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Abstract—Explaining why a certain answer is in the result of
a query or why it is missing from the result is important for many
applications including auditing, debugging data, and answering
hypothetical questions about data. Both types of questions, i.e.,
why provenance and why-not (missing answer) provenance have
been studied extensively. Provenance games, a game-theoretic
approach to provenance, can provide a unified view on why and
why-not provenance. The power of provenance games, however,
comes at the cost of complexity: a direct approach for computing
game provenance instantiates a large game graph with all possible
tuples that can be formed from values of the active domain
using the rules of a query evaluation game. In this work, we
present a new relational database approach for computing a
much smaller subgraph of the provenance game that is relevant
to the user’s provenance question. In addition to avoiding the
evaluation of a non-stratified win-move Datalog program, we also
exclude parts of the game graph early on if we can determine
that they will not be relevant to explain the user question. We
present an implementation in the GProM provenance database
middleware. Our experimental evaluation demonstrates that the
approach scales to large instances and significantly outperforms
the direct method.

I. INTRODUCTION

Provenance for relational queries records how results of a
query depend on the query’s inputs. This type of information
can be used to explain why (and how) a result is derived by a
query over a given database. Recently, approaches have been
developed that use provenance-like techniques to answer the
question why a tuple (or pattern describing potential tuples)
is missing from the query result. However, the two problems
of computing provenance and explaining missing answers
have been treated in isolation. In this work, we argue that
both problems are instances of the problem of computing
provenance for queries with negation. Intuitively, asking why
a tuple t is absent from Q is equivalent to asking why t is
present in ¬Q. Thus, a provenance model that supports queries
with negation should naturally support why-not provenance.
We demonstrate that provenance games, a game-theoretical
formalization of provenance for first-order queries (i.e., non-
recursive Datalog with negation) satisfies these desiderata.
Unfortunately, a direct implementation of provenance games
is prohibitively expensive. In this work, we develop a new
approach for solving provenance games for a user query in an
efficient bottom-up fashion. We present the first practical im-
plementation unifying why and why-not provenance using our
GProM provenance middleware system that utilizes a relational
database backend to execute first-order (non-recursive Datalog)
queries. Furthermore, we prove that the provenance computed

r0 : Q(X,Y ) : −Train(X,Z), Train(Z, Y )
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Fig. 1: Example database and query
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Fig. 2: Provenance game explaining why Q(n, s)

by our improved approach is correct, i.e., corresponds to the
result obtained using the direct approach.

Example 1. Consider the database in Fig. 1 storing infor-
mation about cities (relation City) and train connections
(relation Train) in the US. The Datalog rule r0 computes
which cities can be reached with one transfer. To clearly
present the graph, abbreviations are used as follow: T =
Train; n = New York; s = Seattle; w = Washington DC and
c = Chicago. Given the result of this query, a user may be
interested to know why they are able to reach Seattle from
New York (why Q(n, s)) with one transfer, or why it is not
possible to reach Seattle from Chicago in the same fashion
(why-not Q(c, s)). The provenance games for these examples
are shown in Fig. 2 and Fig. 3. Here, we only explain the
intuition; see Section III for further details. Seattle can be
reached from New York by either stopping in Washington DC
or in Chicago. These two options correspond to two successful
instantiations of rule r0 with X = n, Y = s, and Z = w
(respectively, Z = c) (Fig. 2, 2nd line). A rule instantiation is
successful if all grounded goals in the rule body evaluate to
true. In the provenance game, this is represented through goal
nodes that are connected to the rule node and to relation nodes
for the goals’ predicates (Fig. 2, 3rd line). Existing tuples are
represented as relation nodes which are won (green) whereas
missing tuples are represented as relation nodes which are lost
(red) (Fig. 2, 4th line and 5th line). A rule node is lost if the
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Fig. 3: Provenance game explaining why-not Q(c, s)

body of the rule can not be refuted (i.e., the rule instantiation
is successful) and won if it can (the instantiation failed). The
game-theoretic foundation of this provenance model will be
explained further in Section III. Finally, existing tuples are
connected to EDB rule nodes (Fig. 2, 6th line). In summary,
the example provenance game explains the existence of tuple
Q(n, s) based on two successful instantiations of rule r0 which
are justified through existing Train tuples in the EDB. The
game provenance model supports first-order queries (i.e., Dat-
alog with negation, but no recursion). As explained above, this
means that the model can also explain missing answers. The
example tuple Q(c, s) is missing from the query results, because
all rule instantiations using values from the active domain
adom(I) of the database instance I that could have derived
this tuple (with head Q(c, s)) have failed. In the example, there
are four failed instantiations of rule r0 corresponding to four
cities that can not be used as intermediate stops on the way
from Chicago to Seattle. A rule is lost if at least one goal in the
body is lost. Thus, in the provenance game, only failed goals
are connected to the failed rule binding explaining a missing
answer. For instance, we cannot reach Seattle from Chicago
with an intermediate stop in Washington DC (Fig. 3 the first
failed rule from the left in 3rd line), because there is no direct
connection from Chicago to Washington DC whereas the direct
connection between Washington DC and Seattle exists. Failed
positive goals in the body of a failed rule are explained by
missing tuples (lost relation nodes). In this example, these are
relation nodes that are not connected to EDB rule nodes.

A. Problem Definition

The problem we address in this work is how to explain
the existence or absence of (sets of) tuples using provenance
games. The two questions presented in the previous example
used constants only, but the user can also ask questions
involving variables, e.g., for a question Q(n,X) we would
return all explanations for existing or missing tuples where
the first attribute is n, i.e., why or why-not can city X be
reached from New York with one transfer.

Definition 1 (Explanation). Let P be a first-order query
expressed as a Datalog program, Q be an IDB predicate,
and I an instance. A why/why-not question is an atom Q(t)
where t = (v1, . . . , vn) is a tuple consisting of variables and
constants from the active domain of I . We say an atom Q(t′)
matches an atom Q(t), if we can unify Q(t′) with Q(t) by
replacing variables in t with variables or constants from t′. The
explanation EXPL(P,Q(t), I) for Q(t) according to P and I ,
is the subgraph of the provenance game for P and I containing

only nodes that are connected to at least one node where Q(t′)
matches Q(t). We use WHY(Q(t)) and WHYNOT(Q(t)) to
denote a question where the user is only interested in existing
(won) or respective missing (lost) tuples that match Q(t).

B. Overview and Contributions

The existing approach for computing provenance
games [21] allows for uniform treatment of provenance
and missing answer problems and provides a meaningful
semantics for negation. The approach requires instantiation of
the whole game for the instance, evaluation of a non-stratified
Datalog program using well-founded semantics [11] over this
graph, removal of edges that correspond to bad moves in the
game, i.e., moving to a position won by the other player, and,
finally, determining subgraphs related to the user question.
While this approach is correct, it is prohibitively expensive. A
critical problem is the size of the instantiated game which is
O(‖adom(I)‖k) where k is the maximal number of variables
of rules in the input program and adom(I) is the active
domain of the database instance I . As an example consider a
database with 100 values and a rule with 5 variables. There
are in the order of 1005 = 1010 nodes in the instantiated
game. Typically, most of the nodes in the instantiated game
will not end up being in the explanation for the user questions,
because they are not connected in the final provenance game
graph. In our approach, we employ several optimizations that
reduce the amount of disconnected nodes that are created.
First, our solution exploits information encoded in the user
question, e.g., based on the constants in t, only certain
nodes can be connected to Q(t) in the provenance game.
For instance, in the running example, Q(n, s) can only be
connected to instantiations of rule r0 with X = n and Y = s.
In turn, this implies that we are only interested in train tuples
Train(n,Z) and Train(Z, s). Our approach propagates this
type of information in a top-down traversal of the program.
Additionally, based on the user question, we may be able to
predetermine that we are only interested in won or lost states
for certain nodes types (e.g., in the example, we are only
interested in existing Train relation tuples). In addition, by
simultaneously instantiating and solving the game, we avoid
the execution of a non-stratified program and only create
edges in the graph that are relevant for the user questions.

In summary, the main contributions of this work are:

• We demonstrate that the recently introduced prove-
nance games model can serve as a unified framework
for provenance of queries with negation and why-not
provenance, and discuss the relationship of this model
to provenance and missing answer approaches.

• We present an efficient approach for computing the
explanation (provenance games) for a why or why-
not question using Datalog. In contrast to the solution
introduced in [21], our approach exploits information
encoded in the question and avoids unnecessary work
by simultaneously instantiating and solving the game.

• We formally prove the correctness of our algorithm for
computing the provenance game for a user question.

• We present a full implementation of our approach
in the GProM provenance database middleware that



compiles provenance game computations expressed
in Datalog into relational algebra, optimizes these
relational algebra expressions, and translates the opti-
mized expression into SQL code that can be executed
by a standard relational database backend.

The remainder of the paper is organized as follows. In
Section II, we discuss related work. We introduce prove-
nance games in Section III and demonstrate how to compute
provenance games efficiently in Section IV. We present our
implementation in Section V, discuss experimental results in
Section VI, and conclude in Section VII.

II. RELATED WORK

There are several lines of work related to the research
presented in this paper. Obviously, game provenance has strong
connections to other provenance models for relational queries,
most importantly the semiring annotation framework, and
approaches for explaining missing answers.

Database Provenance. There is a large body of work on
models for provenance of database queries (e.g., see [7],
[19]). The semiring annotation framework has developed into
a quasi-standard for representing the provenance of positive
relational algebra (and, thus, positive non-recursive Datalog
queries). In this model, tuples in a relation are annotated with
elements from a commutative semiring K. It has been shown
that by choosing certain semirings the K-relational model
extends several extensions of the relational databases (in-
cluding set-semantics, bag-semantics, and event-tables). More
importantly for our purpose, this model also subsumes multiple
relational provenance models. An essential property of the K-
relational model is that there exists a semiring, the semiring
of polynomials over a set of variables X with natural num-
ber coefficients, which generalizes all other semirings. This
semiring N[X] is often called the provenance polynomials
semiring. It has been shown in [21] that provenance games for
positive queries generalize provenance semirings, and, thus all
other provenance models expressible as semirings. They are
closely related to boolean circuit representations of semiring
provenance for Datalog programs [9] - both models explicitly
share common subexpressions in the provenance. Exploring
the relationship of provenance games for queries with negation
and m-semirings (semirings with support for set difference) is
an interesting avenue for future work. Justifications for outputs
of logic programs [22] are also closely related. Recently,
an algebraic model which uses semirings but with explicit
negative tokens [8] which supports Datalog programs with
negation has been studied.

Why-not and Missing Answers. Approaches for explaining
missing answers, i.e., explaining why expected tuples are
not in the results of a query can be classified based on
whether they explain a missing answer by the query [3], [4],
[3], [24], [6] (i.e., which operators did filter out tuples that
would have contributed to the missing answer) or by the
input data [17], [18] (i.e., what tuples need to be inserted
into the database to turn the missing answer into an answer).
The missing answer problem was first stated for query-based
explanations in the seminal paper by Chapman et al. [6].
Huang et al. [18] first introduced an instance-based approach.
Since then, several techniques have been developed to exclude

spurious explanations, to support larger classes of queries [17],
to combine instance and query-based explanations [16], and
for distributed systems based on Datalog in Y! [25]. The
approaches for instance-based explanations (with the exception
of Y!) have in common that they treat the missing answer
problem as a view update problem: the missing answer is a
tuple that should be inserted into a view corresponding to the
query and this insert has to be translated into the database
instance. An explanation is then one particular solution to this
view update problem. Many approaches do not return a random
answer, but instead try to optimize for minimal side-effects
on the base tables or views (requiring view maintenance).
In contrast to these approaches, provenance games explain a
missing answer by enumerating all failed rule derivations that
would have caused the answer to be in the result. Y! applies
a resolution approach to explains missing answers top-down,
but also limits the result to one explanation. Solutions for the
missing answer problem as defined in previous work can be
extracted from the provenance game for an missing answer.
So in a sense, provenance games generalize these approaches
(for the class of queries supported by provenance games, e.g.,
we do not currently support aggregation). Interestingly, recent
work has shown that it may be possible to generate more
concise summaries of provenance games [12], [23] which is
particularly useful for negation and missing answers to deal
with the potentially large size of the resulting provenance
games. This approaches are complementary to our work and
in fact would benefit from it, because these approaches would
benefit from our efficient computation of provenance games.

Computing Provenance Declaratively. The concept of rewrit-
ing a Datalog program using firing rules to capture prove-
nance as variable bindings of rule instantiations was used for
provenance-based debugging of positive Datalog queries [20]
and later adopted for using provenance to inject faults to dis-
covering bugs in distributed systems specified in Daedalus [1]
(a distributed Datalog language). These rules are also equiv-
alent to Datalog implementations of the semiring model in
Orchestra [15], LogicBlox [14], and the Perm system’s [13]
rewrites for SPJ queries. An extension for distributed systems
using either full propagation or reference based provenance
has been proposed for ExSPAN [26]. Extensions of this type of
rules for negation are one of the main enablers of our approach
for computing provenance games.

III. PROVENANCE GAMES

Provenance Games as introduced by Köhler et al. [21]
provide explanations EXPL(P,Q(t), I) for all atoms Q(t) in
non-recursive Datalog¬ programs P . They express evaluation
as a 2-player game in a game-theoretic sense. The provenance
game consists of 1) a game graph and 2) a set of simple
rules. In the game graph, nodes are positions in the game
while directed edges represent potential moves that the player
in the originating node can choose from. The game rules are
as follows: a game starts in any position and players take turns
by choosing an outgoing edge to follow until the game ends
in a node without an outgoing edge. At this point, the player
who has to make the next move has lost. Since each player is
assumed to play perfectly, a node is won (the player won) if
following any outgoing edge reaches a lost node. A node is lost
if all outgoing edges lead to won nodes (there is no way for
this player to win). As shown in [21], games for non-recursive



Datalog¬ programs (FO queries) have no cycles and thus do
not allow for draws. Now, we illustrate how to construct and
solve a provenace game graph according to Köhler et al. [21].

A. Evaluation Games

Evaluation game is constructed from a program and a given
EDB instance using the following definition.

Definition 2 (Evaluation Game). The evaluation game GQ,I
for a program Q and EDB instance I is a game graph defined
over the grounded program. The nodes of GQ,I are:

• A postive and a negative relation node R(x) and
¬R(x) for each ground atom R(x)

• A rule node ri(x, y) and corresponding goal nodes
gji (xj) or gji (xj , yj) for each grounded rule ri. Here,
xj and yj denotes the arguments of the jth goal in
the grounded rule.

• An EDB rule node rR(x) for every tuple R(x) ∈ I .

The edges of GQ,I are: (¬R(x), R(x)) for each relation
node pair R(x) and ¬R(x); (R(x), ri(x, y)) for each rela-
tion node R(x) and rule node ri(x, y) where the grounded
head of grounded rule ri(x, y) is R(x); (ri(x, y), gji (xj)) for
each rule node ri(x, y) and corresponding goal node gji (xj);
(gji (xj),¬R(x)) for each node for a negative goal gji where
R is the goal’s predicate; (gji (xj), R(x)) for each node for a
positive goal gji where R is the goal’s predicate; (R(x), rR(x))
for each relation node R(x) and rule node rR(x) if R(x) ∈ I .

Fig. 4 shows the instantiated game for query QABC with
input database I = {B(a, b), B(b, a), C(a)}:

r1 : A(X) :− B(X,Y )︸ ︷︷ ︸
g

, ¬ C(Y )︸ ︷︷ ︸
g

(QABC)

B. Solved Evaluation Games

An evaluation game graph, modelled as an edge relation
move(X,Y ), can be solved by evaluating the non-stratified
Datalog program win(X) :− move(X,Y ),¬ win(Y ) under the
well-founded semantics [11]. In the solved game, every node
is marked as either won or lost. Formally, given an evaluation
game GQ,I(V,E), we use GΓ

Q,I(V,E,Γ) to denote the solved
game where Γ : V → {won, lost} is a function that maps
nodes to their won/lost state. Any relation node that is marked
as won corresponds to an existing tuple in the IDB or EDB
and a lost relation node corresponds to a missing tuple. Thus,
solving the instantiated game for a program Q and instance
I is akin to evaluating Q over I . The solved game for the
running example in this section is also shown in Fig. 4. Here,
we see that I has a winning strategy for e.g., A(a), B(b, a),
and C(a), as these are part of instance.

C. Deleting Bad Moves aka Provenance Games

A solved evaluation game already provides all information
about the provenance of program Q. However, parts of the
game graph are irrelevant for explaining existing and missing
tuples in the IDB relations. Intuitively, if we look at the sub-
graph rooted at an (negated) IDB relation node, this subgraph
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Fig. 4: Solved instantiated game GλQABC,I
. Lost positions are

(dark) red; won positions are (light) green. Provenance edges
(good moves) are solid; bad moves are dashed. A(a) (resp.
A(b)) is true (resp. false), indicated by position value W (resp.
L). The game provenance Γ(A(a)) explains why A(a) is true.

explains how the tuple was produced (or failed to be produced).
Some edges in such a subgraph correspond to non-optimal
moves while we require players to play optimal. We use an
edge-labeling function λ : V ×V → {good, bad} to distinguish
different types of moves. λ(x1, x2) = bad if both x1 and x2

are won, otherwise λ(x1, x2) = good.

The provenance game is derived from a solved game by
excluding bad moves. The game provenance for a particular
tuple (relation node) is defined as the node’s transitive closure,
i.e., for a question Q(t), the subgraph rooted at the nodes
matching question (in case t only has constants, this will
be exactly one node). For WHY (WHYNOT) questions, only
subgraphs rooted at won (lost) nodes are considered.

Definition 3 (Provenance Game). Let Gλ = (V,M, γ) be
a solved game. The provenance game Γ is the good-labeled
subgraph of Gλ. For x ∈ V , we define Γ(x) as the subgraph
of Γ, reachable via λ edges. Note that for a user question Q(t),
Γ(Q(t)) is the explanation for Q(t) according to Definition 1.

D. Naive Provenance Game Computation

Having presented some basic background on provenance
games, we are now ready to explain the top-down approach
for computing a provenance game that was introduced in [21].
A Datalog program is generated that computes the move graph
of the instantiated game according to Definition 2. Fig. 5 shows
the result for the example program QABC. Here, domain d
denotes a relation storing adom(I), and skolem functions are
used to create node identifiers.

The game instantiated in this fashion is then solved by
evaluating it together with the win-move program using well-
founded semantics. The provenance game is obtained by dis-
carding bad edges, λ(X,Y ) = bad, and computing a restricted
move relation M ′ using the following Datalog rule:

M′(X,Y ) :− M(X,Y ),¬ win(X)

M′(X,Y ) :− M(X,Y ),¬ win(Y )

These rules ensure that at least one node of each edge is lost.
To obtain the provenance for a question, the graph needs to
be restricted to nodes reachable from any node matching the



Atoms A,B, and C
M(f¬A(X), fA(X)) :− d(X).
M(f¬B(X,Y ), fB(X,Y )) :− d(X), d(Y ).
M(f¬C(X), fC(X)) :− d(X).

IDB A via rule r1

M(fA(X), fr1(X,Y )) :− d(X), d(Y ).
M(fr1(X,Y ), fg11(X,Y )) :− d(X), d(Y ).
M(fr1(X,Y ), fg21(Y )) :− d(X), d(Y ).
M(fg11(X,Y ), f¬B(X,Y )) :− d(X), d(Y ).
M(fg21(X), fC(X)) :− d(X).

EDB B and C
M(fB(X,Y ), frB(X,Y )) :− B(X,Y ).
M(fC(X), frC(X)) :− C(X).

Fig. 5: Datalog Rules for Computing a Relational Encoding of
an Instantiated Evaluation Game for QABC.

question. A Datalog program is generated that computes a
reduced move relation Mu for the why question Q(t):

Mu(fQ(t), Y ) :− M′(fQ(t), Y ), Q(t)

Mu(Y,Z) :− Mu(X,Y ), M′(Y, Z)

Note that in [21], the last two steps (computing M ′ and Mu)
are not described in an algorithmically. We have chosen a
straightforward implementation.

IV. COMPUTING PROVENANCE GAMES WITH DATALOG

In Section III, we reviewed an elegant and simple solution
for computing the relational encoding of a provenance game.
While this solution is easy to understand, it is computationally
expensive. In this section, we present a novel approach to
compute provenance games for a given query Q efficiently.
We also show how this approach can be implemented using
a standard relational database. In particular, we generate a
datalog program that computes the game bottom-up where
pieces of the game are instantiated and solved simultaneously.
In our solution, we exploit the fact that only certain nodes
can be connected to atoms covered by the user questions.
For example, consider a program Q(X) :− R(X,Y ) and a user
question Q(1). Since the user asks about X = 1, only those
parts of the graph which agree with X = 1 are instantiated,
solved, and shown in the provenance game (PG) graph.

Given a question Q(t) for an instance I and program P , our
approach constructs a Datalog program GP(Q(t), P ) which
evaluated over I will return the edge relation of Γ(Q(t)), the
subgraph of the provenance game for P and I restricted to
nodes connected to Q(t). We can then construct a graphical
representation of provenance (e.g., the graphs shown in this
paper were produced by our implementation). The program
GP(Q(t), P ) is generated using the following steps:

1. We first unify the program with the user question Q(t) by
propagating the constants in t throughout the program in a
top-down fashion. Replacing variables in the program with
constants in this way is correct, because only nodes with these
bindings may be connected to Q(t) in the PG.

2. Afterwards, we determine for which nodes in the graph
we can predetermine whether they will be won or lost based

on whether the user question atom is won or lost. We model
this information as adornments on atoms in the rules of the
program and propagate these adornments top-down.

3. Based on the annotated and unified game created in the
previous steps, we generate rules that capture the variable
bindings for successful and failed rule instantiations. The
adornments enable us to determine whether we can focus on
successful or failed instantiations only. The results of these
firing rules are sufficient for creating the PG graph.

4. Being an answer to a firing rule is a necessary, but not
sufficient condition for the PG graph fragment corresponding
to this rule binding to be connected to the user question. To
guarantee that only relevant fragments are returned, we have
to filter out rule bindings by checking connectivity.

5. Finally, we create rules that generate the edge relation of
the PG based on the rule bindings information.

In the following, we will explain each step in detail and
illustrate its application based on the following example.

Example 2. Consider the following query over the train
relation (T) from the running example computing which cities
can be reached from each other through exactly two hops in
the train connection graph, but not directly. Assume the user
asks why only2hop(n, s), i.e., why can Seattle be reached
from New York in this fashion.

r1 : only2hop(X,Y ) :− T(X,Z), T(Z, Y ),¬T(X,Y )

A. Unify the Program with the User Question

Intuitively, the node only2hop(n, s) in the PG graph
is only connected to rule instantiations which return
only2hop(n, s). For instance, if variable X is bound to c in
an instantiation of rule r1 then this rule cannot return (n, s).
This reasoning can be applied recursively to replace variables
in Datalog rules with constants. That is why we unify the rules
in the program top-down with the user question.

Example 3. Given the user question why only2hop(n, s), we
unify the single rule r1 using the assignment (X = n, Y = s):

r
(X=n,Y=s)
1 : only2hop(n, s) :− T(n,Z), T(Z, s),¬ T(n, s)

For EDB relations we introduce a new rule for each binding
with head UR and the unified atom as the body.

T (X=n) : UT(n,Z) :− T(n,Z)

T (Y=s) : UT(Z, s) :− T(Z, s)

T (X=n,Y=s) : UT(n, s) :−¬ T(n, s)

As the example illustrated above, we may have to create
multiple partially unified versions of a rule or EDB atom. Note
that the results of this step are not meant to be evaluated. We
simply use this unified program to provide information about
potential bindings that may lead to PG fragments connected
to the user question. The pseudocode for this step is shown in
Algorithm 1. For all rules creating the user question predicate,
we unify the head of each rule with the user question. This
may cause some of the variables occurring in the body to be
replaced by constants. The body atoms of the unified rules are
then appended to a todo list. The algorithm processes each



Algorithm 1 Unify Program With User Question
1: procedure UNIFYPROGRAM(P , Q(t))
2: todo← [Q(t)]
3: done← {}
4: PU = []
5: while todo 6= [] do
6: a← POP(todo)
7: INSERT(done, a)
8: rules← GETRULESFORATOM(P, a)
9: for all r ∈ rules do

10: unRule← UNIFYRULE(r, a)
11: PU ← PU ::unRule
12: for all g ∈ body(unRule) do
13: if g 6∈ done then todo← todo :: g

14: return PU

atom on the todo list by applying the same type of unification
to each rule creating this atom until the todo list is empty. We
keep track of which unified head atoms have been processed
so far to avoid creating the same unified rules more than once
(the same unified atom may appear as a goal in several rules).

B. Add Won/Lost Adornments

The user question provides us with the information that an
atom is won or lost (is absent or present in the IDB). Based
on this fact, we can infer restrictions on the won/lost state of
nodes that are connected to the user question atom in the PG
graph. 1 We store this information as adornments T , F , and
F/T on atoms in rules. Here T indicates that we are only
interested in won nodes, F that we are only interested in lost
nodes, and F/T that we are interested in both.

Example 4. Since we know that only2hop(n, s) is won,
we can determine the won/lost states of rules in the unified
program. Adornments are determined based on a top-down
propagation seeded with the user question. For instance, in
the example the won status of Q(n, s) implies that only won
goal nodes can be connected to the relation node. Note that
this adornment does not imply that this rule r1 would be won
for every Z, it only indicates that it is sufficient to focus on
won rule instantiations since lost ones can not be connected
to the user question.

r
(X=n,Y=s),T
1 :

only2hop(n, s)T :− T(n,Z)T , T(Z, s)T ,¬ T(n, s)T

We now propagate the adornments of the goals in r1 through-
out the program. Note that for negated goals we propagate the
opposite adornment. For instance, for ¬ T(n, s)T we annotated
the head of rule T (X=n,Y=s) with F .

T (X=n),T : UT(n,Z)T :− T(n,Z)

T (Y=s),T : UT(Z, s)
T :− T(Z, s)

T (X=n,Y=s),F : UT(n, s)
F :−¬ T(n, s)

Atoms may occur in both negative and positive goals of
the rules of program. If an atom may be both won or lost,
then we create two adorned versions of the rules for this

1If we do not trust the user, we can run a simple query to determine whether
the user atom is won or lost.

atom. This is denoted by using F/T adornments for the
EDB rules corresponding to these relations. The use of these
adornments will become more clear in the next subsection
when we introduce firing rules, i.e., rules that capture the
variable bindings of failed and successful rule instantiations.

Algorithm 2 is used to compute these adornments. Similar
to the unification step, we start by adorning each rule with the
user question predicate in the head. A rule is adorned by first
adorning the head and then propagating the head adornment to
the body goals. As in step 1, we keep a queue todo of atoms
to process and record which atoms have been processed already
(set done). For predicates in the body of a rule adorned with
T , all positive goals are appended to the todo list with T
adornments. For negated goals, F adornments are used. The
rationale behind this approach is that if we are only interested
in existing tuples derived by a rule r, then this implies that
we are only interested in existing tuples for the predicates of
positive goals and missing tuples for the predicate of negated
goals. For rules with F adornments, we are only interested
in missing head predicate tuples. As explained above, we
have to compute both existing and missing tuples for goals
to capture all different possibilities of failures (represented as
F/T adornments). Thus, for predicates in the body of a rule
adorned with F , all goal predicates are pushed to the end of
the todo list with F/T adornments. For each goal, if this goal’s
predicate has not been processed before and the goal predicate
is IDB (EDB predicates do not occur as head predicate of a
rule and, thus, do not need to be adorned), it is appended to
the todo list.

After all rules have been adorned, we remove rules adorned
with F or T if there exists the same rule with adornment
F/T , because for rules adorned with F/T we will compute
both successful and failed bindings as explained in the next
subsection. The function SWITCHSTATE, used in the algorithm,
switches F and T and maps F/T onto itself.

C. Creating Firing Rules

To be able to compute the relevant part of the PG graph for
a user question, we need to determine successful and failed rule
instantiations. Each rule instantiation paired with the informa-
tion whether it is successful given the database instance (and
which goals are failed in case it is not successful) corresponds
to a certain PG subgraph. Successful rule instantiations are
always part of the PG graph whereas failed rule instantiations
only appear in the PG graph if their head atom is lost, i.e.,
there does not exist any successful rule instantiation of any
rule with this head atom. To capture the variable bindings of
successful rule instantiations, we create “firing rules”. A “firing
rule” consists of the body of the original rule in the program
and a new head predicate that contains all variables used in the
rule. For instance, the firing rule for rule r : Q(X) :− R(X,Y )
would be Fr,T(X,Y ) :− R(X,Y ).

Example 5. Consider the adorned program for question
only2Hop(n, s). We generate the firing rules shown in Fig. 6.
The firing rule for r(X=n,Y=s),T

1 is derived from r1 by adding
Z, the only existential variable in r1, to the head, renaming the
head predicate as Fr1,T, and replacing each goal with its firing
version. Note that negated goals are replaced with firing rules
that have inverted adornments. For example, the goal ¬ T(n, s)
is replaced with FT,F(n, s).



Algorithm 2 Compute Won/Lost Adornments
1: procedure ADORNPROGRAM(PU , Q(t))
2: state← typeof(Q(t))
3: todo← [Q(t)state]
4: done← {}
5: PA = []
6: while todo 6= [] do
7: a← POP(todo)
8: state← typeof(a)
9: INSERT(done, a)

10: rules← GETUNRULESFORATOM(P, a)
11: for all r ∈ rules do
12: adRule← ADORNRULE(r, state)
13: PA ← PA :: adRule
14: for all g ∈ body(adRule) do
15: if state = F then
16: newstate← F/T
17: else
18: newstate← state
19: if ISNEGATED(g) then
20: newstate← SWITCHSTATE(state)

21: if gnewstate 6∈ done ∧ ISIDB(g) then
22: todo← todo :: gnewstate

23: for all r ∈ PA do
24: if typeof(r) = F/T then
25: PA ← REMOVEADOREDRULES(PA, r, {F , T})
26: return PA

Fr1,T(n, s, Z) :− FT,T(n,Z), FT,T(Z, s), FT,F(n, s)

FT,T(n,Z) :− T(n,Z)

FT,T(Z, s) :− T(Z, s)

FT,F(n, s) :−¬ T(n, s)

Fig. 6: Example Firing Rules

FQ,F(1) :−¬ FQ,T(1)

FQ,T(1) :− Fr,T(1, Y, Z)

Fr,F(1, Y, Z, V1, V2) :− FQ,F(1), FR,F/T(1, Z, V1), FS,F/T(Z, Y, V2)

Fr,T(1, Y, Z) :− FR,F/T(1, Z, true), FS,F/T(Z, Y, true)

FR,F/T(1, Z, true) :− FR,T(1, Z)

FR,F/T(1, Z, false) :− FR,F(1, Z)

FR,T(1, Z) :− R(1, Z)

FR,F(1, Z) :− adom(Z),¬ R(1, Z)

FS,F/T(X1, X2, true) :− FS,T(X1, X2)

FS,F/T(X1, X2, false) :− FS,F(X1, X2)

FS,T(X1, X2) :− S(X1, X2)

FS,F(X1, X2) :− adom(X1), adom(X2),¬ S(X1, X2)

Fig. 7: Example Firing Rules for Why-not Question

For a failed rule instantiation where the head atom is a
missing tuple, we need to know which goals are successful,
because only failed goals are connected to the node repre-
senting this rule instantiation in the PG graph. To capture
this information we add additional variables - Vi for goal gi
- to a firing rule’s head that record which goal is succesful
(corresponding to won respective lost goal node in the PG).

Algorithm 3 Create Firing Rules
1: procedure CREATEFIRINGRULES(PA, Q(t))
2: PF ← []
3: state← typeof(Q(t))
4: todo← [Q(t)state]
5: done← {}
6: while todo 6= [] do . create rules for a predicate
7: R(t′)σ ← POP(todo)
8: INSERT(done,R(t′)σ)
9: if ISEDB(R) then

10: CREATEEDBFIRINGRULE(PF , R(t)σ)
11: else
12: CREATEIDBNEGPREDRULE(PF , R(t)σ)
13: rules← GETRULES(R(t′)σ)
14: for all r ∈ rules do . create firing rule for r
15: args← (vars(r)− vars(head(r)))
16: args← args(head(r)) :: args
17: CREATEIDBPOSPRE-

DRULE(PF , R(t′)σ, r, args)
18: CREATEIDBRULEFIR-

INGRULE(PF , R(t′)σ, r, args)
19: return PF

The body of a firing rule for failed rule instantiations is created
by adding the negated head atom to the body (to check that
the instantiation is part of an explanation for the failure to
derive this atom and not one of the failed rule instantiations
for a head atom that is part of the IDB) and by replacing all
predicates in the body with their firing counterpart.

Example 6. Consider a why-not question Q(1) for a program
r : Q(X) :− R(X,Z), S(Z, Y ). The firing rules are shown in
Fig. 7 with the exception of the rules for S which are analog
to the rules for R. Since Q(1) is lost, we are only interested
in failed rule instantiations of r with X = 1. Furthermore,
each rule node in the PG corresponding to such a rule
instantiation will only be connected to lost subgoals. Thus, as
mentioned above, we need to capture which goals are won/lost
for each such rule instantiation. This is modelled through
boolean variables V1 and V2 that are true if the corresponding
goal is won and false otherwise. Thus, we also need firing
rules for the relations mentioned in the subgoals that record
both existing and absent tuples and use a boolean variable
to record whether a tuple is present respective absent. IDB
relation Fr,F(1, Y, Z, V1, V2) will contain all variable bindings
for instantiations of rule r such that Q(1) is the head, the
rule instantiation is failed, and the ith goal is won/lost for
this binding iff Vi is true/false. To produce all these bindings,
we need rules capturing won and lost relation nodes for each
subgoals for rule r. We denote such rules using an T/F
adornment. For EDB relations, we will create two rules: one
for the won and one for the lost case. For the lost case we
use a predicate adom to bind variables to all values in the
activate domain (for safe negation).

The algorithm for creating the firing rules for an adorned
input program is shown as Algorithm 3. The algorithm main-
tains a list of adorned atoms that need to be processed that is
initialized with the user question. For each such atom R(t′)σ

(here σ is the adornment of the atom) it creates firing rules
for each rule r that has this atom as a head, for existing tuples
for R, and a firing rule FR,F(t

′) for missing tuples (only if the



Algorithm 4 Create Firing Rules Subprocedures
1: procedure CREATEEDBFIRINGRULE(PF , R(t)σ)
2: [X1, . . . , Xn]← vars(t)
3: rT ← FR,T(t) :−R(t)
4: rF ← FR,F(t) :− adom(X1), . . . , adom(Xn),¬R(t)
5: rF/T−1 ← FR,F/T(t, true) :− FR,T(t)
6: rF/T−2 ← FR,F/T(t, false) :− FR,F(t)
7: if σ = T then
8: PF ← PF :: rT
9: else if σ = F then

10: PF ← PF :: rT :: rF
11: else
12: PF ← PF :: rT :: rF :: rF/T−1 :: rF/T−2

1: procedure CREATEIDBNEGPREDRULE(PF , R(t)σ)
2: [X1, . . . , Xn]← vars(t)
3: if σ 6= T then
4: rnew ← FR,F(t) :− adom(X1), . . . , adom(Xn),¬ FR,T(t)
5: PF ← PF :: rnew
6: if σ = F/T then
7: rT ← FR,F/T(t, true) :− FR,T(t)
8: rF ← FR,F/T(t, false) :− FR,F(t)
9: PF ← PF :: rT :: rF

1: procedure CREATEIDBPOSPREDRULE(PF , R(t)σ , r, args)
2: rpred ← FR,T(t) :− Fr,T(args)
3: PF ← PF :: rpred

1: procedure CREATEIDBRULEFIRINGRULE(PF , R(t)σ , r)
2: bodynew ← []
3: for all gi( ~X) ∈ body(r) do
4: σgoal ← T
5: if ISNEGATED(g) then
6: σgoal ← F

7: gnew ← Fpred(gi),σgoal(
~X)

8: bodynew ← bodynew :: gnew
9: if g( ~X)T 6∈ (done ∪ todo) ∧ σ = T then

10: todo← todo :: g( ~X)σgoal

11: rnew ← Fr,T(args) :− bodynew
12: PF ← PF :: rnew
13: if σ 6= T then
14: for all gi ∈ body(r) do
15: if ISNEGATED(gi) then
16: args← args ::¬bi
17: else
18: args← args :: bi
19: bodynew ← []
20: for all gi( ~X) ∈ body(r) do
21: gnew ← Fpred(gi),F/T(

~X, bi)
22: bodynew ← bodynew :: gnew
23: if g( ~X)F/T 6∈ (done ∪ todo) then
24: todo← todo :: g( ~X)σgoal

25: rnew ← Fr,σ(args) :− bodynew
26: PF ← PF :: rnew

atom is adorned with F/T or F ).

EDB atoms. For an EDB atom R(t)T we use procedure
CREATEEDBFIRERULE to create one rule FR,T(t) :−R(t) that
“copies” the EBD relation R. For missing tuples (R(t)F ) we
extract all variables from t (some arguments may be constants
propagated during unification) and create a rule that returns all
tuples that can be formed from values in the active domain and
do not exist in R. This is achieved by adding goals adom(Xi)
to bind each such variable Xi to all values from adom(I) and
checking that the resulting tuple does not exist in R (¬R(t)). If

Fr1,T(n, s, Z) :− FT,T(n,Z), FT,T(Z, s), FT,F(n, s)

FCT,r11,T(n,Z) :− T(n,Z), Fr1,T(n, s, Z)

FCT,r21,T(Z, s) :− T(Z, s), Fr1,T(n, s, Z)

FCT,r31,F(n, s) :−¬ T(n, s), Fr1,T(n, s, Z)

Fig. 8: Example Firing Rules with Connectivity Checks

Algorithm 5 Add Connectivity Joins
1: procedure ADDCONNECTIVITYRULES(PF , Q(t))
2: PFC ← []
3: paths← PATHSTARTINGIN(PF , Q(t))
4: for all p ∈ paths do
5: p← FILTERRULENODES(p)
6: for all e = (r1( ~X1)

σ1 , r2( ~X2)
σ2) ∈ p do

7: goals← GETMATCHINGGOALS(e)
8: for all gi ∈ goals do
9: gnew ← UNIFYHEAD(Fr1,σ1(t1), gi, Fr2,σ2(t2))

10: rnew ← FCr2,ri1,σ2(t) :− body(Fr2,σ2(t2)), gnew
11: PFC ← PFC :: rnew
12: return PFC

the atom is adorned F/T , then two additional rules are added
- one capturing existing and one missing tuples. A constant
argument true respective false in the rules head is used to
distinguish between existing and missing tuples.

IDB atoms. Firing rules for IDB predicates create an ad-
ditional level of indirection by splitting each rule rT :
R(t) :− g1( ~X1), . . . , gn( ~Xn) into two rules: one representing
rule bindings for r (with Fr,σ as head predicate and the firing
versions of the goals as body) and one with the firing version
of R as a head and Fr,σ as the body. Procedure CREATEIDB-
NEGPREDRULE creates rules for tuples missing from an IDB
predicate. For an IDB atom R(t)F , i.e., tuples missing from R,
we create a rule FR,F(t) :−¬ adom(X1), . . . , FR,T(t). That is,
a tuple is missing from R if it is not in R. We create one rule
with head FR,T(t) for each rule with R as a head. The creation
of these rules is described below. Atoms adorned with F/T
are handled as described above for EDB atoms.

Rules. For the positive case, we create one rule
FR,T(t

′) :− Fr,T( ~X) where ~X is the concatenation of t′

with all existential variables from the body and a second
rule with head Fr,T( ~X) and the same body as r except that
each goal is replaced with its firing version with appropriate
adornment (e.g., T for positive goals). For rules adorned with
F or F/T we create one additional rule:

Fr,F( ~X, V
′
1 , . . . , V

′
n) :− FR,F(t), Fpred(g1),F/T(

~X1, V1), . . .

This rule captures instantiations of rules r for missing tuples.
Here V ′

i = Vi for positive goals and V ′
i = ¬Vi for negated

goals. Note that ¬V denotes negating a boolean value in this
case. The negated goal FR,F(t) is necessary, because even for
existing tuples some rule instantiations may fail.

D. Connectivity Joins

As mentioned before, if a binding is returned by a firing
rule, this is a necessary but not sufficient condition for the
corresponding rule node to be connected to the user question



edge(fTQ(n, s), fFr1(n, s, Z)) :− Fr1,T(n, s, Z) (Q→ r1)

edge(fFr1(n, s, Z), fTg11
(n,Z)) :− Fr1,T(n, s, Z) (r1 → g1

1)

edge(fFr1(n, s, Z), fTg21
(Z, s)) :− Fr1,T(n, s, Z) (r1 → g2

1)

edge(fFr1(n, s, Z), fTg31
(n, s)) :− Fr1,T(n, s, Z) (r1 → g3

1)

edge(fTg11
(n,Z), fF¬T (n,Z)) :− Fr1,T(n, s, Z) (g1

1 → ¬T )

edge(fF¬T (n,Z), fTT (n,Z)) :− Fr1,T(n, s, Z) (¬T → T )
edge(fTg21

(Z, s), fF¬T (Z, s)) :− Fr1,T(n, s, Z) (g2
1 → ¬T )

edge(fF¬T (Z, s), fTT (Z, s)) :− Fr1,T(n, s, Z) (¬T → T )
edge(fTg31

(n,Z), fFT (n, s)) :− Fr1,T(n, s, Z) (g3
1 → T )

edge(fTT (n,Z), fFrT (n,Z)) :− FCT,r11,T(n,Z) (T → rT )

edge(fTT (Z, s), fFrT (Z, s)) :− FCT,r21,T(Z, s) (T → rT )

Fig. 9: Rules Creating the Edge Relation of EXPL(Q(n, s))

Q(n, s)

r1(n, s, Z)

g1
1(n,Z)

¬T (n,Z)

T (n,Z)

rT (n,Z)

g2
1(Z, s)

¬T (Z, s)

T (Z, s)

rT (Z, s)

g3
1(n, s)

T (n, s)

Fig. 10: Graph Structure for Explanation for Q(n, s)

in the PG graph. Thus, to guarantee that only nodes connected
to the user question node are returned by our rules, we have
to check whether they are actually connected.

Example 7. Consider the firing rules for the why question
only2Hop(n, s) from previous examples. The corresponding
rules with connectivity are shown in Fig. 8. All rule nodes
corresponding to IDB tuples Fr1,T(n, s, Z) are guaranteed to
be connected to the user question node. However, this does
not hold for the nodes corresponding to IDB tuples returned
by, e.g., rule T (X=n),T , because a relation node T(n, c) tuple
for a constant c is only connected to the user question node iff
it is part of a successful binding of rule r1. That is there has
to exist another hop tuple (n, s) but the hop relation does not
contain a tuple (n, s). To that end, we check connectivity from
the user question node one hop at a time. In this example, we
unify the head of each T rule with the corresponding goal in
the firing rule for rule r1. For instance, for rule T (Y=s),T we
unify with goal FT,T(Z, s) to get

Fr1,T(n, s, Z) :− FT,T(n,Z), FT,T(Z, s), FT,F(n, s)

The head of the unified rule is then added to the body of rule
T (Y=s),T . We use FCR,ri,T( ~X) to denote the firing rule for R
connected to the ith goal of rule r. Note that for rules with
only constants this connectivity check is unnecessary.

The general algorithm (Algorithm 5) finds all paths in
the game template for the input program starting in the node
corresponding to the user question. For each edge (r,R) on
such a path where r is a rule and R is an IDB or EDB relation
node, we connect the rules corresponding the relation node
V (R) to this edge with the rules for rule r. Note that we
compute these paths using the game template for the unified
adorned program (i.e., corresponding to the result of the second
step). Thus, as a first step, all other nodes are removed from
a path p. After this step, every edge on a path connects a rule
node to another rule node (where one of the rules may be an
EDB rule node). For each combination of rules r1 and r2 on
the current path, we determine which goals of r1 match the
head of r2. For each such goal g, we unify the firing rule
for r1’s variables for this goal with the variables of the firing

rule of r2 corresponding to the head of original rule r2. For
instance, in Fig. 8 the firing rule FT,T(n,Z) matches the first
goal of rule r1. The unified head of the firing rule for r1 is
then added to the body of r1 to create a connectivity join rule
FCr2,ri1,σ2 (assuming that the goal was the ith goal). Effectively,
these rules check connectivity of the rule nodes in the PG with
the user question atom one hop at a time.

E. Computing the Edge Relation

The program created so far captures all information needed
to generate the edge relation of the GP for an user question. To
compute the edge relation, we use skolem functions to create
node identifiers. The identifier of a node captures the type of
the node (relation, rule, or goal), assignments from variables
to constants, and the won/lost status of the node. For example,
a relation node T(n, s) that is won would be represented as
fTT (n, s). Each rule firing corresponds to a pattern in the PG
graph as shown in Fig. 10 for the running example. Such a
substructure is created through a set of rules:

• One rule creating edges between relation nodes for the
head predicate and rule nodes

• One rule for each goal connecting a rule node to a
node for that goal (for lost rules only the lost goals
are connected)

• One rule for each goal connecting the goal node to
the (negated) relation node for the goal’s predicate
(negated for positive goals only)

• One rule for each goal connecting the negated relation
node for the goal’s predicate to the positive relation
node (for positive goals only)

For EDB firing rules, we only create one type of edge:

• One rule creating edges from a won relation node to
won EDB node

The pseudocode for the Algorithm to create datalog rules
that will return the edge relation is shown in Appendix B.
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Fig. 11: Provenance Game Implementation in GProM

Example 8. Consider the firing rules with connectivity joins
from the previous example. Some of the rules for creating the
edge relation for the explanation sought by the user are shown
in Fig. 9. For example, the edges connecting the relation node
Q(n, s) (the user question node) to a won rule node r1(n, s, Z)
are created by the top-most rule. In the figure, the type of edges
corresponding to a rule are shown to the right, e.g., the third
rule creates edges between a rule node r1(n, s, Z) and its first
goal g1

1(n,Z).

F. Correctness and Complexity

We now analyze the complexity of our approach and state
its correctness, i.e., the graph returned by the approach is the
explanation for the user question.

Theorem 1 (Correctness). The graph returned by program
GP(Q(t), P ) over instance I is EXPL(Q(t), P, I).

Proof: The proof is shown in Appendix A

The worst-case complexity of our approach is actually
quite discouraging. In the worst case, the size of the program
GP(Q(t), P ) can be exponential in the size of the input
program. This blowup may happen only in the first step
(unification with user question) while the remaining steps only
increate the program size by a constant factor.

Lemma 1 (Size of the Unified Program). Let Q(t) be a user
question over program P and instance I . The size of the
program PU produced by step 1 of our algorithm may be
exponentially larger than P .

Proof: The proof is shown in Appendix A

Note that we can avoid this blowup by simply removing
the unification step. However, the unification step can provide
useful selection conditions for why questions over positive
programs and can reduce the exponential factor when com-
puting why-not questions. In practise, we have yet to see any
program where this step results in a super-linear increase in
program size. Thus, for now we will assume that the increase
in program size caused by the unification step is bounded by a
constant factor. If this should ever become a concern, we could
implement a safety check that stops unification if the increase
in program size exceeds a threshold. Since we translate the
provenance game construction into a relational algebra query
with is at most constant factor larger than the input query, the
standard complexity results for relational algebra queries apply
(PSPACE combined complexity and PTIME data complex-
ity). However, this result is not particularly interesting, because

the naive method also exhibits the same bounds, since the
well-founded evaluation of the win-move rule has a bounded
number of iteration, i.e., we could express it as a non-recursive
datalog program that is only a constant factor (the number of
iterations) larger. The more interesting question is how the
exponent in polynomial time runtime of the input program
compares to the naive solution and our approach. For positive
queries, the runtime of our approach is limited by the size of
the instance and program whereas the naive approach runs in
O(‖adom(I)‖n) where n is the maximal ‖vars(r)‖ for rules
r ∈ P . For queries involving negation and why-not questions
the naive approach exhibits the same runtime for why questions
over positive queries. The size of an explanation for a why-
not or query involving negation is bound by O(‖adom(I)‖m)
where m is the number of existential variables in F adorned
rules. For provenance games involving negation the runtime of
our approach is bound by the maximum of O(‖adom(I)‖m)
and the regular complexity of the remainder of the program.
Since, m ≤ n and in practice often m < n, our approach is
expected to outperform the naive approach in most cases even
if we do not take additional factors such as the restriction to
constants based on unification and connectivity filtering into
account.

Proposition 1 (Complexity). Assume that the unification step
of our approach only increase the program by a constant
factor. If the program P runs in O(‖I‖n), then the runtime
of GP(Q(t), P ) in bound by the maximum of O(‖I‖2n)
and O(‖adom(I)‖)m where m is the maximal number of
existential variables in rules adorned with F .

V. IMPLEMENTATION

As illustrated in Fig. 11, we implemented the aforemen-
tioned algorithm in a provenance middleware called GProM [2]
that executes provenance requests using a relational database
backend. The system was originally developed to support pro-
venance requests for SQL (new components added to support
game provenance are shown in blue). To support game pro-
venance requests, we developed a parser for Datalog enriched
with syntax for stating user provenance questions. Currently,
the user can ask WHY and WHYNOT questions providing both
the datalog program and the question as an input to the system.
As a first step, the input program is parsed and semantically
analyzed. Schema information is gathered by querying the
catalog of the backend database (e.g., to determine whether
an EDB predicate with the expected arity exists). Modules for
accessing schema information are already part of the GProM
system, but a new semantic analysis component had to be
developed to support Datalog programs. If the input includes a
user question Q(t), then the algorithm presented in Section IV
is applied to create a program GP(P,Q(t)) which computes
the edge relation of the provenance graph EXPL(P,Q(t), I).

This program is translated into a relational algebra graph
(GProM uses algebra graphs instead of trees to allow for
sharing of common sub-expressions). This algebra graph is
then translated into SQL and send to the backend database for
execution. This query returns the edge relation of the prove-
nance game and then the system renders a graph representation
(e.g., the examples shown in the introduction are actual results
produced by the system). While it would certainly be possible
to directly translate the Datalog program into SQL without the
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intermediate translation into relational algebra, we choose to
introduce this step to be able to leverage the existing heuristic
and cost-based optimizations for relational algebra graphs built
into GProM and its library of algebra to SQL translators.

Our translation of first-order Datalog queries (a program
with a distinguished answer relation) to RA is mostly stan-
dard. We first translate each rule into an algebra expression
independently. We then create expressions for IDB predicates
as a union of the expressions for all rules with the predicates
in the head. Finally, the algebra expressions for individual IDB
predicates are then connected into a single graph by replacing
references to IDB predicates with their algebraic translation.

Let P = {r1, . . . , rn} be a non-recursive program where

ri : Ri( ~Xi) :− g1
i ( ~Xi,1), . . . , gni

i ( ~Xi,ni),

¬ ĝ1
i ( ~X ′

i,1), . . . ,¬ ĝn̂i
i ( ~X ′

i,n̂i
))

(i.e., WLOG we assume negated goals are following the
positive goals and negated goals are denoted as ĝ) and Q
be the distinguished answer relation of P . Here gji is a
positive or negative subgoal. We use Ri,j to denote the relation
corresponding to gji . Let Q be an IDB relation and R denote
an EDB relation. Fig. 12 shows the definition of a function
TRA() that realizes the translation. Note that we assume that
the translation caches results, i.e., a sub-expression is only
translated once and the resulting algebra expression will be
reused when needed. We now explain how to translate the
individual parts of a program in detail.

Translating Relations. Access to an EDB relation is repre-
sented by a relation access in relational algebra (rule T4).
We create a rule for each IDB relation Q as a union of the
translations of all rules with this relation as a head (rule T1).
Here rj1 to rjm denote the rules in P with head predicate Q.

Translating Rules. A Datalog rule is translated as a join of
the goals in the body followed by a projection on the head
variables. Variables that are reused among goals become join
conditions. For instance, the rule Q(X,Z) :− R(X,Y ), S(Y, Z)
over R with attributes A1 and A2 and relation S with attributes
A3 and A4 can be expressed in relational algebra as:

ΠA1,A4
(R ./A2=A3 S)

We use the rename operator ρ which enables natural joins to
translate a subgoal. For instance, a goal R(X,Y ) is translated
as ρX,YR. Also the joins of subgoals are processed in two
steps: 1) all positive goals are joined (rule T3) and 2) then
the result of this process is joined with the translation of

all negative goals (rule T2). The reason for introducing this
intermediate step is that the join of the positive goals will be
used in the translation of a negated goal.

Translating Goals. Rule T5 translates goals. A positive goal is
translated as a renaming as explained above. A negated subgoal
¬R( ~X) can be represented in relational algebra as adom( ~X)−
R where adom( ~X) is the active domain of the variables ~X
restricted by the bindings in the rule. For example, for

Q(A,B) :− R(A,B),¬T(B).

the active domain of B is restricted to the values occurring
in the 2nd attribute of relation R. Since Datalog rules are
safe (every variable occurring in a negated goal will be bound
through its occurrences in positive goals), the negated goal
only needs to be tested for variable bindings produced by the
positive part of the rule. We use this fact in the translation to
express the negated goal as a set difference between bindings
for the goals variables produced by the positive part posr of
the rule r and the translation of the goal.

Example Translation. Consider the translation of only2hop.

r : only2hop(X,Y ) :− T(X,Z), T(Z, Y ),¬T(X,Y )

The relational algebra graph of this rule is shown in Fig. 13.
The translation of the first two goals are joined to form the
variable bindings for the positive part of the query. The negated
goal is translated as a set difference between the positive
part projected on X,Z and the Train relation. The last three
operators join the positive with the negative part, project on
the head variables, and remove duplicates.

VI. EXPERIMENTS

We evaluate the performance of our solution over a co-
author graph relation (hop) that we have extracted from
http://www.dblp.org/ and compare performance to the naive
method introduced in Section III-D. We have created subsets
of the co-author relation with 100, 1K, 10K, 100K, and 1M
tuples, respectively. All experiments were run on a machine
with 2 x 3.3Ghz AMD Opteron 4238 Processors (12 cores in
total) and 128GB RAM running Oracle Linux Server release
6.4. We used the commercial DBMS X (name omitted due
to licensing restrictions) as a backend for our system. Unless
stated otherwise, each experiment was repeated 100 times
and we report the median runtime. Each run was allocated
a timeslot of 10 min. Computations that did not finish in the
allocated time are omitted from graphs.

http://www.dblp.org/
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Fig. 14: Runtime - Varying Instance Size
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Fig. 15: Runtime - Varying Number of Co-authors

Workloads. We use the queries shown below: only2hop
is our example query expressed over the co-author graph;
hopNotSelf is a direct co-author relationship without a self-
loop for the second author (those self loops do not exist in the
dataset, we have added this goal to control the output size for
why-not); 3level3hop finds paths of length 3. This query is
split across 3 rules to increase the complexity and size of the
generated graphs (two levels of rules in the PG).

only2hop(X,Y ) :− hop(X,Z), hop(Z, Y ),¬ hop(X,Y )

3level3hop(X,Y ) :− hop(X,A), Q1(A,B), Q2(B, Y )

Q1(X,Y ) :− hop(X,Y )

Q2(X,Y ) :− hop(X,Y )

hopNotSelf(X,Y ) :− hop(X,Y ),¬ Q′(Y ).

Q′(Y ) :− hop(Y, Y )

Naive Implementation. As mentioned in Section I-B, the
naive implementation has to instantiate a game graph with
O(‖adom(I)‖k) where k is the maximal number variables in a
rule. We do not have an implementation of the naive approach

available. To compute a very conservative lower bound on the
runtime of this method, we ran a query that computes an n-
way cross-product over the active domain. Note that the actual
runtime will be much higher, because 1) several edges are
created for each rule binding and 2) several recursive datalog
queries have to be evaluated over this graph. The results for
different instance sizes and number of variables (k) is shown in
the table below. For 2 variables, the runtime is a lower bound
for the performance of the hopNotSelf query, for 3 variables
it bounds the runtime of only2Hop, and for 4 variables the
runtime of 2level3hop. Even for only 2 variables, the query
did not finish within the 10min limit. For 4 variables, the query
only finishes within the limit for the 100 tuple instance.

Number of Vars \Instance Size 100 1K 10K 100K
w/ 2 Variables (hopNotSelf) 0.043 0.171 14.016 -
w/ 3 Variables (only2hop) 0.294 285.524 - -
w/ 4 Variables (3level3hop) 56.070 - - -
- = did not finish in the allocated time (10 min)

Varying Instance Size. In this experiment, we vary the
instance size from 100 to 1M tuples and measure the runtime
for computing explanations. As shown in Fig. 14, our approach
enables us to compute provenance games for why- and why-
not questions over large instances and significantly outper-
forms the naive implementation even for smaller instances.
For hopNotSelf (Fig. 14.a and 14.b), binding both variables
results in a unified program without variables, i.e., an existence
or non-existence check. Not surprisingly, such queries are fast,
even for the largest instance. If only one variable is bound, the
query requires an existence (non-existence check) for any tuple
(p, p) in the instance such that p is connected to the person
we have bound X to. This results in linear growth in runtime
based on the instance size. Note that for why-not questions,
the number of rule bindings will be linear in the instance.
That is, unless a compressed representation of provenance
games is used, it is not possible to achieve sub-linear runtime.
For the only2hop and 3level3hop queries, the runtime
for why questions still follows the same trend. For why-
not questions, the increasing number of existential variables
in the rules causes a significant increase in result size. For
instance, if two variables are bound in query only2hop, then
the resulting unified rule has one existential variable. Thus,
the runtime increase in instance size is linear as expected. For
one bound variable, the number of output tuples produced by
the provenance computation is quadratic in the instance size
resulting in quadratic increase in runtime.

Varying Output Size. We now fix the instance size and
vary the query result size by carefully choosing bindings of
variables to persons. For this experiment, the instance size
was fixed to 100K. We only focus on why questions, since
the output size for why-not only varies slightly based on which
constants are used in the user question. Recall that the number
of lost rule bindings is determined by the number of existential
variables. The only variation is the number of lost goals. As
shown in Fig. 15, the effect of the output size on runtime is
dominated by other factors for hopNotSelf and only2hop.
However, the performance of the 3-way join 3level3hop
is effected by the result size. Fig. 15b shows the number of
results produced for the authors used as constants in the user
questions.



VII. CONCLUSIONS

We present a unified framework for explaining answers and
non-answers over first-order queries. Our efficient middleware
implementation generates a Datalog program that computes the
provenance game for a question and compiles this program into
SQL code. Our experimental evaluation demonstrates that by
integrating all phases of game construction and by avoiding to
generate parts of the game that are irrelevant (bad moves) or
unrelated to the user question we can significantly outperform
the previous solution for constructing provenance games. One
interesting avenue for future work is to investigate compressed
and summarized representation of provenance (e.g., in the
spirit of [12], [23], [5], or [10]) to deal with the large size
of games for queries with negation. Other topics of interest
include considering integrity constraints in the provenance
game (e.g., rule instantiations can never succeed if they violate
integrity constrains), marrying the approach with ideas from
missing answer approaches that only return one explanation
that is optimal according to some criterion, and extend it
towards more expressive query languages (e.g., aggregation
or non-stratified recursive programs).
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APPENDIX

A. Proofs

THEOREM 1 The graph returned by program GP(Q(t), P )
over instance I is EXPL(Q(t), P, I).

Proof: This outline of the proof for this theorem is shown
below:

1) We prove that only edges corresponding to “good”
moves that occur in the instantiated game are returned
by the program

2) Next we prove that the won/lost status of nodes
returned by the program is correct

3) Based on the previous two steps we now know that
the program returns a subset of edges of the full
provenance game. It remains to be shown that this
subset contains exactly the edges of the explanation
EXPL(Q(t), P, I).

Step 1 - Correct Edges and No Bad Moves

By construction the program cannot return bad moves
(moves from a won to a won node), because there are no
rules with head predicate M that create edges where both nodes
are won. The constant values used as variable binding by
the rules creating edges in GP(Q(t), P ) are either constants
that occur in the user question or are the result of rules
which are evaluated over the instance. Since only the rules for
creating the edge relation create new values (through skolem
functions), it follows that any contant used in constructing a
node argument exists in the active domain. Recall that the
instantiated game will contain nodes with all possible argument
combinations using values of the active domain. All nodes
created by the program are contained in the instantiated game
if we ignore their won/lost status. Any edge returned by the
program is strictly based on the structure of the input program
and connects nodes that agree on variable bindings. Thus,
when removing the won/lost status, each edge produced by
the program will be contained in the instantiated game.

Step 2 - Correct Won/Lost Status

It has been proven that the provenance game encode query
evaluation in [21]. Thus, a relation node is won/lost iff it is
in/not in the query result. The status of goal nodes, and negated
relation nodes is completely determined by the status of the
relation and rule nodes they are connected to (and whether the
goal is negative or positive). Hence, to prove that the won/lost
status of nodes connected by edges returned by the program
GP(Q(t), P ) is correct, we have to prove that a relation node
is won/lost iff it is returned/not returned by the query.

The rules creating the edge relation of a provenance game
connect a won relation node Q( ~X) to a lost rule node r( ~X, ~Y )
if the positive firing rule for Fr,T for r returns r( ~X, ~Y ). The
rules creating the edge relation of a provenance game connect
a lost relation node Q( ~X) to a won rule node r( ~X, ~Y ) if
the negative firing rule Fr,F for r returns r( ~X, ~Y , V1, . . . , Vn)

where at least one of the Vi’s is false and ¬Q( ~X) holds. Thus,
as long as the firing rules correctly determine rule bindings,
their won/lost state, and the won/lost state of head relation
nodes, only edges occurring in the provenance game Γ can be
returned.

We prove that the firing rules exhibit these properties by
induction over the depth of an input program. The depth d(P )
of program P is defined as:

d(P ) = max
r∈P

d(r)

d(r) = max
g∈body(r)

d(pred(g))

d(R) =

{
0 if R is EDB relation
maxr∈P∧head(r)=R d(r) + 1 else

That is rules accessing only EDB predicates have depth 1
and in the general case, the depth of a rule determines how
many levels of rules have to be evaluated to compute the goal
predicates needed to evaluate the rule.

Base Case: Assume we have a program P with d(P ) = 0.
For a program of depth 0, all rules only access EDB predicates.
We first prove that positive and negative firing rules for EDB
relations are correct, because these are these rules are used in
firing rules for the rules of depth 0 programs. An EDB firing
rule FR,T creates a copy of the input relation. Thus, t ∈ R iff
t ∈ FR,T. For the negative case (FR,F), all variables are bound
to the active domain and the explicitly checks that ¬R( ~X) is
true. Finally, FR, uses FR,T and FR,F to determine whether or
not the tuple exists. Thus, as long as these rules are correct,
then it follows that FR,F/T is correct too. For rules we have to
distinguish between two cases based on the rule adornment: T
or F .

For a rule r : Q(~Y ) :− g1( ~X1), . . . , gn( ~Xn) with
vars(r) = ~X adorned with T , there are two firing rules:
FQ,T(~Y ) :− Fr,T( ~X) and Fr,T( ~X) :− g1( ~X1), . . . , gn( ~Xn). Rule
Fr,T and r have the same body and, thus, a rule instantiation
for r is successful iff Fr,T is successful. Rule Fr,T returns
all variables bound in its body. Thus, each tuple in Fr,T
corresponds to successful instantiation of the variables in the
body of rule r. The same argument holds for each rule r′ with
head(r) = Q. It follows that t ∈ Q⇔ t ∈ Fr,T.

For a rule r : Q(~Y ) :− g1( ~X1), . . . , gn( ~Xn) with
vars(r) = ~X adorned with F , the body contains an additional
goal ¬Q(~y). Thus, this rule can only return bindings for lost
relation nodes (if a tuple is missing then all rule bindings that
would have produced this tuple must have failed). Except for
this additional goal, the firing rule operates in the same fashion
as in the positive case and, thus, is proven correct through the
same argument. Since FR,F/T was proven correct, it follows
that the additional head variables Vi correctly record whether
the goal is successful or not. For the head predicate of a rule
adorned with F we create two firing rules. Rule FQ,T is the
same as before (and hence is correct). Rule FQ,F binds variables
to the active domain and checks ¬ FQ,T(~Y ). This rule obviously
computes the complement of Q as expected.

Inductive Step: Assume that firing rules for programs of
depth up to n are correct. We need to prove that firing rules
for programs of depth of up to n + 1 are correct. From the
assumption it follows that all firing rules for rules with a depth
of at most n−1 are correct. It remains to show that firing rules
for rules of depth n + 1 in such a program are correct. Note
that in the arguments made for rules in the base case, the fact
that firing rules for the goals in the body correspond to EDB



relation is immaterial to the argument. The only assumption
was that these firing rules have been proven to be correct.
Since, we know from the induction hypothesis that all firing
rules for EDB relations and relations that only occur as head
predicates of rules with depth less than n− 1, it follows that
the same argument can be applied to prove that firing rules for
rules of depth n+ 1 are correct.

Step 3 - GP(Q(t), P ) Returns Explanation for Q(t)

Having established that edges returned by the program
GP(Q(t), P ) are contained in the provenance game Γ for P
and I , we now have to prove that this set of edges form
precisely EXPL(Q(t), P, I). We prove this fact by induction
over the depth of a program. We prove this fact for a user
question containing only constants. The extension to user
questions which contain variables is immediate.

Base Case: Consider a program of depth 0. For a rule
node to be connected to the user question Q(t), it’s head
variables have to be bound to t. This is exactly the restriction
applied by the unification step. Since, the firing rules are
known to be correct, this guarantees that exactly the rules
nodes connected to the user question are generated. The
propagation of this unification to the firing rules for EDB
relations is correct, because only EDB relation nodes with
these bindings can be connected to rules nodes (after all only
nodes for which constants agree are connected). However,
propagating constants is not sufficient. The firing rules for
EDB predicates may return tuples that correspond to relation
nodes that are not connected to the rules nodes connected to
the user question. Consider an EDB firing rule FR,σ (here σ
denotes any adornment, we ignore adornments since they are
irrelevant for this part of the argument) and a rule firing rule
Fr,σ(~Y ) for a rule r : Q( ~X) :− . . . R( ~X ′) . . . with R as the ith

goal. A node R(t) would be connected to r(t′) iff ~X ′ is bound
to the same constants as ~Y . This is checked in the firing rule
FCR,ri,σ with connectivity join by unifying ~Y and ~X ′. Thus,
if tuple is returned by such a connected firing rule, its node
is guaranteed to be connected to the rule node and, thus, also
the user question.

Inductive Step: Assume that the hypothesis holds for pro-
gram of depth up to n. We have to show that this also holds for
programs of depth n + 1. For any rules of depth 1 or larger,
correctness follows from the induction hypothesis. followsIt
remains to be shown that this implies correctness for rules of
depth 0. Note that the argument applied in the base case does
not rely on the fact that Q(t) is the user question. If we replace
Q(t) with an IDB relation node that is connected to Q(t), then
the argument still holds. Thus, we can apply this argument to
prove that the rules of depth 0 in a program of depth n + 1
are correct.

LEMMA 1 Let Q(t) be a user question over program P and
instance I . The size of the program PU produced by step 1 of
our algorithm may be exponentially larger than P .

Proof: Consider the following class of programs Pn where
each program Pn in the program has n2 + n rules:

Q1(X1, . . . , Xn) :−Q2(X1, . . . , Xn)

Q1(X1, . . . , Xn) :−Q2(X2, X1, . . . , Xn)

Q1(X1, . . . , Xn) :−Q2(X3, X2, X1, . . . , Xn)

. . .

Q1(X1, . . . , Xn) :−Q2(Xn, X2, . . . , X1)

Q2(X1, . . . , Xn) :−Q3(X1, . . . , Xn)

Q2(X1, . . . , Xn) :−Q3(X2, X1, . . . , Xn)

Q2(X1, . . . , Xn) :−Q3(X3, X2, X1, . . . , Xn)

. . .

Q2(X1, . . . , Xn) :−Q3(Xn, X2, . . . , X1)

. . .

Qn+1(X1, . . . , Xn) :−Qn(Xn, X2, . . . , X1)

A program Pn has n IDB predicates with i rules with i
variables each. Consider how the constants for a question
Q1(t) with t = (1, . . . , n) would be propagated through
the program. Each of the rules for a predicate Qi create a
permutation of the constants by switching X1 with any other
Xi. For instance, the first rule switches X1 with itself. Thus,
the unification process will create n bindings for Q2, e.g.,
(2, 1, . . . , n) and (3, 2, 1, . . . , n). Note that after n + 1 steps
any permutation of (1, . . . , n) would have been created. Since
there are n! permutations of n numbers, the number of unified
rules created for Qn will be n!. To see why it is true that all
permutations will be created, consider how (1, . . . , n) can be
permuted into (i1, . . . , in) by switching an element with the
current first element n+ 1 times. Let posj denote the position
of element j in (i1, . . . , in). We repeatedly switch the element
j currently at position 1 with the element currently at position
posj . The exception is the element k with posk = 1. Unless
we are in the last step of the permutation, this element will be
switched with an element l that is not currently at posl. The
element k will then be switched into the current position of l.
If l is chosen carefully, then we will be able to switch k back
to position 1 in the last step.

Note that we can avoid this blowup by simply removing
the unification step. However, the unification step can provide
useful selection conditions for why questions over positive
programs and can reduce the exponential factor when com-
puting why-not questions. In practise, we have yet to see any
program where this step results in a super-linear increase in
program size. Thus, for now we will assume that the increase
in program size caused by the unification step is bounded by
a constant factor. If this should ever become a concern, we
could implement a safety check that stops unification if the
increase in program size exceeds a threshold.

B. Algorithm Pseudocode



Algorithm 6 Create Edge Relation
1: procedure CREATEEDGERELATION(PFC , Q(t))
2: PM ← []
3: todo← [Q(t)]
4: done← {}
5: while todo 6= [] do
6: R(t)σ ← POP(todo)
7: if R(t)σ ∈ done then
8: continue
9: done← INSERT(done,R(t)σ)

10: rules← GETRULES(R(t)σ)
11: for all r ∈ rules do
12: if ISEDB(R) then
13: if σ = T then
14: rnew ← edge(fTR (t), f

F
rR(t)) :− FCR,ri,T(t)

15: PM ← PM :: rnew
16: else
17: σr = SWITCHSTATE(σ)
18: rnew ← edge(fσpred(r)(t), f

σr
r (t, . . .)) :− Fr,σ(t, . . .)

19: PM ← PM :: rnew
20: for all g(t′) ∈ body(r) do
21: if ISNEGATED(g) then
22: σ′ ← SWITCHSTATE(σ)
23: else
24: σ′ ← σ
25: todo← todo :: g(t′)σ

′

26: if σ = T then
27: rr→g ← edge(fFr (args), fTg (t

′)) :− Fr,T(args)
28: if ISNEGATED(g) then
29: rg→R ← edge(fTg (t

′), fFR (t′)) :− Fr,T(args)
30: PM ← PM :: rr→g :: rg→R
31: else
32: rg→¬R ← edge(fTg (t

′), fF¬R(t
′)) :− Fr,T(args)

33: r¬R→R ← edge(fF¬R(t
′), fTR (t

′)) :− Fr,T(args)
34: PM ← PM :: rr→g :: rg→¬R :: r¬R→R
35: else
36: argsb ← b1, . . . , bi−1, false, bi+1, . . . , bn
37: rr→g ← edge(fTr (args), f

F
g (t′)) :− Fr,T(args, argsb)

38: if ISNEGATED(g) then
39: rg→R ← edge(fFg (t′), fTR (t

′)) :− Fr,T(args, argsb)
40: PM ← PM :: rr→g :: rg→R
41: else
42: rg→¬R ← edge(fFg (t′), fT¬R(t

′)) :− Fr,T(args, argsb)
43: r¬R→R ← edge(fT¬R(t

′), fFR (t′)) :− Fr,T(args, argsb)
44: PM ← PM :: rr→g :: rg→¬R :: r¬R→R
45: return PM
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