivations in a provenance game is contrary to what
may be intuitively expected. That is, a rule node is lost if
the derivation is successful. The status of rule nodes in our
provenance graphs matches the intuitive expectation (e.g., the
rule node is successful if the derivation exists). Köhler et
al. [20] also present an algorithm that computes the provenance
game for P and I . However, this approach requires instanti-
ation of the full game graph (which enumerates all existing
and missing tuples) and evaluation of a recursive Datalog¬
program over this graph using the well-founded semantics [11].
In constrast, our approach computes explanations that are
succinct subgraphs containing only relevant provenance. We
use bottom-up evaluation instrumented with firing rules to
capture provenance. Furthermore, we enable the user to restrict
provenance for missing answers and queries with negation.

Database Provenance. Several provenance models for
database queries have been introduced in related work, e.g.,
see [7], [18]). The semiring annotation framework generalizes



these models for positive relational algebra (and, thus, positive
non-recursive Datalog). In this model, tuples in a relation are
annotated with elements from a commutative semiring K. An
essential property of the K-relational model is that semiring
N[X], the semiring of provenance polynomials, generalizes all
other semirings. It has been shown in [20] that provenance
games generalize N[X] for positive queries and, thus, all
other provenance models expressible as semirings. Since our
graphs are equivalent to provenance games in the sense that
there exist lossless transformations between both models (the
discussion is beyond the scope of this paper), our graphs also
encode N[X]. Provenance graphs which are similar to our
graphs restricted to positive queries have been used as graph
representations of semiring provenance (e.g., see [8], [9], [18]).
Both our graphs and the boolean circuits representation of
semiring provenance [9] explicitly share common subexpres-
sions in the provenance. However, while these circuits support
recursive queries, they do not support negation. Exploring the
relationship of provenance graphs for queries with negation
and m-semirings (semirings with support for set difference) is
an interesting avenue for future work. Justifications for logic
programs [24] are also closely related.

Why-not and Missing Answers. Approaches for explaining
missing answers can be classified based on whether they
explain a missing answer based on the query [3], [4], [6],
[26] (i.e., which operators filter out tuples that would have
contributed to the missing answer) or based on the input
data [16], [17] (i.e., what tuples need to be inserted into the
database to turn the missing answer into an answer). The
missing answer problem was first stated for query-based expla-
nations in the seminal paper by Chapman et al. [6]. Huang et
al. [17] first introduced an instance-based approach. Since then,
several techniques have been developed to exclude spurious
explanations, to support larger classes of queries [16], and to
support distributed Datalog systems in Y! [27]. The approaches
for instance-based explanations (with the exception of Y!) have
in common that they treat the missing answer problem as
a view update problem: the missing answer is a tuple that
should be inserted into a view corresponding to the query and
this insert has to be translated to an insert into the database
instance. An explanation is then one particular solution to this
view update problem. In contrast to these previous works, our
provenance graphs explain missing answers by enumerating
all failed rule derivations that justify why the answer is not
in the result. Thus, they are arguably a better fit for use cases
such as debugging queries, where in addition to determining
which missing inputs justify a missing answer, the user also
needs to understand why derivations have failed. Furthermore,
we do support queries with negation. Importantly, solutions
for view update missing answer problems can be extracted
from our provenance graphs. Thus, in a sense, provenance
graphs with our approach generalize some of the previous
approaches (for the class of queries supported, e.g., we do not
support aggregation yet). Interestingly, recent work has shown
that it may be possible to generate more concise summaries
of provenance games [12], [25] which is particularly useful
for negation and missing answers to deal with the potentially
large size of the resulting provenance. Similarly, some missing
answer approaches [16] use c-tables to compactly represent
sets of missing answers. These approaches are complementary
to our work.

Computing Provenance Declaratively. The concept of rewrit-
ing a Datalog program using firing rules to capture provenance
as variable bindings of rule derivations was introduced by
Köhler et al. [19] for provenance-based debugging of positive
Datalog queries. These rules are also similar to relational
implementations of provenance polynomials in Perm [13],
LogicBlox [14], and Orchestra [15]. Zhou et al. [28] leverage
such rules for the distributed ExSPAN system using either full
propagation or reference based provenance. An extension of
firing rules for negation is the main enabler of our approach.

IV. COMPUTING EXPLANATIONS

Recall from Sec. I that our approach generates a new
Datalog program GP(P,Q(t), I) by rewriting a given query
(input program) P to return the edge relation of explanation
EXPL(P,Q(t), I) for a provenance question Q(t). In this sec-
tion, we explain how to generate the program GP(P,Q(t), I)
using the following steps:

1. We unify the input program P with the PQ by propagating
the constants in t top-down throughout the program to be able
to later prune irrelevant rule derivations.

2. Afterwards, we determine for which nodes in the graph
we can infer their success/failure status based on the PQ. We
model this information as annotations on heads and goals of
rules and propagate these annotations top-down.

3. Based on the annotated and unified version created in the
previous steps, we generate firing rules that capture variable
bindings for successful and failed rule derivations.

4. To be in the result of one of the firing rules obtained in the
previous step is a necessary, but not sufficient, condition for the
corresponding PG(P, I) fragment to be connected to a node
matching the PQ. To guarantee that only relevant fragments are
returned, we introduce additional rules that check connectivity
to confirm whether each fragment is connected.

5. Finally, we create rules that generate the edge relation of
the provenance graph (i.e., EXPL(P,Q(t), I)) based on the rule
binding information that the firing rules have captured.

In the following, we will explain each step in detail and
illustrate its application based on the question WHY Q(n, s)
from Example 1, i.e., why is New York connected to Seattle
via a train connection with one intermediate stop, but is not
directly connected to Seattle.

A. Unify the Program with PQ

The node Q(n, s) in the provenance graph (Fig. 2) is only
connected to rule derivations which return Q(n, s). For in-
stance, if variable X is bound to another city x (e.g., Chicago)
in a derivation of the rule r1, then this rule cannot return
the tuple (n, s). This reasoning can be applied recursively to
replace variables in rules with constants. That is, we unify the
rules in the program top-down with the PQ. This step may
produce multiple duplicates of a rule with different bindings.
We use superscripts to make explicit the variable binding used
by a replica of a rule.

Example 4. Given the question WHY Q(n, s), we unify the
single rule r1 using the assignment (X=n, Y=s):

r
(X=n,Y=s)
1 : Q(n, s) :− T(n,Z), T(Z, s),¬ T(n, s)



We may have to create multiple partially unified versions
of a rule or an EDB atom. For example, to explore successful
derivations of Q(n, s), we are interested in both train con-
nections from New York to some city (T(n,Z)) and from
any city to Seattle (T(Z, s)). Furthermore, we need to know
whether there is a direct connection from New York to Seattle
(T(n, s)). The general idea of this step is motivated by [2]
which introduced “magic sets”, an approach for rewriting
logical rules to cut down irrelevant facts by using additional
predicates called “magic predicates”. Similar techniques exist
in standard relational optimization under the name of predicate
move-around. We use the technique of propagating variable
bindings in the query to restrict the computation based on
the user’s interest. This approach is correct because if we
bind a variable in the head of rule, then only rule derivations
that agree with this binding can derive tuples that agree with
this binding. Based on this unification step, we know which
bindings may produce fragments of PG(P, I) that are relevant
for explaining the PQ. The algorithm implementing this step
is given in our accompanying technical report [21].

B. Add Annotations based on Success/Failure

For WHY and WHYNOT questions, we only consider
tuples that are existing and missing, respectively. Based on this
information, we can infer restrictions on the success/failure
status of nodes in the provenance graph that are connected
to PQ node(s) (belong to the explanation). We store these
restrictions as annotations T , F , and F/T on heads and goals
of rules. Here, T indicates that we are only interested in
successful nodes, F that we are only interested in failed nodes,
and F/T that we are interested in both. These annotations are
determined using a top-down propagation seeded with the PQ.

Example 5. Continuing with our running example question
WHY Q(n, s), we know that Q(n, s) is successful because the
tuple is in the result (Fig. 1). This implies that only successful
rule nodes and their successful goal nodes can be connected
to this tuple node. Note that this annotation does not imply
that the rule r1 would be successful for every Z (i.e., every
intermediate stop between New York and Seattle). It only indi-
cates that it is sufficient to focus on successful rule derivations
since failed ones cannot be connected to Q(n, s).

r
(X=n,Y=s),T
1 : Q(n, s)T :− T(n,Z)T , T(Z, s)T ,¬ T(n, s)T

We now propagate the annotations of the goals in r1 through-
out the program. That is, for any goal that is an IDB predicate,
we propagate its annotation to the head of all rules deriving
the goal’s predicate and, then, propagate these annotations
to the corresponding rule bodies. Note that the inverted
annotation is propagated for negated goals. For instance, if
T would be an IDB predicate, then the annotation on the goal
¬ T(n, s)T would be propagated as follows. We would annotate
the head of all rules deriving T(n, s) with F , because Q(n, s)
can only exist if T(n, s) does not exist.

Partially unified atoms (such as T(n,Z)) may occur in
both negative and positive goals of the rules of the program.
We denote such atoms using a F/T annotation. The use
of these annotations will become more clear in the next
subsection when we introduce firing rules. The pseudocode

FQ,T(n, s) :− Fr1,T(n, s, Z)

Fr1,T(n, s, Z) :− FT,T(n,Z), FT,T(Z, s), FT,F(n, s)

FT,T(n,Z) :− T(n,Z)

FT,T(Z, s) :− T(Z, s)

FT,F(n, s) :−¬ T(n, s)
Fig. 4: Example firing rules for WHY Q(n, s)

for the algorithm that determines these annotations is given in
our accompanying technical report [21]. In short:

1) Annotate the head of all rules deriving tuples matching
the question with T (why) or F (why-not).

2) Repeat the following steps until a fixpoint is reached:
a) Propagate the annotation of a rule head to goals in

the rule body as follows: propagate T for T annotated
heads and F/T for F annotated heads.

b) For each annotated goal in the rule body, propagate its
annotation to all rules that have this atom in the head.
For negated goals, unless the annotation is F/T , we
propagate the inverted annotation (e.g., F for T ) to the
head of rules deriving the goal’s predicate.

C. Creating Firing Rules

To be able to compute the relevant subgraph of PG(P, I)
(the explanation) for the provenance question PQ, we need to
determine successful and/or failed rule derivations. Each rule
derivation paired with the information whether it is successful
over the given database instance (and which goals are failed
in case it is not successful) corresponds to a certain subgraph.
Successful rule derivations are always part of PG(P, I) for a
given query (input program) P whereas failed rule derivations
only appear if the tuple in the head failed, i.e., there are no
successful derivations of any rule with this head. To capture
the variable bindings of successful/failed rule derivations, we
create “firing rules”. For successful rule derivations, a firing
rule consists of the body of the rule (but using the firing version
of each predicate in the body) and a new head predicate that
contains all variables used in the rule. In this way, the firing
rule captures all the variable bindings of a rule derivation.
Furthermore, for each IDB predicate R that occurs as a head
of a rule r, we create a firing rule that has the firing version
of predicate R in the head and a firing version of the rule r
deriving the predicate in the body. For EDB predicates, we
create firing rules that have the firing version of the predicate
in the head and the EDB predicate in the body.

Example 6. Consider the annotated program in Example 5 for
the question WHY Q(n, s). We generate the firing rules shown
in Fig. 4. The firing rule for r(X=n,Y=s),T

1 (the second rule
from the top) is derived from the rule r1 by adding Z (the only
existential variable) to the head, renaming the head predicate
as Fr1,T, and replacing each goal with its firing version (e.g.,
FT,T for the two positive goals and FT,F for the negated goal).
Note that negated goals are replaced with firing rules that have
inverted annotations (e.g., the goal ¬ T(n, s)T is replaced with
FT,F(n, s)). Furthermore, we introduce firing rules for EDB
tuples (the three rules from the bottom in Fig. 4)



FQ,F(s, n) :−¬ FQ,T(s, n)
FQ,T(s, n) :− Fr1,T(s, n, Z)

Fr1,F(s, n, Z, V1, V2,¬V3) :− FQ,F(s, n), FT,F/T(s, Z, V1),

FT,F/T(Z, n, V2), FT,F/T(s, n, V3)

Fr1,T(s, n, Z) :− FT,T(s, Z), FT,T(Z, n), FT,F(s, n)

FT,F/T(s, Z, true) :− FT,T(s, Z)

FT,F/T(s, Z, false) :− FT,F(s, Z)

FT,T(s, Z) :− T(s, Z)

FT,F(s, Z) :− domT.toCity(Z),¬ T(s, Z)
Fig. 5: Example firing rules for WHYNOT Q(s, n)

As mentioned in Sec. III, firing rules for successful rule
derivations have been used for declarative debugging of posi-
tive Datalog programs [19] and, for non-recursive queries, are
essentially equivalent to rewrite rules that instrument a query to
compute provenance polynomials [1], [13]. We extend firing
rules to support queries with negation and capture missing
answers. To construct a PG(P, I) fragment corresponding
to a missing tuple, we need to find failed rule derivations
with the tuple in the head and ensure that no successful
derivations exist with this head (otherwise, we may capture
irrelevant failed derivations of existing tuples). In addition,
we need to determine which goals are failed for each failed
rule derivation because only failed goals are connected to the
node representing the failed rule derivation in the provenance
graph. To capture this information, we add additional boolean
variables - Vi for goal gi - to the head of a firing rule that
record for each goal whether it failed or not. The body of
a firing rule for failed rule derivations is created by replacing
every goal in the body with its F/T firing version, and adding
the firing version of the negated head to the body (to ensure
that only bindings for missing tuples are captured). Firing rules
capturing failed derivations use the F/T firing versions of
their goals because not all goals of a failed derivation have
to be failed and the failure status determines whether the
corresponding goal node is part of the explanation. A firing
rule capturing missing IDB or EDB tuples may not be safe,
i.e., it may contain variables that only occur in negated goals.
In fact, these variables should be restricted to the associated
domains for the attributes the variables are bound to. Since the
associated domain dom for an attribute R.A is given as an unary
query domR.A, we can use these queries directly in firing rules
to restrict the values the variable is bound to. This is how we
ensure that only missing answers formed from the associated
domains are considered and that firing rules are always safe.

Example 7. Reconsider the question WHYNOT Q(s, n) from
Example 1. The firing rules generated for this question are
shown in Fig. 5. We exclude the rules for the second goal
T(Z, n) and the negated goal ¬ T(s, n) which are analogous to
the rules for the first goal T(s, Z). Tuple Q(s, n) is failed (not in
the result), i.e., New York cannot be reached from Seattle with
exactly one transfer. Hence, we are only interested in failed
rule derivations of the rule r1 with X=s and Y=n. Each rule
node in the provenance graph corresponding to such a rule
derivation will only be connected to failed subgoals. Thus, we
need to capture which goals are successful or failed for each

Algorithm 1 Create Firing Rules
1: procedure CREATEFIRINGRULES(PA, Q(t))
2: PFire ← []
3: state← typeof(Q(t))
4: todo← [Q(t)state]
5: done← {}
6: while todo 6= [] do . create rules for a predicate
7: R(t)σ ← POP(todo)
8: INSERT(done,R(t)σ)
9: if ISEDB(R) then

10: CREATEEDBFIRINGRULE(PFire, R(t)σ)
11: else
12: CREATEIDBNEGRULE(PFire, R(t)σ)
13: rules← GETRULES(R(t)σ)
14: for all r ∈ rules do . create firing rule for r
15: args← (vars(r)− vars(head(r)))
16: args← args(head(r)) :: args
17: CREATEIDBPOSRULE(PFire, R(t)σ, r, args)
18: CREATEIDBFIRINGRULE(PFire, R(t)σ, r, args)
19: return PFire

such failed derivation. This can be modelled through boolean
variables V1, V2, and V3 (since there are three goals in the
body) that are true if the corresponding goal is successful and
false otherwise. The firing version Fr1,F(s, n, Z, V1, V2,¬V3)
of r1 will contain all variable bindings for derivations of
r1 such that Q(s, n) is the head, the rule derivations are
failed, and the ith goal is successful (failed) for this binding
iff Vi is true (false). Adding FQ,F(s, n) to the body of the
firing rule ensures that Q(s, n) is not in Q(I). To produce
all these bindings, we need rules capturing successful and
failed tuple nodes for each subgoal of the rule r1. We de-
note such rules using a F/T annotation and use a boolean
variable (true or false) to record whether a tuple exists (e.g.,
FT,F/T(s, Z, true) :− FT,T(s, Z) is one of these rules). Negated
goals are dealt with by negating this boolean variable, i.e.,
the goal is successful if the corresponding tuple does not
exist. For instance, FT,F/T(s, n, false) represents the fact that
tuple T(s, n) (a direct train connection from Seattle to New
York) is missing. This causes the third goal of r1 to succeed
for any derivation where X=s and Y=n. For each partially
unified EDB atom annotated with F/T , we create four rules:
one for existing tuples (e.g., FT,T(s, Z) :− T(s, Z)), one for
the failure case (e.g., FT,F(s, Z) :− domT.toCity(Z),¬ T(s, Z)),
and two for the F/T firing version. For the failure case, we use
predicate domT.toCity to only consider missing tuples (s, Z)
where Z is a value from the associated domain of this attribute.

The algorithm that creates the firing rules for an annotated
input query is shown as Algorithm 1 (the pseudocode for the
subprocedures is in our technical report [21]). It maintains a
list of annotated atoms that need to be processed which is
initialized with the Q(t) (PQ). For each such atom R(t)σ (here
σ is the annotation of the atom), it creates firing rules for each
rule r that has this atom as a head and a positive firing rule for
R(t). Furthermore, if the atom is annotated with F/T or F ,
then additional firing rules are added to capture missing tuples
and failed rule derivations.

EDB atoms. For an EDB atom R(t)T , we use procedure
CREATEEDBFIRINGRULE to create one rule FR,T(t) :−R(t)
that returns tuples from relation R that matches t. For missing



tuples (R(t)F ), we extract all variables from t (some arguments
may be constants propagated during unification) and create a
rule that returns all tuples that can be formed from values
of the associated domains of the attributes these variables are
bound to and do not exist in R. This is achieved by adding
goals dom(Xi) as explained in Example 7.

Rules. Consider a rule r : R(t) :− g1( ~X1), . . . , gn( ~Xn). If the
head of r is annotated with T , then we create a rule with
head Fr,T( ~X) where ~X = vars(r) and the same body as r
except that each goal is replaced with its firing version with
appropriate annotation (e.g., T for positive goals). For rules
annotated with F or F/T , we create one additional rule with
head Fr,F( ~X, ~V ) where ~X is defined as above, and ~V contains
Vi if the ith goal of r is positive and ¬Vi otherwise. The
body of this rule contains the F/T version of every goal in
r’s body plus an additional goal FR,F to ensure that the head
atom is failed. As an example for this type of rule, consider
the third rule from the top in Fig. 5.

IDB atoms. For each rule r with head R(t), we create a rule
FR,T(t) :− Fr,T( ~X) where ~X is the concatenation of t with all
existential variables from the body of r. IDB atoms with F or
F/T annotations are handled in the same way as EDB atoms
with these annotations. For each R(t)F , we create a rule with
¬ FR,T(t) in the body using the associated domain queries to
restrict variable bindings. For R(t)F/T , we add two additional
rules as shown in Fig. 5 for EDB atoms.

Theorem 1 (Correctness of Firing Rules). Let P be an input
program, r denote a rule of P with m goals, and PFire be the
firing version of P . We use r(t) |= P (I) to denote that the rule
derivation r(t) is successful in the evaluation of program P
over I . The firing rules for P correctly determine existence of
tuples, successful rule derivations, and failed rule derivations
for missing answers:

• FR,T(t) ∈ PFire(I)↔ R(t) ∈ P (I)

• FR,F(t) ∈ PFire(I)↔ R(t) 6∈ P (I)

• Fr,T(t) ∈ PFire(I)↔ r(t) |= P (I)

• Fr,F(t, ~V ) ∈ PFire(I) ↔ r(t) 6|= P (I) ∧ head(r(t)) 6∈
P (I) and for i ∈ {1, . . . ,m} we have that Vi is false iff
ith goal fails in r(t).

Proof: We prove Theorem 1 by induction over the struc-
ture of a program. For the base case, we consider programs of
“depth” 1, i.e., only EDB predicates are used in rule bodies.
Then, we prove correctness for programs of depth n+1 based
on the correctness of programs of depth n. We define the depth
d of predicates, rules, and programs as follows: 1) for all EDB
predicates R, we define d(R) = 0; 2) for an IDB predicate R,
we define d(R) = maxhead(r)=R d(r), i.e., the maximal depth
among all rules r with head(r) = R; 3) the depth of a rule r
is d(r) = maxR∈body(r) d(R) + 1, i.e., the maximal depth of
all predicates in its body plus one; 4) the depth of a program
P is the maximum depth of its rules: d(P ) = maxr∈P d(r).

1) Base Case. Assume that we have a program P with depth
1, e.g., r : Q( ~X) :− R( ~X1), . . . , R( ~Xn). We first prove that the
positive and negative versions of firing rules for EDB atoms are
correct, because only these rules are used for the rules of depth

FQ,T(n, s) :− Fr1,T(n, s, Z)

Fr1,T(n, s, Z) :− FT,T(n,Z), FT,T(Z, s), FT,F(n, s)

FCr2,r11,T(n,Z) :− T(n,Z), Fr1,T(n, s, Z)

FCr2,r21,T(Z, s) :− T(Z, s), Fr1,T(n, s, Z)

FT,F(n, s) :−¬ T(n, s)
Fig. 6: Example firing rules with connectivity checks

1 programs. A positive version of EDB firing rule FR,T creates
a copy of the input relation R and, thus, a tuple t ∈ FR,T iff
t ∈ R. For the negative version FR,F, all variables are bound
to associated domains dom and it is explicitly checked that
¬R( ~X) is true. Finally, FR,F/T uses FR,T and FR,F (as third and
fourth rules from the bottom in Fig. 5) to determine whether
the tuple exists in R. Since these rules are correct, it follows
that FR,F/T is correct. The positive firing rule for the rule
r (Fr,T) is correct since its body only contains positive and
negative EDB firing rules (FR,T and FR,F, respectively) which
are already known to be correct. The correctness of the positive
firing version of a rule’s head predicate (FQ,T) follows naturally
from the correctness of Fr,T. The negative version of the rule
Fr,F( ~X, ~V ) contains an additional goal (i.e., ¬ Q( ~X)) and uses
the firing version FR,F/T to return only bindings for failed
derivations. Since FR,F/T has been proven to be correct, we
only need to prove that the negative firing version of the head
predicate of r is correct. For a head predicate with annotation
F , we create two firing rules (FQ,T and FQ,F). The rule FQ,T was
already proven to be correct as in positive case. FQ,F is also
correct, because it contains only FQ,T and domain queries in
the body which were already known to be correct.

2) Inductive Step. It remains to be shown that firing rules for
programs of depth n+ 1 are correct. Assume that firing rules
for programs of depth up to n are correct. Let r be a firing
rule of depth n+1 in a program of depth n+1. It follows that
maxR∈body(r) d(R) ≤ n (i.e., the maximum depth among all
predicates in the body of r should be n or less), otherwise r
would be of a depth larger than n+1. Based on the induction
hypothesis, it is guaranteed that the firing rules for all these
predicates are correct. Using the same argument as in the base
case, it follows that the firing rule for r is correct.

D. Connectivity Joins

To be in the result of firing rules is a necessary, but not
sufficient, condition for the corresponding rule node to be
connected to a PQ node in the explanation. Thus, to guarantee
that only nodes connected to the PQ node(s) are returned, we
have to check whether they are actually connected.

Example 8. Consider the firing rules for WHY Q(n, s) shown
in Fig. 4. The corresponding rules with connectivity checks
are shown in Fig. 6. All the rule nodes corresponding to
Fr1,T(n, s, Z) are guaranteed to be connected to the PQ node
Q(n, s). For sake of the example, assume that instead of using
T, rule r1 uses an IDB relation R which is computed using
another rule r2 : R(X,Y ) :− T(X,Y ). Consider the firing rule
Fr2,T(n,Z) :− T(n,Z) created based on the first goal of r1.
Some provenance graph fragments computed by this rule may
not be connected to Q(n, s). A tuple node R(n, c) for a constant
c is only connected to the node Q(n, s) iff it is part of a



Algorithm 2 Add Connectivity Joins
1: procedure ADDCONNECTIVITYRULES(PFire, Q(t))
2: PFC ← []
3: paths← PATHSTARTINGIN(PFire, Q(t))
4: for all p ∈ paths do
5: p← FILTERRULENODES(p)
6: for all e = (ri( ~X1)

σ1 , rj( ~X2)
σ2) ∈ p do

7: goals← GETMATCHINGGOALS(e)
8: for all gk ∈ goals do
9: gnew ← UNIFYHEAD(Fri,σ1(t1), gk, Frj,σ2(t2))

10: rnew ← FCrj,rki,σ2(t2) :− body(Frj,σ2(t2)), gnew
11: PFC ← PFC :: rnew
12: return PFC

successful binding of r1. That is, for the node R(n, c) to be
connected, there has to exist another tuple (c, s) in R. We check
connectivity to Q(n, s) one hop at a time. This is achieved by
adding the head of the firing rule for r1 (Fr1,T(n, s, Z)) to the
body of the firing rule for r2 as shown in Fig. 6 (the second
and third rule from the bottom). We use FCr2,rk1,T(

~X) to denote
the firing rule for r2 connected to the kth goal of rule r1. Note
that, this connectivity check is unnecessary for rules with only
constants (the last rule in Fig. 6).

Algorithm 2 traverses the query’s rules starting from the
PQ to find all combinations of rules ri and rj such that the
head of rj can be unified with a goal in the body of ri.
We use the subprocedure FILTERRULENODES to prune rules
containing only constants. For each such pair (ri, rj) where
the head of rj corresponds to the kth goal in the body of
ri, we create a rule FCrj,rki,σ2(

~X) as follows. We unify the
variables of the kth goal in the firing rule for ri with the head
variables of the firing rule for rj . All remaining variables of
ri are renamed to avoid name clashes. We then add the unified
head of ri to the body of rj . Effectively, these rules check one
hop at a time whether rule nodes in the provenance graph are
connected to the nodes matching the PQ.

E. Computing the Edge Relation

The program created so far captures all the information
needed to generate the edge relation of the graph for the PQ. To
compute the edge relation, we use Skolem functions to create
node identifiers. The identifier of a node captures the type
of the node (tuple, rule, or goal), assignments from variables
to constants, and the success/failure status of the node, e.g.,
a tuple node T(n, s) that is successful would be represented
as fTT (n, s). Each rule firing corresponds to a fragment of
PG(P, I). For example, one such fragment is shown in Fig. 7
(left). Such a substructure is created through a set of rules:

• One rule creating edges between tuple nodes for the head
predicate and rule nodes
• One rule for each goal connecting a rule node to that goal

node (for failed rules, only the failed goals are connected)
• One rule creating edges between each goal node and the

corresponding EDB tuple node

Example 9. Consider the firing rules with connectivity joins
from Example 8. Some of the rules for creating the edge
relation for the explanation sought by the user are shown in
Fig. 7 (on the right side). For example, each edge connecting

Q(n, s)

r1(n, s, Z)

g11(n,Z)

T (n,Z)

g21(Z, s)

T (Z, s)

g31(n, s)

T (n, s)

edge(fTQ(n, s), f
T
r1(n, s, Z)) :− Fr1,T(n, s, Z)

edge(fTr1(n, s, Z), fTg11
(n,Z)) :− Fr1,T(n, s, Z)

edge(fTg11
(n,Z), fTT (n,Z)) :− Fr1,T(n, s, Z)

edge(fTg31
(n, s), fFT (n, s)) :− Fr1,T(n, s, Z)

Fig. 7: Rules deriving the edge relation of an explanation

the tuple node Q(n, s) to a successful rule node r1(n, s, Z) is
created by the top-most rule, the second rule creates an edge
between r1(n, s, Z) and g11(n,Z), and so on.

F. Correctness

We now state correctness of our approach for computing
the explanation EXPL(P,Q(t), I) for a provenance question.

Theorem 2 (Correctness). Datalog program GP(P,Q(t), I)
generated for input program P , provenance question Q(t),
and instance I returns the edge relation of EXPL(P,Q(t), I).

Proof: For Theorem 2, we prove that 1) only edges from
PG(P, I) are returned by the program GP(P,Q(t), I) and 2)
the program returns precisely the set of edges of explanation
EXPL(P,Q(t), I).

1. The constant values used as variable binding by the rules
creating edges in GP(P,Q(t), I) are either constants that occur
in the PQ or the result of rules which are evaluated over the
instance I . Since only the rules for creating the edge relation
create new values (through Skolem functions), it follows that
any constant used in constructing a node argument exists in
the associated domain. Recall that the PG(P, I) only contains
nodes with arguments from the associated domain. Any edge
returned by GP(P,Q(t), I) is strictly based on the structure of
the input program and connects nodes that agree on variable
bindings. Thus, each edge produced by GP(P,Q(t), I) will be
contained in PG(P, I).

2. We now prove that the program GP(P,Q(t), I) returns
precisely the set of edges of EXPL(P,Q(t), I). Assume that
Q(t) only contains constants (the extension to questions with
variables is immediate). Consider a rule of an input program
of depth 1 (i.e., only EDB predicates in the body of rules). For
such a rule node to be connected to the node Q(t), its head
variables have to be bound to t (guaranteed by the unification
step in Sec. IV-A). Since the firing rules are known to be
correct, this guarantees that exactly the rule nodes connected to
the PQ node are generated. The propagation of this unification
to the firing rules for EDB predicates is correct, because
only EDB nodes agreeing with this binding can be connected
to such a rule node. However, propagating constants is not
sufficient since the firing rule for an EDB predicate (e.g.,
R) may return irrelevant tuples, i.e., tuples that are not part
of any rule derivations for Q(t) (e.g., there may not exist
EDB tuples for other goals in the rule which share variables
with the particular goal using predicate R). This is checked
by the connectivity joins (Sec. IV-D). If a tuple is returned
by a connected firing rule, then the corresponding node is
guaranteed to be connected to at least one rule node deriving
PQ. Note that this argument does not rely on the fact that
predicates in the body of a rule are EDB predicates. Thus, we



GProMDatalog
Parser + Analyzer

SELECT *
FROM ...

SQL Code
Generator

SQL Code
Generator

Q(X) :- R(X,Y).
WHY(Q(1)).

Oracle Postgres

SELECT *
FROM ...

SQL Code
GeneratorSQL Code

GeneratorSQL Code
Generator

Optimizer

BackendBackendBackend

— — — — —

Provenance Game
Rewriter

Q(X) :- Fire(X,Y,Z).
Fire(X,Y,Z) :- …

Datalog to 
Relational Algebra 

Translator

Fig. 8: Implementation in GProM

can apply this argument in a proof by induction to show that,
given that rules of depth up to n only produce connected rule
derivations, the same holds for rules of depth n+ 1.

V. IMPLEMENTATION

We have implemented the approach presented in Sec. IV
in our provenance middleware called GProM [1] that exe-
cutes provenance requests using a relational database backend
(shown in Fig. 8). The system was originally developed to
support provenance requests for SQL. We have extended the
system to support Datalog enriched with syntax for stating
provenance questions. The user provides a why or why-not
question and the corresponding Datalog query as an input. Our
system parses and semantically analyzes this input. Schema
information is gathered by querying the catalog of the backend
database (e.g., to determine whether an EDB predicate with the
expected arity exists). Modules for accessing schema informa-
tion are already part of the GProM system, but a new semantic
analysis component had to be developed to support Datalog.
The algorithms presented in Sec. IV are applied to create the
program GP(P,Q(t), I) which computes EXPL(P,Q(t), I).
This program is translated into a relational algebra (RA). The
resulting algebra expression is then translated into SQL and
sent to the backend database to compute the edge relation
of the explanation for the PQ. Based on this edge relation,
we then render a provenance graph (e.g., the graphs shown in
Fig. 2 and 3 are actual results produced by the system).1 While
it would certainly be possible to directly translate the Datalog
program into SQL without the intermediate translation into
RA, we choose to introduce this step to be able to leverage the
existing heuristic and cost-based optimizations for RA graphs
built into GProM and use its library of RA to SQL translators.

Our translation of first-order (FO) queries (a program with
a distinguished answer relation) to RA is mostly standard.
We first translate each rule into an algebra expression inde-
pendently. Afterwards, we create an expression for each IDB
predicate as the union of the expressions for all rules with
the predicates in the head. Finally, the algebra expressions for
IDB predicates are connected into a single graph by replacing
references to IDB predicates with their algebraic translation.

Example 10. Consider the translation of the rule r1 from
Fig. 1. The RA graph for r1 is shown in Fig. 9. The transla-
tions of the first two goals are joined to compute the variable
bindings for the positive part of the query. The negated goal

1More examples for our method and installation guideline for GProM are
available at https://github.com/IITDBGroup/gprom/wiki/datalog prov.

δ πX,Y ./((X=X)∧(Y=Y )) ./(Z=Z)

πI→X,O→Z Train

πI→Z,O→Y Train− πX,Y

Train
Fig. 9: Translation for rule r1

r1 : only2hop(X,Y ) :− DBLP(X,Z), DBLP(Z, Y ),¬ DBLP(X,Y )

r2 : XwithYnotZ(X,Y ) :− DBLP(X,Y ),¬ Q1(X)

r2′ : Q1(X) :− DBLP(X, ‘Svein Johannessen’)

r3 : only3hop(X,Y ) :− DBLP(X,A), DBLP(A,B), DBLP(B, Y ),

¬ E1(X),¬ E2(X)

r3′ : E1(X) :− DBLP(X,Y )

r3′′ : E2(X) :− DBLP(X,A), DBLP(A, Y )

r4 : ordPriority(X,Y ) :− CUSTOMER(A,X,B,C,D,E, F,G),

ORDERS(A,H, I, J,K, Y,M,N,O)

r5 : ordDisc(X,Y ) :− CUSTOMER(A,X,C,D,E, F,G,H),

ORDERS(I, A, J,K,L,M,O, P,Q),

LINEITEM(I, R, S, T, U, V, Y,W,Z,A
′
, B

′
, C

′
, D

′
, E

′
, F

′
, G

′
)

r6 : partNotAsia(X) :− PART(A,X,B,C,D,E, F,G,H),

PARTSUPP(A, I, J,K,L), SUPPLIER(I,M,N,O, P,Q,R),

NATION(O,S, T, U),¬ R1(T, ‘ASIA’)

r6′ : R1(T, Z) :− REGION(T, Z, V )

Fig. 10: DBLP and TPC-H queries for experiments

is translated into a set difference between the positive part
projected on X,Y and relation Train. The remaining three
operators (from the left) join the positive with the negative
part, project on the head variables, and remove duplicates.

VI. EXPERIMENTS

We evaluate the performance of our solution over a co-
author graph relation extracted from DBLP (http://www.dblp.
org/) as well as over the TPC-H decision support benchmark
(http://www.tpc.org/tpch/default.asp). To the best of our knowl-
edge, there are no openly available implementations for miss-
ing answers that we could compare against. Thus, we compare
our approach for computing explanations with the approach
introduced for provenance games [20]. We call the provenance
game approach Direct Method(DM), because it directly
constructs the full provenance graph. We have created subsets
of the DBLP dataset with 100, 1K, 10K, 100K, 1M, and 8M
co-author pairs (tuples). For the TPC-H benchmark, we used
the following database sizes: 10MB, 100MB, 1GB, and 10GB.
All experiments were run on a machine with 2 x 3.3Ghz AMD
Opteron 4238 CPUs (12 cores in total) and 128GB RAM
running Oracle Linux 6.4. We use the commercial DBMS
X (name omitted due to licensing restrictions) as a backend.
Unless stated otherwise, each experiment was repeated 100
times and we report the median runtime. We allocated a
timeslot of 10 minutes for each run. Computations that did
not finish in the allocated time are omitted from the graphs.

Workloads. We compute explanations for the queries in
Fig. 10 over the datasets we have introduced. For the DBLP
dataset, we consider: only2hop (r1) which is our running
example query; XwithYnotZ (r2) that returns authors that are
direct co-authors of a certain person Y , but not of “Svein
Johannessen”; only3hop (r3) that returns pairs of authors
(X,Y ) that are connected via a path of length 3 in the co-
author graph where X is not a co-author or indirect co-author

https://github.com/IITDBGroup/gprom/wiki/datalog_prov
http://www.dblp.org/
http://www.dblp.org/
http://www.tpc.org/tpch/default.asp


Num of Vars \ DBLP (#tuples) 100 1K 10K 100K
2 Variables (r2) 0.043 0.171 14.016 -
3 Variables (r1) 0.294 285.524 - -
4 Variables (r3) 56.070 - - -
Num of Vars \ TPC-H (Size) 10MB 100MB 1GB 10GB
(> 10) Variables (r4, r5, r6) - - - -

Fig. 11: Runtime of DM in seconds. For entries with ‘-’, the
computation did not finish in the allocated time of 10 min.

 0.001

 0.01

 0.1

 1

 10

 100

100
0
0

1K
2
30

10K
2
32

100K
2
38

1M
2

105

8M
4

1798

R
u
n
ti
m

e
 (

s
e
c
)

XY 
 X

BindingXY BindingX DM

(a) Runtime of only2hop

 0.001

 0.01

 0.1

 1

 10

 100

100
1
1

1K
1
1

10K
1
1

100K
1
5

1M
1
20

8M
1
64

R
u
n
ti
m

e
 (

s
e
c
)

XY 
 X

BindingXY BindingX DM

(b) Runtime of XwithYnotZ
Query \ Binding X Y

(a) only2hop Tore Risch Rafi Ahmed
(b) XwithYnotZ Arjan Durresi Raj Jain

(c) Variable bindings for DBLP PQs

 0.001

 0.01

 0.1

 1

 10

 100

10MB
2

3020

100MB
3

30K

1GB
5

300K

10GB
5

3M

R
u
n
ti
m

e
 (

s
e
c
)

XY 
 Y

BindingXY BindingY DM

(d) Runtime of ordPriority

 0.001

 0.01

 0.1

 1

 10

 100

10MB
3

5419

100MB
5

54K

1GB
10

544K

10GB
10
5M

R
u
n
ti
m

e
 (

s
e
c
)

XY 
 Y

BindingXY BindingY DM

(e) Runtime of ordDisc

Query \ Binding X Y
(d) ordPriority Customer16 1-URGENT

(e) ordDisc Customer16 0

(f) Variable bindings for TPC-H PQs
Fig. 12: Runtime - Why questions

(2 hops) of Y . For TPC-H, we consider: ordPriority (r4)
which returns for each customer the priorities of her/his orders;
ordDisc (r5) which returns customers and the discount rates
of items in their orders; partNotAsia (r6) which finds parts
that can be supplied from a country that is not in Asia.

Implementing DM. As introduced in Sec. I, DM has to
instantiate a graph with O(‖adom(I)‖n) nodes where n is
the maximal number of variables in a rule. We do not have
a full implementation of DM, but can compute a conservative
lower bound for the runtime of the step constructing the game
graph by executing a query that computes an n-way cross-
product over the active domain. Note that the actual runtime
will be much higher because 1) several edges are created for
each rule binding (we underestimate the number of nodes of
the constructed graph) and 2) recursive Datalog queries have to
be evaluated over this graph using the well-founded semantics.
The results for different instance sizes and number of variables
are shown in Fig. 11. Even for only 2 variables, DM did not
finish for datasets of more than 10K tuples within the allocated
10 min timeslot. For queries with more than 4 variables, DM
did not even finish for the smallest dataset.

Why Questions. The runtime incurred for generating expla-
nations for why questions over the queries r1, r2, r4, and r5
(Fig. 10) is shown in Fig. 12. For the evaluation, we consider

 0.001

 0.01

 0.1

 1

 10

 100

100
0

2209

1K
351

120K

10K
3310

-

100K
26K

-

1M
158K

-

8M
712K

-

R
u
n
ti
m

e
 (

s
e
c
)

XY 
 X

BindingXY BindingX DM

(a) Runtime of only2hop

 0.001

 0.01

 0.1

 1

 10

 100

100
1
46

1K
1

349

10K
1

3308

100K
1

26K

1M
1

158K

8M
1

711K

R
u
n
ti
m

e
 (

s
e
c
)

XY 
 X

BindingXY BindingX DM

(b) Runtime of XwithYnotZ

Query \ Binding X Y
(a) only2hop Tore Risch Svein Johannessen

(b) XwithYnotZ Tor Skeie Joo-Ho Lee

(c) Variable bindings for DBLP PQs
Fig. 13: Runtime - Why-not questions

the effect of the different binding patterns on performance.
Fig. 12.c and 12.f show the variables bound by the PQs we have
considered. Fig. 12.a and 12.b show the performance results
for r1 and r2, respectively. We also show the number of rule
nodes in the provenance graph for each binding pattern below
the X axis. If only variable X is bound (BindingX), then the
queries determine authors that occur together with the author
we have bound to X in the query result. For instance, the
explanation derived for only2hop with BindingX (Fig. 12.a)
explains why persons are indirect, but not direct, co-authors
of “Tore Risch”. If both X and Y are bound (BindingXY),
then the explanation for r1 and r2 is limited to a particular
indirect and direct co-author, respectively. The runtime for
generating explanations using our approach exhibits roughly
linear growth in the dataset size and dominates DM even
for the small instances. Furthermore, Fig. 12.d and 12.e (for
r4 and r5, respectively) show that our approach can handle
queries with many variables where DM times out even for
the smallest dataset we have considered. Binding one variable
(BindingY) in queries r4 and r5 expresses a condition, e.g.,
Y = ‘1-URGENT’ in r4 requires the order priority to be urgent.
If both variables are bound, then the provenance question
verifies the existence of orders for a certain customer (e.g.,
why “Customer16” has at least one urgent order). Runtimes
exhibit the same trend as for the DBLP queries.

Why-not Provenance. We have queries r1 and r2 from Fig. 10
to evaluate the performance of computing explanations for
failed derivations. When binding all variables in the PQ
(BindingXY) with the information in Fig. 13.c, these queries
check if a particular set of authors cannot appear together in
the result. For instance, for only2hop (r1) the query checks
why “Tore Risch” is either not an indirect co-author or a direct
co-author of “Svein Johannessen”. If one variable is bound
(BindingX), then the why-not question explains for pairs of
authors where one of the authors is bound to X , why the
pair does not appear together in the query result. The results
for queries on r1 and r2 are shown in Fig. 13.a and 13.b.,
respectively. The number of output tuples produced by the
provenance computation (we show the number of generated
rule nodes below the X axis) is quadratic in the database size
resulting in a quadratice increase in runtime. Our approach
significantly improves the performance compared to DM which
is limited to very small datasets (less than 10K). Limiting the
result size of missing answer questions for queries with many
existential variables (r4, r5, and r6) would require aggressive
summarization techniques, which we leave for future work.



 0.001

 0.01

 0.1

 1

 10

 100

100
0
0

1K
0
0

10K
0
0

100K
0
0

1M
2

3439

8M
24
-

R
u
n
ti
m

e
 (

s
e
c
)

XY 
 Y

BindingXY BindingY DM

(a) Runtime of only3hop

 0.001

 0.01

 0.1

 1

 10

 100

10MB
2

5840

100MB
4

62K

1GB
4

639K

10GB
4

6M

R
u
n
ti
m

e
 (

s
e
c
)

X 
 None

BindingX No Binding DM

(b) Runtime of partNotAsia

Query \ Binding X Y
(a) only3hop Alex Benton Paul Erdoes

(b) partNotAsia grcpi1 -
1 grcpi = ghost royal chocolate peach ivory

(c) Variable bindings for DBLP and TPC-H PQs
Fig. 14: Runtime - Why questions over queries with negation

Queries with Negation. In this experiment, we measure
performance of our approach for why questions over queries
with negation. We choose rules r3 (multiple negated goals)
and r6 (one negated goal) shown in Fig. 10. We use the
bindings shown in Fig. 14.c. The results shown in Fig. 14.a
and 14.b demonstrate that our approach efficiently computes
explanations for r3 and r6, respectively. When increasing the
database size, the runtimes of PQs for these queries exhibit
the same trend as observed for other why (why-not) questions
and significantly outperform DM. For instance, the performance
of the query partNotAsia (Fig. 14.b), which contains many
variables and negation, exhibits the same trend as queries that
have no negation (i.e., r4 and r5).

VII. CONCLUSIONS

We present a unified framework for explaining answers
and non-answers over first-order (FO) queries. Our approach
is based on the concept of firing rules that we extend to sup-
port negation and missing answers. Our efficient middleware
implementation generates a Datalog program that computes
the explanation for a provenance question and compiles this
program into SQL. Our experimental evaluation demonstrates
that by avoiding to generate irrelevant parts of the graph for
the provenance question we can answer provenance questions
over large instances. A drawback of our current approach is
the potentially large size of explanations for missing answers
(exponential in the number of existential variables for rules
deriving missing answers). In future work, we will investigate
how to summarize and generalize provenance (e.g., in the
spirit of [5], [10], [12], [25]) to address this problem. Other
topics of interest include considering integrity constraints in
the provenance graph construction (e.g., derivations cannot
succeed if they violate constrains), marrying the approach with
ideas from missing answer approaches that only return one
explanation that is optimal according to some criterion, and
extending the approach for more expressive query languages
(e.g., aggregation or non-stratified recursive programs).

Acknowledgments. Work supported in part by NSF awards
SMA-1637155 and ACI-1541450.

REFERENCES

[1] B. Arab, D. Gawlick, V. Radhakrishnan, H. Guo, and B. Glavic.
A generic provenance middleware for database queries, updates, and
transactions. In TaPP, 2014.

[2] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. In PODS.
[3] N. Bidoit, M. Herschel, and K. Tzompanaki. Immutably answering

why-not questions for equivalent conjunctive queries. In TaPP, 2014.
[4] N. Bidoit, M. Herschel, K. Tzompanaki, et al. Query-Based Why-Not

Provenance with NedExplain. In EDBT, pages 145–156, 2014.
[5] B. t. Cate, C. Civili, E. Sherkhonov, and W.-C. Tan. High-level why-not

explanations using ontologies. In PODS, pages 31–43, 2014.
[6] A. Chapman and H. V. Jagadish. Why Not? In SIGMOD, pages 523–

534, 2009.
[7] J. Cheney, L. Chiticariu, and W. Tan. Provenance in databases: Why,

how, and where. Foundations and Trends in Databases, 1(4):379–474,
2009.

[8] D. Deutch, A. Gilad, and Y. Moskovitch. Selective provenance for
datalog programs using top-k queries. PVLDB, 8(12):1394–1405, 2015.

[9] D. Deutch, T. Milo, S. Roy, and V. Tannen. Circuits for datalog
provenance. In ICDT, pages 201–212, 2014.

[10] K. El Gebaly, P. Agrawal, L. Golab, F. Korn, and D. Srivastava.
Interpretable and informative explanations of outcomes. PVLDB,
8(1):61–72, 2014.

[11] J. Flum, M. Kubierschky, and B. Ludäscher. Total and partial well-
founded datalog coincide. In ICDT, pages 113–124, 1997.

[12] B. Glavic, S. Köhler, S. Riddle, and B. Ludäscher. Towards constraint-
based explanations for answers and non-answers. In TaPP, 2015.

[13] B. Glavic, R. J. Miller, and G. Alonso. Using sql for efficient generation
and querying of provenance information. In In search of elegance in
the theory and practice of computation, pages 291–320. 2013.

[14] T. J. Green, M. Aref, and G. Karvounarakis. Logicblox, platform and
language: A tutorial. In Datalog in Academia and Industry, pages 1–8.
Springer, 2012.

[15] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update
Exchange with Mappings and Provenance. In VLDB, pages 675–686,
2007.

[16] M. Herschel and M. Hernandez. Explaining Missing Answers to SPJUA
Queries. PVLDB, 3(1):185–196, 2010.

[17] J. Huang, T. Chen, A. Doan, and J. Naughton. On the provenance of
non-answers to queries over extracted data. In VLDB, pages 736–747,
2008.

[18] G. Karvounarakis and T. J. Green. Semiring-annotated data: queries
and provenance. SIGMOD Record, 41(3):5–14, 2012.

[19] S. Köhler, B. Ludäscher, and Y. Smaragdakis. Declarative datalog
debugging for mere mortals. In Datalog 2.0: Datalog in Academia
and Industry, pages 111–122, 2012.

[20] S. Köhler, B. Ludäscher, and D. Zinn. First-order provenance games.
In In Search of Elegance in the Theory and Practice of Computation,
pages 382–399. 2013.

[21] S. Lee, S. Köhler, B. Ludäscher, and B. Glavic. Efficiently computing
provenance graphs for queries with negation. Technical Report CoRR,
arXiv:1701.05699, 2016.

[22] S. Lee, S. Köhler, B. Ludäscher, and B. Glavic. Implementing Unified
Why- and Why-Not Provenance Through Games. In TaPP (Poster),
2016.

[23] A. Meliou, W. Gatterbauer, K. Moore, and D. Suciu. The Complexity
of Causality and Responsibility for Query Answers and non-Answers.
PVLDB, 4(1):34–45, 2010.

[24] E. Pontelli, T. C. Son, and O. Elkhatib. Justifications for logic
programs under answer set semantics. Theory and Practice of Logic
Programming, 9(01):1–56, 2009.

[25] S. Riddle, S. Köhler, and B. Ludäscher. Towards constraint provenance
games. In TaPP, 2014.

[26] Q. T. Tran and C.-Y. Chan. How to conquer why-not questions. In
SIGMOD, pages 15–26, 2010.

[27] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. Diagnosing
missing events in distributed systems with negative provenance. In
SIGCOMM, pages 383–394, 2014.

[28] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient
querying and maintenance of network provenance at internet-scale. In
SIGMOD, pages 615–626, 2010.


	Introduction
	Problem Definition
	Datalog
	Negation and Domains
	Provenance Graphs
	Questions and Explanations

	Related Work
	Computing Explanations
	Unify the Program with PQ
	Add Annotations based on Success/Failure
	Creating Firing Rules
	Connectivity Joins
	Computing the Edge Relation
	Correctness

	Implementation
	Experiments
	Conclusions
	References

