
Heuristic and Cost-based Optimization for
Provenance Computation

Xing Niu
Illinois Institute Of Technology

xniu7@hawk.iit.edu

Raghav Kapoor
Illinois Institute Of Technology

rkapoor7@hawk.iit.edu

Boris Glavic
Illinois Institute Of Technology

bglavic@iit.edu

Motivation. Data Provenance, information about the origin of
data and the transformations used to produce it, has attracted
attention by the database community in the recent years
and has proven to be essential for a wide range of use
cases including debugging of data and queries, auditing, and
establishing authorship. The de-facto standard for database
provenance is to model provenance as annotations on data
and compute the provenance for the outputs of an operation
by propagating these annotations. Provenance systems use
query rewrite techniques to compile provenance computations
into declarative queries (e.g., SQL [1]). This approach has
the important advantage that standard relational databases can
be used to compute provenance. However, these techniques
generate queries with unusual access patterns and operator
sequences. Even sophisticated databases are not capable of
producing efficient plans for such queries. Thus, while query
rewrite techniques enable easy implementation of provenance
support for databases without the need to modify the database
system itself, their performance is often far from optimal.

Our Approach. We address this problem though the develop-
ment of novel heuristic and cost-based optimization techniques
and their implementation in the GProM system [2]. We have
developed a suite of heuristic rewrites including both well-
known textbook equivalences as well as specific rules that are
typically not explored by database optimizers. These rewrites
help us avoid unnecessary computations in many cases and to
restructure the query to make it digestible by database opti-
mizers. To enable cost-based comparison between alternative
options for rewriting queries, we have developed a novel exten-
sible optimization algorithm that is agnostic to the plan space
shape and uses the backend database for cost estimation. Our
initial experimental evaluation confirms that these techniques
are highly effective, resulting in a performance improvement
of several orders of magnitude in some cases.

Poster Description. In this poster we will explain our ap-
proach for heuristic and cost-based optimization for prove-
nance computation and its implementation in GProM. In
particular, we will 1) showcase some of the unique heuristic
rules that have been implemented in GProM; 2) explain our
cost-based optimization algorithm that is plan-space agnostic
and leverages the backend database’s optimizer; 3) showcase
some example code that illustrates how new optimization
choices can be retrofitted into existing rewrite code by adding

 0

 200

 400

 600

 800

 1000

 1200

 1400

Q1 Q13

R
u

n
ti
m

e
 (

s
e

c
)

TPCH Queries

Join
Window
Cost

Fig. 1. Cost-based Optimization -
TPCH Q1 + Q13 - 10GB

 0.01

 0.1

 1

 10

 100

 1000

T10 T100 T1000 T10000

R
u

n
ti
m

e
 (

s
e

c
)

Tuples Affected per Update

NoOpt
Opt

Fig. 2. Heuristic Optimization -
Transaction Provenance

a few LOC; and 4) present preliminary experimental results
which demonstrate the effectiveness of the approach for di-
verse provenance tasks ranging from traditional provenance
computation for queries, over computing the provenance for
updates and transactions [3], to computing game provenance.
Experiments. In an initial experimental evaluation we have
studied 1) the effectiveness of cost-based optimization in
choosing the best alternative and 2) the effectiveness of
heuristic optimization. Figures 1 and 2 show the results of
two exemplary experiments. Figure 1 shows the performance
of provenance computation for TPC-H benchmark queries 1
and 13 over a 10GB database instance. We compare two
alternative methods of rewriting aggregations (one using joins
and the other using SQL window functions) with a provenance
computation generated by letting the cost-based optimizer
decide which method to apply for each aggregation in a
query. Notably, for query 13 which contains two aggregations,
the optimizer has chosen the superior combination of both
methods. Figure 2 shows results for computing the provenance
of transactions with 10 updates each varying the number of
affected tuples per update (from 10 to 10,000). All transactions
were updating a relation with 1 million tuples. We compared
the performance of provenance computation with and without
heuristic optimizations. For the given workload, our heuristic
optimizations result in a factor ∼10 speedup.

REFERENCES

[1] B. Glavic and G. Alonso, “Perm: Processing provenance and data on the
same data model through query rewriting,” in ICDE, 2009, pp. 174–185.

[2] B. Arab, D. Gawlick, V. Radhakrishnan, H. Guo, and B. Glavic, “A
generic provenance middleware for database queries, updates, and trans-
actions,” TaPP, 2014.

[3] B. Arab, D. Gawlick, V. Krishnaswamy, V. Radhakrishnan, and B. Glavic,
“Reenacting transactions to compute their provenance,” Illinois Institute
of Technology, Tech. Rep., 2014.


