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ABSTRACT
Data transformation is facilitated by the use of visual and
logical specifications of mappings between schemas. While
easy to use, mappings are hard to design. Many techniques
have been proposed to help users understand and refine
mappings. However, once an error in transformed data has
been identified, these systems at best provide low-level data-
flow style tracing or query language facilities to help a map-
ping developer trace through the massive space of possible
reasons for the error. In this work, we present an approach
for systematically exploring the space of potential explana-
tions (causes) for errors in transformed data. Our system
leverages data provenance in combination with information
about the mapping to automatically generate possible expla-
nations. Since the number of potential explanations for a set
of data errors is exponential in the size of the set it is un-
feasible to present all possible explanations to a user - both
from a usage and performance point of view. We address this
problem by developing novel ranking mechanisms that allow
us to present more likely explanations first. Even though the
ranking problem is NP-hard in general, we demonstrate how
to improve performance by spliting the problem into sub-
problems that can be solved independently and by pruning
the search space using provable upper and lower bounds for
the score of partial solutions. Our experimental evaluation
confirms that, by applying these optimizations, we can gen-
erate explanations for large databases, complex mappings,
and large sets of errors within reasonable time.

1. INTRODUCTION
Data transformation is a notoriously hard problem, one

on which we have made great strides with the adoption
of schema mappings, declaractive constraints specifying the
relationship between data in a source and target schema.
Schema mappings are the core abstraction driving many

solutions for problems such as data integration, data ex-
change, data coordination, and mapping composition (used
in schema evolution and other applications). Many systems
have been proposed to create mappings between heteroge-
neous schemas (Clio [31], HePTox[8], ++Spicy [27, 26], BEA
AquaLogic [7], to name a few). And once mappings have
been designed or discovered, their complexity (and the sub-
leties of complex heterogeneous data) has led to a host of
techniques to help mapping developers in understanding or
refining mappings (e.g., [1, 4]). These techniques use exam-
ples and other methods to illustrate the effect of choices such
as grouping or nesting on the resulting mapping. Other ap-
proaches provide low-level debugging or tracing of mapping
executions [2, 13]. In Spider, routes, are used to visualize
and explain how source data flows to a target, together with
programming-language-style debugging facilities like break-
points. Other approaches use data (or mapping) provenance
to help mapping developers understand mappings [21, 34].
These techniques let power-users (mapping developers) form
SQL (or SQL-like) queries over a mapping scenario to un-
derstand how a mapping is transforming data. If an error is
identified in target data (that is, a target attribute contain-
ing an incorrect value), these systems provide a program-
ming infrastructure to help a developer trace what source
data or what mappings are involved in (or influence) the
creation of the error. However, they do not suggest specific
causes from either the source data or the mapping scenario
that produce the error.

In Vagabond, we address this problem by developing an
approach that automatically generates potential causes of
errors for a user-specified set of attribute values in a trans-
formed (target) instance. Errors may be caused by factors
such as the misinterpretation of attribute semantics, mis-
interpretation of the semantics of a referential relationship
between tables, or source instance errors. Our work is mo-
tivated by the observation that data owners or curators can
recognize errors in transformed data, but they often are not
experienced mapping developers who understand the seman-
tics of mapping languages enough to know what has caused
the error. We also increase the productivity of developers
by helping them quickly find the most likely error causes.

Example 1. Consider the example scenario in Figure 1.
The source schema stores information about employees, firms,
customers, and addresses (where a single relation Address

stores addresses of employees, companies and customers).
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Mappings

σ1 ∶E(c1, b, c, d) ∧ F (c, e, f) ∧A(e, c5, g) → ∃h ∶ P (c1, c5, h)

σ2 ∶C(c4, b, c) ∧A(b, c5, e) → ∃f ∶ P (c4, c5, f)

σ3 ∶E(c3, b, c, d) → ∃e ∶ O(e, c3)

σ4 ∶E(c3, b, c2, d) ∧ F (c2, e, f) → O(c2, c3)

Transformations

T1 ∶SELECT Name , City AS HomeCity , SK1(Name ,City) AS age
FROM Employee E, Firm F, Address A
WHERE E.WorksAt = F.FName AND F.Headq = A.Id
UNION
SELECT CName AS Name , City AS HomeCity , SK1(Name ,City) AS age
FROM Customer C, Address A
WHERE C.Address = A.Id
T2 ∶SELECT SK2(Name) AS Boss , Name AS Subordinate
FROM Employee E
UNION
SELECT FName AS Boss , Name AS Subordinate
FROM Employee E, Firm F
WHERE E.WorksAt = F.FName

Employee
Name Supervisor WorksAt LivesAt

m1 Fullbright NULL IBM 1
m2 Welth NULL Oracle 2
m3 Smith Welth Oracle 3

Firm
FName Headq CEO

f1 IBM 5 Fullbright
f2 Oracle 2 Welth

Address
Id City Street

a1 1 Los Angeles 15 Little Way
a2 2 New York 3 Broadway Road
a3 3 Chicago 10 East Road
a4 4 Chicago 2200 W 31st Road
a5 5 Toronto 1 Bloor Street

Customer
CName Address Since

c1 Jessica Good 5 2005
c2 Julia Good 5 2012

Orgchart
Boss Subordinate

o1 SK2(Fullbright) Fullbright
o2 SK2(Welth) Welth
o3 SK2(Smith) Smith
o6 IBM Fullbright
o7 Oracle Welth
o8 Oracle Smith

Person
Name HomeCity Age

p1 Fullbright Toronto SK1(Fullbright,Toronto)
p2 Welth New York SK1(Welth, New York)
p3 Smith New York SK1(Smith, New York)
p6 Jessica Good Chicago SK1(Jessica Good, Chicago)
p7 Julia Good Chicago SK1(Julia Good, Chicago)

Figure 1: Example Data Exchange Scenario

This information is mapped to an Orgchart relation and
to a Person relation. Both employees and customers are
mapped to persons. The mapping contains four source-to-
target (ST) tuple-generating-dependencies (TGDs). The two
SQL transformations shown in this figure represent a possi-
ble implementation of the exchange between the source and
target schema. Assume that a data scientist realizes that
the value “Welth” appearing in the Person relation (marked
in red) is wrong. Call this error e0. Note that this type
of error does not manifest in any violations of the mapping
or schema constraints. The incorrect value could have been
caused by different components of the mapping scenario.
For instance, this “Welth” target attribute value could have
been copied from erroneous source value(s) - in the example,
this is the single value m2.Name. Note that this value has
been copied to the target based on correspondence C1. Thus,
another potential cause is that this correspondence is incor-
rect. Indeed, these are just two of several possible causes for
this error in the target data.

1.0.1 Causes for Mapping Errors
Mapping errors often only become apparent once an erro-

neous target instance has been generated - after correspon-
dences, mappings, and transformations have already been
designed. For instance, a data scientist may notice unex-
pected missing (labelled null) values in a target attribute.
Understanding what caused an incorrect target attribute
value (an error) is a time-consuming and complex task.
Three main factors contribute to the complexity: (1) dif-
ferent causes for an error may have the same or similar ef-
fects; (2) there are many possible sources of errors: the data,
correspondences, mappings, and transformations; (3) a user
(especially one who is not an experienced mapping devel-

oper) may not be aware of all potential types of errors that
could have caused an observed error. Our first contribution
is a classification of types of causes for target instance er-
rors and a formalization of their effects on a target instance
(called coverage). We call λ a cause for a target instance er-
ror e if the error e ∈ coverage(λ). The coverage may include
target instance values that the user deems to be correct. We
refer to this subset of the coverage as the side effects. Note
that we do not assume that the error set provided by a user
is complete. But the explicit computation of the side effects
allows the user to decide if some side effects are spurious
(i.e., they are actually also errors).

Example 2. For error e0, one potential cause (λ1) is that
the source attribute value m2.Name is incorrect. This is
an example of a specific type of cause called a Copy Data
Error. The coverage of λ1 is {p2.Name, o2.Subordinate,
o7.Subordinate}, hence {o2.Subordinate, o7.Subordinate}
are the side effects. A user can examine this set and de-
cide if any of these side effects are themselves errors. A
second potential cause (λ2) is that the correspondence C1 is
wrong (a Correspondence Error). The side effects of λ2 are
{p1.Name, p3.Name}.

1.0.2 Automatic Generation of Causes
A formalization of error causes can aid a user in debugging

target instance errors. However, trying to manually enumer-
ate all potential causes and their coverage is already cum-
bersome and error-prone for a single erroneous target value
let alone for a large set of errors in a large target instance
generated by a complex scenario. In this case, it is virtu-
ally impossible to manually generate all potential causes.
Our second contribution addresses this problem. Based on



a classification of cause types, we study how to automati-
cally generate all potential causes for a given set of errors,
determine their coverage and side effects, and present them
to the user.

Example 3. For e0, we would generate seven causes. In-
tuitively, λ1 + λ2 from Ex. 2; λ3 indicating that the mapping
σ1 is superfluous and should be removed: λ4 indicating that
an incorrect value in source attribute f2.FName caused m2

to (incorrectly) join and appear in the output of mapping
σ1; λ5, indicating that an incorrect value in source attribute
a2.Id caused m2 to appear in the output of mapping σ1; and
λ6 + λ7 indicating that the join between Firm and Employee
(variable c in the mapping) or Firm and Address (variable
e) is wrong, i.e., the mapping should not join these relations
at all or should use a different join path. Each of these
causes will have different side effects (e.g., λ3 may have a
large number of side effects as the entire mapping is removed,
while for this example, the side effects of λ1 is smaller).

1.0.3 Ranking of Causes
Vagabond aides a user in debugging by automatically gen-

erating potential causes for target instance errors identified
by the user. However, we face the problem that the number
of causes for a set of errors is exponential in the number of
errors. The user would have to explore a large search space
of causes. Furthermore, we may not be able to enumer-
ate all potential causes in reasonable time. We address this
problem by developing incremental ranking techniques for
causes. The rationale behind ranking is that we want to be
able to present more likely causes first and, thus, allow the
user to find the correct cause for a set of errors without hav-
ing to browse through the whole exponentially large solution
space. However, ranking is only useful if the scoring func-
tion that determines the rank of a solution is chosen wisely.
In this work, we consider two scoring functions: ranking on
side-effect size (causes that invalidate large parts of the tar-
get instance that the user deems to be correct are less likely
to be correct) and number of causes needed to cover the
error set (Occam’s razor). Surprisingly, we show that pro-
ducing the top-k ranked causes may be more efficient than
just outputting all potential causes in some order, because
we can avoid generating a cause if it can be determined up-
front that it will not be ranked high. However, to be able
to apply this pruning technique we need incremental rank-
ing algorithms that do not require us to pre-generate the
complete solution space.

Example 4. Continuing with Example 3, assume we want
to rank causes λ1 and λ3 based on their side-effect size. We
showed in Ex. 2, that cause λ1 has a side-effect size is 2 and
that cause λ3 has a side-effect size of 8. Hence, Cause λ1

would be ranked higher.

As our third contribution we study the complexity of rank-
ing (NP-hard), develop an incremental ranking algorithm
based on A∗-search that exploits a lower bound property
(which we prove for the score of partial solutions), and in-
troduce a novel partitioning scheme that allows us to divide
the problem into sub-problems of smaller size that can be
ranked independently. While ranking for a sub-problem is
still NP-hard, combining the sub-problem rankings into a
global ranking is efficient (O(n ⋅ log(n)).

The user interface of Vagabond has been demonstrated
in [22]. In this paper, we formalize the cause generation
and ranking problems, presenting efficient solutions for both.
The main contributions of this work are the following.
● We present a classification of causes for target instance
errors and study their coverage and side effects.
● We present an approach to automatically and systemati-
cally explore the space of possible causes for a given set of
errors. Our approach is not tied to a particular mapping
system and type of solution (e.g., universal or core solu-
tions). It can operate over the output of any data exchange
system that uses st-tgds (the most widely used mapping for-
malism) as long as SQL queries implementing the mappings
are annotated with the mappings they implement.
● We develop efficient ranking techniques for causes and in-
vestigate several optimizations of the ranking schemes that
make the approach, being NP-hard in general, applicable
to real-world problems. Specifically, we prove and exploit a
lower bound for scores of partial solutions. We show how to
partition the problem into smaller subproblems which can
be solved independently and how to combine per-partition
solutions efficiently into a global solution.
● We present an efficient implementation of the algorithms in
the Vagabond [22] middleware system which runs over the
TRAMP [21] provenance management system. Vagabond
leverages standard data provenance definitions and could
equally have been developed over other provenance man-
agement systems such as Orchestra [24].
● Our experiments, using real scenarios and the iBench [5]
mapping benchmark to produce a large variety of mapping
scenarios, confirm the efficiency and effectiveness of the pro-
posed solutions.1

The remainder of this paper is structured as follows. We
discuss related work next, then introduce necessary back-
ground in Section 3. Section 4 introduces our cause model
and generation algorithms. Section 5 presents new tech-
niques for efficiently generating top ranked causes. Our
implementation and experimental results are presented in
Sections 6 and 7. We conclude in Section 8.

2. RELATED WORK
Three lines of work are related to our approach: approaches

for debugging schema mappings, ranking and top-k query
processing, and causality as well as generating explanations
for missing answers and other integration tasks such as data
fusion [15] or cleaning [10]. Note that we generate expla-
nations (causes) for errors in the target instance of a consis-
tent data exchange scenario. Thus, our work is orthogonal
to approaches for fixing inconsistencies such as constraint
violations in the data exchange scenario.

2.1 Debugging and Understanding Mappings
The need for simplifying the mapping creation process

and to support the user in debugging mapping scenarios
has been addressed by two major lines of work. Muse [1]
and Eirene [4, 3] enable a mapping developer to create or
refine schema mappings by choosing between example in-
stances generated by the system which illustrate the effect
of different choices in the creation or refinement process.
These approaches are orthogonal to our work. The second
line of work uses provenance information to aid a developer

1All proofs are presented in Appendix A



debugging mappings. Spider [13] lets a developer trace map-
ping executions (called routes) that lead to the generation
of certain tuples in the target. A route combines data
and mapping provenance. MXQL [34] generates provenance
for a data exchange scenario eagerly during the execution
of a transformation. The generated target instance is en-
riched with mapping provenance and provenance that re-
lates source to target schema elements. The TRAMP [21]
system generates several types of provenance (data, trans-
formation, and mapping) on-the-fly when the developer re-
quests this information through one of the SQL extensions
of the system. The data exchange scenario is stored in the
DB to allow for queries that explore this data.

All systems mentioned above assume that the mapping
developer is aware of what could cause a target data er-
ror. Automatic generation of error causes makes our system
much more accessible for non-power users and can improve
the productivity of power-users, because the user only has
to specify which parts of the target instance she considers
to be erroneous and then can start directly to explore the
space of potential causes without the need to generate the
potential causes manually.

2.2 Ranking
Ranking sets of causes has some similarity with top-k

query processing and ranking query results. However, as
we will demonstrate later, the main difference is that while
in many top-k query processing approaches materializing
the query result is an option, this is not true for ranking
error causes because the space of potential causes is too
large. Furthermore, ranking algorithms such as Fagin’s algo-
rithm [16], rely on monotonicity properties of scoring func-
tions to prune parts of the search space. Unfortunately,
these properties do to not hold for the scoring functions
used in this paper. However, the general idea of avoiding
traversal of the complete search space by using properties
of the scoring function are also valid for ranking causes.
Similar to the J∗ algorithm for top-k join queries [32], our
solution is also based on the general idea behind the A∗

search algorithm, but in contrast to J∗ we are dealing with
non-montone scoring functions.

2.3 Causality and Explanations
Our work shares motivation with approaches for finding

causes for answers to a query [11, 28, 33] and finding expla-
nations (e.g., for data fusion [15] or cleaning [10] decisions).
Similar to these approaches we are searching for evidence in
the input of some transformation that justifies a certain out-
put of interest. However, most of these approaches consider
only data to be a potential cause while we also consider
other scenario elements such as correspondences of map-
pings. There exists an additional fundamental differences
between the problem we are addressing and work on causal-
ity and explanations. In our work, we are interested in the
side effects that causes have on the target instance, i.e., if
we assume a cause to be correct then this will imply that
other target instance elements will be incorrect. This has
not been explored in the work on causality. This aspect of
our problem is more similar to computing side effects of view
updates, i.e., if the user considers a target attribute value
to be incorrect then this essentially means that we should
change the value of this attribute or remove the tuple it
resides in. However, in contrast to the view update prob-

lem we do not know what the resulting value should be. In
addition to top-k query processing, the idea of ranking solu-
tions based on, e.g., their side effects has also been explored
for finding missing answers [23] and answering queries over
hypothetical scenarios [29]. These approaches rely on con-
straint solvers to identify an optimal solution. In contrast,
our approach for ranking solutions is more closely related
to top-k query processing and informed search. Note that
while these approaches return one optimal solution, our al-
gorithm allows an incremental traversal of the search space
in decreasing optimality. This is a critical feature for our
application domain where a user can iteratively explore dif-
ferent solutions until the correct one is found.

3. PRELIMINARIES AND BACKGROUND

3.1 Data Exchange

3.1.1 Schema Mappings
A schema R is a set of relation schemas R1, . . . ,Rn. An

instance R for a schema R is a set of relations R1, . . . ,Rn
with the same arity as the relation schemas in R. For sim-
plicity, we assume that all attribute values are drawn from a
single infinite domain D. A schema mapping M= (S,T,Σ)
consists of two schemas S and T (called source and tar-
get schema) and a mapping Σ. We limit the discussion to
source-to-target tuple generating dependencies (st-tgds). An
st-tgds is a formula ∀x̄ ∶ φ(x̄) → ∃ȳ ∶ ψ(x̄, ȳ) where φ(x̄),
and ψ(x̄, ȳ), are conjunctions of atomic formulas over the
source, respective target, schema. Atomic formulas are ex-
pressions over the relations in a schema. We often omit
universal quantifiers in mappings. For a mapping σ we use
var(R.A) to denote all the variables used for attribute A in
an atom for relation R. Likewise attr(v) for an variable v
denotes all the attributes where the variable v appears in
a mapping. For example, given source relation R(A1,A2)
and the mapping R(a, b) ∧R(b, a) → ∃c ∶ T (a, c), attr(b) is
{R.A1,R.A1} and var(R.A1) = {a, b}.

3.1.2 Solutions
We use I (respectively J) to refer to an instance of the

schema S (respectively T). An instance J is called a so-
lution for a schema mapping M = (S,T,Σ) with respect
to an instance I, if (I, J) ⊧ Σ, i.e., the instances fulfill all
constraints in Σ. The values of J are drawn from the do-
main D and a sufficiently large set N of distinguished null
values (called labelled nulls). A valuation θ for a map-
ping σ is an assignment from variables to constants so that
σ[θ] (called grounded mapping) is fulfilled in (I, J). We use
(I, J) ⊧ σ[θ] to denote that grounded mapping σ[θ] holds
in (I, J). Furthermore, we use R(t) ◃ σ[θ] to denote that
R(t) is a grounded atom in σ[θ] and R(t) ◃ ψ[θ] respec-
tive R(t) ◃ φ[θ] to denote that the atom R(t) is part of the
grounded left-hand respective right-hand side of a mapping.

3.1.3 Data Exchange Scenarios
In addition to schemas, mappings and instances, our cause

generation techniques use additional information about a
data exchange setting including attribute correspondences
and transformations. Formally, an attribute correspon-
dence is a tuple C = (x̄, ȳ) where x̄ a list of source at-
tributes and ȳ is a list of target attributes of the same arity.
Data exchange systems which work with st-tgds (or similar



declarative specifications of a schema mapping) derive ex-
ecutable transformations (in, e.g., Java, SQL, or XQuery)
from the st-tgds to be able to create a target instance (a
solution) from a given source instance. Most systems aim
to produce solutions with good properties such as universal
solutions [18] or cores [17]. Here, we focus on SQL trans-
formations. Our techniques are agnostic to the choice of
solution that the transformation creates. We consider corre-
spondences and transformations as part of a data exchange
scenario, because (1) they are additional sources of errors
and (2) to support SQL transformations generated by dif-
ferent data exchange systems. We require an explicit spec-
ification (Map) that records interdependencies between the
elements of a data exchange scenario. We use X(l) to de-
note scenario elements of type X that are related to element
l according to Map, e.g., Γ(σ) denotes the correspondences
used by a mapping σ. The entries of Map can either be
inferred from the scenario elements or produced with minor
changes by an exchange system.

Definition 1 (DES). A data exchange scenario (DES)
is a tuple M = (S,T,Σ,Γ, I, J,T ,Map) where Σ is a set of
st-tgds, (I, J) ⊧ Σ, Γ is a set of correspondences, T are the
transformations implementing the mapping, and Map rep-
resents the relationships between scenario elements.

Example 5. Consider the data exchange scenario shown
in Figure 1. The correspondences (shown as labelled lines C1

to C5 in the schemas) relate employee and customer names
to person names, address cities to person homeCities, a firm
FName to the Boss attribute, and finally employee names to
the Subordinate attribute. These correspondences are used
by the four mappings of the scenario. The SQL transforma-
tion T1 implements σ1 and σ2, while T2 implements σ3 and
σ4. Of course other transformations are possible.

3.2 Provenance
We now introduce several types of provenance that are

used to define the cause of an error. The types of prove-
nance we use are examples of well-known provenance types
from the literature (and are expressible using semiring anno-
tations with functions to express mappings [24]). We refer
the reader to Glavic et al. [19], Cheney et al. [12], and Kar-
vounarakis et al. [24] for an overview on database provenance
theory and computation.

3.2.1 Copy Provenance
Copy provenance models from which attribute values in

the source a value in the target has been copied. We
use a triple (R, t,A) (called a cell) to denote attribute A
in tuple t from relation R and Cells(I) to denote all such
triples for an instance I. The copy provenance C(e) of a
cell (R, t,A) in the target instance is the set of cells from
the source from which values have been copied to this cell.
Here we give a definition based on the mappings of a data
exchange scenario M. Given a valuation θ for a mapping σ
and a grounded atom R(t) in σ[θ] we use var((R, t,A), θ)
to denote the variable(s) used by the ungrounded version of
σ at attribute A in the atom corresponding to R(t). The
copy provenance of a target cell x consists of all attributes
in a grounded mapping that use the same variable that was
replaced by the value of x. For instance, for a mapping
∀a, b ∶ R(a, b) ∧ S(b) → T (b), the copy provenance of a cell

in the single attribute of T will contain cells from the first
attribute of R and the single attribute of S.

C(R.t.A) = {R′.t′.A′ ∣ ∃σ ∈ Σ, θ ∶ (I, J) ⊧ σ[θ] ∧R(t) ◃ φ[θ]
∧R′(t′) ◃ ψ[θ] ∧ var(R.t.A, θ) ∩ var(R′.t′.A′, θ) ≠ ∅}

Similarly, we define the restriction of the copy provenance
according to one grounded tgd σ[θ]:

C(R.t.A,σ[θ]) = {R′.t′.A′) ∣ R(t) ◃ φ[θ] ∧R′(t′) ◃ ψ[θ]
∧ var(R.t.A, θ) ∩ var(R′.t′.A′), θ) ≠ ∅}

Example 6. Returning to the erroneous value “Welth”
in cell e0 = (Person.p2.Name) from Figure 1. This value
has been copied from cell es = (Employee.m2.Name) in the
source instance. The only valid valuation is of mapping σ1,
specifically: E(m2) ∧ F (f2) ∧A(a2) → P (p2). The variable
c1 bound to e0 by this valuation is also bound to es (and to
no other cell). Thus, C(e) = {es}.

3.2.2 Influence Provenance
Influence provenance models the tuples in the source that

were used to derive a tuple in the target. The influence
provenance of a target tuple t contains all source tuples that
were used to derive this tuple. For mappings, this corre-
sponds to all tuples used in valuations that have t on their
righthand side.

PI(t) = {t′ ∣ ∃σ ∈ Σ,R′ ∈ S, θ ∶ (I, J) ⊧ σ[θ]∧
R(t) ◃ ψ[θ] ∧R′(t′) ◃ φ[θ]}

Example 7. The influence provenance of the tuple p2

from the running example in Figure 1 is the set containing
the tuples e2, f2, and a2, because the only grounded mapping
containing p2 is σ2[θ] = E(e2) ∧ F (f2) ∧A(a2) → P (p2).

3.2.3 Mapping Provenance
The mapping provenance M(t) of a tuple t from a target

instance J contains all mappings from Σ that created the
tuple t. The mapping provenance is used to determine which
mappings are potential causes for an erroneous target cell.
To be precise, let t be a tuple in a relation R in J , then a
tgd σ = φ(x̄) → ψ(x̄, ȳ) belongs to the mapping provenance
of t if there exists a valuation θ so that σ[θ] is fulfilled by
(I, J) and the atom R(t) is in the grounded right-hand side:
R(t) ◃ φ[θ].

M(t) = {σ ∣ σ ∈ Σ ∧ ∃θ ∶ (I, J) ⊧ σ[θ] ∧R(t) ◃ ψ[θ]}

Example 8. Tuple o6 from Figure 1 was produced by map-
ping σ4 (and only this mapping). Thus, the mapping prove-
nance of o6 is {σ4}.

4. ERRORS AND CAUSES
.We now formalize errors, present the types of error causes

that we consider in this work, and state the cause generation
problem, i.e., given a set of errors find all possible combina-
tions of causes that fully explain these errors. Each cause
explains an error by assuming that one or more elements of
the DES are erroneous in a certain way.

4.1 Target Instance Errors
The input to our framework is a (not necessarily complete)

set of target cells that are considered to be incorrect.



Definition 2 (Errors). An error e for a DES M is
an element of Cells(J). E is a set of errors.

The semantics of an error is that the value at this cell
of the target instance is incorrect. For example, error e0 =
Person.p2.Name in Figure 1 would indicate that the value
“Welth” is incorrect for this cell. Note that such an error
does not state that the value “Welth” would be incorrect
if used in other target cells. A target cell e may have been
derived by grounding more than one tgd or through multiple
groundings of the same tgd. A cause for e should explain
what went wrong in each of these derivations.

Definition 3 (Error Groundings). Let e = R.t.A be
an error for a DES M. We define the groundings Θ(e) for
e as the set of grounded tgds in (I, J) that have a grounded
atom corresponding to R.t:

Θ(e) = {σ[θ] ∣ σ ∈ Σ ∧ (I, J) ⊧ σ[θ] ∧R(t) ◃ σ[θ]}
For an error set E, we use Θ(E) to denote the union of the
sets of groundings for all errors in the set:

Θ(E) = ⋃
e∈E

Θ(e)

Note that the set of error groundings can be determined
by combining the mapping provenance of a tuple t with the
influence provenance of t. The influence provenance gives
us a valuation θ and the mapping provenance allows us to
construct the grounded tgds corresponding to this valuation.

4.2 Causes
A cause is a possible reason for one grounding of an error.

As mentioned before, a cause being correct may imply other
parts of the target instance to be incorrect. We call the
part of the target instance invalidated by a cause λ the cov-
erage of λ and use O to denote the data exchange scenario
elements that the cause deems to have been the reason the
error. The side effect of a (set of) cause(s) is the set of target
cells in the coverage that are not considered as erroneous by
the user (i.e., not in error set E).

Definition 4 (Cause). Given a grounding σ[θ] for an
error e = R.t.A and data exchange scenario M, a cause λ for
σ[θ] according to e is a tuple λ = (T,O) where T is the type
of cause (one of a fixed set of types T defined below) and O
is a set of elements from the data exchange scenario M. We
write λ↝ (σ[θ], e) to denote that λ is a cause for a grounded
tgd σ[θ] ∈ Θ(e) according to e.

For a cause λ, the coverage Cover(λ) is the subset of
the cells from the target instance J for which there exists
a grounding that is covered by the cause. The side effects
SE(λ) of a cause are the cells it covers in addition to e.

Definition 5 (Coverage and Side effects). Let λ
be a cause for e. The coverage and side effects of λ are:

Cover(λ) = {e′ ∣ ∃σ[θ] ∈ Θ(e) ∶ λ↝ (σ[θ], e′)}
SE(λ, e) = Cover(λ) − {e}

We now define the types of causes considered by our ap-
proach. For a given data exchange scenario M, error e, and
grounded tgd σ[θ] ∈ Θ(e), we define T (M, e, σ[θ]), the set
of all possible causes of type T for σ[θ] according to e in M.
Our approach is extensible to additional types.

4.2.1 Copy Data Error (TSC)
A copy data error λ = (TSC ,OI) explains an error e for a

grounding σ[θ] by assuming that the set of cells O in the
source from where the value at e has been copied are incor-
rect. Hence, O = C(e, σ[θ]) is precisely the copy provenance
of e for this grounding as defined in Section 3.0.3. If cell e′

in the source is incorrect then that implies that all cells in
the target where the value from e′ has been copied are also
incorrect. Thus, the coverage of λ contains all target cells
which have been copied from a cell in O, i.e., cells that have
at least one cell from O in their copy provenance. There is
exactly one copy data error cause for each error grounding
σ[θ] unless the value at e has been generated by the tgd
(C(e, σ[θ]) = ∅), meaning the tgd uses a constant value to
populate the target attribute.

TSC(e, σ[θ],M) = {{(TSC ,OI)} if C(e, σ[θ]) ≠ ∅
∅ else

OI = {e′ ∣ e′ ∈ C(e, σ[θ])}
Cover(λ) = {e′ ∣ ∃e′′ ∈ O ∶ e′′ ∈ C(e′)}

4.2.2 Correspondence Error (TC)
An erroneous value e = R.t.A may have been copied by a

grounded tgd σ[θ] from a source cell, because the tgd σ is
based on correspondence(s). So O = {γ = (R′.A′,R.A) ∣ σ ∈
Σ(γ)}. Often O contains a single correspondence unless sev-
eral values are mapped to A (for example, S(x,x) → R(x)).
2 Such a cause implies that all tgds using one of these cor-
respondences are erroneous and, in turn, also the transfor-
mations implementing these mappings are incorrect. Thus,
a correspondence error invalidates correspondences, map-
pings, and transformations. The set OΓ of correspondences
can be determined of follows. A correspondence γ maps to
e according to σ[θ] if σ is in the mapping provenance of t
and σ uses γ. Based on OΓ, we can determine the affected
mappings (OΣ) and transformations (OT ) from the DES.
The coverage of λ contains all cells R.t′.A for tuples t′ that
were produced by a tgd σ′ using a correspondence from O,
i.e., that have this σ in their mapping provenance M(t′).

TC(e, σ[θ],M) ={{λ = (TC ,OΓ ∪OΣ ∪OT )} if OΓ ≠ ∅
∅ else

OΓ ={γ = (R′.A′,R.A) ∣ σ ∈ Σ(γ)}
OΣ ={σ′ ∣ σ′ ∈ M(t) ∧ σ′ ∈ Σ(OΓ)}
OT ={T ∣ T ∈ T (OΣ)}

Cover(λ) ={R.t′.A) ∣ M(t′) ∩OΣ ≠ ∅∧
∃C ∈ OΓ ∶ C = (R′.A′,R.A)}

4.2.3 Superfluous Mapping Error (TSM )
A superfluous mapping error explains each grounding σ[θ]

by assuming that the tgd σ should be removed. Hence,
O = {σ} and the coverage is all cells of tuples generated by

2Not all target cells are necessarily produced by copying
value(s) from the source. For example, this is not the case
when a constant value is generated by the tgd or the value
is a labeled null.
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σ.

TSM(e, σ[θ],M) = {λ = (TSM ,OΣ ∪OT )}
OΣ = {σ}
OT = {T ∣ T ∈ T (OΣ)}

Cover(λ) = {R.t′.A′ ∣ σ ∈ M(t′)}

4.2.4 Join Data Error (TJD)
A join data error λ = (TJD,O) for an error e occurs if an

incorrect value for a join attribute caused incorrect tuples
to be joined. The incorrect join caused the value at e to
be copied from the “wrong” tuple. For instance, consider a
tgd R(a, b), S(b, c) → T (a, c) over relations R(A1,A2) and
S(A3,A4). An incorrect value in attribute A2 might cause
the A4 attribute value to be copied to the target from a
wrong tuple. We define a graph structure for grounded tgds
that allows use to determine such cells for a given grounding.

The join graph G(σ[θ]) of a grounded tgd σ[θ] contains
a node for each grounded atom in σ[θ] and an edge labeled
V between grounded atomes R(t) and R′(t′) if the set of
variables V was used both in the atoms corresponding to
R and R′. The edges in a join graph represent join condi-
tions (if the edge is between source atoms) and copying of
values to the target (if the edge is between a source and a
target atom). For instance, consider the join graph for the
grounded tgd σ2[θ] = E(e2) ∧ F (f2) ∧A(a2) → P (p2) from
the running example (Figure 2). The edge between E(e2)
and F (f2) indicates that these two atoms have been joined
through variable c which was substituted with “Oracle”.

Let e = R.t.A be an error and σ[θ] a grounded tgd in Θ(e).
Let SAtoms(e, σ[θ]) denote the set of source atoms directly
connected though attribute A with the atom R(t), i.e., the
source atoms from where the value at e has been copied. We
use Path(e, σ[θ]) to denote all paths in the join graph for
σ[θ] that start in an atom in SAtoms(e, σ[θ]), contain only
source atoms not in SAtoms(e, σ[θ]), and do not repeat
atoms. Each edge in such a path represents a join between
two tuples in the grounded tgd that may have caused an in-
correct tuple to be joined and, thus, an incorrect value to be
copied from an atom in SAtoms(e, σ[θ]) to the target at the
cell e. For each such path p = R1(t1),R2(t2), . . . ,Rm(tm),
we create one join error for every edge in the path. Let
var(p,R′(t′)) denote the set of variables on the label of the
incoming edge to R′(t′) in the order of path p. We consider
all cells in attr(R′(t′), var(p,R′(t′))) at positions of atom
R′(t′) corresponding to variables in var(p,R′(t′)) as a po-
tential join data error. If the values of one of these cells is
incorrect, then incorrect tuples may have been joined lead-
ing to an incorrect value at e.

Example 9. For example, for the join graph shown in
Figure 2 and the error e = Person.p2.HomeCity, the value
at e has been copied from atom A(a2). There is one path

starting at this atom p = A(A2), F (f2),E(e2) in the join
graph. Thus, based on the labels e and c of the edges on the
path, we would consider two source cells as join data errors:
E.e2.WorksAt and F.f2.Headq. Since in this example we
have only one path with two edges, each labeled with a single
variable, we would only generate these two join data errors.

The coverage of a join data error (TJD,OI) contains all
attribute values e′ for which there exists a grounding σ′[θ′]
and an element R′.t′.A′ in OI with the following property:
the attribute A′ corresponds to the variable on an incoming
edge label for an atom R′(t′) on a path in Path(e′, σ′[θ′]).
That is all errors e′ for which there exists a grounding where
R′(t′) is on a join path. In the definition of source join er-
rors presented below we define a set PVars(e, σ[θ]) that
contains all pairs of atoms R′(t′) and variables v for which
there exist a path p in Path(e, σ[θ]) that contains an incom-
ing edge to atom R′(t′) labelled with a set V ′ containing v.

TJD(e, σ[θ],M) ={λx = (TJD,OI(x)) ∣ x ∈ PVars(e, σ[θ])}
PVars(e, σ[θ]) ={(R′(t′), v) ∣ ∃p ∈ Path(R(t), σ[θ]) ∶

R′(t′) ∈ p ∧ v ∈ var(p,R′(t′))}
OI(R′(t′), v) ={R′.t′.A′ ∣ A′ ∈ attr(R′(t′), v)}
Cover(λx) ={e′ ∣ ∃σ′[θ′] ∈ Θ(e′) ∶

∃x′ = (R′(t′), v′) ∈ PVars(e′, σ′[θ′]) ∶
attr(x) = attr(x′)}

4.2.5 Join Mapping Error (TJM )
A join mapping error assumes that the error e for a ground-

ing σ[θ] was caused by σ using an incorrect join path be-
tween source relations.

Example 10. The tgd σ1 from Figure 1 maps employee
names and the addresses of the company they are working for
to person tuples in the target. If the HomeCity attribute in
the target is meant to store the city where an employee lives,
then σ1 uses an incorrect join path between the Employee

and Address relations leading to incorrect HomeCity values
in target tuples produced by σ1. The correct way of joining
these two relations might be to join on the LivesAt attribute.

We again use the join graph for a tgd to determine from
which atoms (SAtoms(e, σ[θ]), introduced for join errors)
in the left-hand side of a tgd the value at an error has been
copied from. A join mapping error explains an error by
assuming that one of these atoms has been joined incor-
rectly with another atom not in SAtoms(e, σ[θ]) through a
variable v and, thus, all values that have been copied from
these atoms to the target by the tgd are erroneous. For
a given error e = R.t.A and grounded tgd σ[θ] ∈ Θ(e), we
use PVars introduced for join errors to find such atom-
variable pairs. The coverage of a join mapping error λ =
(TJM ,{(R,v), σ, T}) are all cells e′ that have been copied
by tgd σ from any atom for which there exists a ground-
ing σ[θ′] such that (R(t), v) is on a path in the join graph
Path(e′, σ[θ′]). For example, consider a join mapping error
λ = (TJM ,{σ1, (E, c)}) which explains e = P.p1.HomeCity
in the running example by assuming that the join attribute
WorksAt is not the right attribute to join on. The coverage
of λ are the HomeCity attribute values from tuples p1 to p5.



Example 11. For instance, for e = P.p2.HomeCity the
tgd σ1 generated this value through a valuation θ and the
sole atom in SAtoms(e, σ1[θ]) is A(a2). The join graph for
σ1[θ] is shown in Figure 2. The single path in Path(e, σ[θ])
is A(a2), F (f2),E(e2). Thus, the error could have been
caused by the join between the Address and Firm relations
using variable e or by the join between Employee and Firm

using variable c.

TJM(e, σ[θ],M) ={λx = (TJM ,OΣ ∪OAVars(x)) ∣ x ∈ PVars(e, σ[θ])}
PVars(e, σ[θ]) ={(R′(t′), v) ∣ ∃p ∈ Path(e,G(σ[θ])) ∶

R′(t′) ∈ p ∧ v ∈ var(p,R′(t′))}
OAVars(R′(t′), v) ={(R′, v)}

OΣ ={σ}
OT ={T ∣ T ∈ T (OΣ)}

Cover(λx) ={e′ ∣ ∃σ[θ′] ∈ Θ(e′) ∶ x ∈ PVars(e′, σ[θ′])}
The set of cause types presented cover a wide-range of

real-world error causes, but is not complete. For instance,
in a sense we assume minimality of causes. For example, we
do not consider a combination of a join mapping error and a
join error as a cause (for a single grounded tgd for an error
in the target). We leave the exploration of additional types
such as errors in the transformations for future work.

Example 12 (Cause Types). Consider the error e =
P.p2.Name for the instance shown in Figure 1. Figure 3
shows all potential causes for this error. The tuple p2 was
generated by exactly one grounded tgd: σ1[θ] ∶ E(e2)∧F (f2)∧
A(a2) → P (p2) which makes the set of causes relatively
small (seven). These are the seven causes explained intu-
itively in Example 3 in the introduction.

4.3 Covering Cause Sets
For a given error set E and its groundings there are many

possible sets of causes that explain all groundings for all
errors in the set. We call such a cause set Λ, a covering
cause set (CCS) for E.

Definition 6 (CCS). Given a set of causes Λ and a
set of errors E, we define the coverage, side-effects, and full
coverage as:

Cover(Λ) = ⋃
λ∈Λ

Cover(λ)

SE(Λ,E) = (⋃
λ∈Λ

Cover(λ)) −E

FCover(Λ) = {e ∣ ∀σ[θ] ∈ Θ(e) ∶ ∃λ ∈ Λ ∶ λ↝ (e, σ[θ])}
A set Λ of causes is called a covering cause set (CCS) for

an error set E iff: E ⊆ FCover(Λ)

In Section 6, we discuss how to generate the set of all
possible causes for each grounding σ[θ] for an error e from
a set E. Each combination of one cause from each of these
sets is a valid CCS for E. Note that these sets may overlap,
so the total number of causes may be less than the sum of
the number of causes for all error groundings. We call the
problem of enumerating all valid CCS, the Covering Cause
Set Enumeration Problem. A naive way to enumerate all
CCS for an error set E is to generate all sets Λij for each
error ei in E and grounding σ[θ]ij in Θ(ei), then compute
the cross product, and create a set of causes from each tuple
in the cross-product.

Definition 7 (CCS Enumeration Problem). Let E
be an error set. A solution to the covering cause set enu-
meration problem is the set CCS(E) of all valid covering
cause sets for E:

CCS(E) = {Λ ∣ E ⊆ FCover(Λ)}

Unfortunately, the number of potential CCS for a set of
errors can be exponential in size. Thus, while generating all
potential causes for a single error is efficient as long as access
to provenance is efficient, we can not hope to find an efficient
way of enumerating all potential CCS for a set of errors. We
will address this problem in Section 5 by demonstrating how
to produce the top-k CCS according to a scoring functions
without enumerating all CCS.

Proposition 4.1. The size of CCS(E) for an error set
E can be exponential in the number of elements of E.

5. RANKING OF CAUSES
Because of the exponential size of CCS enumerations, it

is unfeasible to present a full CCS enumeration to the user.
Typically, the CCS for an error set are not homogeneous,
but differ in size, side effects, and other properties. We
want to use these properties to rank CCS according to a
scoring function with the goal that the correct explanation
will be ranked high. Thus, the user will only have to browse
through a few CCS to find the right set of causes. Obviously,
the usefulness of such a ranking will depend directly on the
scoring function. We argue that low numbers of side effects
(not invalidating too many additional target attribute val-
ues) and small numbers of causes (Occam’s razor) are good
candidates for scoring functions (this will be shown experi-
mentally in Section 7). In addition to reducing the load on
the user, ranking can be exploited to avoid the exponential
complexity of enumerating all possible CCS for an error set.
However, even producing only the top-1 ranked CCS using
these scoring functions is already NP-hard. Nonetheless,
using a bottom-up generation approach with pruning and
by partitioning the problem into smaller independent sub-
problems, we can reduce the runtime significantly (though
obviously not avoid the theoretical exponential worst-case
behaviour for each subset). We show that the complexity of
combining the individual scores computed for each partition
into a global score for the complete error set is in PTime.
Thus, partitioning is very effective for realistic DES, since
in real schemas, the size of partitions tend to be small.

5.1 Ranking with Scoring Functions
We model ranking as sorting of cause sets based on scoring

functions where lower scores are considered better.

Definition 8 (Scoring function). A scoring function
f ∶ Λ → N0 maps cause sets to natural number scores with
f(∅) = 0. A scoring function is called weakly monotone
iff for all cause sets Λ and single causes λ:

f(Λ) ≤ f(Λ ∪ {λ}) ≤ f(Λ) + f({λ})

A scoring function is called monotone iff it is weakly mono-
tone and for all cause sets Λa, Λb, Λc, and Λd:

f(Λa) ≤ f(Λb) ∧ f(Λc) ≤ f(Λd) ⇒ f(Λa ∪Λc) ≤ f(Λb ∪Λd)



λ1 = (TSC ,{E.e2.Name}) Cover(λ1) = {P.p2.Name,O.o2.Subordinate,O.o7.Subordinate}
λ2 = (TC ,{C1}) Cover(λ2) = {P.p1.Name,P.p2.Name,P.p3.Name}
λ3 = (TSM ,{σ1}) Cover(λ3) = {P.t′.A′ ∣ t′ ∈ {p1, . . . , p5} ∧A′ ∈ {Name,HomeCity,Age}}
λ4 = (TJD,{F.f2.FName}) Cover(λ4) = {P.p2.Name,P.p3.Name,O.o2.Subordinate,O.o7.Subordinate}
λ5 = (TJD,{A.a2.Id}) Cover(λ5) = {P.p2.Name,P.p3.Name,}
λ6 = (TJM ,{(F, c)}) Cover(λ6) = {P.t.Name ∣ t ∈ {p1, . . . , p3}}
λ7 = (TJM ,{(A, e)}) Cover(λ7) = {P.t.Name ∣ t ∈ {p1, . . . , p3}}

Figure 3: Causes for Error P.p2.Name

A scoring function is called strongly monotone iff it is
montone and for all cause sets Λa and Λb with Λa ∩Λb = ∅:

f(Λa ∪Λb) = f(Λa) + f(Λb)

5.2 Scoring on Side-effect and Explanation Size
We define two scoring functions that are of particular in-

terest for ranking causes. Scoring function fSize maps a
cause set to its size (fSize(Λ) = ∣Λ∣) and function fSE maps
a cause set to its side-effect size according to E (fSE(Λ) =
∣SE(Λ,E)∣). A challenge for our approach is that these in-
teresting scoring functions are not monotone, because of the
potential overlap between cause sets and side effects.

Example 13. Consider the CCS for two errors e1 and e2

with cause sets {λ1a, λ1b} and {λ2a, λ2b}. Assume the side
effects for these causes are as follows:

SE(λ1a) = {R.t1.a,R.t2.a}
SE(λ2a) = {R.t3.a,R.t4.a}
SE(λ1b) = SE(λ2b) = {R.t1.b,R.t2.b,R.t3.b}

Monotonicity is violated as fSE({λ1a}) ≤ fSE({λ1b}) and
fSE({λ2a}) ≤ fSE({λ2b}), but fSE({λ1a∪λ2a}) ≥ fSE({λ1b∪
λ2b}). Similarly, for ΛA = {λ1a}, ΛB = {λ2a}, ΛC = {λ1b},
and ΛD = {λ2a} then fSize(ΛA) ≤ fSize(ΛB) and fSize(ΛC) ≤
fSize(ΛD), but fSize(ΛA ∪ΛC) > fSize(ΛB ∪ΛD).

This example demonstrates that these scoring functions
are not monotone. However, they are weakly monotone.

Proposition 5.1 (Monotonicity of fSize and fSE).
Scoring functions fSE and fSize are weakly monotone, but
neither monotone nor strongly monotone.

Producing the top-k ranked CCS according to an arbi-
trary scoring function is hard in general, because the CCS
enumeration is of exponential size in E. However, if the
scoring function enjoys some monotonicity properties, we
can exploit this to omit scoring (and generating) CCS if we
can determine that they will not be beyond the top-k an-
swers. Note that ranking CCS is quite different from top-k
query processing, because we have to explore all possible
CCS (basically a cross-product of the causes for each error
grounding in E), while the goal of top-k query processing is
to rank tuples in a relation and this relation usually contains
only a small fraction of the cross-product of its attribute do-
mains. Thus, top-k query processing approaches that sort
the whole relation are not directly applicable to our problem.
In addition, most top-k ranking algorithms, e.g., Fagin’s al-
gorithm [16], rely on scoring functions that, translated into
our framework, are monotone. We show that generating

the top-k causes according to our weakly monotone scoring
functions fSE and fSize is NP-hard.

Theorem 1 (CCS Ranking Complexity). Let E be
an error set. Generating the top-k ranked CCS from enu-
meration CCS(E) according to scoring functions fSE and
fSize is NP-hard in the size of E even for k = 1.

5.3 Combining Scoring Functions

5.3.1 Linear Combinations
Given a set of scoring functions that each evaluate differ-

ent aspects of a cause set (e.g., its side-effect size or number
of causes in the set as explained above) we may want to rank
solutions by combining multiple aspects. Linear combina-
tions of scoring functions and how monotonicity properties
of scoring functions extend to linear combinations has been
explored in [35]. Here give a short overview of these results.

A weighted combined scoring function fWCS[g,w] com-
bines a finite number of scoring functions and assigns dif-
ferent weights w to each functions g. These weights can
be either inputed by experienced data exchange users who
can utilize their experience to determine reasonable bias by
giving larger weights to more likely cause types, or learned
from a set of ground truth CCS for a set of scenarios. Users
may leverage their knowledge to create a suitable weighted
combination for their type of specific data exchange scenar-
ios.

Definition 9 (Linear Combination fWCS[g⃗,w⃗]). Let
g⃗ = g1, . . . , gn be a vector of scoring functions, wi with wi ∈
[0,1] and ∑ni=1wi = 1 be a vector of weights assigned to scor-
ing functions in g⃗. The Weighted Combined Scoring Func-
tion fWCS[g⃗,w⃗] is defined as:

fWCS[g⃗,w⃗](Λ) =
n

∑
i=1

wi ∗ gi(Λ) (1)

We prove now that the linear combination of weakly mono-
tonic scoring functions is also weak monotonic. This prop-
erty makes sure that we can our incremental ranking algo-
rithms introduced the following to rank according to this
function.

Theorem 2 (Weak Monotonicity of fWCS[g⃗,w⃗]). Let
g⃗ be a vector of weakly monotone scoring functions. Any
weighted combined scoring functions fWCS[g⃗,w⃗] for g⃗ is weakly
monotone.

5.4 Incremental Ranking with Pruning
Despite the NP-hardness of the problem, we can nonethe-

less attempt to reduce the number of CCS that have to



Algorithm 1 ExplPruneRank

1: procedure ExplPruneRank(E,k, f , M)
2: Q← SortOnLower(Λ1)

3: while k > 0 do
4: Cand← popMin(Q)

5: L← length(Cand)
6: if L = n then
7: return Cand
8: k ← k − 1
9: else

10: for all λ ∈ ΛL+1 do
11: NewCand← Cand ∪ {λ}
12: computeScore(NewCand)
13: insert(Q,NewCand)

be scored to produce the top-k answers. We create CCS
bottom-up starting with singleton cause sets and use upper
and lower bounds on the score of incomplete cause sets to
prune partial solutions. Our ranking algorithm is a vari-
ant of A∗-search. Let E = {e1, . . . , en} be an error set and
Λi denote the set of causes for error ei. For simplicity, we
assume that each error has a single grounding, but the re-
sults directly translate to errors with multiple groundings
by considering a set of error-grounding pairs instead of E.

Assume we are enumerating CCS by creating all possible
CCS for {e1}, then extending each of these sets to all possi-
ble CCS for {e1, e2}, and continue this process until all CCS
for E have been generated. For any cause set Λ covering
{e1, . . . , ei} generated by this process, the score of all exten-
sions of Λ to a CCS for E according to a scoring function
f ∈ {fSE , fSize} can be bound by:

Upper(Λ) = f(Λ) +
n

∑
k=i+1

max
λ∈Λk

(f({λ}))

Lower(Λ) = max(f(Λ), max
k∈{i+1,...,n}

(min
λ∈Λk

(f({λ}))))

These hold for any weakly monotone scoring function.

Lemma 5.1. Let f be a weakly monotone scoring func-
tion and Λ a cause set explaining some errors in E. The
following holds for every CCS Λ′ that is an extension of Λ.

Lower(Λ) ≤ f(Λ′) ≤ Upper(Λ)

Our ranking algorithm (Algorithm 1) exploits these bounds.
We keep a priority queue of partial solutions that is sorted
on the lower score bound. This queue is initialized with a
singleton set for each cause in cause set Λ1 (the causes for
error e1). Afterwards, we pop the cause set Λcand with the
smallest lower bound from the queue. Let this set be of size
i. We then generate all possible extensions of Λcand with
causes from Λi+1 and insert them into the queue. If i is
equal to n, then Λcand is the next top answer and should be
returned. We iterate until k answers have been generated.

Theorem 3. If f is a weakly monotone scoring function,
then Algorithm 1 returns the top-k ranked causes for input
error set E according to f .

5.5 Leveraging Partitioning
As shown in the last subsection, the cause ranking prob-

lem according to scoring functions fSize and fSE is NP-hard
in the number of errors. The main reason for the complexity
of ranking is the potential overlap between the coverage of

causes (and their side effects). Because of this overlap the
scoring functions are only weakly monotonic. However, for
typical data exchange scenarios, the causes for two errors
will not overlap if the mappings that generated these error
have no overlap in relations, correspondences, and transfor-
mations. For instance, consider tgds σ2 and σ3 from the
running example in Figure 1. These tgds do not overlap.
Hence, neither causes nor side effects for errors in tuples
generated by these tgds will overlap. Our next contribu-
tion is to exploit this independence to make ranking more
efficient.

Definition 10 (Independent Partitioning). Let E
be an error set. A partitioning P = {P1, . . . , Pn} of E into
disjoint partitions is called an independent partitioning if for
any two partitions Pi and Pj of P and any CCS Λi and Λj
for these partitions their causes and coverage are disjoint.

∀Pi, Pj ∈ P ∶ ∀Λi ∈ CCS(Pi),Λj ∈ CCS(Pj) ∶
Λi ∩Λj = ∅ ∧Cover(Λi) ∩Cover(Λj) = ∅

Based on independent partitioning we define a monotonic-
ity property of scoring functions according to unions of cause
sets from different partitions. This property will be used to
efficiently combine CCS rankings for individual partitions
into a global ranking for an error set E.

Definition 11 (Partition Monotonicity). Let E be
an error set and P an independent partitioning of E. A
scoring function f is strongly partition monotone iff:

∀Pi, Pj ∈ P ∶ Λi ∈ CCS(Pi),Λj ∈ CCS(Pj) ∶
f(Λi ∪Λj) = f(Λi) + f(Λj)

The two scoring functions fSE and fSize are strongly par-
tition monotone. Thus, we can apply the efficient ranking
algorithm presented below as long as we are able to find an
independent partitioning.

Proposition 5.2. Scoring functions fSE and fSize are
strongly partition monotone.

Given this result, we can apply the efficient ranking al-
gorithm presented below as long as we are able to find an
independent partitioning.

We now introduce the scenario graph, a representation of a
DES which we use to generate an independent partitioning.

Definition 12 (Scenario Graph). Let M be a data
exchange scenario. The scenario graph SG(M) is a graph
(V,E) where V contains a vertex for every source or target
relation attribute and one vertex for each variable used in
a mapping. There exists an edge between a source attribute
R.A and a mapping variable σ.V if σ.V ∈ var(R.A). There
exists an edge between σ.V and target attribute R.A if σ.V ∈
var(R.A). Two mapping variable vertices are connected if
they belong to the same mapping: (σ.V, σ′.V ′) ∈ E iff σ = σ′.

Let E be an error set for a DES M. A scenario graph par-
titioning of E places errors R.t.A and R′.t′.A′ in the same
partition if their R.A and R′.A′ are in the same connected
component of the scenario graph SG(M).

The scenario graph of a mapping scenario concisely cap-
tures potential overlap between causes and side-effect at the
schema level.



R.A R.B S.C S.D T.E T.F

σ1.a σ1.b σ1.c σ2.d σ2.e σ2.f

X.G X.H Y.I Y.J

Figure 4: Example Scenario Graph

Example 14. Consider a scenario with two mappings σ1 ∶
R(a, b)∧S(b, c) →X(a, c) and σ2 ∶ T (d, e) → Y (f, e) over re-
lations R(A,B), S(C,D), T (E,F ), X(G,H) and Y (I, J).
Figure 4 shows the scenario graph for this scenario. For
example, target attributes X.G and Y.I are in different com-
ponents and, thus, the coverage and side-effects of causes for
errors from these two attribute cannot overlap.

The partitioning of an error set based on the scenario
graph is independent. However, we are being conservative
in using the connected components of the graph.

Theorem 4. Let E be an error set for a DES M. The
scenario graph partitioning PM of E is independent.

Using an independent partitioning, we can partition an
error set E, rank each partition individually, and combine
the rankings into a global ranking. The main concern here
is how to create a global ranking without the need to fully
materialize the exponential size ranking for each partition.
The algorithm we present next is based on the following ob-
servation. Consider a partitioning PM = {P1, . . . , Pn}. We
use Λi[j] to denote the CCS of rank j for Ei according to
the scoring function. We can represent a CCS Λ for the com-
plete error set E as vectors vΛ of ranks for the per-partition
CCS that were used to construct the global CCS. For exam-
ple, if we have two partitions, then [1,2] represents the CCS
built from the 1st ranked CCS for partition P1 and the 2nd

ranked CCS for partition P2. Given that partition mono-
tonicity holds, we know that ∀i ∈ {1, . . . , n} ∶ vΛ[i] ≤ vΛ′[i]
for two global CCS Λ and Λ′, iff f(Λ) ≤ f(Λ′). For example,
there can be no better CCS than [1, . . . ,1]. The algorithm
PartitionRank (Algorithm 2) is based on this observation.
It first creates a scenario graph partitioning PM of the input
error set E (line 2). For each partition it initializes a ranker
using a variant of Algorithm 1 that supports incremental
access to the produced ranking. If the nth ranked solution
is requested, this variant will produce the top-n CCS and
keep its state between calls to service future requests. Par-
titionRank uses two main data structures: 1) a list Q of
CCS vectors sorted on score (implemented as a tree data
structure with O(log(n)) look-up and insert) and 2) a set
Done of CCS vectors (O(1) test whether a vector has been
produced before). At each point in time a prefix of Q repre-
sents the partial ranking produced so far. Variable ranked
stores the length of this prefix. Both Q and D are initialized
with [1, . . . ,1] (line 4). The algorithm repeats the following
procedure until ranked is equal to k, i.e., it has produced
the top-k answers. We retrieve the kth vector vk from Q
(line 6), then we create n variations of vk by increasing each
position in the vector by one (lines 9-10). For each variation
that has not been produced before (line 11), we compute its
score by summing up the individual scores for each parti-
tion CCS and then insert it into Q and Done (lines 12-15).

Algorithm 2 PartitionRank

1: procedure PartitionRank(E,k, f , M)
2: PM ← SGpartition(E,M)

3: n = ∥PM∥

4: Q←< [1, . . . ,1] >,Done←< [1, . . . ,1] >, ranked← 1
5: while ranked < k do
6: Cur ← getElem(Q, ranked)
7: for i ∈ {1, . . . , n} do
8: if Cur[i] < ∥CCSEPi∥ then
9: New ← Cur

10: New[i] ← New[i] + 1
11: if New /∈ Done then
12: computeScore(New)
13: insert(Q,New)
14: insert(Done,New)

15: ranked← ranked + 1

Afterwards, we increase ranked. Set Done is used to avoid
reinserting a vector more than once. The access to actual
CCS represented by the vector positions is only needed to
produce the final result CCS and to get the scores of Λi[j]
when inserting a new vector into Q.

Theorem 5 (Correctness). Let P be an independent
partitioning of an error set E and f a partition monotone
scoring function. Algorithm PartitionRank returns the top-k
answers for E according to f .

As proven in the following theorem, combining per-partition
rankings into a global top-k ranking using Algorithm Parti-
tionRank is efficient, in O(k ⋅n ⋅ log(k ⋅n)). Furthermore, we
need to access at most the top-k ranked solutions for each
per-partition ranker.

Theorem 6 (Complexity). Given an independent par-
titioning P of an error set E and an top-k ranking for each
partition according to a strongly partition monotone scor-
ing function f , Algorithm PartitionRank generates a top-k
ranking for E in O(k ⋅ ∥P ∥ ⋅ log(k ⋅ ∥P ∥)).

Theorem 7 (Per-Partition Bounds). Algorithm Par-
titionRank at most accesses the top-k per-partition CCS to
produce the global top-k CCS.

5.6 Combining Multiple Score Functions
Using Skyline Ranking

The algorithms presented in the previous subsections en-
able us to rank CES based on a single ranking function.
However, what if we want to rank on multiple criteria, e.g.,
small size and small number of side-effects? One solution is
to define new scoring functions which are weighted combi-
nations of scoring functions. For example, we could define
f ′ = w1 ⋅ fSize + w2 ⋅ fSE . As long as the weights are posi-
tive and all involved scoring functions are weakly monotone,
then f ′ is also weakly monotone and, thus, we can still apply
algorithm ExplPruneRank.

Theorem 8 (Combining Scoring Functions). Let
f1, . . . , fn be weakly monotone scoring functions and w1, . . . ,wn
be a list of values from [0,1]. The scoring function f ′ defined
as f ′(Λ) = ∑ni=1wi ⋅ fi(Λ) is weakly monotone.

Proof. We have to proof that

f ′(Λ) ≤ f ′(Λ ∪ {λ}) ≤ f ′(Λ) + f ′({λ}) (2)
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Figure 5: Example Skyline Computation

given that

fi(Λ) ≤ fi(Λ ∪ {λ}) ≤ fi(Λ) + fi({λ}) (3)

for each i ∈ {1, . . . , n}. Multiplying inequality 3 with a pos-
itive weight wi does result in

wi ⋅ fi(Λ) ≤ wi ⋅ fi(Λ ∪ {λ}) ≤ wi ⋅ (fi(Λ) + fi({λ})) (4)

Since each element in the inequality is positive we can sum
up the inequalities for all i ∈ {1, . . . , n} resulting in inequal-
ity 2.

The problem with this approach is that it is hard to deter-
mine what are good choices for the weights. Alternatively,
we could use the well-known skyline operator to return all
solutions where there is no provably better solution. Given
a set P of points in a n-dimensional space, the skyline oper-
ator returns all points that are not dominated by any other
point. A point p dominates a point p′ written as p ≺ p′ if p
is at least as “good” as p′ in every dimension and “better”
in at least one dimension:

∀i ∈ {1, . . . , n} ∶ p[i] ≤ p′[i] ∧ ∃i ∈ {1, . . . , n} ∶ p[i] < p′[i]

For explanation ranking we represent CES as points by map-
ping them onto their scores according to a set of scoring
functions F = {f1, . . . , fn}:

Λ→ [f1, . . . , fn]

For example, if we compute the skyline according to fSize
and fSE , then for every returned CES there exists no CES
which has lower or equal scores in both fSize and fSE , and
a lower score in either fSize or fSE . From now on we use Λ
to refer an explanation set or its vector of scores.

The skyline operator saves us from having to come up with
reasonable weights. However, typical implementations of
this operator are not suitable for our problem, because they
would require us to materialize all CES for an error set E to
compute the skyline. We now discuss adaptations of skyline
algorithms which use incremental rankers for the scoring
functions over which the skyline should be computed. Thus,
our adaptations are applicable if F contains only weakly
monotone scoring functions.

Many different algorithms for the skyline operator have
been introduced in related work (e.g., see [14]). We try
to avoid materializing a complete CES enumeration during
ranking which naturally disqualifies algorithms that index
the whole dataset or are not progressive (do output points
in the skyline before having processed the whole dataset).
Even though we cannot sort the whole dataset, because
this would require materialization of the CES enumeration,

we can still access CES ordered according to any weakly
monotone scoring function from F by using Algorithm Expl-
PruneRank. We now briefly review two well-known skyline
algorithms and discuss how they can be adapted for CES
ranking.
B-tree algorithm: The B-tree algorithm from [9] assumes
that there exists a B-tree index for each dimension. For CES
ranking that corresponds to creating one index on fi(Λ) per
fi ∈ F which stores a complete CES enumeration. These
B-tree indexes are traversed simultaneously starting from
the lowest value until there exists a point p that has been
visited in all indexes. Once such a point p has been found,
it is guaranteed that have not been traversed will not be
in the skyline. Instead of using B-trees, we can apply our
ranking algorithm to traverse the CES sorted on a particu-
lar scoring function fi. Figure 5 shows an example skyline
computation for two dimensions. The solid black points are
on the skyline. The paths starting from the x respective y
axis indicate the order of traversal using the rankers for f1

and f2. Once the first match has been found, any standard
skyline algorithm can be used to check whether the points
we have traversed so far are in the skyline or not. The ad-
vantage of this algorithm is that it is trivial to implement
on top of ExplPruneRank. However, depending on the data
distribution we may have to traverse most CES before the
first match is found.
SalSa: The SalSa algorithm [6], and extension of the block
nested loop algorithm [9] sorts the input on a monotone sort-
ing function M (here monotone means M(Λ) > M(Λ′) ⇒
Λ /≺ Λ′) and then loops through the points in sort order.
The algorithm can terminate once a stop criterion is met.
This criterion depends on the choice of M. The sort order
proposed in [6] (translated into our terminology) sorts on
M1(Λ) = mini∈{1,...,n}(fi(Λ))) and uses ∑i∈{1,...,n}(fi(Λ))
as a secondary sort criterion to disambiguate points with the
sameM1 value. We can sort points according to this order,
by traversing rankers for all scoring functions in F simulta-
neously. We keep a priority queue of (i,Λ) pairs sorted on
M. Initially we insert the first element from each ranker
into this queue. To get the next element in sort order we
pop the first element (i,Λ) from the queue and then insert
the next element from the ranker for fi (if it exists) into the
queue. In addition we keep track of the CES we have seen so
far to avoid inserting a new CES if it was already returned
previously by a different ranker. The only difference to the
original SalSa algorithm is the incremental sorting using the
rankers.
Algorithm for 2D Skylines: If F contains only two scor-
ing functions, we can optimize the B-tree algorithm as fol-
lows. We keep a current upper bound u1/2 for each of the
two dimensions. Upper bound u1 is updated for f1 to f1(Λ)
whenever we retrieve the next CES Λ from the ranker for
scoring function f2 and vice versa. Once we retrieve an
explanation set Λ from the ranker for f1 with f2(Λ) ≥ u2

the algorithm terminates. The oposite holds for explana-
tion sets from the ranker for f2. This algorithm is shown
in Algorithm 3. This algorithm uses the incremental ver-
sion of Algorithm ExplPruneRank which preserves its state
between calls. Using the upper bound, we can determine
during the initial traversal of the rankers which points be-
long to the skyline instead of having to compute the actual
skyline from the points traversed before a matching point
was found.



Algorithm 3 Expl2DSkyLine

1: procedure ExplSkyLine(E,k, f1, f2, M)
2: k1 = 1, k2 = 1, u1 = ∞, u2 = ∞
3: Λl = NULL, sky = ∅
4: while true do
5: for all d ∈ {1,2} do
6: o← 3 − d
7: Λ← ExplPruneRank(E,kd, fd,M)
8: if f1(Λ) < u1 ∧ f2(Λ) < u2 then
9: Λl ← Λ

10: uo ← fo(Λ)
11: sky ← sky ∪ {Λ}
12: else if fd(Λ) = fd(Λl) ∧ fo(Λ) = fo(Λl) then
13: sky ← sky ∪ {Λ}
14: else if fd > ud then
15: return sky

16: kd ← kd + 1

Once the skyline is computed we may still want to order
the points in the skyline based on some preference. For
example, the user specifies that the results should be ordered
on one of the scoring functions in F . This type of ranking
has been called ranked skyline queries in the literature [14].
We can use e.g., Fagin’s algorithm to implement this type of
ranking on top of the skyline results as long as the ranking
function is monotone in fi values.3

5.7 Discussion
We have introduced an approach for incrementally rank-

ing causes using on scoring functions. The approach prunes
the search space based on a lower bound proven for weakly
monotone scoring functions. Ranking is NP-hard for the
scoring functions discussed in the paper. By partitioning
a ranking problem into independent subproblems based on
mapping scenario information we are able to reduce the
problem size. Algorithm PartitionRank enables us to effi-
ciently combine per-partition rankings into a global ranking.

6. IMPLEMENTATION

6.1 Overview
We now give an overview of the implementation of our

cause generation and ranking techniques in Vagabond. Our
system consists of three components: 1) a GUI for marking
errors and browsing ranked causes, 2) a middleware imple-
menting our cause generation and ranking algorithms, and
3) a TRAMP database server used for storing instance data,
DES information, and generating provenance.

6.1.1 GUI
The user can interact with the system through a GUI [22])

that allows the user to browse the data to mark errors and
inspect all elements (e.g., mappings, correspondences) of a
DES. The GUI permits the visual specification of queries
that determine which cells should be marked as errors Ex-
pert users can write these queries directly whereas less ex-

3Note that this does not imply that the scoring functions in
F have to be monotone as defined in Section 5.1, because
the ranking function is applied to the skyline results is eval-
uated over the vector representation [f1(Λ), . . . , fn(Λ)] of
an explanation set Λ.

perienced users can use the GUI to specify query conditions
(e.g., mark all names of persons that live in Toronto).

6.1.2 Cause Engine
We have implemented cause generation and ranking in a

Java middleware. Given a set of errors E and scoring func-
tion f , the system generates all groundings (Section 6.2)
and computes all causes for each grounding individually.
(Section 6.3). The result is a set of potential causes for
each grounding. We then proceed by constructing a sce-
nario graph, partition the error set (and cause set) based
on this graph, We compute a partition, initialize rankers for
each partition, and create a global ranker using Algorithm 2.
(Section 6.5). The engine exposes the ranking through an
iterator interface used by the GUI to enable interactive ex-
ploration of the ranking.

6.1.3 Backend Provenance Computation
Computing causes requires the computation of several forms

of provenance. Vagabond uses a TRAMP [21] server for
storing DES information, instance data, and accessing prove-
nance. Alternatively, we could use the approach pioneered in
the Orchestra system [24] of adding functions to provenance
polynomials to encode mapping application. Both mapping
and influence provenance can be extracted from this repre-
sentation. With either backend, for efficiency, we need to
do some optimization to avoid redundant computation of
provenance. These optimization are described below.

6.1.4 TRAMP
Given an error e we how can we effectively determine

all potential causes for each grounding of e and their side-
effects (coverage) according to the cause types introduced
in Section 4.2? It turns out that the key is efficient prove-
nance computation and access to DES elements. We use a
TRAMP [21] server for storing DES information, instance
data, and accessing provenance. TRAMP is an extends
PostgreSQL with support for generating provenance and
querying provenance and DES information. TRAMP im-
plements the “use SQL to generate and query the prove-
nance of SQL queries” paradigm pioneered by Perm [20].
Using the SQL extensions of the system, the user can re-
trieve the provenance of all result tuples of a query in a re-
lational encoding. This representation pairs query result tu-
ples with provenance information. Unless requested prove-
nance is not materialized, but reconstructed on the fly us-
ing query rewrite techniques. For details of the approach
please see [21, 20]. TRAMP supports the three provenance
types introduced in Section 3.0.3. The cause generation of
Vagabond uses the query interface of TRAMP to 1) compute
all error groundings, 2) retrieve various types of provenance
during cause generation, 3) and query DES information.

6.2 Generating Error Groundings
For each error e in the input error set E we determine

its groundings Θ(e) as follows. The mapping provenance of
e contains all tgds to be grounded and the influence prove-
nance, by modelling from which input tuples a tuple is de-
rived, provides the tuples to be used in the grounded atoms.4

4Alternatively, we could use the approach pioneered in the
Orchestra system [24] of adding functions to provenance
polynomials to encode mapping application. Both mapping
and influence provenance can be extracted from this repre-



Both types of provenance can be retrieved by issuing a prove-
nance query using TRAMP. We build a join graph skeleton
for each tgd σ of the data exchange scenario storing the
structure of the join graph. Thus, we store the structure of
the join graph for σ only once and encode join graphs for
individual groundings of σ as lists of tuples.

6.3 Cause Generation
We now describe how to, given an input error e and one

grounding σ[θ] ∈ Θ(e), generate all causes of a certain type
by accessing the data exchange scenario and provenance us-
ing a TRAMP server instance. Because of space limitations,
we only discuss one cause type here.

6.3.1 Copy Data Error
Given an error marker e = R.t.A and grounding σ[θ] we

can determine the single copy data error λ for this combina-
tion by computing the copy provenance of e restricted to the
grounding σ[θ] (recall that OI = C(e, σ[θ]) for this type er-
ror). Using TRAMP this information is retrieved by execut-
ing a selection over a query generating the copy provenance
of relation R from R.t.A. To compute the coverage of λ, we
need to find all target attribute values e′ which have been
copied from any e ∈ OI . We first partition the set OI into
subsets containing only attribute values from a single source
relation. This is necessary, because TRAMP only supports
generating the copy provenance of a single target relation
at once. For each relation R′ that has a corresponding par-
tition PR′ we determine to which target relation attributes
the affected attributes are copied too by analyzing the map-
pings. For each affected target relation T we check wether
any of the errors from source relations potentially affecting
an attribute value in relation T are in the copy provenance of
a target attribute. In TRAMP this can be expressed by re-
trieving the copy provenance of all tuples in T and checking
whether the provenance overlaps with OI . This operations
can be executed efficiently using TRAMP, because the selec-
tion will usually be pushed into the provenance computation
by the system’s optimizer. Nonetheless, further perfor-
mance improvements are certainly possible. For instance,
we could index copy provenance using the index structure
from Kementsietsidis et al. [25].

6.3.2 Join Data Error
For generating all join data error explanations for an error

e and grounding σ[θ] we use the join graph generated for
σ[θ] generated during the computation of Θ(e). We then de-
termine the set of potentially incorrect join attributes from
the join graph as explained in the previous section. Since
the structure of the join graph is fixed for a given σ, we
only generate the general structure once and represent a
particular instance of the join graph for a grounding σ[θ]
as a list of tuple identifiers. Note that the helper struc-
tures Path(R(t), σ[θ]) (path in the join graph that start in
the node representing the erroneous tuple), PVars(e, σ[θ])
(variables in the grounding the may cause incorrect joins),
and OI(R(t), v) (source attribute values that where used in
the joins of the grounding) are in a sense independent of the
actual tuples in the grounding. For example, the relations
on paths in Path(R(t), σ[θ]) for different t and θ only dif-
fer in the grounded tuples, but not in the relations. Thus,
we can generate template versions of PVars(R.t.A,σ[θ])
sentation.

and OI(R′(t′), v) upfront where t, t′, and θ are parameters
for these templates. We then generate all join data errors
by producing one error for each atom-variable combination
(R′(t′), v) on a path in PVars(e, σ[θ] by instantiating the
template with tuples from the grounding σ[θ].

To compute the coverage for one such join data error
λ(R′(t′),v) we need to find all groundings where any for tgds
σ′ where the attribute values in OI have been used in a
join and determine which target attribute values would be
effected by this join. We first need to determine all other
atoms R′′ for which there exist a grounding σ′[θ′] so that
(R′(t′), v′) is on a path in Path(R′′(t′′),G(σ[θ′])) and
attr(R′(t′), v) = attr(R′(t′), v′). Again we build a data
structure that is independent of the tuples in the ground-
ing. This data structure helps us to compute which potential
atoms may appear in such groundings. Using the join graph
skeletons of all tgds we determine for which atoms R′′ of
which tgd σ′, (R′, v′) appear in a path in
Path(R′′(t′′),G(σ′[θ′])). The data structure we are using is
a map from atoms-variable tuples to tgd-atom-attribute tu-
ples that maps (R′, v) to all (σ′,R′′, a′′) for which (R′(t′), v)
is on a path in Path(R′′(t′′),G(σ′[θ′])). We partition these
tgd-atoms-variable tuples according to the target relation
T . For each target relation T we issue a query to deter-
mine all t′′ for which there is a grounding σ′[θ′] for which
R′′(t′′) ◃ σ′[θ′] and R′, v in Path(R′′(t′′),G(σ′[θ′])). Each
such query retrieves the influence provenance of tuples in T
and selects only those t′′ ∈ T for which R′ is contained in one
witness list corresponding to a grounding of σ′. This is be
implemented as a selection condition over the provenance.

6.3.3 Correspondence Error
To generate a correspondence error for (e, σ[θ]) we need

to know which correspondences are used by tgd σ to copy
which attribute. Recall that we assume that the corre-
lation between correspondences and mappings is provided
with the data exchange scenario M (the mapping Map).
We retrieve these correspondences Γ(σ) and check which
ones are mapping to attribute R.a. Let Γ′ denote the set
of these dependencies. We generate a correspondence error
λ = (C,{Γ′,Σ(Γ′)}) for these correspondences. To deter-
mine the coverage we determine which target relations are
effected by tgds in Σ(OΓ), that is tgds that use a corre-
spondence in OΓ. For each of these target relations we con-
struct a query that retrieves the tuples generated by one of
the affected mappings using the mapping provenance. The
correspondences are used to find out which attributes are
affected for each returned tuple.

6.3.4 Superfluous Mapping Error
For this error type we assume that the tgd σ of grounding

σ[θ] is superflous. To compute the coverage we determine
which target relations are generated by this mapping (all
relations mentioned in the RHS of the tgd). For each such
target relation T we generate a query that retrieves the map-
ping provenance for each tuple t′ in the relation and checks
whether σ is in the mapping provenance. All attributes of
each such tuple t′ are part of the coverage.

6.3.5 Join Mapping Error
To find join mapping errors for an error marker e and

grounding σ[θ], we use the template data structures for
PVars created for source join errors. We determine all pairs



(R′, v) in Path(e,G(σ)θ) and determine the attributes on
the incoming edge to each R′(t′). For each combination
(R′, v) we create a join mapping error. The coverage for
such an error contains all target attribute values R′′, t′′,A′′

for which R′, v is on a path in Path(R′′(t′′),G(σ′[θ′])). The
R′′ and A′′ part can be determined without accessing the
data by analyzing the join graph templates. This analysis
is done once and the results are preserved for future join
mapping error computations. For each pair (R′′,A′′) we
construct a query for retrieving all tuples produced by σ
(mapping provenance). The A′′ attribute of each such tuple
belongs to the coverage of the explanation.

6.4 Marking Errors
In Vagabond, the user can inform the system about target

instance errors by either marking attribute values through
Vagabond’s graphical user interface or by running queries
that return errors to be marked. We call this type of queries
marker queries. A marker query is essentially an SQL query
that returns an relational encoding of an error set (the error
relation introduced below). The user can either write such
a query by hand or use a wizard provided by Vagabond.

6.5 Error Set Partitioning and Ranking
We first build a scenario graph SG(M) from the input

DES M in memory. This graph is then used to create an sce-
nario graph partitioning of the input error set E and, thus,
also of the causes we have generated in the previous step.
We then initialize an incremental ranker (Algorithm 1) for
each partition P ∈ PM and a partition ranker (Algorithm 2)
using the individual rankers. The user navigates the rank-
ing using the controls of the GUI which in the background
causes calls to the partition ranking algorithm to generate
additional solutions if necessary. Recall that both the indi-
vidual and the partition ranking algorithm are incremental,
i.e., the queue data structures are kept between calls.

6.6 Optimizations

6.6.1 Avoiding redundant cause generation
As introduced in Section 6.3, generating causes for a set of

errors requires execution of queries to retrieve various types
of provenance parts of the target instance. Some types of
causes (e.g., superfluous mapping errors) cover large number
of target cells which results makes computing the coverage
of such an cause expensive. Generating such causes multiple
times - once for error that is covered by the cause - is unnec-
essary. Thus, for all cause types which typically have large
coverage and low number of distinct causes per scenario we
cache the causes to avoid generating them more than once.
Currently, we have implemented this optimization for super-
fluous mapping errors, source skeleton, and correspondence
errors.

6.6.2 Finer-grained partitioning
The scenario graph based partitioning we have introduced

in Section 5.5 is quite conservative, i.e., two errors may be
in the same component even if their causes and causes’ side-
effects cannot overlap. We improve partitioning by adapt-
ing the graph based on the input error set E. Note that
causes and side-effects for errors e1 and e2 from two target
attributes A1 and A2 can only overlap if the tgds mapping to
A1 and A2 are directly connected (there is an edge between

a variable of the tgd and a node) to at least one common
source or target attribute. Obviously, this condition implies
that A1 and A2 are in the same connected component of the
scenario graph. However, the oposite does not hold necessar-
ily. For instance, consider the example scenario graph shown
below and assume we have two errors e1 in U.D and e2 in
W.F. Target attributes U.D and W.F are in the same (sin-
gle) connected component of the scenario graph. However,
the causes and side-effects of e1 and e2 cannot overlap. Our
approach for computing a more finer-grained partitioning
based on this operation works as follows. We start from sin-
gleton components - one for each target attributes for which
these is at least one error in E and grow subgraphs starting
from these single nodes. We first determine all source rela-
tions that are connected through at least one mapping vari-
able to a target attribute, then we extend this set of nodes by
adding all attributes from partially covered source relations
and tgds. Finally, we determine all target attributes directly
connected to one of the nodes. Afterwards, we proceed by
merging subgraphs that have at least one node in common
into a bigger components. We repeat the later step until
a fix point is reached. The result is again an independent
partitioning which is typically smaller than a partitioning
based on connected components and in worst-case degrades
to a partitioning based on connected components.

R.A S.B T.C

σ1.x σ2.y σ3.z

U.D V.E W.F

6.6.3 Ordering Errors for Ranking
The performance of our incremental ranking technique de-

pends mainly on how effectively we can prune the search
space. The worst-case is if all causes for each error have
very similar or even the same score, because then the lower
score bounds will also be very similar which limits pruning
opportunities. While we cannot control the scores of dif-
ferent causes we can control in which order the errors are
accessed by the algorithm. As a heuristic, we sort the errors
decreasing on the size of the interval spanned by the lowest
score and highest score for causes for the error. The ratio-
nale is that this leads to more pruning opportunities because
the partial solutions we create are likely to have very diverse
scores which would allow us to prune some of them early on.

7. EXPERIMENTS
We evaluate (1) the performance of our techniques for sce-

narios of different size, structure, and complexity as well as
(2) test the quality of the rankings produced by the algo-
rithms introduced in Section 5. All experiments were run
on a machine with one Intel i7-4510 2GHz CPU and 8GB
RAM running Ubuntu 14.04 64-bit.

7.1 Scenario Generation and Setup
We use the iBench [5] integration task generator, to evalu-

ate the quality of rankings and test performance over diverse
and realistic data exchange scenarios. iBench creates the
schemas, data, mappings, and correspondences of a data ex-
change scenario by applying and combining mapping prim-
itives (that represent common transformation patterns like
vertical partitioning or denormalization) into more complex
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Figure 6: Number of Errors and Instance Size

mapping scenarios. iBench can produce all elements of data
exchange scenarions as defined in Section 3. With iBench
we can control the size of the data, along with both the
size and complexity of the generated mappings and schemas.
In addition, iBench permits direct control of the amount of
sharing of source/target relations among the generated tgds.
This feature permits us to control (and evaluate) the effect
of partitioning on performance for scenarios with a realistic
amount of sharing. iBench also allows the use of real scenar-
ios and can scale them by increasing the data and schema
size as well as combining them with mapping primitives.

We have generated several groups of scenarios in different
data size, schema size, and mapping complexity (measured
by number of atoms in tgds). The Copy (CP) scenarios
consist only of copy primitives (source relations are copied
to the target, though with sharing, the same source rela-
tion may be copied many times or multiple source relations
may be copied to the same target). For the Vertical Par-
tition (VP) scenarios, source relations are partitioned into
multiple target relations (again mappings may share rela-
tions). The Employee scenario is an extended version of
our running example. The Homeless scenario is the running
example from TRAMP [22]. In addition, we consider a sce-
nario based on a mapping between Schema 1 and Schema
3 of Amalgam [30]. Amalgam is an integration benchmark
using real schemas storing bibliographic data.

7.2 Cause Generation Performance

7.2.1 Number of errors and instance size
We now evaluate the scalability of cause generation when

varying the number of errors (1 to 100) and instance size
(100 to 100K tuples per relation). The results for our four
main scenario are shown in Figure 6. Here, we consider
simple copy and vertical partitioning scenarios with one in-
stance of this mapping primitive (only one source table copied
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to one target table in case of copy). Since causes are gen-
erated for each error individually, we would expect cause
generation to scale linearly in the number of errors. Our
results confirm this assumption, showing a sightly sublinear
increase in runtime when increasing the number of errors ex-
plained by our optimization that caches causes which cover
large number of target cells such as superfluous mapping or
correspondence errors. Interestingly, cause generation also
exhibits a less than linear growth in the size of the instance.
Increasing the instance size by 3 orders of magnitude leads
to a runtime increase of less than one order of magnitude
for the tested scenarios. To evaluate whether this trend also
exists for even larger instances we have scaled the copy sce-
nario up to 1M tuples. The results are shown in Figure 6e.
Again, we observe a linear growth of runtime in instance size.
We also tested larger error sets (100K instance) to confirm
that we still get linear or sublinear runtime increase. The
results are shown in Figure 6f. Clearly, the runtime grows
linearly as expected.

7.2.2 Varying schema complexity and Amalgam
Here, we fixed the instance size to 1K tuples per source

relation and measure runtime of cause generation while vary-
ing the size of the input schemas. Figure 7a and 7b show
the results for the CP and VP. The x-axis shows the num-
ber of relations in the schema. VP splits one source relation
into 2 target relations and, thus, a schema size of 3000 cor-
responds to 1000 VP primitives. The results demonstrate
the our approach can deal with realistically sized schemas.
Increasing schema size by 4 orders of magnitude results in
a moderate increase of 2 orders of magnitude in runtime.
The complexity of a mapping scenario may also influence
performance of cause generation. In this experiment, we
fixed schema size and instance size and varied the amount
of sharing for tgds, i.e., a high percentage of sharing of source
schema elements means that a single source relation will be
used in multiple tgds leading to more complex transforma-
tions and interdependencies among tgds and other scenario
elements (e.g., correspondences). More complex scenarios
typically lead to an increase in the number of causes, side
effects, and an overlap between causes and their side effects.
Figure 7c shows the results for the CP and VP with 100
primitives for increasing amount of sharing (reported as the
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Figure 8: Ranking Performance

average number of mappings that share a relation). To eval-
uate whether our system can deal with the intricacies of real
world schemas we use the Amalgam scenario with instance
size between 200 and 10k tuples (using iBench to scale the
data). Figure 7d shows the results of this experiment. The
results confirm cause generation scales well (linearly) in the
number of errors and data size - even for real scenarios.

7.3 Ranking Performance

7.3.1 Incremental Ranking
We now measure the performance of incremental ranking

and compared it against a naive top-k approach that gen-
erates and sorts all CCS upfront. Figures 8a and 8b show
the time it took our incremental ranking algorithm to pro-
duce the top-k answers (we exclude cause generation time)
for the Homeless scenarios for different error set sizes and
instance sizes. Except for the trivial case (singleton error
set), the naive algorithm did not finish even computing the
top-1 answer in the time limit we had set (10 min). Thus,
we do not report any numbers for this approach. Ranking
runtime is affected by instance size as query execution and
score computation (dealing with larger coverage) is more
expensive. Another major cost factor is the input error set
size, because the solution space may be exponentially large
in this parameter. We also ran the same experiment with the
Amalgam scenarios (varying instance size between 200 and
10k) with similarly good results (Figures 8c and 8d). We
show the runtime of the naive algorithm below (a cell in red
indicates that the algorithm did not finish in 10 min). The
second table below shows how many solutions (CCS) have
been produced in 10 min. For instances where the algorithm
terminates within 10 min this is the total number of CCS
that exist. For cases where the algorithm did not terminate,
the actual number of CCS can be much larger. This illus-
trates the complexity of the problem at hand. Thus, it is

not surprising that the naive algorithm takes minutes even
for a medium sized instance and small amounts of errors.
Our approach returns the top-100 ranked causes in seconds
(or below) for all settings in both scenarios.

Amalgam - Runtime Naive Method
Instance Size 1 Error 5 Errors 50 Errors 100 Errors

200 0.005 0.104 0.546 1.660
1k 0.021 0.669 16.540 343.678
5k 0.009 86.793 87.252
10k 0.031 58.498

Amalgam - # CCS Solutions (within 10 min)
Instance Size 1 Error 5 Errors 50 Errors 100 Errors

200 4 64 448 1,792
1k 4 64 4,864 66,304
5k 4 4,864 4,864 109,461
10k 4 1,792 15,685 32,146

7.3.2 Impact of Partitioning
We now compare performance of our incremental ranking

algorithm with and without partition ranking. We used a
scenario consisting of 10 denormalization primitives (inverse
of vertical partitioning). The graph for this scenario has 10
connected components. We have varied the error set size
(up to 300 errors) and number of components covered by
the error set (higher component numbers should be more
beneficial for partition ranking). Figure 8e shows results for
a fixed error set size of 20 errors (per component) and vary-
ing number of covered components of the scenario graph.
Figure 8f shows runtime for producing the top-20 solutions
for a fixed number of 5 covered components and varying er-
ror set size. Missing bars for ranking without partitioning
indicate that the algorithm did not finish within 10 min or
ran out of memory. This experiment demonstrates that par-
titioning can significantly improve performance being able
to return result in seconds while the variant without parti-
tion runs longer than 10 min.

7.4 Ranking Quality
To evaluate the quality of ranking according to our scor-

ing functions, we manually generated errors with known
causes (and, hence, also coverage), e.g., by considering a
tgd superfluous and computing which tuples have this tgd
in their mapping provenance. Thus, correct cause set ΛG
and EG = Cover(ΛG) are known and can be compared to
the output produced by our ranker. For this experiment we
consider the Amalgam scenario with 20K tuples. We define
the quality of a ranking as the recall and precision of causes
in the top-k ranked cause sets, i.e., let Λi be the ith ranked
cause set then the precision of the top-k ranked cause sets
is the number of correct causes (causes in Λ) divided by
the total number of causes in the union of the top-k sets.
Similarly, recall is the number of correct causes in the top-k
cause sets divided by the number of causes in Λ:

Preck =
∥⋃ki=0 Λk ∩Λ∥
∥⋃ki=0 Λk∥

Reck =
∥⋃ki=0 Λk ∩Λ∥

∥Λ∥

7.4.1 Quality using the full error set
In this first experiment, we use the total coverage EG of

all correct causes in ΛG as the input for cause generation
and ranking. Thus, this experiment evaluates how well the
ranking performs if we have full information about the er-
rors. We considered the following errors: 1) a set of errors
containing misspellings of the name Donald Knuth in the
target instance’s Author relation. The cause of these errors
are data copy errors; 2) we considered the correspondence re-
lating the title attribute of MiscPublications in the source
to the attribute title of relation Article in the target to be
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incorrect; 3) we consider all authors that are not related to
any publication in the target to be incorrect. The cause of
this error is a mapping that creates these spurious authors.
Figure 9a shows the precision and recall achieved by rank-
ing on scoring functions fSE and fSize for increasing sizes of
k. Both ranking on side-effect and cause size is very effec-
tive in this use case - both returned the correct cause first.
Thus, we raised the bar and considered a set of errors which
are caused by a set of causes instead of just a single cause:
we have combined the Knuth with the correspondence error
with the same result.

7.4.2 Quality with partital error set
We now use subsets of the ground truth error set EG to

evaluate how well the ranking performs if only incomplete
information is available about the error set. We start with
the full set for the correspondence error (2) from above and
then randomly remove cells to get subsets of decreasing size.
Figure 9b shows how precision and recall are effected if we
only give a subset of the errors to Vagabond.

8. CONCLUSIONS
We have introduced an approach for automatically detect-

ing potential causes for target data errors in data exchange.
Our approach is unique in that we can explain errors which
do not manifest as inconsistencies in the data exchange sce-
narios and considers errors in the data, the correspondences,
and the mapping itself. We presented efficient ranking tech-
niques for causes to present more likely solutions first to
the user and avoid exploring the exponentially large search
space. While ranking is NP-hard in general, using pruning,
partitioning, and additional optimization we can scale to re-
alistically sized datasets, schemas and mappings. In future
work, we will study how to automatically suggest repairs for
errors detected by Vagabond and how to enable the user to
confirm partial solutions as correct and incrementally adapt
the solutions and ranking accordingly.
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APPENDIX
A. PROOFS

Proposition A.1. The size of CCS(E) for an error set
E can be exponential in the number of elements of E.

Proof. Consider a mapping consisting of a single tgd σ ∶
R(a, b)∧S(b, c) → T (a, c) over relationsR(A1,A2), S(A3,A4),
and T (A5,A6). Let E = {T.t1.A6, . . . , T.tn.A6} be an error
set of size n for some tuples t1 to tn in a target instance
J . Assume that there exists exactly one grounding for each
error in E by constructing the instance so that each tuple
from R joins with one tuple from S and vice versa. For
each unique grounding for an e ∈ E there exist at least two
explanations: (1) a copy error which explains the error by
assuming that S.ti.A4 is wrong and (2) a source join error
that explains the error by assuming the join attribute value
R.t′.A2 is incorrect. Thus, we have at least two unique ex-
planations for each error. The number of CES generated by
choosing one of the two for each error is already exponen-
tial.

Proposition A.2 (Monotonicity of fSize and fSE).
Scoring functions fSE and fSize are weakly monotone, but
neither monotone nor strongly monotone.

Proof. Weak monotonicity follows from the definition
of side-effects and semantics of sets in general. A counter
example for monotonicity has been given above.

Theorem 9 (CES Ranking Complexity). Let E be
an error set. Generating the top-k ranked CES from enu-
meration CCS(E) according to scoring functions fSE and
fSize is NP-hard in the size of E for any k ≥ 1.

Proof. We prove this theorem through an reduction from
the NP-hard minmal set cover problem. Let S = {S1, . . . , Sn}
be a set of sets where each set S in S is a subset of a universe
D so that ⋃S∈S S =D. A set cover C is a subset of S so that
the union of all sets in C is the universe D. A solution to
the minimal set cover optimization problem is a cover with
minimal size. We first show a reduction for fSize and then
extend this to a reduction for fSE . Given an instance of
the minimal set cover problem, i.e., a set S and universe D,
we create a CES ranking problem and show that the top-1
ranked CES for this problem corresponds to a solution for
the set cover problem for S. For each element ei in D we
create an error ei with the a single unique grounding (thus,
we can ignore groundings and simply use ei to denote ei and
its unique grounding). Let E denote the set containing all
these errors. For each set Si ∈ S we create an explanation
λi that explains all errors corresponding to elements in the
set, i.e., λi ↝ ej if ej ∈ Si. The generated CES ranking
problem is obviously of linear size. An CES for the trans-
formed instance would be a set Λ of explanations so that
∀e ∈ E ∶ ∃λ ∈ Λ ∶ λ↝ e. That is all errors are explained by at
least one explanation in Λ. According to the construction of
the CES problem this means that each element in D (error)
is contained in at least one set (explanation). Thus, a CES
represents a cover for the input set cover problem. Since,
fSize ranks on the size of Λ, the top-1 ranked CES is the
CES with minimal size (number of explanations). It follows
that the subset of S corresponding to Λ is a solution to the
minimal set cover problem for the input instance and, thus,
generating the top-1 answer according to fSize is NP-hard.
NP-hardness for top-k follows immediately.

For score function fSE we use a similar transformation.
Errors correspond to elements in the universe and expla-
nations to sets. In addition we generate a single unique
side-effect for each explanation λ. Hence, the number of
side-effects is equal to the number of explanations in an ex-
planation set. The remainder of the proof is analog to the
case of fSize.

Lemma A.1. Let f be a weakly monotone scoring func-
tion and Λ an explanation set explaining some errors in E.
The following holds for every CES Λ′ that is an extension
of Λ.

Lower(Λ) ≤ f(Λ′) ≤ Upper(Λ)
Proof. We have to show that for any extension Λ′ of

Λ to a CES the score f(Λ′) falls between Lower(Λ) and
Upper(Λ). Let λj denote an explanation from Λ′ that cov-
ers error ej with j > i. The minimal score for the sin-
gleton set for each such λj is the explanation for error ej
with the minimal score: minλ∈Λj (f({λ})). Applying the
inequality of weak monotonicity, the score of any combi-
nation of Λ ∪ {λj} can be bound by f(Λ) ≤ f(Λ ∪ {λj}) ≤
f(Λ)+f({λj}). By symmetry (exchanging Λ and λj) we get
max(f(Λ), f({λj})) ≤ f(Λ∪ {λj}) ≤ f(Λ) + f({λj}). Using
induction we get the lower and upper bounds of Lemma A.1.

Theorem 10. If f is a weakly monotone scoring func-
tion, then Algorithm 1 returns the top-k ranked explanations
for input error set E according to f .



Proof. In each iteration of the main loop, one explana-
tion set of size i is replaced with one or more explanation
sets of size i + 1. The only exception is if i = n. In this
case the explanation set is removed from the queue. Thus,
the algorithm eventually terminates for any (finite) input.
It remains to show that the returned k explanation sets are
the top-k ranked CES according to f . Trivially, each answer
returned by the algorithm is a CES, because it covers all er-
rors in E. Note that in the initial state of the priority queue,
all CES for {e1} are sorted according to their lower bound
Lower. All potential CES for E are extensions of one (or
more) of these singleton explanation sets, because a CES
for E covers e1 ∈ E. Each loop iteration of the algorithm
preserves the order (since we are inserting into a priority
queue). Now assume at some point in time an explanation
set Λ1 of size n is the first element in the priority queue and,
thus, will be returned. We have to show that f(Λ1) ≤ f(Λ′)
for all Λ′ ∈ CCS(E). We prove this fact by contradic-
tion. Assume there exists such a Λ′ with f(Λ′) > f(Λ1).
Since ∥Λ′∥ = ∥Λ1∥ = n we know that Lower(Λ′) = f(Λ′) =
Upper(Λ′) and Lower(Λ1) = f(Λ1) = Upper(Λ1) holds.
Thus, Lower(Λ′) ≤ Lower(Λ1). Any extension of an ex-
planation set Λ of size i < n to an explanation set Λ′ of
size i + 1 can only increase, but never decrease the lower
bound: Lower(Λ) ≤ Lower(Λ′). This fact follows imme-
diately from the definition of the lower bound property. Let
Λ[i] denote the subset of a CES Λ for E that only contains
explanations for errors e1 to ei. Consider the loop itera-
tion before Λ1 was returned. We know that in this iteration
Λ1[n− 1] was extended to Λ1 (and potentially to additional
CES too). At this point some prefix of Λ′[j] of length j has
to be on the queue. This follows from the fact that Λ′[1] is
in the initial queue and if this explanation set was extended,
then one of the extensions is Λ′[2]. By induction there has
to exist some 1 ≤ j < n so the Λ′[j] is on the queue. We know
that Lower(Λ′[j]) ≤ Lower(Λ′) = f(Λ′) < Lower(Λ1) =
f(Λ1). Thus, after the extension of Λ1[n − 1] to Λ1, Λ′[j]
has to be before Λ1 in the priority queue which contradicts
the fact that Λ1 is the first element. Using the same ar-
gument we can prove that the nth element returned by the
algorithm is the nth ranked CES according to f .

Proposition A.3 (Part. Monoton. of fSE / fSize).
Scoring functions fSE and fSize are strongly partition mono-
tone.

Proof. Follows from the definition of independent par-
titioning.

Theorem 11 (SG Partitioning is Independent). Let
E be an error set for a DES M. A scenario graph partition-
ing PM of E is an independent partitioning.

Proof. This theorem can be proven by induction over
the explanation types. For each combination of two ex-
planation types T1 and T2 we have to show that any two
explanations of these types for any two groundings for er-
rors from different components of SG(M) are independent
(e.g., neither their coverage nor their side-effects do over-
lap). As an example consider two source copy errors λ1 =
(TSC ,OI1) and λ2 = (TSC ,OI2). We have to prove that
Cover(λ1) ∩ Cover(λ2) = ∅ and O1 ∩ O2 = ∅. First we
show that Cover(λ1) ∩Cover(λ2) = ∅. This is proven by
showing that the attributes corresponding to every two pairs
of errors R.t.A and R′.t′.A′ covered by a source copy error

λ have to belong to the same component in SG(M). Af-
terwards, we show that the same applies for the erroneous
values in the source which effectively proves O1 ∩ O2 = ∅.
Consider the definition of a source copy error λ. The cover-
age contains all target values e′ so that there exist a source
value e′′ in OI which is in the copy provenance of e′. Assume
λ1 is explaining R.t.A. For any source value e′′ = S.B.s in
O1, there has to exists a path from R.A to a S.B passing
through a mapping variable σ.V of some mapping σ. This
follows from the definition of copy provenance. Further-
more, for each target value R′.t′.A′ covered by λ1 there has
to exist a path from S.B from some source value e′′ ∈ O1 to
R′.A′ (also follows from the definition of copy provenance).
Thus, for each pair of target attributes from the coverage
of λ1 and/or source attributes corresponding to elements
from OI , the attribute and mapping vars belong to the same
connected component. If follows that neither the coverage
nor the invalidated objects O of two source copy error ex-
planations from different components can possibly overlap.
Proving this property for other combinations of explanation
types is straight-forward.

Theorem 12 (Correctness of PartitionRank). Let
P be an independence partitioning of an error set E and f a
partition monotone scoring function. Algorithm Partition-
Rank produces a top-k for E according to f .

Proof. We first prove that given two CES Λ and Λ′,
if Λ dominates Λ′ (∀i ∈ {1, . . . , n} ∶ vΛ[i] ≤ vΛ′[i]) then
f(Λ) ≤ f(Λ′). We know that

f(Λ) =
n

∑
i=0

Λi[vΛ[i]] (partition monotonicity)

Furthermore, since the CES for individual partitions are
ranked on f we know that Λi[j] ≤ Λi[j′] if j < j′. Given
that Λ dominates Λ′ it follows that f(Λ) ≤ f(Λ′). We prove
the correctness of the algorithm by induction.
Induction Start: At the beginning v1 = [1, . . . ,1] is the
only element in Q and from the domination property we
just have proven follows that v1 represents the top-1 CES
according to f .
Induction Step: Assume we have already produced the
top-m solutions. We have to prove that the next iteration
of the algorithm generates the m + 1 ranked solution. At
this point in time, the first m elements in Q correspond
to the top-m solutions. Q may contain additional elements
that have been produced by expanding each of the first m
vectors. In the current iteration we insert all expansions of
vm (the mth vector in Q) into Q. We have to show, that
(1) all of these expansions will be inserted after vm and (2)
that after the insertion vm+1, the director successor vm, is
the m+ 1th ranked solution. Since each of the extensions of
vm is dominated by vm the first claim trivially holds. We
prove (2) in two steps. Note that the m+1th solution has to
be an direct expansion of one of the top-m solutions. This
is easily shown by contradiction. Assume that vm+1 is no
direct expansion of any of the top-m solutions. Thus, for a
given vi with i < m that can be expanded to vm+1 (at least
on such vi has to exist) we can create a sequence of expan-
sions that create vm+1 from vi. WLOG assume the sequence
is vi, v

′
i, v

′′
i , . . . , vm+1 where none of the elements in the se-

quence is one of the top-m vectors. This contradicts the fact
that vm+1 is the m+1th solution, because v′i dominates vm+1.



Furthermore, since we have added each expansion of any vi
with i < m during the first m − 1 iterations and Q is sorted
according to f it follows that vm+1 has to be the top-m+1th

solution. The algorithm will terminate on any finite input,
because ranked is increased in every loop iteration.

Theorem 13 (Complexity of PartitionRank). Given
an independent partitioning of an error set E and an (in-
cremental) ranking for each partition according to a strongly
partition monotone scoring function f . Algorithm Partition-
Rank generates a top-k ranking for E from the per-partition
rankings in O(k ⋅ ∥P ∥ ⋅ log(k ⋅ ∥P ∥)).

Proof. Producing the top-k answers requires k loop iter-
ations. In each iteration we execute at most ∥P ∥+1 lookups
and insertions on both Q and Done. We implement Done
using a hash table and Q (O(1) for lookup and insertion)
and Q using a tree data structure with log(∥Q∥) for lookups
and insertions. Since we add up to ∥P ∥ elements in each
iteration the size of Q is bound by i ⋅ ∥P ∥ in the ith iteration.
Thus, after k iterations ∥Q∥ is bound by k ⋅ ∥P ∥. Thus, the
complexity of PartitionRank is O(k ⋅ ∥P ∥ ⋅ log(k ⋅ ∥P ∥)).

Theorem 14 (Bound on Per-Partition Ranking).
To produce the top-k CES, Algorithm PartitionRank only ac-
cesses per-partition CES that are one of the top-k CES of
their partition.

Proof. Algorithm PartitionRank produces the top-k an-
swers in k iterations. In each iteration i the sorted list
Q only contains direct extensions of vectors produced in
the previous i − 1 iterations. The initial queue content is
[1, . . . ,1]. Thus, by induction after k iterations, for each
element [v1, . . . , vn] on the queue we know that vi ≤ k for
i ∈ {1, . . . , n}.


