
LDV: Light-weight Database Virtualization
Quan Pham #1, Tanu Malik #2, Boris Glavic ∗3, Ian Foster #4

Computation Institute, University of Chicago, Chicago, Illinois, USA
1 quanpt@cs.uchicago.edu, 2 tanum@ci.uchicago.edu, 4 foster@ci.uchicago.edu
∗ Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois, USA

3 bglavic@iit.edu

Abstract—We present a light-weight database virtualization
(LDV) system that allows users to share and re-execute ap-
plications that operate on a relational database (DB). Previous
methods for sharing DB applications, such as companion websites
and virtual machine images (VMIs), support neither easy and
efficient re-execution nor the sharing of only a relevant DB
subset. LDV addresses these issues by monitoring application
execution, including DB operations, and using the resulting
execution trace to create a lightweight re-executable package.
A LDV package includes, in addition to the application, either
the DB management system (DBMS) and relevant data or, if the
DBMS and/or data cannot be shared, just the application-DBMS
communications for replay during re-execution. We introduce a
linked DB-operating system provenance model and show how to
infer data dependencies based on temporal information about
the DB operations performed by the application’s process(es).
We use this model to determine the DB subset that needs to
be included in a package in order to enable re-execution. We
compare LDV with other sharing methods in terms of package
size, monitoring overhead, and re-execution overhead. We show
that LDV packages are often more than an order of magnitude
smaller than a VMI for the same application, and have negligible
re-execution overhead.

I. INTRODUCTION

Sharing and repeating applications is crucial for verifying
claims, reproducing experimental results (e.g., to repeat a
computational experiment described in a publication), and
promoting reuse of complex applications. However, no meth-
ods currently exist that enable easy sharing and efficient
repeatability for applications that use a relational DB.

For example, consider Alice, who has implemented a new
algorithm for finding dark matter halos in the Sloan Digital
Sky Survey’s SkyServer relational DB. The predominant meth-
ods of sharing and making such an application repeatable for
other researchers are building a companion web site and/or
provisioning a virtual machine image (VMI). The former pro-
vides access to the application programs. However, access to
the relational DB used by the application or sharing part of its
data may require appropriate privileges, such as being a power
user on the SkyServer. Thus, building a companion website
often does not guarantee repeatability. A VMI, if provisioned
correctly with the application and data, ensures repeatability.
However, creating such a VMI requires specialized knowledge
and much effort from the application developer. Furthermore,
a VMI that includes all data may be extremely large.

Application virtualization has recently emerged as a light-
weight alternative for sharing and efficient repeatability. This
approach traces system calls during application execution and

copies all binaries, data, and software dependencies into a
package. The resulting package can be run on any compatible
machine (e.g., most virtualization approaches work only on
particular OS) without installation, configuration, or root per-
missions. Application virtualization, as implemented by tools
such as CDE [13], has several advantages. Because it needs
to capture only the necessary data and software environment,
it can create packages that are more light-weight than VM
images. Furthermore, automating the creation of self-contained
packages makes sharing scientific results as easy as building
companion websites, and for deterministic computations, re-
running the packages guarantees repeatability.

However, despite such advances, sharing and repeating DB
applications remains challenging for three reasons:

1) Most applications use only a fraction of a DB’s data.
When sharing a DB application we may want to include
only the subset that is accessed by the application. How-
ever, isolating this subset can be non-trivial when appli-
cations use update operations and/or complex queries.

2) Sharing the DB server binaries and data may not be an
option, because the user may have limited access to these
files (e.g., the server is run by a third party), because of
licensing issues, or because of data usage policies.

3) To successfully repeat an execution, the DB has to be
restored to the state valid at the start of the application.
This may be challenging, in particular, if the DB is
shared among multiple users and applications.

Current methods—companion websites, VM images, and
application virtualization—do not address these unique re-
quirements of DB applications. They provide no means for
determining which data are relevant for an application, cannot
reset a DB to a previous state, and do not solve the licensing
problem of sharing commercial DBMS binaries. Virtualization
can ensure reproducibility if the user has control over the DB
server, but the server has to be started and stopped by the
application in order to include a consistent DB state. The
resulting package must inevitably include the complete DB.
Application virtualization is currently limited to applications
that do not communicate with server processes. In fact, when
an application communicates with a DBMS, the technique
can at most record this communication. This information is
not sufficient for determining which data was used by the
application (and, thus, should be included in the package) and
does not solve the problem of resetting the DB to the state

valid before the application started. Temporal DBs provide a
solution to the latter problem, but not for the former.

We present here an alternative method, termed light-weight
DB virtualization (LDV), which allows researchers to share
DB applications as self-contained packages that can be re-
peated by other researchers, thus achieving reproducibility
for DB applications. An application shared in this way runs
exactly as it did for the original user—it requires no access
to the original DB, no manual installation of a DBMS, and
no manual restoration of the DB. Our approach extends
application virtualization in several ways to address the chal-
lenges outlined above. Importantly, we use linked OS and DB
provenance to solve the first and third challenges.

II. LIGHT-WEIGHT DB VIRTUALIZATION

We now provide an overview of our approach, highlight our
contributions, and describe how we use provenance metadata
to create and repeat an LDV package. Consider our example,
in which Alice’s halo-finder application reads some input
simulation data and outputs potential halos in a region of sky.
To find precise halos, the application also reads observational
data from the Sloan DB. We assume that the application
accesses the DB using SQL, and that it uses standard bulk
copy and DB dump utilities. Though we assume here a client-
server model for simplicity, our system can be expanded to
more general distributed settings.

Alice would like to share this application with Bob as a
package. Bob may then want to either (i) re-execute the appli-
cation in its entirety, (ii) re-execute the application without
reading data from the Sloan DB, or (iii) provide his own
data inputs to the halo-finder. In order for Bob to re-execute
and build upon Alice’s application, he must be provided with
access to application binaries and data, any extension modules
that the code depends upon (e.g., dynamically linked libraries),
a DB server, and a DB storing data relevant to the application.

P3 P4Other experiments

f1

P1 Insert

t1

t2

t3

Query P2

t4

f2

Alice’s
experiment

DB

Fig. 1: Alice’s application consists of two processes P1 and
P2. Process P1 reads from a file f1 and inserts a new tuple t1
into the DB. Process P2 runs a query that produces a result
tuple t4 from tuples t1 and t3.

Determining the data relevant to an application is chal-
lenging. We want to exclude tuples that are not accessed
by the application, in order to reduce package size. Thus,
for example, tuple t2 in the version of Alice’s application
shown in Figure 1 should be excluded from the repeatability

package, because it was not used by any SQL statement. We
must also exclude tuples that were created by the application,
since re-execution will recreate the tuples, which could lead to
violation of primary key constraints and/or affect the results
of queries that are sensitive to duplicates. For instance, tuple
t3 in Alice’s application should be excluded from the package
because it will be regenerated during re-execution. As we will
explain, we can address these challenges by monitoring both
the application and DB side of the application.

Linking Provenance Models (Section IV) The two tasks of
(a) identifying the DB tuples used by a computation and (b)
replaying a computation at a later time can both be addressed
by recording appropriate provenance (i.e., lineage) metadata
for the computation’s outputs. However, in order for this
approach to work, we need a provenance model that can
capture both DB operations (“DB provenance”) and process
and file system operations (“OS provenance”) To this end,
we introduce a generic provenance model (representable using
the PROV standard [20]) capable of expressing and linking
existing DB and OS provenance models. We demonstrate the
effectiveness of our model by using it to link the models of
the OS and DB provenance systems used in our prototype
implementation. We study how to infer data dependencies
across provenance models based on a combination of (a) de-
pendencies available in the individual models and (b) temporal
annotations on interactions between activities and entities of
a provenance graph. This approach enables us to determine
which DB tuples are required to re-execute a workflow; to
determine the parts of an application that are needed for partial
execution; and to answer reachability queries (does data item
d depend on data item d′).

Monitoring DB Applications (Section VII) We create a
package for an application by monitoring the processes in-
volved in an application, their file system operations, and
their interactions with the DB. To monitor processes and their
file system operations, we use an existing solution such as
PTU [22], CDE-SP [23], or OPUS [3], which monitors system
calls to determine when processes are spawned and when a
process opens or closes a file. We then use this information
to construct a provenance graph for the application execution.
To monitor process interactions with the DB, we capture the
SQL statements (queries and DML statements) executed by
a monitored process (plus, in some cases, their results) and
record which statement was executed when. We can use, e.g.,
Perm [10] to compute the provenance of SQL statements.
While monitoring a DB application we interactively construct
an execution trace (a provenance graph of our generic prove-
nance model) for the workflow.

Server-included and Server-excluded Virtualization Pack-
ages (Section VII-D) Much as in application virtualization
approaches, LDV repeatability packages include application
binaries, dependencies such as dynamically linked libraries,
and data files. We consider two approaches for packaging
DB-related content. In the server-included approach, the DB
server binaries and relevant DB data are included within the

package. This approach is applicable if the DB server binaries
can be legally shared and are accessible by the user. In the
server-excluded approach, we do not include the DB server
binary or any DB content; instead, we record the results of
queries issued by the application and include these results in
the package. When re-executing the package, we replay the
recorded results instead of actually executing SQL statements.
This option does not require access to the DB server binaries.

Prototype Implementation (Section IX) We present a proto-
type implementation that integrates the PTU OS provenance
system [22] and the Perm DB provenance system [11], [10].
This prototype instruments the client interface of Perm, an
provenance-enabled version of the PostgreSQL open source
DBMS, to monitor DB interactions. When using the server-
included packaging option, we use Perm to determine, for each
DB query, the part of the DB that is relevant to the workflow.
We have expanded PTU to incorporate DBs into the resulting
packages using the two packaging options described above. We
plan in future work to support additional DB systems using
the GProM [2] provenance middleware.

III. RELATED WORK

The following description of scientific reproducibility is
consistent with several works [16], [22], [9], [7], [14]: “Given
a science experiment conducted entirely using computational
artifacts, at the least, scientific reproducibility is the verifi-
cation of scientific results by repeating (or replicating) them
on nominally equal configurations.” Often, further validation is
required for an experiment to be considered reproducible, such
generalizing scientific results by applying them to new data
sets, verifying how they behave under different parameters,
and re-using and extending the experiment [22].

Virtualization Keahey et al. [16] were the first to propose
using VMs to encapsulate large, complicated stacks of scien-
tific software so they can be deployed across supercomputing
centers without the need to install each software package
individually in every new environment. This technique has
also been applied in the cloud computing context by Howe et
al. [14]. However, as noted by Brown [4] and Lampoudi [18],
VMs are space inefficient and not descriptive enough to enable
validation, especially through provenance-tracing mechanisms.

Application virtualization tools such as CDE [13] are more
space efficient. CDE uses the UNIX ptrace utility to monitor
system calls and create a software package consisting of
application binaries, data, and all static and dynamic software
dependencies that can be traced during program execution.
While a CDE package provides the ability to rerun the appli-
cation in a different Linux environment, it provides no prove-
nance and, thus, no means of validation. PTU packages [22]
were proposed to enable validation by constructing OS-level
provenance graphs using ptrace auditing. Other packaging
systems that use provenance for validation but use different
capture mechanisms are ReproZip [7] (VisTrails workflow
system [9]) and Research Objects (MyExperiment [12]). None
of these approaches address the problem of packaging a DB

or support fine-grained DB provenance which is necessary for
repeating DB applications.

Unified Provenance Models The different computational
and data models used on the OS and DB side have led to
different provenance models. Most OS provenance models
track provenance at the granularity of processes and files [3],
[22], [23], [19]. Each process is considered as a black box,
such that all outputs are dependent on all inputs. Notable
exceptions are approaches that use dynamic instrumentation
to compute fine-grained provenance for binary programs [26],
[24]. In contrast, DB provenance [5], [15] is fine-grained (usu-
ally at the granularity of tuples), connecting result tuples to
input tuples of query operators. Various proposals for unified
provenance models have been made in the past. Cheney et al.
define fine-grained provenance for a data flow language that is
capable of expressing both DB-style queries and workflows.
Amsterdamer et al. [1] take the opposite approach of modeling
workflows as collections of programs written in a subset of the
Pig language, which corresponds to nested relational algebra,
and capture fine-grained provenance using a DB provenance
model. Unified provenance models enable precise and detailed
description of provenance. However, they require the adoption
of a particular programming model and/or system. Reimple-
menting a complex DB application in a different programming
language is often not feasible.

Combining Database and OS Provenance An alternative
approach is to link DB and OS provenance, for example by
linking nodes from OS and DB provenance graphs. Reddy et
al. [21] first described a cross-layer provenance system that
links provenance from different system layers and establishes
dependencies between underlying data and processes. In their
system, cross-layer provenance issues were explored in the
context of workflow systems and NFS servers. VisTrails [6]
considers workflows that interact with a DB, using the au-
diting and temporal DB features of a commercial DBMS to
support provenance. The features required by this approach
are currently not supported by most DBMS. Furthermore, the
approach does not support fine-grained DB provenance.

A full understanding of the trade-offs between the unified
and linking approaches will require further research. In this
work, we use the linking provenance model since it requires
no modification of the user’s DB application and leverages
established OS and DB provenance models. We link a fine-
grained DB provenance model to an OS provenance model
and infer dependencies across the two models. This helps us to
determine which parts of the DB are relevant to a computation,
and thus results in reduced package sizes.

IV. DB AND OS PROVENANCE MODELS

A. Provenance Model

To be able to record provenance for DB applications and
repeat them, we need to connect OS and DB provenance.
We also need to infer dependencies between an application’s
OS entities (e.g., files) and entities managed by the DBMS
(tuples). Such cross-model dependencies enable us to reason

about which data is required to reproduce an execution (or part
of an execution) and, thus, to determine which parts of the
DB to include in a repeatability package. We assume that the
following holds for both the DB and OS provenance models:
• The model defines a set of activity and entity types valid

in its domain, e.g., the DB model may represent SQL
statements as activities.

• The model defines inference rules for determining data
dependencies that connect entities, e.g., a file written by
a process p may depend on a file read by p.

• The produced provenance can be represented in PROV.
(We do not require that these systems export provenance
in PROV format, but only that we can encode their
provenance in PROV. Given PROV’s generality, this re-
quirement should not represent a limitation.)

We define a provenance model generically as follows:

Definition 1 (Provenance Model). Let L be a domain of labels.
A provenance model is a triple P = (A, E ,L) where A ⊆ L
is a set of activity types and E ⊆ L is a set of entity types.
L is a subset of L × (A ∪ E) × (A ∪ E). Each triple in L
represents an edge type with an allowed start and end activity
or entity type. We require that activity, entity, and edge labels
be pairwise distinct.

A provenance model defines the admissible types of activ-
ities and entities in a domain and how these types can be
connected via edges of specific types. A provenance model
also defines how to represent an execution of activities in the
domain of the model. We term a record of such an execution
an execution trace.

B. Execution Traces

Definition 2 (Execution Trace). Let P = (A, E ,L) be a
provenance model. An execution trace for P is a labeled
directed graph G = (V,E, T) with nodes V and edges
E ⊆ V × V . Each node must be of one of the activity
and entity types specified in the provenance model and each
edge must fulfill the type constraints specified by L. Finally,
T : E → T×T is a function mapping edges to intervals from
a discrete time domain T. We use T (v1, v2) to denote the time
interval associated by T to the edge (v1, v2) and Ib and Ie to
denote the lower respective upper bound of an interval I .

An execution trace is a graph in which the nodes are
instances of the provenance model’s activity and entity types
and edges represent provenance dependencies. Each edge
is annotated with a time interval indicating when the two
connected nodes interacted: for example, the time interval
during which a process (activity) was reading from a file
(entity), or a time at which a query produced a result tuple.

We now use these definitions to instantiate the OS and DB
provenance models and execution traces used in LDV.

C. The Blackbox Process OS Provenance Model

We use a blackbox process provenance model to model the
provenance of OS processes and their interaction with files.

As the name suggests, we do not assume any knowledge
of the inner workings of such processes. Processes are the
only type of activity in this model and files are entities
created and consumed by processes. We track three types of
direct relationships: a process was executed by a process, a
process has read from a file (readFrom), and a file was written
by a process (hasWritten). An output of a application can
be traced back to its input through these provenance links.
However, connectivity in the graph does not necessarily imply
dependency, as we will discuss in Section VI.

Definition 3 (Blackbox Process Model). The blackbox process
model PBB’s activities, entities, and edge types are:

A = {process} L = {readFrom(file, process),

E = {file} hasWritten(process, file),

executed(process, process)}

Example 1. The top of Figure 2 shows part of an execution
trace involving two processes P1 and P2. Process P1 reads
two files A (during time interval [1, 6]) and B (during [7, 8]).

D. The Lineage DB Provenance Model

On the DB side, activities are SQL statements and entities
are tuples. Each SQL statement both reads tuples (its inputs)
and produces tuples (the results of an update operation or
a tuple returned by a query) We consider four types of
SQL statements: SELECT, INSERT, UPDATE, and DELETE

statements. Queries (SELECT) are connected to their result tu-
ples in the execution trace. Similarly, modifications (INSERT,
UPDATE, and DELETE) are connected to the tuple versions
they produce. Queries are connected to all tuples from their
input relations; modifications (insert, updates, and deletes)
are connected to the original versions of the tuples that they
modified. In Section VI we will define dependencies between
tuples based on a standard DB provenance model.

Definition 4 (Lineage Model). The lineage model PLin defines
the following activities, entities, and edge types:

A = {query, insert, update, delete} E = {tuple}

L = {hasReturned(A, tuple), hasRead(tuple,A)}

Example 2. Consider the execution trace shown on the bottom
of Figure 2. Insert1 inserts two tuples t1 and t2 and Insert2
inserts tuple t3. Tuples t1 and t3 were read by query Query
which returns two result tuples t4 and t5.

V. COMBINED PROVENANCE MODEL

In order to support both OS and DB provenance, we com-
bine OS and DB provenance models and introduce additional
edge types that connect nodes across models.

Definition 5 (Combined Provenance Model). Let PO =
(AO, EO,LO) and PD = (AD, ED,LD) be OS respective DB
provenance models. The combined model PD+O is:

A =AO ∪ AD E =EO ∪ ED

L =LO ∪ LD ∪ {run(AO,AD), readFrom(ED,AO)}

A combined execution trace models the execution of a DB
application including its processes, file operations, and DB
accesses based on a OS and a DB provenance model.

Definition 6 (Combined Execution Trace). Let PDB and POS

be DB and OS provenance models. Every execution trace for
PDB+OS is a combined execution trace for PDB and POS .

Example 3. A combined execution trace for the PLin and
PBB models is shown in Figure 2. This trace models the
execution of two processes P1 and P2. Process P1 reads two
files A and B, and executes two insert statements (at time 5
and 8 respectively). These insert statements create three tuple
versions t1, t2, and t3. Process P2 executes a query which
returns tuples t4 and t5. These tuples depend on tuples t1 and
t3. Finally, process P2 writes file C.

VI. DATA DEPENDENCIES

The above definitions describe interactions of activities and
entities in an execution trace of a provenance model, but do not
model data dependencies, i.e., dependencies between entities.
In our model, a dependency is an edge between two entities e
and e′ where a change to the input node (e′) may result in a
change to the output node (e). Given a provenance model, de-
pendency information may or may not be explicitly available;
it depends upon the granularity at which information about
entities and activities is tracked and stored. For instance, the
blackbox provenance model PBB operates at the granularity
of processes and files and may not compute exact dependency
information. Consider a process P that reads from files A and
B and writes a file C. File B may be a configuration file
that determines whether the process P logs debug output—an
option that has no effect on the content of file C. A PBB

execution trace cannot not inform about the absence of this
dependency and thus we have to assume that each output
depends on all inputs. On the contrary, a fine-grained DB
provenance model such as PLin exactly determines the input
tuples on which a query result tuple depends. We now formally
state and explain dependency tracking in these models. By
defining model-specific dependencies and temporal constraints
we subsequently show how to exclude spurious dependencies
and to infer additional dependencies.

A. Lineage DB Dependencies

We use the Lineage provenance model for DB queries
to determine dependencies between input and output tuples
of DB operations in the PLin model. This model [5], [15]
represents the provenance of a query result tuple t as the set
of tuples from the DB instance that were used to derive t.
This set can be derived from provenance polynomial of tuple
t according to the semirings annotation framework [15]. In the
semiring framework, tuples are annotated with elements from
a commutative semiring which represent their provenance.
Lineage is less informative than provenance polynomials,
but is simpler and sufficient for our use case: determining
dependency edges between tuples. Systems such as Perm [10]

sales
id price

{t1} 1 5
{t2} 2 11
{t3} 3 14

result
ttl

{t2, t3} 25

Fig. 5: Annotated relation sales and query result

compute provenance polynomials (and thus also Lineage) on-
demand for an input query. In the following we will use
Lin(Q, t) to denote the Lineage of a tuple t in the result of a
query Q.

Example 4. Consider the sales table shown in Fig-
ure 5. The Lineage of each tuple in the sales ta-
ble is a singleton set containing the tuple’s identi-
fier. The result of a query SELECT sum(value) AS ttl

FROM sales WHERE price > 10 is a single row with ttl =
11+14 = 25. The Lineage contains all tuples (t2 and t3) that
were used to compute this results.

We define data dependencies in the PLin model based on
Lineage. We connect each tuple t in the result of a query Q to
all input tuples of the query that are in t’s Lineage. Similarly,
we connect a modified tuple t in the result of an update to the
corresponding tuple t′ in the input of the update.

Definition 7 (PLin Data Dependencies). Let G be a PLin

trace. Let Lin(s, t) denote the Lineage of tuple t in the result
of DB operation s, and let t and t′ denote entities (tuples).
The dependencies D(G) ⊂ D ×D of G are defined as:

D(G) ={(t, t′) | ∃s : (t′, s) ∈ E ∧ (s, t) ∈ E ∧ t′ ∈ Lin(s, t)}

Example 5. Consider the trace shown in Figure 3 where Q1

is the query from Example 4. Tuple t4 depends on t2 and t3,
because these tuples are in the Lineage of t4 according to Q1.

B. Blackbox Process OS Dependencies

As mentioned before, the applications that we track can
maintain arbitrary internal state. Without static program anal-
ysis or dynamic instrumentation [26], [24] it is impossible to
know which outputs depend on which inputs. Thus, we must
assume (conservatively) that a file f depends on another file
f ′ if there exists a process that reads from file f ′ and writes
file f . Recall that in the PBB model a process may execute a
child process. Thus, file f also depends on f ′ if it is connected
to f ′ through a path of process nodes.

Definition 8 (PBB Data Dependencies). Let G be an PBB

trace, f and f ′ be entity (file) nodes in G, and Pi be a process
node. The data dependencies D(G) of G are defined as:

D(G) = {(f, f ′) | ∃P1, . . . , Pn : (f ′, P1) ∈ E ∧ (Pn, f) ∈ E

∧ ∀i ∈ {2, . . . , n} : (Pi−1, Pi) ∈ E}

The above definition states that there exists a data depen-
dency between files f and f ′ if these two files are connected
in the execution trace through a path of processes Pi in which

A B

P1

Insert1

Insert2

t1

t2

t3

Query

t4

t5

P2

C
[1, 6] [7, 8]

[5, 5]

[8, 8]

[5, 5]

[5, 5]

[8, 8]

[9, 9]

[9, 9]

[9, 9]

[9, 9]

[9, 9]

[9, 9]

[9, 9]

[7, 12]

Fig. 2: An execution trace with processes and database operations

t1

t2

t3

Q1 t4

[4, 4]

[4, 4]

[4, 4]

[4, 4]

Fig. 3: PLin trace and data dependencies.

A

B
P1

C

D

[1, 5]

[5, 7]

[2, 3]

[8, 8]

Fig. 4: PBB trace and data dependencies.

(a) the first process reads file f ′ and the last process writes
file f ′, and (b) each process Pi was executed by process Pi−1.

Example 6. Consider the trace shown in Figure 4. Process
P1 reads files A and B and writes files C and D. Thus, both
C and D are data dependent on A and B.

C. Inferring Temporally Restricted Data Dependencies

We next introduce a generic approach for inferring depen-
dencies between entities in a combined execution trace based
on the direct data dependencies between entities from the same
model (e.g., a tuple is in the Lineage of another tuple) and the
temporal annotations on edges in the trace.

Since the direct data dependencies of the individual prove-
nance models may contain false positives (e.g., see the def-
inition of data dependencies for PBB) developing an exact
inference algorithm is challenging. However, we can leverage
temporal constraints on interactions between nodes in an
execution trace and intuitive assumptions on possible de-
pendencies (e.g., an entity A cannot depend on an entity
B if A was produced before B existed) to prune some
dependencies. The result is an inference algorithm that is more
precise while remaining conservative, meaning that while it
may return a superset of the real dependencies, it will never
a miss a dependency. For creating repeatability packages,
conservatism is more important than preciseness, because it
guarantees that sufficient data is contained in repeatability
packages to reproduce results. Nonetheless, a high number of
false positives would cause unnecessarily large repeatability
packages. Thus, our goal is to formalize intuitive assumptions
that are conservative and then derive inference rules that are
sound and complete with respect to the set of all dependencies
that fulfill the assumptions.

Our inference approach relies on a set of minimal and
intuitive assumptions that we will formally state in the fol-
lowing. These assumptions are similar to those used in a
formalization of the OPM provenance model [17]. That work
demonstrated how to infer temporal constraints based on direct
or indirect dependencies inferred over an OPM provenance

graph. In contrast, we assume the temporal constraints as
given (recorded when creating an execution trace) and use
these annotations to restrict what edges have to be inferred.
Similarly, Dey et al. [8] determine all possible orders of events
that are admissible for an OPM provenance graph.

Definition 9 (Dependency Axioms). We assume that any valid
inferred data dependency (e, e′) for an execution trace G has
to fulfill the three conditions shown below. We use Dall(G) to
denote the set of all such dependencies for trace G.

1) Inferred dependencies must be informed by existing
dependencies, i.e., if entity e is dependent on entity e′,
then either i) there exists a direct dependency (e, e′) in
the trace, or ii) there exists a path between e′ and e in
the trace that does not pass through other entities and
e and e′ are from a different provenance model, or iii)
there exists e′′ so that dependencies (e, e′′) and (e′′, e)
exist in the trace or are other inferred dependencies.

2) Execution traces model all interactions between activi-
ties and entities, i.e., there can be no data dependency
from e to e′ if there is no path from e′ to e in the
execution trace.

3) Dependencies do not violate temporal causality, i.e., the
“state” of a node n in the trace only depends on past
interactions and transitively on the “state” of nodes n′

at the time of the interaction between n′ and n.

To infer such dependencies we need to understand which
direct interactions (edges) in the execution trace influence
the state of a node v at a time T . Based on assumption 3
introduced above, the state S(v, T) of an activity or entity
v at time T depends on all incoming interactions (incoming
edges) it had up to time T . For example, for a process p these
are all the entities read by the process up to that time and any
process that triggered p before T (if any). For a file f , this
includes all processes that have written f before T .

Definition 10 (State). Let v be a node in a combined trace

G. The state S(v, T) of node v at a time T is defined as:

S(v, T) = {v′ | (v′, v) ∈ E ∧ T (v′, v)b ≤ T}

The state of a node can be used to infer dependencies
between entities based on the temporal annotations on inter-
actions in the execution trace which full the conditions of
Definition 9. The state of an entity e depends on an entity
e′ at a time T if 1) there is a path between e′ and e in the
execution trace, 2) adjacent entities from the same provenance
model on this path are connected through data dependencies,
and 3) the temporal annotations on the edges of the path do
not violate temporal causality.

Example 7. In the execution trace shown in Figure 4, there
exists a path between file B and file C (B → P1 → C).
However, we cannot infer that C depends on B, because file
C was written ([2, 3]) by P1 before it has read file B.

Definition 11 (Dependency Inference). Let G be an combined
trace for provenance models POS and PDB . The data depen-
dencies of an entity e ∈ G at time T include all entities e′

such there exists a path v1, . . . , vn in the execution trace with
v1 = e′ and vn = e that fulfills the conditions stated below. Let
e1, . . . , em denote all entities on this path (where e1 = v1 = e′

and em = vn = e). We use D∗(G) to denote the set of all
such dependencies.

1) For all i ∈ {2,m}, if ei and ei−1 are from the same
provenance model, then (ei, ei−1) in D(G).

2) There exists a sequence of times T1, . . . , Tn so that for
each i ∈ {1,m − 1} we have Ti ≤ Ti+1 and Ti ≤
T (vi, vi+1)e.

3) For all i ∈ {2, n}, the node vi−1 is in the state of vi at
time Ti: vi−1 ∈ S(vi, Ti).

Given assumption 2) an entity e can only depend on entity e′

if they are connected in the execution trace. Also all adjacent
entities on such a path should be directly data dependent
on each other if they belong to the same provenance model
(the 1st assumption enforced by condition 1 of the definition
above). This guarantees that we do not introduce dependencies
that do not hold based on the individual provenance models.
Conditions 2) and 3) make sure that a dependency does not
violate temporal causality, i.e., the information flow from e′

to e complies with the temporal annotations.

Theorem 1 (Inference is Sound and Complete). The inference
rules of Definition 11 are sound and complete with respect to
dependencies that fulfill the assumptions of Definition 9.

Proof: Let Dall(G) denote the set of all dependencies
between nodes in G and that are conformant with the three
assumptions we have stated. Furthermore, recall that D∗(G)
denotes the set of dependencies inferred using Definition 11.
We have to prove Dall(G) ⊆ D∗(G), i.e., the rules are
complete and D∗(G) ⊆ Dall(G), i.e., the rules are sound.

Dall(G) ⊆ D∗(G): Let (e, e′) ∈ Dall(G), i.e., (e, e′) is a
dependency that fulfills assumptions 1 to 3. We have to show
that (e, e′) ∈ D∗(G). There have to exist one or more paths

(a) No Dependency between C and A

A P1 B P2 C[2, 3] [6, 7] [1, 5] [6, 6]

(b) C depends on A at time 4

A P1 B P2 C[1, 1] [4, 7] [2, 5] [1, 6]

(c) No Dependency between C and A

A P1 B P2 C[1, 1] [4, 7] [2, 5] [1, 6]

Fig. 6: Example traces with different temporal annotations

between e′ and e, because if there is no path between e′ and
e in the trace then this would directly violate assumption 2.
If conditions 1-3 of Definition 11 hold for one of these paths,
then e ∈ D∗(G). We will now incrementally construct such a
path. Given that (e, e′) is a dependency that fulfills the three
assumptions we know that there exists an entity node e′′ so
that the state of e at a time t contains e′′ and the state of e′′ at
time t contains e′. Otherwise, the dependency would violate
temporal causality and/or assumption 2. WLOG let there be
no other entity on the path between e′′ and e that caused e′′

to be in the state (according to Definition 10), i.e., e′′ is the
“closest” entity to e on this path. Let v1 = e′′, . . . , vn = e be
this path. Based on assumption 3 we can infer that condition
3 of Definition 11 holds for this path. Based on the definition
of state (Definition 10) it follows that condition 2 holds too.
Finally, if e and e′′ are from the same model, then (e, e′′)
has to be a dependency in this model based on assumption 1
which means condition 1 of Definition 11 holds. Thus, (e′′, e)
is a dependency in D∗(G). Now the same argument can be
applied to find a e′′′ between e′ and e′′. By induction we can
construct the needed path between (e′, e) and it follows that
(e′, e) is in D∗(G).
D∗(G) ⊆ Dall(G): Let (e, e′) ∈ D∗(G). Then we have to

prove that (e, e′) ∈ Dall(G). In other words, (e, e′) does not
violate any of the three assumptions (and, thus, would be in
Dall(G)). This is obviously the case, because e′ and e are
connected through a chain of data dependencies, are connected
in the execution trace, and temporal causality is not violated.

Example 8 (Indirect Data Dependencies). Figure 6 shows
several versions of the same execution trace with different
data dependencies and temporal annotations. In trace 6a there
exists a path between A and C and the entities on that path
are connected through data dependencies. However, given the
temporal constraints, C cannot depend on A, because P2

stopped reading B before it was written by P1. No matter
what time sequence T1, . . . , T5 is chosen, the third condition
of the definition will fail for vi = B. Trace 6b has different
time annotations and in this trace C depends on A at time 4.
For trace 6c there is no data dependency between B and A.

Thus, we cannot infer that C depends on A.

VII. CREATING EXECUTION TRACES

Creating a re-executable package for a DB application’s
execution involves first monitoring the application in order
to construct an execution trace and then packaging all objects
accessed by that trace. We first discuss how to monitor an
application and its DB interactions. Then, we discuss how to
create a re-executable package.

A. Creating Execution Traces for the BB Process OS Model

Recall that processes are the activities and files are the
entities of the PBB provenance model. We use the Unix ptrace
system call to monitor the processes of a DB application
and their interactions with files. This system call provides a
mechanism to observe and trace another process (the “tracee”)
by examining all system calls executed by the tracee. For ex-
ample, it can detect when a process opens a file by intercepting
the fopen() system call, and detect when a process forks or
execs another process by intercepting the fork() and execve()
system calls, respectively. The advantage of using ptrace is
that it allows monitoring an application without requiring any
knowledge about the inner workings of the tracee.

The PTU system [22] uses ptrace to construct a provenance
graph that connects process activities and file entities. We
create the OS portion of an execution trace from a PTU prove-
nance graph by recording a time interval for each interaction
and attaching it to the edge in the provenance graph. For
process-process edges, the time interval is a point in time,
assuming instantaneous fork or exec of the child process. For
process-file edges we assign the time interval between the
times when the file was first opened and last closed by the
process. Since in the PBB model all files written by a process
depend on all files read by the process (and its ancestors), it is
not necessary to store these dependencies explicitly. Instead,
we compute them on-the-fly when needed for inference.

B. Creating Execution Traces for the DB Lineage Model

To create the DB portion of an execution trace, we need
to trace dependencies between the result and input tuples of
each DB operation. We use the Perm [10] system, which given
an SQL query, rewrites the query to track the input tuples
on which an output tuple of the query depends. For each
executed SQL statement, we create a node in the execution
trace which is then linked to nodes for all of its result tuples.
We compute the provenance of the query with Perm and link
each result tuple to the input tuples in its Lineage, i.e., its data
dependencies according to the PLin model. We can also track
the provenance of updates by translating them into queries [2].

While the use of a temporal DBMS would make tracking
the provenance of SQL operations straightforward, we seek a
general solution. Thus, we must overcome two problems to
be able to create PLin execution traces with Perm. First, each
modified tuple generated by an update operation depends on
a previous version of the tuple that is no longer available. To
address this problem, we retrieve the provenance for the update

before executing it [2]. Second, in an application that performs
DB updates, we must be able to distinguish in an execution
trace between the versions of a tuple used by different queries.
We address this problem by extending the schema of each
relation accessed by a DB application to store version infor-
mation. Specifically, we add the following attributes to each
such relation, and modify SQL statements to modify these
attributes: attribute prov_rowid stores a unique identifier
for each row in the database; prov_v stores a timestamp
for the latest update to the tuple; and prov_usedby and
prov_p store unique query and process identifiers which we
use to link tuples to activities in an execution trace.

C. Creating Combined Execution Traces

We create combined execution traces by connecting exe-
cution traces for the PBB and PLin models. In particular,
we introduce edges between processes and SQL statements
and between the query result tuples and processes, i.e., the
run(AOS ,ADB) and readFrom(EDB ,AOS) edges. To this
end, we instrument the client library of the DBMS to transpar-
ently audit each such interaction. Whenever a process connects
to the DBMS, we assign a unique process id. We also assign
each executed SQL statement a unique query id. For each
executed SQL statement we apply the technique discussed
above to retrieve its provenance. The modification to relations
required by this technique is performed whenever the relation
is first accessed by the DB application.

Our prototype implementation uses an instrumented version
of libpq, the C language client interface of PostgreSQL. We
intercept Select, Insert, Update, Delete statements sent to the
DBMS and modify each statement to compute its result tuples
and return all tuples on which the result tuples depend (their
provenance). For queries, this modification involves adding the
PROVENANCE keyword as supported by Perm (recall that Perm
is an extension of PostgreSQL). For modifications (insert,
update, delete) we use the reenactment techniques pioneered
in GProM [2], which enable us to use a query to track the
statement’s provenance. We aspire in future work to instrument
generic DB client interfaces such as ODBC or JDBC.

D. Creating Virtualization Packages

To enable successful (partial) re-execution, a package should
include all required binaries, data files, and library depen-
dencies; the execution trace; the relevant DB subset; and the
DBMS (or should be capable of sandboxing it). Similar to
application virtualization systems such as CDE, we create a
package by extracting file path parameters from system calls
that were intercepted via ptrace. The files at the respective
paths are copied into a package root directory, while recreating
the sub-directories and symbolic links of the original file’s
location within the root directory. This creates a chroot-
like environment for application re-execution on compatible
architectures. In addition, we also include a serialization of
the execution trace for the application into the package. As
mentioned in Section II, we support two options for packaging
the relevant part of a DB for an application.

Server-included For this packaging option, we use ptrace to
determine the DB server binaries and associated dynamically-
linked libraries (e.g., user-defined functions) and include them
in the package. We do not, however, include any of the
raw data files of the DBMS. Instead we use the execution
trace to determine which tuples versions are relevant for the
application and store these tuple versions in CSV files in the
package. A tuple version is relevant to the application if it
is not created by application itself (no incoming edge in the
execution trace) and the state of an activity in the execution
trace depends on it (this implies that a data dependency exists
from a result tuple of an SQL statement to this tuple). Recall
that we have discussed in Section II why tuple versions created
by the application itself should be excluded from the package.

As explained above, we track tuple versions by adding
attributes to each table accessed by the DB application;
immediately compute the provenance for every operation to
gather tuples that need to be included in the package; and
write these tuples to files on disk. We create one CSV file for
every table accessed by the application. Our current prototype
implementation uses an in-memory hash table to avoid adding
duplicate entries to such a file. (If this hash table exhausts
available memory, we could apply a disk-based duplicate
removal operation as a post-processing step, e.g., by using
standard disk based sorting methods.) Table I summarizes our
approach for creating a server-included package. The server-
included packaging option is only applicable if sharing the
server does not violate any license agreement (open source
DBMS or the user is only sharing with researchers that have
a license) and the user has access to the server files.

Server-excluded For this packaging option, we also instru-
ment the DB client interface. For each query executed by
the application, we create a file in the package and store
all results of this query in the file. These materialized query
results enable us to replay the DB server’s responses when
re-executing the package. For this packaging option we do
not need to include the DB server in the package. The server-
excluded packaging option is applicable in all scenarios and
does not require any access to the server other then through
its client interface.

Trade-offs As mentioned above, there are some use cases
where only the server-excluded option is applicable. For
applications where both options are available, users can choose
the one that best fits their needs. As we will demonstrate in our
experimental evaluation, package size and performance varies
significantly for these options based on the query and update
workload run by the application. A server-included package
has the advantage that the DB content may be used for similar
experiments (as long as they access a subset of the data that
was included in the package). This is not supported by server-
excluded packages which allow faithfull re-execution of an
application (or parts thereof), but neither support changes to
queries nor the application.

VIII. REPEATING EXECUTIONS WITH PACKAGES

The methods used to re-execute an LDV package vary
according to its type.

A server-included package is re-executed much as in
an application virtualization system: during application re-
execution, file system calls are redirected to files within the
package and DB operations to the server within the package.
The latter redirection is achieved by intercepting connection
calls to the DB from the client library, and connecting to the
default DB in the package. Since the DB server has been
configured during package creation with all tuples required
to answer the application queries, and we restore these tuples
before any query occurs, the DB application can be repeated.

A server-excluded package must be replayed in the same
order as in the original execution trace. We do not preserve
the execution trace, but only the elements required for re-
execution. Thus, when replaying the server-excluded package,
the LDV system continues to audit calls to the DB at the
client library. It redirects connection requests as well as read
(query) and write (update) calls to the simulated DB. We
match each incoming request against the requests recorded
during package generation (stored in a lightweight DB). We
ignore SQL Update statements and calls related to connection
handling. In the case of a read request (query), the specific
memory buffers used by the DB client library are substituted
with the recorded response from the package. As long as read
and write request follows the order and specification stored
in the package (which is guaranteed if we fully or partially
re-execute a package), then this guarantees repeatability.

IX. EXPERIMENTS

We evaluate the LDV system from the perspectives of
performance, usability, and generality. We focus on the LDV
prototype described in Sections VII and VIII. We evaluate this
system’s audit and replay performance, and also compare the
size of LDV packages with those obtained when using the PTU
virtualization approach, a provenance-enabled virtualization
approach, and the virtual machine approach. Our prototype
is highly usable in that to begin auditing an execution, users
need to install LDV and simply prepend their application
executable with an ldv-audit command. Similarly, users who
which to replay must install LDV and an replay a shared
package by prepend their application executable with an ldv-
exec command. Among the compared packaging options, our
results show that LDV performance and package size are
inversely related.

A. Datasets and Workloads

We use the TPC-H benchmark [25] with a scale factor 1
(1GB) for our experiments. This benchmark involves a suite
of 22 decision support queries. In this evaluation we use a DB
application that executes the following steps:
• Insert: Insert 1000 tuples into tables orders (according

to the update workload specified by TPC-H)
• Select: Run 10 instances of one of the workload queries

(see below)

TABLE I: OS and DB interposition for server-included use case

Operating system DB
Method Use ptrace to intercept system calls Rewrite DB client library to intercept communication between server and application

Monitoring On system call interception, record path parameter On DB query interception, record statements and tuples that affect result
Replaying On system call interception, replace path param-

eter with replayed data
On DB connection, restore DB from recorded tuples

• Update: Update 100 tuples in table orders.

Workload We do not use the original TPC-H queries in our
experiments: as most TPC-H queries touch large fractions of
the tables and return a small number of results, considering
only those queries would not allow us to study trade-offs
among package options for different output package size to
provenance size ratios. Indeed, those queries would result in an
unnatural preference for the server-excluded packaging option,
since replaying a small number of result tuples is very fast.
To enable a broader comparison, we define queries that span
a wide range of output package size to provenance size ratios.

Table II shows the queries (Q1 to Q5) used in the exper-
iments. We generate different versions for each query Qi by
varying the selectivity (Sel.) of the query and use Qi-j to
denote the variant that uses the jth parameter as shown in
column PARAM of Table II. Query Q1 is a simple selection.
Its variants (Q1-1 to Q1-5) have selectivities ranging from
1% to 25%. Queries Q2 and Q3 are slightly more complex,
using join operators (and aggregation in case of Q3). We
vary selectivity by changing the number of leading 0s for the
parameter. Query Q4 aggregates the result of a selection to
find the average quantity and total cost per order for orders
with a certain supplier. We vary selectivity by changing the
range of l suppkey.

Measures We measure package size, audit performance, and
replay performance of those queries as part of the afore-
mentioned application. To create a baseline for comparison,
we measured the execution time of the application using
an standard PostgreSQL server. We used PTU to audit the
application and create a portable software package without
DB provenance. In this configuration we start the DB server
as the first step of the experiment and shut it down before the
experiment is finished. This ensures that the server and its data
files will be included in the package.

B. Audit Performance

In our first experiment we measure the execution time of
an applications when it is audited to create a package. The
results of this experiment for the application with query Q1-1
are shown in Figure 7a.

1) Server-included: The monitoring and package genera-
tion causes overhead for all 3 steps of the application. The
overhead in the Select step results from the need to query
provenance, persist tuples in the provenance that should be
included in the package, and updating of accessed tuples
to implement the versioning described in Section VII-B. In
the first query (cold cache), LDV needs to write almost all
accessed tuples to external storage. Subsequent queries do

not need to record tuples which have already been written
to disk again, but they still need to run queries to retrieve
the provenance and updates to keep the version information
up-to-date. Similar provenance queries are required for DB
update operations, which results in the overhead observed for
the Update step. For insert statements, there is no need to run
additional provenance queries; hence the low overhead for the
Insert step.

2) Server-excluded: This scenario shows a lower overhead
than the server-included scenario as no extra query is needed
to retrieve provenance. The small overhead is due to writing
query result tuples to disk.

C. Re-execution Performance

Figure 7b compares the replay performance of LDV server-
included and server-excluded packages with a non-audited
execution. The server-included package has large overhead for
DB initialization, since LDV needs to create the DB using
the tuples included in the package. Query performance on a
server-included package is the same as, or better than, non-
audited execution, because the relevant DB subset included in
the package may be significantly smaller than the original DB,
leading to better query performance.

In almost all experiments, server-excluded packages result
in lower execution times than do server-included packages
and normal execution. This result is explained by the fact
that during re-execution of a server-excluded package, query
results are directly read from disk, which takes time linear in
the size of the query result—in contrast to query execution
which is superlinear for most queries. As is evident from
Figure 8b, the extreme case is query Q3, which returns only
one result tuple. We also measured the performance using a
virtual machine as a packaging option. This approach has the
highest overhead.

D. Query Performance

We next measure the effect of auditing and replay on the
execution times of queries. Figure 8 shows the execution time
for our workload queries with different selectivities. Execution
time increases linearly as the queries scan a larger number of
tuples from the DB. While the relative overhead is quite large,
it is relatively stable across selectivities.

E. Package Size

To explore the improvement of LDV packages over repeat-
able software packages that contain a full DB, we compare the
sizes of LDV and PTU packages. A PTU package contains
all the necessary binaries, libraries and files required to re-
execute the application including all files accessed by the DB

TABLE II: The 18 TPC-H benchmark queries used in our experiments

Queries SQL PARAM Sel.
Q1-1 to
Q1-5

SELECT l quantity, l partkey , l extendedprice , l shipdate , l receiptdate FROM lineitem
WHERE l suppkey BETWEEN 1 AND PARAM

10, 20, 50, 100,
250

1%, 2%, 5%,
10%, 25%

Q2-1 to
Q2-4

SELECT o comment, l comment FROM lineitem l, orders o, customer c WHERE l.l orderkey
= o.o orderkey AND o.o custkey = c.c custkey AND c.c name LIKE ’%PARAM%’;

0000000, 000000,
00000, 0000

66%, 6.6%,
0.66%, 0.06%

Q3-1 to
Q3-4

SELECT count(∗) FROM lineitem l, orders o, customer c WHERE l.l orderkey = o.o orderkey
AND o.o custkey = c.c custkey AND c.c name LIKE ’%PARAM%’;

0000000, 000000,
00000, 0000

66%, 6.6%,
0.66%, 0.06%

Q4-1 to
Q4-5

SELECT o orderkey, AVG(l quantity) AS avgQ FROM lineitem l, orders o WHERE l.l orderkey
= o.o orderkey AND l suppkey BETWEEN 1 AND PARAM GROUP BY o orderkey;

10, 20, 50, 100,
250

1%, 2%, 5%,
10%, 25%

(a) Audit

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

Inserts First
Select

Other
Selects

Updates

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

PostgreSQL + PTU
Server-included package
Server-excluded package

(b) Replay

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

Initialization Inserts First
Select

Other
Selects

Updates

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

PostgreSQL + PTU

1
E
-0

5

0
.0

1
0
0
1

0
.0

8

0
.0

5
3

0
.0

0
0
1

Server-included package

4
.1

9

0
.0

0
0
6
3

0
.0

5

0
.0

2
5

0
.0

0
0
3

Server-excluded package

0
.0

1

2
E
-0

5

0
.0

1

0
.0

0
9

0
.0

0
0
1

Fig. 7: Execution time of each step in an application with query Q1-1

(a) Audit

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1-1 1-2 1-3 1-4 1-5 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 4-1 4-2 4-3 4-4 4-5

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Query

PostgreSQL + PTU
Server-included package
Server-excluded package

(b) Replay

 0.001

 0.01

 0.1

 1

 10

 100

1-1 1-2 1-3 1-4 1-5 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 4-1 4-2 4-3 4-4 4-5

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Query

PostgreSQL + PTU
Server-included package
Server-excluded package

VM

Fig. 8: Execution time for each query, during audit (left) and replay (right)

TABLE III: Package Contents: PTU packages contain all data
files of the full DB, whereas server-included LDV packages
contain the data files of an empty DB.

Package type Software
binaries

DB
server

Data
files

DB
provenance

PTU 3 3 3(full) 7
LDV server-included 3 3 3(empty) 3
LDV server-excluded 3 7 7 3

server in the application execution, i.e., the server binaries and
data files. An LDV package contains DB provenance for re-
execution, the DB server binaries, and an empty data directory
in the server-included scenario (Table III).

Figure 9 shows the sizes of the PTU, server-included, and
server-excluded packages constructed for the queries listed
in Table II. Server-included LDV packages are significantly
smaller than PTU packages, because they contain only those

tuples needed to re-execute the application—which, for these
queries, is at most ∼25% of all tuples. Server-excluded LDV
packages are often yet smaller, because they contain only the
query results—which, for many of our experiment queries, are
smaller than the tuples required for re-execution. However,
recall that server-excluded packages have less flexibility than
do server-included packages.

F. Comparison with the Virtual Machine Approach

We compare a virtual machine image (VMI) with the server-
included and server-excluded LDV approaches. The VMI is
created based on a bare-bone Debian Wheezy 64bit VMI on
which we install the DB server and the experiment binaries as
in Section IX-A. We use “apt-get” to install a DB server, and
“scp” to copy all DB files and source code for the experiment
from our machine. Using the created VMI, we run the same
application to compare the size and performance of this VMI

 10

 100

 1000

 10000

1-1 1-2 1-3 1-4 1-5 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 4-1 4-2 4-3 4-4 4-5

P
a
c
k
a
g
e
 s

iz
e
 (

M
B

)

Query

PTU package
Server-included package
Server-excluded package

Fig. 9: LDV packages are significantly smaller than PTU
packages when queries have low selectivity.

and the LDV packages. The VMI is 8.2 GB: 80 times larger
than the average LDV package (100MB). To evaluate runtime
performance, we instantiate this VMI using the same number
of cores and memory as in our machine to execute our queries.
Recall that Figure 8b shows that re-executing these queries
in a VM is slightly slower than a non-audited PostgreSQL
execution, and significantly slower than LDV packages.

X. CONCLUSIONS

We introduced a light-weight DB virtualization (LDV)
system that can permit sharing and re-execution of appli-
cations that perform DB operations. This system uses data
collected via application monitoring to create re-executable
packages that include an application, its dependencies (data
files, relevant DB tuples), and a combined execution trace.
Such packages can be used to repeat an application or part of
an application in a different environment.

Our LDV framework features an innovative integration of
distinct OS and DB provenance models, and new methods
for inferring data dependencies that cross model boundaries.
The resulting system creates execution traces according to this
framework and uses these traces to determine which data needs
to be included in a repeatability package. It leaves to the user
the choice of whether the package should include the DBMS.
Our prototype implementation integrates the PTU (OS) and
Perm (DB) provenance systems. In future work, we plan to
integrate with the DB-independent GProM [2] middleware.

XI. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grants ICER-1343816 and SES-0951576,
and by the US Department of Energy under contract DE-AC02-
06CH11357. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] Y. Amsterdamer et al. Putting Lipstick on Pig: Enabling Database-style
Workflow Provenance. PVLDB, 5(4), 2011.

[2] B. Arab, B. Glavic, et al. A generic provenance middleware for database
queries, updates, and transactions. In Proceedings of TaPP, 2014.

[3] N. Balakrishnan, T. Bytheway, et al. Opus: A lightweight system for
observational provenance in user space. In TaPP, 2013.

[4] C. T. Brown. Some myths of reproducible computational research. http://
ivory.idyll.org/blog/2014-myths-of-computational-reproducibility.html.

[5] J. Cheney et al. Provenance in Databases: Why, How, and Where.
Foundations and Trends in Databases, 1(4), 2009.

[6] F. Chirigati and J. Freire. Towards integrating workflow and database
provenance. In Provenance and Annotation of Data and Processes. 2012.

[7] F. S. Chirigati, D. Shasha, and J. Freire. Reprozip: Using provenance
to support computational reproducibility. In TaPP, 2013.

[8] S. C. Dey, S. Riddle, and B. Ludäscher. Provenance analyzer: Exploring
provenance semantics with logic rules. In TaPP, 2013.

[9] J. Freire and C. T. Silva. Making computations and publications
reproducible with vistrails. Computing in Science and Engineering,
14(4), 2012.

[10] B. Glavic et al. Perm: Processing Provenance and Data on the same
Data Model through Query Rewriting. In ICDE, 2009.

[11] B. Glavic et al. Using sql for efficient generation and querying of
provenance information. In In search of elegance in the theory and
practice of computation: a Festschrift in honour of Peter Buneman. 2013.

[12] C. A. Goble and D. C. De Roure. myExperiment: social networking
for workflow-using e-scientists. In Proceedings of the 2Nd Workshop
on Workflows in Support of Large-scale Science, 2007.

[13] P. J. Guo et al. CDE: using system call interposition to automatically
create portable software packages. In USENIX Annual Technical
Conference, Portland, OR, 2011.

[14] B. Howe. Virtual appliances, cloud computing, and reproducible
research. Computing in Science & Engineering, 14(4):36–41, 2012.

[15] G. Karvounarakis and T. Green. Semiring-annotated data: Queries and
provenance. SIGMOD Record, 41(3):5–14, 2012.

[16] K. Keahey et al. Virtual workspaces for scientific applications. Journal
of Physics: Conference Series, 78(1), 2007.

[17] N. Kwasnikowska, L. Moreau, and J. Van den Bussche. A formal
account of the open provenance model. journal, 2010.

[18] S. Lampoudi. The path to virtual machine images as first class
provenance. Age, 2011.

[19] T. Malik, L. Nistor, and A. Gehani. Tracking and sketching distributed
data provenance. In International Conference on eScience, 2010.

[20] L. Moreau and P. Missier. Prov-dm: The prov data model.
http://www.w3.org/TR/2013/REC-prov-dm-20130430/, 2013.

[21] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. W. Margo, M. I. Seltzer, and R. Smogor. Layering
in provenance systems., 2009.

[22] Q. Pham, T. Malik, and I. Foster. Using provenance for repeatability.
In TaPP, 2013.

[23] Q. Pham, T. Malik, and I. Foster. Auditing and maintaining provenance
in software packages. In IPAW, 2014.

[24] M. Stamatogiannakis et al. Looking inside the black-box: Capturing
data provenance using dynamic instrumentation. In TAPP, 2014.

[25] Transaction Processing Performance Council. TPC-H benchmark spec-
ification. Published at http://www.tcp.org/hspec.html, 2008.

[26] M. Zhang et al. Tracing Lineage beyond Relational Operators. In VLDB,
2007.

