
Mimir: Bringing CTables into Practice∗

Arindam Nandiβ, Ying Yangβ, Oliver Kennedyβ
Boris Glavici, Ronny Fehlingα, Zhen Hua Liuo, Dieter Gawlicko

University at Buffaloβ Illinois Institute of Technologyi Airbusα Oracleo

{arindamn, yyang25, okennedy}@buffalo.edu bglavic@iit.edu
ronny.fehling@airbus.com {zhen.liu,dieter.gawlick}@oracle.com

ABSTRACT
The present state of the art in analytics requires high upfront
investment of human effort and computational resources to
curate datasets, even before the first query is posed. So-
called pay-as-you-go data curation techniques allow these
high costs to be spread out, first by enabling queries over
uncertain and incomplete data, and then by assessing the
quality of the query results. We describe the design of a
system, called Mimir, around a recently introduced class of
probabilistic pay-as-you-go data cleaning operators called
Lenses. Mimir wraps around any deterministic database en-
gine using JDBC, extending it with support for probabilistic
query processing. Queries processed through Mimir produce
uncertainty-annotated result cursors that allow client appli-
cations to quickly assess result quality and provenance. We
also present a GUI that provides analysts with an interactive
tool for exploring the uncertainty exposed by the system. Fi-
nally, we present optimizations that make Lenses scalable,
and validate this claim through experimental evidence.
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1. INTRODUCTION
Data curation is presently performed independently of an

analyst’s needs. To trust query results, an analyst first needs
to establish trust in her data, and this process typically re-
quires high upfront investment of human and computational
effort. However, the level of cleaning effort is often not com-
mensurate with the specific analysis to be performed. A
class of so-called pay-as-you-go [19], or on-demand [36] data
cleaning systems have arisen to flatten out this upfront cost.
In on-demand cleaning settings, an analyst quickly applies
data cleaning heuristics without needing to tune the process
or supervise the output. As the analyst poses queries, the

∗The first two authors contributed equally and should be
considered a joint first author

Product

id name brand cat ROWID

P123 Apple 6s, White ? phone R1

P124 Apple 5s, Black ? phone R2

P125 Samsung Note2 Samsung phone R3

P2345 Sony to inches ? ? R4

P34234 Dell, Intel 4 core Dell laptop R5

P34235 HP, AMD 2 core HP laptop R6

Ratings1

pid . . . rating review ct ROWID

P123 . . . 4.5 50 R7

P2345 . . . ? 245 R8

P124 . . . 4 100 R9

Ratings2

pid . . . evaluation num ratings ROWID

P125 . . . 3 121 R10

P34234 . . . 5 5 R11

P34235 . . . 4.5 4 R12

Figure 1: Incomplete error-filled example relations, includ-
ing an implicit unique identifier attribute ROWID.

on-demand system continually provides feedback about the
quality and precision of the query results. If the analyst
wishes higher quality, more precise results, the system can
also provide guidance to focus the analyst’s data cleaning
efforts on curating inputs that are relevant to the analysis.

In this paper we describe Mimir, a system that extends
existing relational database engines with support for on-
demand curation. Mimir is based on lenses [36], a pow-
erful and flexible new primitive for on-demand curation.
Lenses promise to enable a new kind of uncertainty-aware
data analysis that requires minimal up-front effort from ana-
lysts, without sacrificing trust in the results of that analysis.
Mimir is presently compatible with SQLite and a popular
commercial enterprise database management system.

In the work that first introduced Lenses [36] we demon-
strated how curation tasks including domain constraint re-
pair, schema matching, and data archival can be expressed
as lenses. Lenses in general, are a family of unary operators
that (1) Apply a data curation heuristic to clean or validate
their input, and (2) Annotate their output with all assump-
tions or guesses made by the heuristic. Critically, lenses
require little to no upfront configuration — the lens’ output
represents a best-effort guess. Previous efforts on uncertain
data management [12] focus on producing exclusively cor-
rect, or certain results. By comparison, lenses may include
incorrect results. Annotations on the lens output persist
through queries and provide a form of provenance that helps
analysts understand potential sources of error and their im-
pact on query results. This in turn allows an analyst to
decide whether or not to trust query results, and how to
best allocate limited resources to data curation efforts.

Example 1. Alice is an analyst at a retail store and is
developing a promotional strategy based on public opinion
ratings gathered by two data collection companies. A thor-
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ough analysis of the data requires substantial data curation
effort from Alice: As shown in Figure 1, the rating com-
pany’s schemas are incompatible, and the store’s own prod-
uct data is incomplete. However, Alice’s preliminary anal-
ysis is purely exploratory, and she is hesitant to invest the
effort required to fully curate this data. She creates a lens to
fix missing values in the Product table:

CREATE LENS SaneProduct AS SELECT * FROM Product
USING DOMAIN_REPAIR(cat string NOT NULL ,

brand string NOT NULL);

From Alice’s perspective, the lens SaneProduct behaves as
a standard database view. However, the content of the lens
is guaranteed to satisfy the domain constraints on category

and brand. NULL values in these columns are replaced ac-
cording to a classifier built over the Product table. Under
the hood, the Mimir system maintains a probabilistic ver-
sion of the view as a so-called Virtual C-Table (VC-Table).
A VC-Table cleanly separates the existence of uncertainty
(e.g., the category value of a tuple is unknown), the expla-
nation for how the uncertainty affects a query result (this
is a specific type of provenance), and the model for this un-
certainty as a probability distribution (e.g., a classifier for
category values that is built when the lens is created).

Uncertainty is encoded in a VC-Table through attribute
values that are symbolic expressions over variables repre-
senting unknowns. A probabilistic model for these variables
is maintained separately. Queries over a VC-Table can be
translated into deterministic SQL over the lens’ determin-
istic inputs. This is achieved by evaluating deterministic
expressions as usual and by manipulating symbolic expres-
sions for computations that involve variables. The result is
again a relational encoding of a VC-Table. The probabilis-
tic model (or an approximation thereof) can be “plugged”
into the expressions in a post-processing step to get a deter-
ministic result. This approach has several advantages: (1)
the probabilistic model can be created in a pay-as-you-go
fashion focusing efforts on the part that is relevant for an
analyst’s query; (2) the symbolic expressions of a VC-Table
serve as a type of provenance that explain how the uncer-
tainty affects the query result; (3) changes to the probabilis-
tic model or switching between different approximations for
a model only require repetition of the post-processing step
over the already computed symbolic query result; (4) large
parts of the computation can be outsourced to a classical
relational database; and (5) queries over a mixture of VC-
Tables and deterministic tables are supported out of the
box. A limitation of our preliminary work with VC-Tables
is the scalability of the expressions outsourced to the deter-
ministic database. Our initial approach sometimes creates
outsourced expressions that can not be evaluated efficiently.
In this paper, we address this limitation, and in doing so
demonstrate that VC-Tables are a scalable and practical tool
for managing uncertain data. Concretely, in this paper:

• In Section 3, we describe the Mimir system, including
its APIs, its user interface, and a novel “annotated”
result cursor that enables uncertainty-aware analytics.

• In Section 4, we demonstrate the limitations of naive
VC-Tables and introduce techniques for scalable query
processing over VC-Tables.

• In Section 5, we evaluate Mimir on SQLite and a com-
mercial database system.

e := R | Column | if φ then e else e

| e {+,−,×,÷} e | V ar(id[, e[, e[, . . .]]])

φ := e {=, 6=, <,≤, >,≥} e | φ {∧,∨} φ | > | ⊥
| e is null | ¬φ

Figure 2: Grammars for boolean expressions φ and numeri-
cal expressions e including VG-Functions V ar(. . .).

2. BACKGROUND
Possible Worlds Semantics. An uncertain database D
over a schema sch(D) is defined as a set of possible worlds:
deterministic database instancesD ∈ D over schema sch(D) =
sch(D). Possible worlds semantics defines queries over un-
certain databases in terms of deterministic query semantics.
A deterministic query Q applied to an uncertain database
defines a set of possible results Q(D) = { Q(D) | D ∈ D }.
Note that these semantics are agnostic to the data represen-
tation, query language, and number of possible worlds |D|.
A probabilistic database 〈 D, p 〉 is an uncertain database an-
notated with a probability distribution p : D → [0, 1] that
induces a distribution over all possible result relations R:

P [Q(D) = R] =
∑

D∈D : Q(D)=R

p(D)

A probabilistic query processing (PQP) system is sup-
posed to answer a deterministic query Q by listing all its
possible answers and annotating each tuple with its marginal
probability. These tasks are often #P-hard in practice, ne-
cessitating the use of approximation techniques.
C-Tables and PC-Tables. One way to make probabilistic
query processing efficient is to encode D and P through a
compact, factorized representation. In this paper we adopt
a generalized form of C-Tables [17, 22] to represent D, and
PC-Tables [15, 21] to represent the pair (D, P ). A C-Table
[17] is a relation instance where each tuple is annotated with
a formula φ, a propositional formula over an alphabet of
variable symbols Σ. The formula φ is often called a local
condition and the symbols in Σ are referred to as labeled
nulls, or just variables. Intuitively, for each assignment to
the variables in Σ we obtain a possible relation containing
all the tuples whose formula φ is satisfied. For example:

Product
pid name brand category φ

t1 P123 Apple 6s Apple phone x1 = 1
t2 P123 Apple 6s Cupertino phone x1 = 2
t3 P125 Note2 Samsung phone >

x1 =

{
1 : 0.3

2 : 0.7

The above C-Table defines a set of two possible worlds,
{t1, t3}, {t2, t3}, i.e. one world for each possible assignment
to the variables in the one-symbol alphabet Σ = {x1}. No-
tice that no possible world can have both t1 and t2 at the
same time. Adding a probabilistic model for the variables,
e.g., P (x1) as shown above, we get a PC-table. For instance,
in this example the probability that the brand of product
P123 is Apple is 0.3. C-Tables are closed w.r.t. positive
relational algebra [17] : if D is representable by a C-Table
and Q is a positive query then D′ = { Q(D) | D ∈ D } is
representable by another C-Table.
VG-Relational Algebra. VG-RA (variable-generating
relational algebra) [22] is a generalization of positive bag-
relation algebra with extended projection, that uses a sim-
plified form of VG-functions [18]. In VG-RA, VG-functions
(i) dynamically introduce new Skolem symbols in Σ, that



are guaranteed to be unique and deterministically derived
by the function’s parameters, and (ii) associate the new
symbols with probability distributions. Hence, VG-RA can
be used to define new PC-Tables. Primitive-valued expres-
sions in VG-RA (i.e., projection expressions and selection
predicates) use the grammar summarized in Figure 2. The
primary addition of this grammar is the VG-Function term
representing unknown values: V ar(. . .).

VG-RA’s expression language enables a generalized form
of C-Tables, where attribute-level uncertainty is encoded by
replacing missing values with VG-RA expressions (not just
variables) that act as freshly defined Skolem terms. For
example, the previous PC-Table is equivalent to the gener-
alized PC-Table:

Product

pid name brand category

P123 Apple 6s V ar('X', R1) phone

P125 Note2 Samsung phone

V ar('X', R1)

=

{
Apple : 0.3

Cupertino : 0.7

It has been shown that generalized C-Tables are closed
w.r.t VG-RA [17, 22]. Evaluation rules for VG-RA use a
lazy evaluation operator [[·]]lazy, which uses a partial binding
of Column or V ar(. . .) atoms to corresponding expressions.
Lazy evaluation applies the partial binding and then reduces
every sub-tree in the expression that can be deterministically
evaluated. Non-deterministic sub-trees are left intact.

Any tuple attribute appearing in a C-Table can be en-
coded as an abstract syntax tree for a partially evaluated
expression that assigns it a value. This is the basis for eval-
uating projection operators, where every expression ei in
the projection’s target list is lazily evaluated. Column bind-
ings are given by each tuple in the source relation. The
local condition φ is preserved intact through the projection.
Selection is evaluated by combining the selection predicate
φ with each tuple’s existing local condition. For example,
consider a query πbrand,category(σbrand=Apple(Product)) over
the example PC-Table. The result of this query is shown be-
low. The second tuple of the input table does not fulfil the
selection condition and is thus guaranteed to not be in the
result. Note the symbolic expressions in the local condition
and attribute values. Furthermore, note that the proba-
bilistic model for the single variable is not influenced by the
query at all.

Query Result

brand category φ

V ar('X', R1) phone V ar('X', R1) = Apple

From now on, we will implicitly assume this generalized form
of C-Tables.
Lenses. Lenses use VG-RA queries to define new C-Tables
as views: A lens defines an uncertain view relation through
a VG-RA query Flens(Q(D)), where F and Q to represents
the non-deterministic an deterministic components of the
query, respectively. Independently, the lens constructs P
as a joint probability distribution over every variable in-
troduced by Flens, by defining a sampling process in the
style of classical VG-functions [18], or supplementing it with
additional meta-data to create a PIP-style grey-box [22].
These semantics are closed over PC-Tables. If Q(D) is non-
deterministic — that is, the lens’ input is defined by a PC-
Table (Q(D), PQ) — the lens’ semantics are virtually un-
changed due to the closure of VG-RA over C-Tables.

Example 2. Recall the lens definition from Example 1.
This lens defines a new C-Table using the VG-RA query:

πid←id,name←name,brand←f(brand),cat←f(cat)(Product)

In this expression f denotes a check for domain compliance,
and a replacement with a non-deterministic value if the check
fails, as follows:

f(x) ≡ if x is null then V ar(x, ROWID) else x

The models for V ar(′brand′, ROWID) and V ar(′cat′, ROWID)
are defined by classifiers trained on the contents of Product.

Virtual C-Tables. Consider a probabilistic database in
which all non-determinism is derived from lenses. In this
database, all C-Tables, including those resulting from de-
terministic queries over non-deterministic data can be ex-
pressed as VG-RA queries over a deterministic database
D. Furthermore, VG-RA admits a normal form [36] for
queries where queries are segmented into a purely determin-
istic component Q(D) and a non-deterministic component
F(Q(D)). These normalization rules are shown in Figure 3.

Normalization does not affect the linkage between the C-
Table computed by a VG-RA query and its associated prob-
ability measure P : V ar(. . .) remains unchanged. Moreover,
the non-deterministic component of the normal form F is a
simple composite projection and selection operation.

The simplicity of F carries two benefits. First, the deter-
ministic component of the query can be evaluated natively in
a database engine, while the non-deterministic component
can be applied through a simple shim interface wrapping
around the database. Second, the abstract syntax tree of
the expression acts a form of provenance [2, 3] that anno-
tates uncertain query results with metadata describing the
level and nature of their uncertainty, a key component of the
system we now describe. For example, in the query result
shown above it is evident that the tuple will be in the result
as long as the condition V ar('X', R1) = ‘Apple’ evaluates
to true. Mimir provides an API for the user to retrieve this
type of explanation for a query result and comes with a user
interface that visualizes explanations.

3. SYSTEM OUTLINE
The Mimir system is a shim layer that wraps around an

existing DBMS to provide support for lenses. Using Mimir,
users define lenses that perform common data cleaning oper-
ations such as schema matching, missing value interpolation,
or type inference with little or no configuration on the user’s
part. Mimir exports a native SQL query interface that al-
lows lenses to be queried as if they were ordinary relations
in the backend database. A key design feature of Mimir is
that it has minimal impact on its environment. Apart from
using the backend database to persist metadata, Mimir does
not modify the database or its data in any way. As a conse-
quence, Mimir can be used alongside any existing database
workflow with minimal effort and minimal risk.

3.1 User Interface
Users define lenses through a CREATE LENS statement that

immediately instantiates a new lens.

Example 3. Recall the example data from Figure 1. To
merge the two ratings relations, Alice needs to re-map the
attributes of Ratings2. Rather than doing so manually, she
defines a lens that re-maps the attributes of the Ratings2

relation to those of Ratings1 as follows.



πa′j←e′j (F(〈 ai ← ei 〉 , φ)(Q(D))) ≡ F(
〈
a′j ← [[e′j(ai ← ei)]]lazy

〉
, φ)(Q(D)) (1)

σψ (F(〈 ai ← ei 〉 , φ)(Q(D))) ≡ F(〈 ai ← ei 〉 , φ ∧ ψvar)(σψdet(Q(D))) (2)

F(〈 ai ← ei 〉 , φ)(Q(D))×F(
〈
a′j ← e′j

〉
, φ′)(Q′(D)) ≡ F(

〈
ai ← ei, a

′
j ← e′j

〉
, φ ∧ φ′)(Q(D)×Q′(D)) (3)

F(〈 ai ← ei 〉 , φ)(Q(D)) ] F(
〈
ai ← e′i

〉
, φ′)(Q′(D)) ≡

F(
〈
ai ← [[if src = 1 then ei else e′i]]lazy

〉
, [[if src = 1 then φ else φ′]]lazy)(π∗,src←1(Q(D)) ] π∗,src←2(Q′(D))) (4)

Figure 3: Reduction to VG-RA Normal Form.

CREATE LENS MatchedRatings2 AS
SELECT * FROM Ratings2
USING SCHEMA_MATCHING(pid string , ...,

rating float , review_ct float , NO LIMIT);

CREATE LENS statements behave like a view definition, but
also apply a data curation step to the output; in this case
schema matching. Mapping targets may be defined explicitly
or by selecting an existing relation’s schema in the GUI.

In addition to a command-line tool, Mimir provides a
Graphical User Interface (GUI) illustrated in Figure 4. Users
pose queries over lenses and deterministic relations using
standard SQL SELECT statements (a). Mimir responds to
queries over lenses with a best guess result, or the result of
the query in the possible world with maximum likelihood.
In contrast to the classical notion of “certain” answers, the
best guess may contain inaccuracies. However, all uncer-
tainty arises from V ar terms introduced by lenses. Conse-
quently, using the provenance of each row and cell, Mimir
can identify potential sources of error: Attribute values that
depend on a V ar term may be incorrect, and filtering pred-
icates that depend on a V ar term may lead to rows incor-
rectly being included or excluded in the result. We refer
to these two types of error as non-deterministic cells, and
non-deterministic rows, respectively.

Example 4. Recall the result of the example query in
Section 2, which shows a VC-table before the best guess val-
ues are plugged in. The only row is non-deterministic, be-
cause its existence depends on the value of V ar('X', R1) which
denotes the unknown brand of this tuple. The brand attribute
value of this tuple is a non-deterministic cell, because its
value depends on the same expression.

In Mimir, query results (b) visually convey potential sources
of error through several simple cues. First, a small prove-
nance graph (c) helps the user quickly identify the data’s ori-
gin, what cleaning heuristics have been applied, and where.

Potentially erroneous results are clearly identified: Non-
deterministic rows have a red marker on the right and a grey
background, while non-deterministic cells are highlighted in
red.

Clicking on a non-deterministic row or cell brings up an
explanation window (d). Here, Mimir provides the user with
statistical metrics summarizing the uncertainty of the result,
as well as a list of human-readable reasons why the result
might be incorrect. Each reason is linked to a specific lens; If
the user believes a reason to be incorrect, she can click “Fix”
to override the lens’ data cleaning decision. An “Approve”
button allows a user to indicate that the lens heuristic’s
choice is satisfactory. Once all reasons for a given row or
value’s non-determinism have been either approved or fixed,

Figure 4: The Graphical Mimir User Interface

the row or value becomes green to signify that it is now
deterministic.

Example 5. Figure 4 shows the results of a query where
one product (with id ‘P125’) has an unusually high rating of
121.0. By clicking on it, Alice finds that a schema match-
ing lens has incorrectly mapped the NUM_RATINGS column of
one input relation to the RATINGS column of the other input
relation — 121 is the number of ratings for the product, not
the actual rating itself. By clicking on the fix button, Alice
can manually specify the correct match and Mimir re-runs
the query with the correct mapping.

Making sources of uncertainty easily accessible allows the
user to quickly track down errors that arise during heuris-
tic data cleaning, even while viewing the results of complex
queries. Limiting Mimir to simple signifiers like highlighting
and notifications prevents the user from being overwhelmed
by details, while explanation windows still allow the user to
explore uncertainty sources in more depth at their own pace.

3.2 The Mimir API
The Mimir system’s architecture is shown in Figure 5.

Mimir acts as an intermediary between users and a back-
end database using JDBC. Mimir exposes the database’s
native SQL interface, and extends it with support for lenses.
The central feature of this support is five new functions
in the JDBC result cursor class that permit client applica-
tions such as the Mimir GUI to evaluate result quality. The
first three indicate the presence of specific classes of un-
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Figure 5: The Mimir System

certainty: (1) isColumnDeterministic(int | String) re-
turns a boolean that indicates whether the value of the in-
dicated attribute was computed deterministically without
having to “plug in” values for variables. In our graphical
interface, cells for which this function returns false are high-
lighted in red. Note that the same column may contain
both deterministic and non-deterministic values (e.g., for
a lens that replaces missing values with interpolated esti-
mates) (2) isRowDeterministic() returns a boolean that
indicates whether the current row’s presence in the output
can be determined without using the probabilistic model. In
our graphical interface, rows for which this function returns
false are also highlighted. (3) nonDeterministicRowsMiss-

ing() returns a count of the number of rows that have been
so far ommitted from the result, and were discarded based
on the output of a lens. In our graphical interface, when this
method returns a number greater than zero after the cursor
is exhausted, a notification is shown on the screen.

As we discuss below, limiting the response of these func-
tions to a simple boolean makes it possible to evaluate them
rapidly, in-line with the query itself. For additional feed-
back, Mimir provides two methods: explainColumn(int |

String) and explainRow() Both methods construct and re-
turn an explanation object as detailed below. In the graph-
ical Mimir interface, these methods are invoked when a user
clicks on a non-deterministic (i.e., highlighted) row or cell,
and the resulting explanation object is used to construct the
uncertainty summary shown in the explanation window. Ex-
planations do not need to be computed in-line with the rest
of the query, but to maintain user engagement, explanations
for individual rows or cells still need to be computed quickly
when requested.

3.3 Lens Models
A lens consists of two components: (1) A VG-RA expres-

sion that computes the output of the lens, introducing new
variables in the process using V ar terms, and (2) A model
object that defines a probability space for every introduced
variable. Recall that V ar terms act as skolem functions, in-
troducing new variable symbols based on their arguments.
For example the ROWID attribute can be used to create a dis-
tinct variable named “X” for every row using the expression
V ar(′X ′, ROWID). Correspondingly, we distinguish between
V ar terms and the variable instances they create. Note that
the latter is uniquely identified by the name and arguments
of the V ar term. The model object has three mandatory
methods: (1) getBestGuess(var) returns the value of the
specified variable instance in the most likely possible world.

(2) getSample(var, id) returns the value of the specified
variable instance in a randomly selected possible world. id
acts as a seed value, ensuring that the same possible world
is selected across multiple calls. (3) getReason(var) returns
a human-readable explanation of the heuristic guess repre-
sented by the specified variable instance. The getBestGuess
method is used to produce best-guess query results. The re-
maining two methods are used by explanation objects. As
in PIP [22] and Orion 2.0 [31], optional metadata can some-
times permit the use of closed-form solutions when comput-
ing statistical metrics for result values.

3.4 Explanation Objects
Explanation objects provide a means for client applica-

tions like the GUI to programmatically analyze the non-
determinism of a specific row or cell. Concretely, an expla-
nation object provides methods that compute: (1) Statisti-
cal metrics that quantitatively summarize the distribution
of possible result outcomes, and (2) Qualitative summaries
or depictions of non-determinism in the result.

3.4.1 Statistical Metrics
Available statistical metrics depend on whether the ex-

planation object is constructed for a row or a cell, and in
the latter case also on what type of value is contained in the
cell. For rows, the explanation object has only one method
that computes the row’s confidence, or the probability that
the row is part of the result set.

For numerical cells, the explanation object has methods
for computing the value’s variance, confidence intervals, and
may also be able to provide upper and lower bounds. Vari-
ance and confidence intervals are computed analytically if
possible, or Monte Carlo style by generating samples of the
result using the getSample method on all involved models.
When computing these metrics using Monte Carlo, we dis-
card samples that do not satisfy the local condition of the
cell’s row, as the cell will not appear in the result at all if the
local condition is false. Statistical metrics are not computed
for non-numerical cells.

3.4.2 Qualitative Summaries
Quantitative statistical metrics do not always provide the

correct intuition about a result value’s quality. In addition
to the above metrics, an explanation object can also use
Monte Carlo sampling to construct histograms and example
result values for non-deterministic cells.

Furthermore, for both cells and rows, an explanation ob-
ject can produce a list of reasons — the human readable
summaries obtained from each participating model’s ge-

tReason method. Reasons are ranked according to the rela-
tive contribution of each V ar term to the uncertainty of the
result using a heuristic called CPI [36].

3.5 Query Processing
Queries issued to Mimir are parsed into an intermediate

representation (IR) based on VG-RA. Mimir maintains a
list of all active lenses as a relation in the backend database.
References to lenses in the IR are replaced with the VG-
RA expression that defines the lens’ contents. The resulting
expression is a VG-RA expression over deterministic data
residing in the backend database.

Before queries over lenses are evaluated, the query’s VG-
RA expression is first normalized into the form F(Q(D)),



where F(R) = πai←ei(σφ(R)), φ represents a non-deter-
ministic boolean expression, and the subsequent projection
assigns the result of non-deterministic expressions ei to the
corresponding attributes ai. Mimir obtains a classical JDBC
cursor for Q(D) from the backend database and constructs
an extended cursor using F and the JDBC cursor.

Recall non-determinism in φ and ei arises from V ar terms.
When evaluating these expressions, Mimir obtains a specific
value for the term using the getBestGuess method on the
model object associated with each term. Apart from this, φ
and the ei expressions are evaluated as normal.

Determining whether an expression is deterministic or not
requires slightly more effort. In principle, we could say that
any expression is non-deterministic if it contains a V ar term.
However, it is still possible for the expression’s result to be
entirely agnostic to the value of the V ar.

Example 6. Consider the following expression, which is
used in Mimir’s domain constraint repair lens:

if A is null then V ar(′A′, ROWID) else A

Here, the value of the expression is only non-deterministic
for rows where A is null.

Concretely, there are three such cases: (1) conditional ex-
pressions where the condition is deterministic, (2) AND ex-
pressions where one clause is deterministically false, and (3)
OR expressions where one clause is deterministically true.
Observe that these cases mirror semantics for NULL and UN-

KNOWN values in deterministic SQL.
For each ei and φ, the Mimir compiler uses a recursive

descent through the expression illustrated in Algorithm 1 to
obtain a boolean formula that determines whether the ex-
pression is deterministic for the current row. These formulas
permit quick responses to the isColumnDeterministic and
isRowDeterministic methods. The counter for the non-

DeterministicRowsMissing method is computed by using
isRowDeterministic on each discarded row.

Algorithm 1 isDet(E)

In: E: An expression in either grammar from Fig. 2.
Out: An expression that is true when E is deterministic.
1: if E ∈ {R,>,⊥} then
2: return >
3: else if E is V ar then
4: return ⊥
5: else if E is Columni then
6: return >
7: else if E is ¬E1 then
8: return isDet(E1)
9: else if E is E1 ∨ E2 then

10: return (E1 ∧ isDet(E1)) ∨ (E2 ∧ isDet(E2))
11: ∨ (isDet(E1) ∧ isDet(E2))
12: else if E is E1 ∧ E2 then
13: return (¬E1 ∧ isDet(E1)) ∨ (¬E2 ∧ isDet(E2))
14: ∨ (isDet(E1) ∧ isDet(E2))
15: else if E is E1 {+,−,×,÷,=, 6=, >,≥, <,≤} E2 then
16: return (isDet(E1) ∧ isDet(E2))
17: else if E is if E1 then E2 else E3 then
18: return isDet(E1) ∧ ( (E1 ∧ isDet(E2))
19: ∨(¬E1 ∧ isDet(E3)) )

When one of the explain methods is called, Mimir extracts
all of the V ar terms from the corresponding expression, and

uses the associated model object’s getReason method to ob-
tain a list of reasons. Variance, confidence bounds, and row-
level confidence are computed by sampling from the possible
worlds of the model using getSample and evaluating the ex-
pression in each possible world. Upper and lower bounds are
obtained if possible from an optional method on the model
object, and propagated through expressions where possible.

4. OPTIMIZING VIRTUAL C-TABLES
The primary scalability challenge that we address in this

paper relates to how queries are normalized in Virtual C-
Tables. Concretely, the problem arises in the rule for nor-
malizing selection predicates:

σψ (F(〈 ai ← ei 〉 , φ)(Q(D)))

≡ F(〈 ai ← ei 〉 , φ ∧ ψvar)(σψdet(Q(D)))

Non-deterministic predicates are always pushed into F , in-
cluding those that could otherwise be used as join predicates.
When this happens, the backend database is given a cross-
product query to evaluate, and the join is evaluated far less
efficiently as a selection predicate in the Mimir shim layer.

In this section, we explore variations on the theme of query
normalization. These alternative evaluation strategies make
it possible for a traditional database to scalably evaluate C-
Table queries, while retaining the functionality of Mimir’s
uncertainty-annotated cursors as described in Section 3.2.
Supporting C-Tables and annotated cursors carries several
challenges:
Var Terms. Classical databases are not capable of man-
aging non-determinism, making V ar terms functionally into
black-boxes. Although a single best-guess value does exist
for each term, the models that compute this value normally
reside outside of the database.
isDeterministic methods. Mimir’s annotated cursors
must be able to determine whether a given row’s presence
(resp., a cell’s value) depends on any V ar terms. Using
F , this is trivial, as all V ar terms are conveniently located
in a single expression that is used to determine the row’s
presence (resp., to compute a cell’s value). Because these
methods are used to construct the initial response shown to
the user (i.e., to determine highlighting), they must be fast.
Potentially Missing Rows. Annotated cursors must also
be able to evaluate the number of rows that could poten-
tially be missing, depending on how the non-determinism is
resolved. Although the result of this method is presented to
the user as part of the initial query, the value is shown in a
notification box and is off of the critical path of displaying
the best guess results themselves.
Explanations. The final feature that annotated cursors
are expected to support is the creation of explanation ob-
jects. These do not need to be created until explicitly re-
quested by the user; the initial database query does not
need to be directly involved in their construction. However,
it must still be possible to construct and return an explana-
tion object quickly to maintain user engagement.

We now discuss two complimentary techniques for con-
structing annotated iterators over Virtual C-Tables. Our
first approach partitions queries into deterministic and non-
deterministic fragments to be evaluated separately. The
second approach pre-materializes best-guess values into the
backend database, allowing it to evaluate the non-determi-
nistic query with V ar terms inlined.



4.1 Approach 1: Partition
We observe that uncertain data is frequently the minor-

ity of the raw data. Moreover, for some lenses, whether
a row is deterministic or not is data-dependent. Our first
approach makes better use of the backend database by par-
titioning the query into one or more deterministic and non-
deterministic segments, computing each independently, and
unioning the results together. When the row-determinism φ
of a result depends on deterministic data we can push more
work into the backend database for those rows that we know
to be deterministic. For this deterministic partition of the
data, joins can be evaluated correctly and other selection
predicates can be satisfied using indexes over the base data.
As a further benefit, tuples in each partition share a com-
mon lineage, allowing substantial re-use of annotated cursor
metadata for all tuples returned by the query on a single
partition. To partition a query F(Q(D)), we begin with a
set of partitions, each defined by a boolean formula ψi over
attributes in sch(Q). The set of partitions must be complete
(
∨
ψi ≡ >) and disjoint (∀i 6= j . ψi → ¬ψj). In general,

partition formulas are selected such that σψi(Q(D)) never
contains query results that can be deterministically excluded
from F(Q(D)).

Example 7. Recall the SaneProduct lens from Examples 1
and 2. Alice the analyst now posses a query:

SELECT name FROM SaneProduct
WHERE brand = ’Apple’ AND cat = ’phone’

Some rows of the resulting relation are non-deterministic,
but only when the brand or cat in the corresponding row of
Product is NULL. Optimizing further, all products that are
known to be either non-phones or non-Apple products are
also deterministically not in the result.

Given a set of partitions Ψ = {ψ1, . . . , ψN}, the partition
rewrite transforms the original query into an equivalent set
of partitioned queries as follows:

(F(〈 ai ← ei 〉 , φ)(Q(D)))

7→ F(〈 ai ← ei 〉 , φvar,1)(σψ1∧φdet,1(Q(D)))

∪ · · · ∪ F(〈 ai ← ei 〉 , φvar,N )(σψN∧φdet,N (Q(D)))

where φvar,i and φdet,i are respectively the non-deterministic
and deterministic clauses of φ (i.e., φ = φvar,i ∧ φdet,i) for
each partition. Partitioning then, consists of two stages: (1)
Obtaining a set of potential partitions Ψ from the original
condition φ, and (2) Segmenting φ into a deterministic fil-
tering predicate and a non-deterministic lineage component.

4.1.1 Partitioning the Query
Algorithm 2 takes the selection predicate φ in the shim

query F〈 ai←ei 〉,φ, and outputs a set of partitions Ψ = {ψi}.
Partitions are formed from the set of all possible truth as-
signments to a set of candidate clauses. Candidate clauses
are obtained from if statements appearing in φ that have de-
terministic conditions, and that branch between determin-
istic and non-deterministic cases. For example, the if state-
ment in Example 2 branches between deterministic values
for non-null attributes, and non-deterministic possible re-
placements.

Example 8. The normal form F(Q(D)) of the query in

Algorithm 2 naivePartition(φ)

In: φ: A non-deterministic boolean expression
Out: Ψ: A set of partition conditions {ψi}
clauses← ∅
Ψ← ∅
for (if condition then α else β) ∈ subexps(φ) do
/* Check ifs in φ for candidate partition clauses */

if isDet(condition) ∧ (isDet(α) 6= isDet(β)) then
clauses← clauses ∪ {condition}

/* Loop over the power-set of clauses */

for partition ∈ 2clauses do
ψi ← >
/* Clauses in the partition are true, others are false */

for clause ∈ clauses do
if clause ∈ partition then ψi ← ψi ∧ clause

else ψi ← ψi ∧ ¬clause
Ψ← Ψ ∪ {ψi}

the prior example has the non-deterministic condition (φ):

(if brand is null then V ar(′b′, ROWID) else brand) = ‘Apple′

∧ (if cat is null then V ar(′c′, ROWID) else cat) = ‘phone′

There are two candidate clauses in φ: brand is null and
cat is null. Thus, Algorithm 2 creates 4 partitions: ψ1 =
(¬brand is null ∧ ¬cat is null), ψ2 = (brand is null ∧
¬cat is null), ψ3 = (¬brand is null ∧ cat is null), and
finally ψ4 = (brand is null ∧ cat is null).

4.1.2 Segmenting φ

For each partition ψi we can simplify φ into a reduced
form φi. We use φ[ψi] to denote the result of propagating the
implications of ψi on φ. For example, (if X is null then
V ar(′X ′) else X)[X is null] ≡ V ar(′X ′). Using isDet

from Algorithm 1, we partition the conjunctive terms of
φ[ψi] into deterministic and non-deterministic components
φi,det and φi,var, respectively so that

(φi,det ∧ φi,var) ≡ φ[ψi]

4.1.3 Partitioning Complex Boolean Formulas
As discussed in Section 3.5 there are three cases where

non-determinism can be data-dependent: conditional ex-
pressions, conjunctions, and disjunctions. Algorithm 2 naively
targets only conditionals. Conjunctions come for free, be-
cause deterministic clauses can be freely migrated into the
deterministic query already. However, queries including dis-
junctions can be further simplified.

Example 9. We return once again to our running exam-
ple, but this time with a disjunction in the WHERE clause

SELECT name FROM SaneProduct
WHERE brand = ’Apple’ OR cat = ’phone’

Propagating ψ3 into the normalized condition φ gives:

(φ[ψ3]) ≡
(
brand =′ Apple′ ∨ V ar(′c′, ROWID) =′ phone′

)
The output is always deterministic for rows where brand =′

Apple′. However, this formula can not be subdivided into
deterministic and non-deterministic components as above.

We next describe a more aggressive partitioning strategy
that uses the structure of φ to create partitions where each
partition depends on exactly the same set of V ar terms. To



determine the set of partitions for each sub-query, we use a
recursive traversal through the structure of φ, as shown in in
Algorithm 3. In contrast to the naive partitioning scheme,
this algorithm explicitly identifies two partitions where φ is
deterministically true and deterministically false. This ad-
ditional information helps to exclude cases where one clause
of an OR (resp., AND) is deterministically true (resp., false)
from the non-deterministic partitions. To illustrate, consider
the disjunction case handled by Algorithm 3. In addition to
the partition where both children are non-deterministic, the
algorithm explicitly distinguishes two partitions where one
child is non-deterministic and the other is deterministically
false. When φ is segmented, the resulting non-deterministic
condition for this partition will be simpler.

Algorithm 3 generalPartition(φ)

In: φ: A non-deterministic boolean expression.
Out: ψ>: The partition where φ is deterministically true.
Out: ψ⊥: The partition where φ is deterministically false.
Out: Ψvar: The set of non-deterministic partitions.

if φ is φ1 ∨ φ2 then
〈 ψ>,1, ψ⊥,1,Ψvar,1 〉 ← generalPartition(φ1)
〈 ψ>,2, ψ⊥,2,Ψvar,2 〉 ← generalPartition(φ2)
ψ> ← ψ>,1 ∨ ψ>,2
ψ⊥ ← ψ⊥,1 ∧ ψ⊥,2
for all ψvar,1, ψvar,2 ∈ Ψvar,1,Ψvar,2 do

Ψ← Ψ ∪ {ψvar,1 ∧ ψvar,2}
for all ψvar,1 ∈ Ψvar,1 do Ψ← Ψ ∪ {ψvar,1 ∧ ψ⊥,2}
for all ψvar,2 ∈ Ψvar,2 do Ψ← Ψ ∪ {ψvar,2 ∧ ψ⊥,1}

else if φ is φ1 ∧ φ2 then
/* Symmetric with disjunction */

else if φ is ¬φ1 then
〈 ψ>,1, ψ⊥,1,Ψvar,1 〉 ← generalPartition(φ1)
〈 ψ⊥, ψ>,Ψvar 〉 = 〈 ψ>,1, ψ⊥,1,Ψvar,1 〉

else
Ψ = naivePartition(φ)
Ψdet ← ∅; Ψvar ← ∅
for all ψ ∈ Ψ do

if isDet(φ[ψ]) then Ψdet ← Ψdet ∪ {ψ}
else Ψvar ← Ψvar ∪ {ψ}

ψ> = (
∨

Ψdet) ∧ φ[
∨

Ψdet]
ψ⊥ = (

∨
Ψdet) ∧ ¬φ[

∨
Ψdet]

The partition approach makes full use of the backend
database engine by splitting the query into deterministic
and non-deterministic fragments. The lineage of the condi-
tion for each sub-query is simpler, and generally not data-
dependent for all rows in a partition. As a consequence,
explanation objects can be shared across all rows in the par-
tition. The number of partitions obtained with both parti-
tioning schemes is exponential in the number of candidate
clauses. Partitions could conceivably be combined, increas-
ing the number of redundant tuples processed by Mimir to
create a lower-complexity query. In the extreme, we might
have only two partitions: one deterministic and one non-
deterministic. We leave the design of such a partition opti-
mizer to future work.

4.2 Approach 2: Inline
During best-guess query evaluation, each variable instance

is replaced by a single, deterministic best-guess. Simply put,
best-guess queries are themselves deterministic. The second

approach exploits this observation to directly offload virtu-
ally all computation into the database. Best-guess values for
all variable instances are pre-materialized into the database,
and the V ar terms themselves are replaced by nested lookup
queries that can be evaluated directly.

4.2.1 Best-Guess Materialization
As part of lens creation, best-guess estimates must now

be materialized. Recall from the grammar in Figure 2,
V ar(id, e1, . . . , en) terms are defined by a unique identifier
id and zero or more parameters (ei). For each unique vari-
able identifier allocated by the lens, Mimir creates a new
table in the database. The schema of the best-guess table
consists of the variable’s parameters (ei), a best guess value
for the variable, and other metadata for the variable includ-
ing whether the user “Accept”ed it. The variable parameters
form a key for the best-guess table.

Example 10. Recall the domain repair lens from Exam-
ple 2. To materialize the best-guess relation, Mimir run
the lens query to determine all variable instances that are
used in the current database instance. In the example, there
are 4 such variables, one for each null value. For instance,
the missing brand of product P123 will instantiate a vari-
able V ar(′brand′,′ P123′). For all “brand” variables Mimir
will create a best guesses table with primary key param1, a
best-guess value value, and attributes storing the additional
metadata mentioned above. Mentions of variables in queries
over the lens are replaced with a subquery that returns the
best guess value. For example, in πbrand(SaneProduct) the
expression for brand in the VG-RA query:

if brand is null then V ar(′brand′, ROWID) else brand

is translated into the SQL expression

CASE WHEN brand IS NULL
THEN (SELECT value FROM best_guess_brand b

WHERE b.param1 = Product.ROWID)
ELSE brand END

To populate the best guess tables, Mimir simulates execu-
tion of the lens query, and identifies every variable instance
that is used when constructing the lens’ output. The result
of calling getBestGuess on the corresponding model is in-
serted into the best-guess table. When a non-deterministic
query is run, all references to V ar terms are replaced by
nested lookup queries which read the values for V ar terms
from the corresponding best guess tables. As a further opti-
mization, the in-lined lens query can also be pre-computed
as a materialized view.

4.2.2 Recovering Provenance
This approach allows deterministic relational databases to

directly evaluate best-guess queries over C-Tables, eliminat-
ing the need for a shim query F to produce results. However,
the shim query also provides a form of provenance, linking
individual results to the V ar terms that might affect them.
Mimir’s annotated cursors rely on this link to efficiently de-
termine whether a result row or cell is uncertain and also
when constructing explanation objects.

For inlining to be compatible with annotated cursors, three
further changes are required: (1) To retain the ability to
quickly determine whether a given result row or column
is deterministic, result relations are extended with a ‘de-
terminism’ attribute for the row and for each column. (2)



To quickly construct explanation objects, we inject a prove-
nance marker into each result relation that can be used with
the shim query F to quickly reconstruct any row or cell’s full
provenance. (3) To count the number of potentially missing
rows, we initiate a secondary arity-estimation query that is
evaluated off of the critical path.

4.2.3 Result Determinism
Recall from Example 6 that expressions involving condi-

tionals, conjunctions, and disjunctions can create situations
where the determinism of a row or column is data depen-
dent. In the naive execution strategy, these situations arise
exclusively in the shim query F and can be easily detected.
As the first step towards recovering annotated cursors, we
push this computation down into the query itself.

Concretely, we rewrite a query Q with schema sch(Q) =
{ai} into a new query [[Q]]det with schema {ai, Di, φ}. Each
Di is a boolean-valued attribute that is true for rows where
the corresponding ai is deterministic. φ is a boolean-valued
attribute that is true for rows deterministically in the result
set. We refer to these two added sets of columns as attribute-
and row-determinism metadata, respectively. Query [[Q]]det
is derived from the input query Q by applying the operator
specific rewrite rules described below, in a top-down fashion
starting from the root operator of query Q.
Projection. The projection rewrite relies on a variant of
Algorithm 1, which rewrites columns according to the de-
terminism of the input. Consequently, the only change is
that the column rewrite on line 5 replaces columns with a
reference to the column’s attribute determinism metadata:

4: else if E is Columni then
5: return Di

The rewritten projection is computed by extending the pro-
jection’s output with determinism metadata. Attribute de-
terminism metadata is computed using the expression re-
turned by isDet and row determinism metadata is passed-
through unchanged from the input.

[[πai←ei(Q)]]det 7→ πai←ei,Di←isDet(ei),φ←φ([[Q]]det)

Selection. Like projection, the selection rewrite makes use
of isDet. The selection is extended with a projection opera-
tor that updates the row determinism metadata if necessary.

[[σψ(Q)]]det 7→ πai←ai,Di←Di,φ←φ∧isDet(ψ)(σψ([[Q]]det))

Cross Product. Result rows in a cross product are deter-
ministic if and only if both of their input rows are determin-
istic. Cross products are wrapped in a projection operator
that combines the row determinism metadata of both in-
puts, while leaving the remaining attributes and attribute
determinism metadata intact.

[[Q1×Q2]]det 7→ πai←ai,Di←Di,φ←φ1∧φ2([[Q1]]det× [[Q2]]det)

Union. Bag union already preserves the determinism meta-
data correctly and does not need to be rewritten.

[[Q1 ∪Q2]]det 7→ [[Q1]]det ∪ [[Q2]]det

Relations. The base case of the rewrite, once we arrive
at a deterministic relation, we annotate each attribute and
row as being deterministic.

[[R]]det 7→ πai←ai,Di←>,φ←>(R)

Optimizations. These rewrites are quite conservative in
materializing the full set of determinism metadata attributes

at every stage of the query. It is not necessary to material-
ize every Di and φ if they can be computed statically based
solely on each operator’s output. For example, consider a
given Di that is data-independent, as in a deterministic rela-
tion or an attribute defined by a V ar term. Di has the same
value for every row, and can be factored out of the query. A
similar property holds for Joins and Selections, allowing the
projection enclosing the rewritten operator to be avoided.

4.2.4 Explanations
Recall that explanation objects provide a way to analyze

the non-determinism in a given result row or cell. Given a
query Q(D) and its normalized form F(Q′(D)), this analysis
requires only F and the individual row in the output of
Q′(D) used to compute the row or cell being explained.

We now show how to construct a provenance marker dur-
ing evaluation of Q and how to use this provenance marker
to reconstruct the single corresponding row of Q′. The key
insight driving this process is that the normalization rewrites
for cross product and union (Rewrites 3 and 4 in Figure 3)
are isomorphic with respect to the data dependency struc-
ture of the query; Q and Q′ both have unions and cross
products in the same places.

As the basis for provenance markers, we use an implicit,
unique per-row identifier attribute called ROWID supported
by many popular database engines. When joining two re-
lations in the in-lined query, their ROWIDs are concatenated
(we denote string concatenation as ◦):

Q1 ×Q2 7→ πai←ai,ROWID←’(’ ◦ ROWID1 ◦ ’)(’ ◦ ROWID2 ◦ ’)’(Q1 ×Q2)

When computing a bag union, each source relation’s ROWID is
tagged with a marker that indicates which side of the union
it came from:

Q1 ∪Q2 7→ πai←ai,ROWID←ROWID ◦ ’+1’(Q1)

∪ πaj←aj ,ROWID←ROWID ◦ ’+2’(Q2)

Selections are left unchanged, and projections are rewritten
to pass the ROWID attribute through.

The method unwrap, summarized in Algorithm 4, illus-
trates how a symmetric descent through the deterministic
component of a normal form query and a provenance marker
can be used to produce a single-row of Q′. The descent un-
wraps the provenance marker, recovering the single row from
each join leaf used to compute the corresponding row of Q′.

4.3 Approach 3: Hybrid
The first two approaches provide orthogonal benefits. The

partitioning approach results in faster execution of queries
over deterministic fragments of the data, as it is easier for the
backend database query optimizer to take advantage of in-
dexes already built over the raw data. The inlining approach
results in faster execution of queries over non-deterministic
fragments of the data, as joins over non-deterministic val-
ues do not create a polynomial explosion of possible results.
Our third and final approach is a simple combination of the
two: Queries are first partitioned as in Approach 1, and then
non-deterministic partitions are in-lined as in Approach 2.

5. EXPERIMENTS
We now summarize our the results of experimental anal-

ysis of the two optimizations presented in this paper. We



Algorithm 4 unwrap(Q′, id)

In: Q′: The deterministic component of a VG-RA normal
form query.

In: id: A ROWID from the inlined query Q that was normal-
ized into F(Q′(D)).

Out: A query to compute row id of Q′

if Q′ is π(Q1) then
return π(unwrap(Q1, id))

else if Q′ is σ(Q1) then
return σ(unwrap(Q1, id))

else if Q′ is Q1 ×Q2 and id is (id1)(id2) then
return unwrap(Q1, id1)× unwrap(Q2, id2)

else if Q′ is Q1 ∪Q2 and id is id1+1 then
return unwrap(Q1, id1)

else if Q′ is Q1 ∪Q2 and id is id1+2 then
return unwrap(Q2, id1)

else if Q′ is R then
return σROWID=id(R)

evaluate Virtual C-Tables under the classical normalization-
based execution model, and partition-, inline-, and hybrid-
optimized execution models. All experiments are conducted
using both SQLite as a backend, and a major commercial
database termed DBX due to its licensing agreement. Mimir
is implemented in Scala and Java. Measurements presented
are for Mimir’s textual front-end. All experiments were run
under RedHat Enterprise Linux 6.5 on a 16 core 2.6 GHz
Intel Xeon server with 32 GB of RAM and a 4-disk 900 GB
RAID5 array. Mimir and all database backends were hosted
on the same machine to avoid including network latencies in
measurements. Our experiments demonstrate that: (1) Vir-
tual C-Tables scale well, (2) Virtual C- Tables impose mini-
mal overhead compared to deterministic evaluation, and (3)
Hybrid evaluation is typically optimal.

5.1 Experimental Setup
Datasets were constructed using TPC-H [9]’s dbgen with

scaling factors 1 (1 GB) and 0.1 (100 MB). To simulate
incomplete data that could affect join predicates, we ran-
domly replaced a percentage of foreign key references in the
dataset with NULL values. We created domain constraint re-
pair lenses over the damaged relations to “repair” these NULL

values as non-materialized views. As a query workload, we
used TPC-H Queries 1, 3, 5, and 9 modified in two ways.
First, all relations used by the query were replaced by ref-
erences to the corresponding domain constraint repair lens.
Second, Mimir does not yet include support for aggregation.
Instead we measured the cost of enumerating the set of re-
sults to be aggregated by stripping out all aggregate func-
tions and computing their parameter instead1. Execution
times were capped at 30 minutes.

We experimented with two different backend databases:
SQLite and a major commercial database DBX. We tried
four different evaluation strategies: Classic is the naive,
normalization-based evaluation strategy, while Partition,
Inline, and Hybrid denote the optimized approaches pre-
sented in Sections 4.1, 4.2, and 4.3 respectively. Deter-
ministic denotes the four test queries run directly on the
backend databases with un-damaged data, and serves as an

1The altered queries can be found at https://github.com/
UBOdin/mimir/tree/master/test/tpch queries/noagg

lower bound for how fast each query can be run.

5.2 Comparison
Figures 6 and 7 show the performance of Mimir running

over SQLite and DBX, respectively. The graphs show Mimir’s
overhead relative to the equivalent deterministic query.
Table scans are unaffected by Mimir. Query 1 is a
single-table scan. In all configurations, Mimir’s overhead is
virtually nonexistent.
Partitioning accelerates deterministic results. Query
3 is a 3-way foreign-key lookup join. Under naive partition-
ing, completely deterministic partitions are evaluated almost
immediately. Even with partitioning, non-deterministic sub-
queries still need to be partly evaluated as cross products,
and partitioning times out on all remaining queries.
Partitioning can be harmful. Query 5 is a 6-way foreign-
key lookup join where Inline performs better than Hybrid.
Each foreign-key is dereferenced in exactly one condition in
the query, allowing Inline to create a query with a plan that
can be efficiently evaluated using Hash-joins. The additional
partitions created by Hybrid create a more complex query
that is more expensive to evaluate.
Partitioning can be helpful. Query 9 is a 6-way join with
a cycle in its join graph. Both PARTSUPP and LINEITEM have
foreign key references that must be joined together. Conse-
quently, Inlining creates messy join conditions that neither
backend database evaluates efficiently. Partitioning results
in substantially simpler nested queries that both databases
accept far more gracefully.

6. RELATED WORK
The design of Mimir draws on a rich body of literature,

spanning the areas probabilistic databases, model databases,
provenance, and data cleaning. We now relate key contri-
butions in these areas on which we have based our efforts.
Incomplete Data. Enabling queries over incomplete and
probabilistic data has been an area of active research for
quite some time. Early research in the area includes NULL

values [8], the C-Tables data model [17] for representing in-
complete information, and research on fuzzy databases [37].
The C-Tables representation used by Mimir has been linked
to both probability distributions and provenance through
so-called PC-Tables [15] and Provenance Semirings [21], re-
spectively. These early concepts were implemented through
a plethora of probabilistic database systems. Most notably,
MayBMS [16] employs a simplification of C-Tables called
U-Relations that does not rely on labeled nulls, and can
be directly mapped to a deterministic relational database.
However, U-Relations can only encode uncertainty described
by finite discrete distributions (e.g., Bernoulli), while VC-
Tables can support continuous, infinite distributions (e.g.,
Gaussian). Other probabilistic database systems include
MCDB [18], Sprout [13], Trio [1], Orion 2.0 [31], Mystiq [6],
Pip [22], Jigsaw [23], and numerous others. These systems
all require heavyweight changes to the underlying database
engine, or an entirely new database kernel. By contrast,
Mimir is an external component that attaches to an exist-
ing deployed database, and can be trivially integrated into
existing deterministic queries and workflows.
Model Databases. A specialized form of probabilistic
databases focus on representing structured models such as
graphical models or markov processes as relational data.
These types of databases exploit the structure of their mod-

https://github.com/UBOdin/mimir/tree/master/test/tpch_queries/noagg
https://github.com/UBOdin/mimir/tree/master/test/tpch_queries/noagg
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Figure 6: Performance of Mimir running over SQLite as a percent of deterministic query execution time.
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Figure 7: Performance of Mimir running over DBX as a percent of deterministic query execution time.

els to accelerate query evaluation. Systems in this space
include BayesStore [33], MauveDB [10] Lahar [25], and Sim-
SQL [7]. In addition to defining semantics for querying mod-
els, work in this space typically explores techniques for train-
ing models on deterministic data already in the database.
The Mimir system treats lens models as black boxes, ig-
noring model structure. It is likely possible to incorporate
model database techniques into Mimir. We leave such con-
siderations as future work.
Provenance. Provenance (sometimes referred to as lin-
eage) describes how the outputs of a computation are de-
rived from relevant inputs. Provenance tools provide users
with a way of quickly visualizing and understanding how
a result was obtained, most commonly as a way to vali-
date outliers, better understand the results, or to diagnose
errors. Examples of provenance systems include a general
provenance-aware database called Trio [1], a collaborative
data exchange system called Orchestra [14], and a generic
database provenance middleware called GProM which also
supports updates and transactions [2, 3]. It has been shown
that certain types of provenance can encode C-Tables [21].
It is this connection that allows Mimir to provide reliable
feedback about sources of uncertainty in the results. The
VG-Relational algebra used in Mimir creates symbolic ex-
pressions that act as a form of provenance similar to semir-
ing provenance [21] and its extensions to value expressions
(aggregation [21]) and updates [3].
Data Curation. In principle, it is useful to query un-
certain or incomplete data directly. However, due to the
relative complexity of declaring uncertainty upfront, it is
still typical for analysts to validate, standardize, and merge
data before importing it into a data management system
for analysis. Common problems in the space of data cu-
ration include entity de-duplication [11, 28, 30], interpola-
tion [10, 26], schema matching [4, 27, 24, 29], and data fu-

sion. Mimir’s lenses each implement a standard off-the-shelf
curation heuristic. These heuristics usually require manual
tuning, validation, and refinement. By contrast, in Mimir
these difficult, error-prone steps can be deferred until query-
time, allowing analysts to focus on the specific cleaning tasks
that are directly relevant to the query results at hand.

Other systems for simplifying or deferring curation exist.
For example, DataWrangler [20] creates a data cleaning en-
vironment that uses visualization and predictive inference
to streamline the data curation process. Similar techniques
could be used in Mimir for lens creation, streamlining data
curation even further. Mimir can also trace its roots to on-
demand cleaning systems like Paygo [19], CrowdER [34], and
GDR [35]. In contrast to Mimir, these systems each focus
on a specific type of data cleaning: Duplication and Schema
Matching, Deduplication, and Conditional Functional De-
pendency Repair, respectively. Mimir provides a general cu-
ration framework that can incorporate the specialized tech-
niques used in each of these systems.
Uncertainty Visualization. Visualization of uncertain or
incomplete data arises in several domains. As already noted,
DataWrangler [20] uses visualization to help guide users to
data errors. MCDB [18] uses histograms as a summary of
uncertainty in query results. Uncertainty visualization has
also been studied in the context of Information Fusion [32,
5]. Mimir’s explanation objects are primitive by comparison,
and could be extended with any of these techniques.

7. CONCLUSIONS
We presented Mimir, an on-demand data curation system

based on a novel type of probabilistic data curation opera-
tors called Lenses. The system sits as a shim layer on-top of
a relational DBMS backend - currently we support SQLite
and a commercial system. Lenses encode the result of a
curation operation such as domain repair or schema match-



ing as a probabilistic relation. The driving force behind
Mimir’s implementation of Lenses are VC-Tables which are
a representation of uncertain data that cleanly separates the
existence of uncertainty from a probabilistic model for the
uncertainty. This enables efficient implementation of queries
over lenses by outsourcing the deterministic component of
a query to the DBMS. Furthermore, the symbolic expres-
sions used by VC-Tables to represent uncertain values and
conditions act as a type of provenance that can be used to
explain how uncertainty effects a query result. In this paper
we have introduced several optimizations of this approach
that 1) push part of the probabilistic computation into the
database (we call this inlining) without loosing the ability
to generate explanations and 2) partitioning a query based
on splitting selection conditions such that some fragments
can be evaluated deterministically or can benefit from avail-
able indexes. In future work we will investigate cost-based
optimization techniques for lens queries and using the proba-
bilistic model for uncertainty in the database to exclude rows
that are deterministically not in the result (e.g., if a missing
brand value is guaranteed to be either Apple or Samsung,
then this value does not fulfill a condition brand = Sony).
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