
Sharing and Reproducing Database Applications

Quan Pham1, Severin Thaler2, Tanu Malik1,2, Ian Foster1,2
1Computation Institute, 2Department of Computer Science

University of Chicago

Boris Glavic
Department of Computer Science

Illinois Institute of Technology

1. INTRODUCTION
Sharing and repeating scientific applications is crucial for

verifying claims, reproducing experimental results (e.g., to
repeat a computational experiment described in a publica-
tion), and promoting reuse of complex applications. The
predominant methods of sharing and making applications
repeatable are building a companion web site and/or provi-
sioning a virtual machine image (VMI). Recently, applica-
tion virtualization (AV), has emerged as a light-weight alter-
native for sharing and efficient repeatability. AV approaches
such as Linux Containers create a chroot-like environment
[4], while approaches such as CDE [1] trace system calls
during application execution to copy all binaries, data, and
software dependencies into a self-contained package.

In principle, application virtualization techniques can also
be applied to DB applications, i.e., applications that inter-
act with a relational database. However, these techniques
treat a database system as a black-box application process
and are thus oblivious to the query statements or database
model supported by the database system. To overcome this
shortcoming, and leverage database semantics, we recently
introduced light-weight database virtualization (LDV)1 [3],
a tool for creating packages of DB applications. An LDV
package is light-weight as it encapsulates only the appli-
cation and its necessary and relevant dependencies (input
files, binaries, and libraries) as well as only the necessary
and relevant data from the database with which the appli-
cation interacted with. LDV relies on data provenance to
determine which database tuples and input files are rele-
vant. While monitoring an application to create a package
we incrementally construct an execution trace (provenance
graph), that records dependencies across OS and DB bound-
aries. In addition to providing a detailed record of how files
and tuples have been produced by the application, we use it
to determine what should be included in the package.

The primary objective of this demonstration is to show
the benefits of using LDV for repeating and understand-

1https://github.com/legendOfZelda/LDV.git

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

ing DB applications. For this, we consider real-world data
sharing scenarios that involve a database and highlight the
sharing and reproducibility challenges associated with them.
We given an overview of our LDV approach to show how it
can be used to build a light-weight package of a DB appli-
cation that can be easily shared and reproduced. During
the demonstration, the audience will experience three key
features of LDV: (i) its ability to create self-contained pack-
ages of a DB application that can be shared and run on
different machine configurations without the need to install
a database system and setup a database, (ii) how LDV ex-
tracts a slice of the database accessed by an application, (iii)
how LDV’s execution traces can be used to understand how
the files, processes, SQL operations, and database content
of an application are related to each other.

2. SHARING DB APPLICATIONS
We introduce several realistic DB applications to illustrate

their individual repeatability requirements and challenges.
In each scenario a scientist Alice would like to share her
application with another scientist Bob, who would like to
either re-execute it or verify the execution.
APP1: Sharing a DB application using a commer-
cial database. Alice is an urban scientist who has pub-
lished a paper about how housing affects school enrollment.
Bob has read the paper and would like to repeat her anal-
ysis. The results in her paper use data that were down-
loaded from open-data services, such as Opendata.gov. Al-
ice has imported the downloaded data into her commercial
database management system (DBMS), which required ad-
ditional cleaning and integration steps. Alice can share her
workflow and provide a dump of the data to Bob, but not
her database system as the license is not owned by Bob.
Loading the data into Bob’s open source DBMS will require
a significant amount of work. Alice can share the queries
(time periods and spatial extents) which she used to obtain
the data from Opendata.gov. However, this service is open
to the public and, thus, its database has been modified in
the mean time. Hence, Alice’s queries will not return the
same result when run by Bob (assuming the service does
not provide access to previous versions, which is typical).
R1: Packaging DB Applications with Data. Signifi-
cant communication between Alice and Bob as well as setup
work on Bob’s side is required to repeat the application. It
would be helpful if Alice can sandbox 2 her application and

2In the context of software development, sandbox implies
creating an isolated, restricted environment that is a replica

https://github.com/legendOfZelda/LDV.git
Opendata.gov
Opendata.gov

Application

Operating System

File System

DB Server

Execution
Trace

DB Server
DB Slice

File System
Slice

Pkg

Copy
LDV

Alice's
Computer

Figure 1: LDV Monitoring an Application

her commercial database so that Bob can replay her work-
flow.
APP2: Sharing subsets of data from a large database.
Bob has read Alice’s research paper which simulates a sky
catalog that is then verified with real observation data from
the Sloan Digital Sky Survey (SDSS), a 18TB read-only
database instance. Bob wants to use Alice’s code and data.
Getting access to Alice’s code is easy, but downloading the
entire SDSS database instance is not, because Bob is not a
power user and Alice’s application data exceeds his down-
load quota.
R2: Share Relevant DB Slices. Bob’s repeatability ex-
periment will be simplified, if Alice shares with him the spa-
tial regions from SDSS she has used. Alice would have to
recollect which subsets were used. It would be helpful if the
relevant data tuples for Bob could be determined automati-
cally.
APP3: Tracking Provenance Across Files and DBMSs.
We consider a text mining DB application in which Alice
extracts information about scientific parameters from re-
search publications and curates them using a DBMS. The
research publications are downloaded from multiple hosted
data sources such as PubMed, ChemXSeer, and BioOne.
The extraction pipeline consists of cleaning and natural lan-
guage processing tasks. The database is mainly used to store
the extracted entries. Alice would like to share her entire
application with Bob, a scientific expert, who can validate
her database entries.
R3: Tracking and Visualizing Provenance. To vali-
date, Bob would like to link Alice’s database entries to raw
input text and temporary intermediate data files created by
the application. Bob also would like to know which extraction
rules were applied and how. Alice would have to manually
maintain a graph of provenance dependencies for all input
files and each database tuple. This would be a nightmare for
any reasonably complex extraction pipeline.

3. CHALLENGES AND REQUIREMENTS
In our use cases, Alice would need to provide sufficient

documentation to Bob so he can understand the application
well enough to repeat it and spend extensive manual effort
to determine which parts of the input database are needed.
In the worst case she may not be able to share her appli-
cation with Bob. We now outline the main challenges that

of the original environment, and which allows testing of pro-
grams

Bob's
ComputerApplication

Operating System

File System

DB Server

Execution
Trace

DB Server
DB Slice

File System
Slice

Pkg

LDV Redirect

Figure 2: LDV Reexecuting an Application

need to be addressed to fulfill the sharing requirements of
applications such as the ones introduced above.
Packaging Databases. A database system may exist as
a (i) personal database systems (ii) multi-user updateable
database system, or as a (iii) read-only database system.
In (i) the application developer has complete control over
the data and the database server; the developer can start or
stop the server, access its binaries, and access the database
files. In (ii) the server is managed by a central authority, but
users are allowed to run both updates and queries. In (iii) a
central authority manages the server and all modification of
the database; the users have only read access which may be
limited (e.g., a form-based interface). Packaging a database
system encompasses multiple challenges: we want to repeat
an application without having to manually install and setup
a database server; we have to recreate the database system
state as seen by the operations of the application even if the
application or other clients have updated the data mean-
while; and, we have to determine which data are needed for
reexecution.
Licensing policies. A deployed database system may be
an open-source database system or a commercial database
system. For commercial database systems, Bob may not
possess the required license.
User access policies. A database system may enforce ac-
cess privileges limiting which relations can be accessed by
a user. This is a problem if Bob does not have the nec-
essary rights to execute the SQL statements issued by the
application.
Tracking File and Database Provenance. To provide
a complete record of how data was generated by the appli-
cation we have to track provenance on the DBMS side, the
OS side (processes and files), and across both.

We next explain how LDV manages to satisfy these re-
quirements. In the demonstration, participants will be able
to see LDV in action and will be able to get a peak behind
the scenes to understand the inner workings of our approach.

4. THE PROTOTYPE LDV SYSTEM
Monitoring and Package Creation. To use our LDV
system, the user monitors an execution by prefixing the com-
mand starting the application with ldv-audit:

ldv-audit run-dbapp

Figure 1 shows how LDV monitors the execution of the
user’s application and its interactions with the OS and DB
system. By intercepting system calls such as file operations
and process creation as well as SQL statements send to the

 Alice:~$ ldv-audit app.sh
 Application package created as app-pkg
 Alice:~$ ls
 app-pkg app.sh src data
 Alice:~$echo "Hi Bob, Please find the pkg --Alice" \ |
 mutt -s "Sharing DB Application -a "./app-pkg" \
 -- bob-vldb2015@gmail.com

 Bob:~$ ls .
 app-pkg
 Bob:~$ cd app-pkg
 Bob:~$ ls
 app.sh src data
 Bob:~$ldv-exec app.sh
 Running app-pkg....

Figure 3: Creating a package for Alice’s application
(left) and re-executing it on Bob’s Machine (right)
recreates the same image

DB we incrementally build what we call an execution trace -
a provenance graph that records both OS and DB operations
and data dependencies. In addition to creating the execu-
tion trace and including it in the reproducibility package for
the application, LDV also copies accessed files and database
tuples into the package. We support two options for ship-
ping the database. The server-include packaging option in-
cludes a DB server and the relevant DB slice in the package.
The server-excluded packaging option captures the results
of queries issued by the application and stores these query
results in the package. By providing these two packaging
options we support the types of DB deployments, licensing
options, and access policies introduced in Section 3.

The operating system part of an execution trace is created
by using the ptrace system utility on Linux systems, and by
using dyld on Mac OS X. We use both utilities to monitor
system calls including process system calls and filesystem
system calls to create execution trace nodes that connect
process activities and file entities. LDV records a time inter-
val for each process-process and process-file interaction and
attaches it to the respective edge in the execution trace.

The database part of an execution trace is created by us-
ing the Perm provenance system to compute the provenance
of SQL operations, i.e., to track the input tuples on which
an output tuple of the operation depends. For each executed
SQL statement, the system creates a node in the execution
trace which is then linked to nodes for all of its result tuples
and the node for the process issuing the statement. Our
prototype implementation uses an instrumented version of
libpq, the C language client interface of PostgreSQL (Perm
is a modified PostgreSQL server). We intercept Select, In-
sert, Update, and Delete statements send to the DB and
modify each statement to compute its result tuples and re-
turn all tuples on which the result tuples depend upon (this
is how we preserve previous tuple versions for updates).

Based on the execution trace of an application we deter-
mine which tuples need to be included in the package to

guarantee successful reexecution. These are all input tu-
ples that are in the provenance of an output of an SQL
operation except for tuples created by the application itself
(re-created during reexecution). Thus, we fulfill the require-
ment of packaging only the relevant database slice.

LDV stores execution traces in LevelDB, a highly op-
timized key-value store. We offer the user the option to
deposit execution traces into PROVaaS (http://provaas.
org) by exporting the LevelDB data into PROV JSON for-
mat (a serialization of the PROV [2] provenance exchange
format) and depositing it to the service. This service im-
plements the PROV standard using a Neo4J database and
supports a viewer for querying and exploring provenance
data. The execution traces we generate fulfill the provenance
tracking and querying requirements outlined in Section 3.
Reexecuting a Package. To replay the execution of an
application stored in a package, without any installation or
configuration, the user issues for a shared package:

ldv-exec run-dbapp

Before starting the actual application, LDV will start-
up the database server included in the package, create the
schema of the application, and load the DB slice. During
application execution we reroute SQL queries to the package
database and file operations into the package. If the server-
excluded packaging option was chosen then we replay query
results included in the package from files instead of actually
executing any SQL operations.

5. DEMONSTRATION OVERVIEW
In the demonstrations we will use applications similar to

the ones we have described above to showcase the following
features of the the LDV system: (i) reproducing a database
applications on different machine configurations; (ii) rerun
a DB application without using a database; (iii) creating
packages of reduced size by extracting the relevant part of
an accessed database needed for re-execution; (iv) navigate
execution traces (provenance) to understand the dependen-
cies between data items created and used by an applications.
Sharing and Reexecution. We will demonstrate how
to repeat DB applications with LDV on a wide variety of
linux distributions. Alice’s machine (Ubuntu 14.10, Linux
3.13) will be used to run her DB application that reads the-
ater landmarks from a landmarks database of the City of
Chicago. The landmarks (output as KML files) will be dis-
played visually using Google Earth. We will use Alice’s ma-
chine to monitor a DB application, then copy the generated
package to Bob’s machine, and demonstrate that it can be
successfully re-executed on Bob’s machine. The GUI (Figure
3) will show the configuration of both machines, a visualiza-
tion of the application’s results for both machines, and a ter-
minal for starting the LDV audit and replay executions. We
will use different configurations for Bob’s machine to demon-
strate successful re-execution. This will include (i) CentOS
6.2 (Linux 2.6.32), (ii) Fedora 20 (Linux 3.11.28), (iii) open-
SUSE 12.0 (Linux 3.12.32), (iv) Ubuntu 14.04 (Linux 3.13),
(v) Red Hat 7.1 (Linux 3.10.0). We will pre-install these
configurations with different database servers viz. Postgres
v9.0, and v9.1, and MySQL. It is to be noted that Google
Earth does not install cleanly on all Linux configurations,
but within our package it re-executes smoothly.
Reexecution Without a Database. LDV’s execution
traces can also be used to re-execute an application when

http://provaas.org
http://provaas.org

Figure 4: Concise Repeatability Packages

Figure 5: Execution trace showing the dependencies
between database tuples and files containing source
data

sharing the database is not an option (e.g., as explained
before Alice may use a commercial DBMS and Bob does
not have a license). In this case LDV will store the results
of queries in the package and replay these results during re-
execution. For this demonstration we will simulate a session
in which Alice executes three queries on the Google Earth
application which shows a) landmarks in Chicago, b) land-
marks since 1950, and c) un-preserved landmarks. We will
show how the three queries can be replayed on Bob’s ma-
chine, which does not have a copy of the database, showing
the exact same results in the same chronological order. The
simulation will add natural human delay between queries,
which will be maintained at Bob’s machine as well.
Concise Repeatability Packages. We then showcase
LDVs capability to determine which parts of a database
are needed to reproduce an DB application and that this
can significantly reduce package size. Alice is executing a
variation of the Google Earth application described above
that only visualizes a subset of the data. We will demon-
strate that the generated LDV package shipped to Bob is
significantly smaller than the original database. Further-
more, using a standard database client we will show the dif-
ferences between the schemas and data of the original and
packaged database. In particular, the packaged database
only contains relations that are accessed by the application
and only contains tuples needed to produce the same results
for queries as in the original execution. We illustrate this
feature by re-executing some of the queries used by Alice’s
application and comparing their results to the original run.
Navigating Provenance Execution Traces. Next, we
will demonstrate how combined execution traces help a user
to understand how data items (files or tuples in a database)
have been produced and their interrelationships. We will use
a customized graph visualizer that will render the execution
trace of application APP3. The objective will be to show

how Bob can understand Alice’s text extraction process, and
conduct his curation task of tracing, i.e., which source data
has lead to invalid or inaccurate database entries and correct
these errors. Recall that this application extracts properties
from text files and stores them in a database. Using the
visualizer, Bob can select elements in the execution trace to
get additional information (e.g., values of tuples or inspect
file contents). Our system also highlights the provenance
(data dependencies) for selected elements. Figure 5 shows a
screenshot of the dependencies for an invalid database tuple
t5 produced by Alice’s application. For instance, this helps
Bob to understand that the erroneous tuple t5 depends on
data stored in file f2 (connected through highlighted edges
with t5), but not on, e.g., file f1. Using our viewer, Bob can
then inspect the content of file f1 (or another intermediate
result file in t5’s provenance). Note that if two elements are
connected in the execution trace this does not necessarily
imply that they depend on each other. For instance, a pro-
cess P may have written a file B and afterwards read from a
file A. Files A and B will be connected through P , but B’s
content obviously does not depend on A. LDV uses tempo-
ral information like this which is recorded in the execution
trace and fine-grained database provenance to exclude spu-
rious data dependencies.

Finally, if Bob sees incorrect tuples in the database, he
may wonder which version of Alice’s programs are producing
the incorrect data. Therefore he might be interested in de-
termining the version of the program that was used to create
this particular version of the tuple. If a Github-like version
control system is available on the OS side and/or transac-
tion time support is available on the database side, then our
visualizer takes this version information into account and
shows versions of files and tuples and their relationships.

6. CONCLUSIONS
In this demonstration we introduce the attendants to the

challenges of sharing DB applications, present several types
of use cases for sharing such applications, and show how
light-weight virtualization with provenance can be used to
address the challenges faced by these use cases. Further-
more, attendants will be able to get a look behind the cur-
tains and see how our LDV system realizes repeatability.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grants ICER-1440327, ICER-
1343816 and SES-0951576, and by the US Department of
Energy under contract DE-AC02-06CH11357.

8. REFERENCES
[1] P. J. Guo et al. CDE: Using System Call Interposition

to Automatically Create Portable Software Packages.
In USENIX, 2011.

[2] L. Moreau and P. Missier. PROV-DM: The PROV
Data Model.
http://www.w3.org/TR/2013/REC-prov-dm-20130430/,
2013.

[3] Q. Pham, T. Malik, B. Glavic, and I. Foster. LDV:
Light-weight Database Virtualization. In ICDE, pages
1179–1190, 2015.

[4] M. Riondato. Jails. https://www.freebsd.org/doc/
en_US.ISO8859-1/books/handbook/jails.html, 2009.

https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/jails.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/jails.html

	Introduction
	Sharing DB Applications
	Challenges and Requirements
	The Prototype LDV System
	Demonstration Overview
	Conclusions
	Acknowledgments
	References

