
IMPROVING DATA-SHUFFLE PERFORMANCE

IN DATA-PARALLEL DISTRIBUTED SYSTEMS

BY

SHWEELAN SAMSON

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science
in the Graduate College of the
Illinois Institute of Technology

Approved
Advisor

Chicago, Illinois
July 2018

ACKNOWLEDGMENT

I would like to show my appreciation to my advisor Professor Dr. Boris Glavic

for his supportive pieces of advice and vast knowledge throughout my journey at

Illinois Institute of Technology.

Also, I would like to thank Professor Dr. Ioan Raicu for serving on my thesis

defense committee. Thanks for the enjoyable discussion and the fantastic suggestions.

Also, I would like to express my special appreciation and many thanks to the

Fulbright Foreign Student Program for presenting this opportunity to achieve my

Masters of Science in Computer Science at IIT.

In the end, I would like to share this success with my family and friends

and thank them for showing me the most prominent support and encouragement to

achieve my goal.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . iii

LIST OF TABLES . v

LIST OF FIGURES . vii

ABSTRACT . viii

CHAPTER

1. INTRODUCTION . 1

1.1. Data-parallel Systems 2
1.2. Problem And Motivation 4

2. RELATED WORK . 7

2.1. Network Logial Topologies 7
2.2. HRDBMS . 9

3. UNDERSTANDING THE EFFECT OF HIGH DEGREE CON-
CURRENT CONNECTIONS 12

3.1. The Simulation Tool 12
3.2. Experiments . 15

4. USING DIRECT CONNECTIONS POOL TO IMPROVE DATA-
SHUFFLE . 28

4.1. Solution Idea . 29
4.2. The Simulation Tool 30
4.3. Experiments . 35

5. CONCLUSION . 40

6. FUTURE WORK AND RECOMMENDATIONS 42

BIBLIOGRAPHY . 43

iv

LIST OF TABLES

Table Page

3.1 The tool parameters description 13

3.2 The tool results description . 14

4.1 The simulation tool parameters description 31

4.2 The simulation tool results description 32

4.3 Time benefit with different configurations 39

v

LIST OF FIGURES

Figure Page

3.1 Throughput readings with 4 concurrent connections 17

3.2 Throughput readings with 8192 bytes message size 17

3.3 Throughput readings with 1048576 bytes message size 18

3.4 Throughput readings with 1024 concurrent connections 19

3.5 Throughput readings with (1048576, 524288) bytes message size
showing system failures . 19

3.6 Throughput readings with (16384, 32768) bytes message size show-
ing througput spikes . 20

3.7 Throughput readings with 2048 concurrent connections showing
througput spikes . 20

3.8 Latency readings with 2 concurrent connections 21

3.9 Latency readings with 16 concurrent connections 22

3.10 Latency readings with 2048 bytes message size 22

3.11 Latency readings with 16384 bytes message size 23

3.12 Latency readings with larger number of concurrent connections com-
pared to 16 connections . 23

3.13 Latency readings where concurrent connections are more than the
number of CPUs cores . 24

3.14 Median whole system CPU utilization readings with 16 concurrent
connections . 25

3.15 Median JVM CPU cores utilization readings (out of 1600%) with 16
concurrent connections . 26

3.16 Median whole system CPU utilization readings with 32768 bytes
message size . 26

3.17 Median JVM CPU cores utilization readings (out of 1600%) with
32768 bytes message size . 27

4.1 Startup Script Flowchart . 33

4.2 Main(instance) Module Flowchart 34

vi

4.3 Messages Forwarded distribution, showing 16% saving in wasted
messages, data points are per instance ID 36

4.4 Messages Forwarded distribution, showing 24% - 27% saving in
wasted messages, data points are per instance ID 36

4.5 Variance in the number of messages forwarded between nodes for
every approach, data points are sorted based on the number of for-
warded messages . 37

4.6 Variance in the number of messages forwarded between nodes for
every approach, data points are per instance ID 37

vii

ABSTRACT

Scaling up to thousands of nodes in data-parallel systems like MapReduce is

prevailing. Many logical network topologies like Torus, Binomial Graph, and Hyper-

cubes have been proposed to solve network connections concurrency problem that

comes along with this scale. These topologies enforce a limit on the number of the

allowed concurrent network connections per node and structure an overlayed network

topologies around it. Many implementations of these topologies set the connections’

limit value depending on folklore guesses. One contribution of this work is to ex-

perimentally understand the effect of concurrency degree on the machine’s resources

and the whole network resources. We implemented a benchmark tool which was

used to test different combinations of concurrency and buffer size parameters. We

evaluated the results and showed how does the number of concurrent connections

affects latencies, throughput, throughput stability, and compute resources consump-

tion. Furthermore, we showed that buffering and messages chunk size are critical for

performance and resources utilization. However, The scalability of these topologies

comes at the cost of having potentially longer communication paths. With longer

paths, more network bandwidth will be utilized in forwarding the messages through

intermediate hops. We proposed a hybrid approach that enables data-parallel systems

to deploy direct connections to the most congested paths selectively. We implemented

a simulation for Binomial graph topology and deployed this hybrid approach. Ex-

periments showed that with skewed datasets, the hybrid approach yielded a decent

performance boost, and a good saving in the forwarded messages count, hence in-

creasing bandwidth efficiency, and improving resources utilization.

viii

1

CHAPTER 1

INTRODUCTION

The fast growth of the data generated by different sources, such as web ser-

vices, mobile applications, sensors, the internet of things devices, etc, brought the

necessity of the distributed systems clusters that are able to scale up to hundreds or

thousands of nodes [1, 2] to be able to analyze and process that amount of data in

an acceptable time frame. Thus, Data-parallel distributed systems frameworks such

as MapReduce [3], Hadoop [4], Spark [5], and Dryad [6] have become widespread as

they are designed to fulfill this expansion; they provide data distribution mechanisms,

extreme parallelism, fault tolerance, and load balancing.

These systems partition their datasets across most or all of their worker nodes.

In the real world, these data partitions are replicated over multiple nodes, so that

these systems are more fault tolerant. Data processing tasks or queries are forced to

be designed as small sub-tasks that can be processed in parallel and as independently

as possible. Such systems are great for the end user since they abstract the parallelism

complexity, and provide simpler interfaces for both the developers and the end-users.

Moreover, these systems keep their nodes utilizations high. Using load balancing

techniques, they are able to distribute the workload over the cluster as evenly as

possible. Query execution in data-parallel systems is frequently interspersed with

data transfer. Workers nodes transfer considerable amounts of data during their

computations. These platforms handle data communications during query execution.

These features made it easy for data-parallel platforms to scale up to a large

number of nodes and abstract the program parallelizing and dataset distribution from

the end-user. The success of data-parallel systems is driven by their ability to scale

2

to thousands of nodes and become very powerful at a lower cost, where hardware

scalability is expensive.

1.1 Data-parallel Systems

With the fast pace of the data growth, investing in data parallelism became

a necessity to achieve scalability. Data-parallel systems abstract the concurrency

control dilemma away from the developers. These systems make this possible by par-

titioning the data across their nodes and provides simple interfaces for the developers

to build their software with data parallelism in mind. They also manage the resource

allocation, job scheduling, inter-nodes data flow control, and nodes failures.

1.1.1 Data Partitioning. In general, such systems aim to partition datasets into

smaller pieces of data in a way that can process each chunk of these data parts in

parallel on different machines that may belong to different networks, or even located

at different geographical locations. Systems like MapReduce [3], Hadoop [4], and

Spark [5] make use of distributed file systems such as Google file system (GFS) [7]

and Hadoop distributed file system (HDFS) [8, 9] to abstract the data partition away

from the user. These frameworks typically enforce a programming model where the

developer implements the task as a data-flow model, where the program’s dataset

is pushed through a set of operators (i.e., functions or subroutines) allowing these

frameworks to schedule each sub-task (i.e., data chunk) on a different node and restart

the sub-task if errors were encountered. On the other hand, systems such as HRDBMS

[10], use the local filesystem to store data directly to their cluster nodes. They

implement their own storage to have the full control over the data locality which is

critical for both performance and scalability.

1.1.2 Locality Awareness. Usually, the network resources on commodity ma-

chines are scarce, expensive, and perform poorly (i.e., high latencies, low throughput)

3

if the physical network is not configured correctly. Data-parallel systems try to cope

with such a paucity of network resources. These systems are designed to feature

locality-awareness on their data fractions; they keep track of where a data fraction

resides, and try to schedule the task on the node where the data reside to keep network

utilization as low as possible.

However, these systems analyze and process variant datasets to answer users

query, these datasets are usually interrelated (Database records for example) at some

applications, or at least queries results are somehow related (word count example,

where each node counts the words within its partition, and then the results are

aggregated from all the nodes), thus, the whole processing of the data fractions may

not be completed independently in parallel on the corresponding local machines that

hold them, at some point, these systems’ nodes are ordinarily compelled to collaborate

with each other to exchange data between them in order to complete the process and

produce meaningful results.

1.1.3 Data Transfer. Despite the attempts to process queries locally and in

parallel, frequently, queries processing requires data to be transferred between nodes

in order to proceed with the computations. There are many patterns of data transfer

between the nodes. The most popular patterns which occur in roughly all the data-

parallel systems are broadcast and shuffle. Data broadcast pattern follows the one-to-

many communication pattern, where a node broadcasts the same message to multiple

or all the other nodes. The coordinator nodes in HRDBMS [10] are responsible for

transactions commit operations. A coordinator keeps track of the nodes involved in a

transaction and performs a Hierarchical Two-Phase Commit Protocol. This operation

involves the broadcasting operation to all the nodes involved. Data shuffle pattern

follows the many-to-many communication pattern, where multiple or all nodes send

different pieces of data to other nodes; possibly to all of the nodes. In MapReduce

4

[3], the data shuffle is introduced between the map and reduce phases. Map phase

distributes the map function over multiple nodes to be processed locally; the map

function generates a key-value pair for every data point. Afterward, the mappers

sort the data based on the keys and transfer the data to the reducers. Reduce phase

performs the collection and combination of its input to provide the final results. In

HRDBMS, executing a query with a self-join operator on a table that is rows-based

partitioned, the execution engine transfers records between the nodes at the run-time

to generate the results, these transfers follows many-to-many pattern.

1.2 Problem And Motivation

Network communications can be a troublesome bottleneck. Data transfer pat-

terns that involve sending data to multiple - possibly to all - nodes are intricate to

well design and implement. Data broadcast and Data shuffle, are good examples.

The most apparent obstacle is maintaining an enormous number of concurrent con-

nections at the same time. Many solutions were proposed to cope with high degree

connections concurrency problem.

In broadcast operations, many systems [10, 11] implements tree based over-

layed topologies to limit the number of concurrent connections and parallelly get the

tree lower level nodes to reroute the message the level-below nodes. In HRDBMS

[10], the inherently hierarchical operators are implemented to use a tree topology,

an example of such operator is the distributed merge sort, where each level of the

tree represents and processes a single merge phase; the intermediate merge phases

are done in parallel which provides a more load balanced operation. The Hierarchical

Tow Phase Commit Protocol is also implemented on top of the tree topology. Dremel

[11] also implements tree topology to execute aggregation queries, where the queries

are passed down the tree to the leaves, servers on the leaves generate intermediate re-

5

sults and pass them up the tree, the intermediate servers aggregate the partial results

in parallel.

On the other hand, shuffle operations are more complicated, where different

data chunks are transferred to various destinations. This may require each node to

communicate with virtually all the nodes on the cluster. Many studies [12, 13, 14, 15]

introduced logical network topologies that tend to force a limit on the number of the

concurrent connections a single machine can maintain at any moment, and building

routing plans between the nodes as intermediate hops to deliver the data from source

to destination. More topologies and examples fo such solutions will be discussed in

Chapter 2.

The number of connections maintained on a single node is called “degree”,

and the maximum number of intermediate hops between any source and destination

is called “diameter”. The degree and diameter of a network topology are inversely

proportional, that is a network with small degree will have larger diameter, such as

the ring topology, where the degree is 2, where any node is only connected to the next

and previous siblings, this will make the maximum diameter to be half the number

of nodes on the network. Networks with longer diameter tend to encounter high

latency problem, and physical network excessive utilization, as a consequence, the

overall system throughput is affected since the physical network is utilized to resend

repeated messages over and over. On the contrary, a fully connected graph maintain

a degree that is equal to the number of nodes on the network. Thus each node will

maintain a direct connection with every other node. Hence this topology diameter

is 1. Machines that belong on a network with high degree suffer to maintain a huge

number of concurrent connections.

The different implementations of the solutions proposed to solve the connec-

6

tions concurrency problem tend to enforce a limit on the number of the concurrent

open connections (degree). The imposed limit is usually set based on folklore guesses

and estimations for a decent degree. However, the number of concurrent open connec-

tions is critical to the system communications framework and affects multiple aspects

of the system. Enforcing a limit on the number of network connections and build

an overlayed network topologies around it comes at the cost of potentially longer

communication routes. With longer routes, the messages will be retransferred mul-

tiple times through many hops to arrive at their destinations. With more messages

retransferred means less effective throughput, and more cost. In [16], they show that

the data transfer accounts for more than 50% of the computation time in data-parallel

platforms. An improvement to these systems communications performance will hold

an impact on the overall system performance. Moreover, it will have an impact cost

wise; data transfer in cloud platforms is expensive [17].

In Chapter 2 we will demonstrate the related work, and how different studies

proposed topologies to cope with the networking concurrency problems and difficulties

that are faced by the data-shuffle operations. In Chapter 3, we will try to understand

the real effect of the connections concurrency on the machines regarding the resources

utilization and state management, i.e. (how would the operating system handle the

massive number of concurrent network connections?). Furthermore, we will try to

evaluate the effect on the whole network concerning latency and throughput. After-

ward, in Chapter 4, we will discuss a hybrid approach that mixes between the use of

direct connections and topologies like Binomial Graph to boost performance and re-

duce network traffic during data-shuffle operations. We will experimentally evaluate

this hybrid approach and show its impact on performance and saving network traffic.

In Chapter 6 we suggested more ideas and plans to improve the hybrid approach

proposed in this work.

7

CHAPTER 2

RELATED WORK

Fully connected graph is optimal concerning latency, fault tolerance, diam-

eter(route length), and the network utilization efficiency; no messages need to be

forwarded. Unfortunately, it is not scalable. Ring topology is more scalable than a

fully connected graph, but it introduces a much higher diameter. The community

has been researching and trying to propose topologies that can find a decent balance

between node degree and route diameter. Another essential feature for the communi-

cations framework graphs that is advantageous to maintain is to be a regular graph,

that is all the nodes on the system keep the same degree. Network topologies like Hy-

percubes [13], Torus Interconnect [14, 15], and Binomial Graph [12] tried to achieve

the best topological properties and find a decent balance between the network degree

and diameter.

2.1 Network Logial Topologies

Hypercubes network, also called N-cube, maps the nodes as a graph of the

cube shape. With n-cube, where n is the cube dimensions, n nodes are labeled upon

the 2n binary labels. For every node on the system, it will only connect to the nodes

that hold the labels that are different by exactly 1 bit. This topology has a good

degree and diameter that is DE = DI = Log2(N) where DE is the degree, DI is

the diameter, and N is the number of nodes on the network. However, this topology

is restricted to the number of concurrent connections. Going more on the number of

nodes will introduce longer routes easily. With 10-cube that can label 1024 nodes, the

longest route is 10 hops away. Hypercubes has other variants ShufflNet [18], Folded

Petersen cube Networks [19], De Bruijn Graph [20], and Kautz Graph [21]. Some of

8

those are not scalable. Others introduce longer routes easily.

On Torus Interconnect networks, the nodes are laid out on a multidimensional

lattice. In general, ND Torus have N dimensions, and each node will connect to

the closest 2N nodes. Torus networks are complicated to implement, and they have

higher average diameter.

Other k-ary tree based topologies such as Hypertree [22], and Hierarchical

Clique [23] came up with good topological properties. They are scalable, fault toler-

ant, and maintain a decent low average diameter. However, the resulted graph is not

regular, where some nodes have a higher degree that makes them more congested.

Binomial Graph can be imagined as a ring network topology but with a differ-

ence that any node is connected to Nexti and Previousi nodes for i = 1..L where L is

the maximum-limit number of connections a node can maintain. Implementing such

topology will allow the network to have a logarithmic diameter with a lower degree,

i.e. (DI = LogL(N)) where DI is the diameter and N is the number of nodes on the

network.

Dryad [6] allows the developers to take control over the overlayed commu-

nication graph. A Dryad developer can specify a directed acyclic graph for Dryad

to express the data flow and the communication pattern between the nodes on the

system. This flexibility in the runtime communication pattern is providing good

performance while compromising on programmability; the developer needs to know

about the nature of the data and its distribution.

Introducing these network topologies solves the problem of the too many con-

current network connections. However, despite providing decent diameters, they pre-

sented the challenge of sending repeated messages through the network. A significant

9

fraction of the messages will be sent to the destination using 1 or more intermedi-

aries. The middlemen will reroute the message to its direct connections, repeatedly

until the message arrives at its destination. The number of intermediaries depends

on the network diameter, which depends on the number of the maximum concurrent

connections allowed on the system and the overlayed network topology. Thus, the

ultimate goal is always to have a diameter that is as low as possible, a diameter of

1 preferably since having a direct connection is the optimal route any data transfer

can be sent over, but as explained above it is impossible for multi-thousands ma-

chines clusters. Peer-To-Peer topologies, such as Content-Addressable Network [24],

Chord [25], Pastry [26], Tapestry [27], and Zero-Hop Distributed Hashtable(ZHT)

[28] are scalable and fault tolerant, they also provide perfect average diameter, ZHT

for example provide a diameter of 1, where all the connections are direct to the data

source and are dynamically switched using LRU connections cache. These topologies

were designed for dynamic application based on distributed hash tables. However,

the overhead of their dynamic communication framework will affect communication

efficiency.

However, in parallel database platforms [29] such as HRDBMS [10], the over-

layed communication graph is implicit. The end user need know nothing about the

communication framework; in an optimal world, the users must feel no difference

between the traditional databases and the distributed ones.

2.2 HRDBMS

Highly-scalable Relational DBMS (HRDBMS) [10, 30] is a distributed shared-

nothing database system that is designed to have per-node performance that is com-

parable to traditional relational databases or even to Massively Parallel Processing

(MPP) databases, and the ability to scale as linearly as the databases such as Spark

SQL [31], Dremel [11], Tenzing [32], and Hive [33], that are build on top of Big Data

10

platforms such as Hadoop [4], Spark [5], and other implementations of MapReduce

[3].

With bottlenecks in mind, where MPP databases are limited in scaling up

to huge clusters, and Big Data platforms have per-node performance that is inade-

quate, HRDBMS mixed the techniques and ideas from the 2 systems, with the proper

communication, and the well-designed compute level parallelism and data level distri-

bution techniques to achieve its goals. HRDBMS execution engine is distributed and

asynchronous by design, which supports it to feature highly-parallelized operators,

non-blocking, hierarchical data shuffling, and locality-aware query execution.

In HRDBMS, data is stored on the workers’ local storage. Data is partitioned

across nodes based on two partitioning strategies, row-based, and columnar-based

partitioning. The user selects the preferred strategy at the table creation time. By

handling the data storage directly, the execution engine is able to control data locality

perfectly. Moreover, HRDBMS implemented an external table framework to access

external data sources, such as HDFS [9].

HRDBMS enforces scalable communication patterns. It implements the tree

topology for the operators that are inherently hierarchical, such as the Two-Phase

Commit Protocol (2PC), and the distributed merge sort operator. In this topology,

every node only communicates with a parent, and it’s direct children. This enforces

each node to have a limit on the number of concurrent connections. The second

utilized topology is Binomial Graph Topology which is applied for data shuffle oper-

ations that follow many-to-many communication pattern. As we mentioned before,

at the cost of possibly longer routes, this topology enforces a limit on the concurrent

network connections a machine can maintain and uses some nodes as intermediate

hops. However, with both strategies, the limit on the number of connections that

11

any machine can maintain concurrently; either per query/machine or for the whole

machine, is usually decided based on guesses.

12

CHAPTER 3

UNDERSTANDING THE EFFECT OF HIGH DEGREE CONCURRENT
CONNECTIONS

One contribution of this dissertation is to study machines and network perfor-

mance under pressure, and what are the configurations to be tweaked to maximize the

system performance. We will illustrate the tool we implemented to benchmark data

transfers over the network between the nodes, and show the effect of some factors on

network performance, and on individual machines performance.

3.1 The Simulation Tool

We designed a tool (github.com/shweelan/network-benchmark) to measure

network performance on a machine. The tool is built with 3 modules: a server module,

a client module, and the main module. This tool is written in pure JAVA; no third

party libraries where used. This tool can be tested over a set of different setups and

parameters, see Table 3.1. Using this tool we were able to understand how different

combinations of networking parameters can affect the machine or the network, see

Table 3.2.

github.com/shweelan/network-benchmark

13

T
ab

le
3.

1.
T

h
e

to
ol

p
ar

am
et

er
s

d
es

cr
ip

ti
on

P
ar

am
et

er
D

es
cr

ip
ti

on
K

ey
S

h
or

t

ke
y

D
ef

au
lt

va
lu

e
ex

am
p

le

H
os

ts
A

co
m

m
a-

se
p

ar
at

ed
ar

ra
y

of
re

m
ot

e
se

rv
er

s
ad

d
re

ss
es

-h
os

ts
-h

lo
ca

lh
os

t
-h

19
.9

0.
29

.1
2,

19
.9

0.
3.

12

P
or

t
T

h
e

p
or

t
n
u

m
b

er
fo

r
re

m
ot

e

se
rv

er
s

-p
or

t
-p

29
12

-p
30

00

C
li

en
ts

co
u

n
t

T
h

e
n
u

m
b

er
of

co
n

cu
rr

en
t

co
n

n
ec

ti
on

s
to

b
e

u
se

d
-c

li
en

ts
co

u
n
t

-c
c

10
-c

c
12

8

C
h
u

n
k

si
ze

T
h

e
si

ze
-

in
b
y
te

s
-

of
ea

ch

m
es

sa
ge

co
m

m
u

n
ic

at
ed

to

th
e

se
rv

er

-c
h
u
n

k
si

ze
-c

s
10

24
-c

s
81

92

D
u

ra
ti

on
T

h
e

te
st

d
u

ra
ti

on
in

se
co

n
d

s
-d

u
ra

ti
on

-d
10

-d
30

C
h
u

n
k

d
el

ay

T
h

e
d

el
ay

to
ad

d
b

et
w

ee
n

2
co

n
se

cu
ti

ve
m

es
sa

ge
s

se
n
t

to
th

e
se

rv
er

in

m
il

li
se

co
n

d
s

-c
h
u
n

k
d

el
ay

-c
d

0
-c

d
10

0

L
at

en
cy

d
u

ra
ti

on
T

h
e

la
te

n
cy

te
st

d
u

ra
ti

on

in
se

co
n

d
s

-l
at

en
cy

d
u

ra
ti

on
-l

d
10

-l
d

5

U
se

d
ow

n
li

n
k

A
b

o
ol

ea
n

p
ar

am
et

er
to

fo
rc

e

th
e

se
rv

er
to

re
p

ly
th

e

m
es

sa
ge

s;
m

ak
e

a
p

in
g

p
on

g

-u
se

d
ow

n
li

n
k

-u
ld

fa
ls

e
-u

ld

14

Table 3.2. The tool results description

Result Decription

Throughput The test over all throughput in MegaBit per second

Min latency The minimum latency in the test in milliseconds

Max latency The maximum latency in the test in milliseconds

Median latency The median latency in the test in milliseconds

Average latency The average latency in the test in milliseconds

(1, 25, 75, 99) Percentiles The latency percentiles in milliseconds

JVM median The median percentage of the CPU used by Java Virtual Machine

Whole system median The median percentage of the CPU usage for the whole machine

3.1.1 The Server Module. The server module is a simple server that listens to

incoming TCP connections on a configurable port, and assign each incoming TCP

connection a thread. Connections threads perform no complicated tasks. A Thread

will be fetching messages from its TCP connection data-input-stream, and it will

either reply with the same message that was received if the client requested the

reply, or ignore the message. It would close the connection and exit if the client sent

termination command.

3.1.2 The Client Module. The client module is more complicated than the

server module, it takes a combination of parameters and sets the environment for it

and start to run. The most important parameters for this experiment are, the number

of concurrent connections to be maintained for the test, the size of each message in

bytes, the duration of the test, and the duration for the ping-pong test (latency

measure test). Several more configurations can be useful to use. A delay can be

configured to be paused between any 2 consecutive messages sent to server from the

same connection, and this can be useful to reduce the stress on the available resources.

Multiple remote servers can be included in the configurations, and the module will try

to divide the connections over the available servers evenly. A configuration available

for the client to ask the server to answer its’ messages; this configuration is forced

15

when the module is running latency test.

The client module will open each TCP connection in a new thread and will

assign a server host and port for that connection. Each thread will try to connect

to the designated server and then immediately will run the latency test for some

configurable amount of time. It will send messages to the server and wait for the

server to reply while it keeps on sending. When the server responds, it will read

the message id and update the record for time elapsed between send and receive.

Afterward, it will overflow the connection by messages over and over until the test

duration ticks off. The client will sleep each thread whenever it sends a 100MB of

data, and this trick was introduced to add stability to the system and reduce the

number of failures occurred; especially if the test was running on a limited resources

machine. In this part of the test will read incoming messages from the server and

clear the buffer to maintain space for more incoming messages. When the duration

is elapsed the client will ask the server to terminate and connection, and it will exit

the thread after saving all the results.

3.1.3 The Main Module. This module is used to automate the bulk testing.

This module gets the path to a configuration file, and starts the remote servers and

performs the test cases expressed in the configuration file.

3.2 Experiments

We conducted multiple experiments using the tool described above. In these

experiments we tweaked 2 parameters, the number of concurrent connections and the

data chunk size, we also tweaked the test duration accordingly adding more time to the

cases with the larger number of connections or bigger data chunk size to maintain sta-

bility to the system and get reasonable readings. The number of connections param-

eter set contained {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048} connections. The data

16

chunk size parameter set contained {256B, 512B, 1KB, 2KB, 4KB, 8KB, 16KB, 32KB

, 64KB, 128KB, 256KB, 512KB, 1MB} data chunk size.

For this experiment the hardware setup we used was Amazon Web Services

Elastic Compute Cloud (Amazon EC2) instances (aws.amazon.com), “c4.4xlarge” in

particular. “c4.4xlarge” instances offer 16 VCPUs, 30 GBs of memory, and a shared

network bandwidth which they mark as high bandwidth; our tests concluded that the

network bandwidth was around 4580 MegaBit/Second. As the network bandwidth

throughput can be efficiently maximized if we have enough number of concurrent

connections sending messages that have an acceptable chunk size, on the other hand,

the compute power had to be sufficient to handle a large number of connections

sending big data chunks concurrently. We used 2 machines as remote servers and 1

client machine. The goal was to stress the client machine while keeping the server

less-busy, that is if we have N connections on the client, then each server will have

N
2

connections, thus making the bottleneck at the client machine; since the client is

where the experiment is evaluated.

We executed the main module on a configuration file that covers all the com-

binations of “Clients count” and “Chunk size” parameters.

3.2.1 Experiment Results. The results were evaluated and analyzed to better

understand the effect of each combination on the nodes or the network. The result

can be clustered into 3 significant points of view.

3.2.1.1 Throughput. We noticed that the throughput could be efficiently max-

imized by opening enough number of connections with proper messages size. Using

the machines described above, we were able to maximize the throughput when we had

4 concurrent connections and a message size 8192 Bytes, see Figure 3.1 and Figure

3.2.

aws.amazon.com

17

Figure 3.1. Throughput readings with 4 concurrent connections

Figure 3.2. Throughput readings with 8192 bytes message size

However, small drops in the throughput were noticed in some cases, mainly

when the number of concurrent connections and the message size was too significant.

18

For instance, it dropped to hit 4000 Mb/S when the test case was 1024 simultaneous

connections and 1 MegaByte message size, see Figure 3.3. With larger concurrent

connections count, the throughput readings where less stable, the drops were not

significant, see Figure 3.4. With bigger message size - 1048576 bytes for instance -

we encountered more failures. The client machine came to a halt, and the test failed.

This was noticed in Figure 3.5, where the zero readings represent a failure.

Figure 3.3. Throughput readings with 1048576 bytes message size

In some cases, we noticed abnormal spikes in the throughput readings. This

occurred with 2048 concurrent connections and 16384 and 32768 bytes of data, see

Figure 3.6 and Figure 3.7. Our best reasonable explanation is that our instances on

Amazon AWS are virtual machines and the physical hardware is shared with other

virtual machines. However, we did not further investigate this behavior. We rerun

the cases causing these spikes multiple times, but the spikes were not regenerated.

3.2.1.2 Latency. We measured the ping-pong latency for the test cases mentioned

above. In other words, the client sends a message to a server and measures the

19

Figure 3.4. Throughput readings with 1024 concurrent connections

Figure 3.5. Throughput readings with (1048576, 524288) bytes message size showing
system failures

response time from the server for that particular message when the server returns the

same message.

20

Figure 3.6. Throughput readings with (16384, 32768) bytes message size
showing througput spikes

Figure 3.7. Throughput readings with 2048 concurrent connections showing throug-
put spikes

21

In some test cases where the number of clients is little, and the size of messages

is small, the latency of around 20 percent of the messages was higher than expected,

see Figure 3.8. This is the effect of Nagle’s Algorithm [34] that is implemented by the

TCP. Where the TCP protocol keeps small messages buffered, and sends them in one

packet once the buffer is full. As we increased the size of the messages, the latency

started to be stabilized. When the message size was too big, the latency of some

fraction - less than 10 percent - of the messages sent began to increase, see Figure

3.9.

Figure 3.8. Latency readings with 2 concurrent connections

Going more abundant on the number of connections increases the latency, it

also increases the portion of the messages that suffered higher latencies, see Figure

3.10 and Figure 3.11. Increasing the number of connections to be more than the num-

ber of CPUs cores, causes the latencies to increase significantly, see Figure 3.13. This

is an apparent effect of the operating system context switching. Failures frequency

increased as we increased the number of concurrent connections, see Figure 3.12.

22

Figure 3.9. Latency readings with 16 concurrent connections

Figure 3.10. Latency readings with 2048 bytes message size

23

Figure 3.11. Latency readings with 16384 bytes message size

Figure 3.12. Latency readings with larger number of concurrent connections compared
to 16 connections

24

Figure 3.13. Latency readings where concurrent connections are more than the num-
ber of CPUs cores

3.2.1.3 CPU usage. In this method, we measure the median CPU usage for the

JVM process and the CPU load for the whole system. The JVM process is measured

by the percentage of the number of cores available on the system. Since we used 16

cores machines, so the readings of JVM process CPU usage are out of 1600%. For the

whole system utilization, the readings are out of 100%. We noticed that the smaller

messages kept the CPU more utilized; testing with (256, 512, 1024, 2048) bytes, the

whole system utilization readings were 2-4X the utilization of the test with bigger

messages. Extremely large messages also increased the CPU utilization, but with a

smaller factor, talking about 1.5-2X the utilization of the test with smaller messages.

However, using reasonable message size resulted into very stable utilization, see Figure

3.14 and Figure 3.15. The rise in the whole system CPU utilization was non-linear

with the increase in the number of concurrent connections. In other words, doubling

the number of connections does not necessarily double the CPU usage. The CPU

utilization was very much stable while deploying more concurrent connections until

25

we hit the extreme case, where we used 2048 concurrent connections, at that point

the CPU utilization started to increase, see Figure 3.16 and Figure 3.17.

Figure 3.14. Median whole system CPU utilization readings with 16 concurrent con-
nections

26

Figure 3.15. Median JVM CPU cores utilization readings (out of 1600%) with 16
concurrent connections

Figure 3.16. Median whole system CPU utilization readings with 32768 bytes message
size

27

Figure 3.17. Median JVM CPU cores utilization readings (out of 1600%) with 32768
bytes message size

28

CHAPTER 4

USING DIRECT CONNECTIONS POOL TO IMPROVE DATA-SHUFFLE

Direct connections are always optimal. With direct connections, the diameter

is equal to one. This results in having minimum latencies and no wasted messages; the

messages rerouting is not needed with direct connections. Using direct connections

minimizes the network usage compared to other topologies that involve rerouting.

Unfortunately, deploying direct connections to connect to every other node on the

system is not scalable. As we noticed in the previous experiments, maintaining too

many concurrent connections is problematic.

Topologies such as Binomial Graph Network [12] are scalable. They maintain

a low average diameter while deploying a limited number of concurrent connections.

The average diameter of the topology is logarithmic to the number of the total nodes

on the system. In Binomial Graph topology, where every node maintains a limited

number of concurrent connections (L). The overlayed topology creates a mesh net-

work between the nodes and uses routing algorithms to deliver messages to any other

node. Every node is reachable LogL(N) hops at maximum. Beside being scalable,

Binomial Graph Topology is fault tolerant, where every destination is reachable by

multiple paths. Apparently, some destinations are reachable with higher diameters,

i.e., a higher number of intermediate hops; some messages will suffer higher latencies,

and will be more wasteful where they will be rerouted many times to be delivered to

a destination. However, with uniformly distributed datasets (AverageDiameter− 1)

more messages will be rerouted. When working on datasets that contain some values

that appear more frequently than others, the rerouted messages rate is even worse.

In the rest of this chapter, we will propose a hybrid approach in an attempt

29

to gain more performance and reduce the number of wasted (rerouted) messages sent

through the network.

4.1 Solution Idea

In order to have the best of both worlds, the lower degree of limiting the num-

ber of concurrent connections per node, and the optimality of the direct connections,

we proposed a hybrid approach that enables the execution engine - during runtime -

to selectively employ direct as needed relieving the most congested routes. The basic

idea is to maintain a pool of extra direct socket connections, and an algorithm to

selectively assign these connections to the most congested routes.

During execution time, the algorithm runs every X seconds. It calculates

the most congested routes and dynamically opens a socket connection with the most

congested routes. In this work, the congested routes are assessed based on the routing

heuristics collected during the runtime. Based on 2 factors, the route utilization,

and the route length. The route utilization is measured by the number of bytes

sent to a particular destination. The route length is the number of intermediate

hops between source and destination. The route congestion score is measured as

(RouteLength− 1) ∗BytesSent, and this score can be viewed as the number of bytes

forwarded through the intermediate hops since the last rerouting cycle. Relieving the

most congested routes based on these two factors is basically relieving the routes that

cost the systems the most number of bytes wasted. The reduction in the number of

the wasted messages leads to utilize the network bandwidth efficiently.

When the data are uniformly distributed over the nodes on the cluster, the

longest routes will be relieved with the direct connections. On the other hand, when

the data are not uniformly distributed, the most utilized routes will be discharged

30

with direct connections.

4.2 The Simulation Tool

The initial attempt was to implement the direct connections pool on HRDBMS[30].

Unfortunately, for some unforeseen technical difficulties with HRDBMS, we were un-

able to achieve that. The Binomial Graph Topology was not appropriately imple-

mented with HRDBMS source code available on their Github repository. We designed

a tool (github.com/shweelan/binomial-graph-simulation) to simulate the data

shuffle over a Binomial Graph overlay. The tool is built with 3 modules: the controller

module, a startup script, and the main module. This tool is written in pure JAVA;

no third party libraries where used. This tool can be tested over a set of different

setups and parameters, see Table 4.1. Using this tool we were able to understand

how different combinations of networking parameters can affect the machine or the

network, see Table 4.2.

github.com/shweelan/binomial-graph-simulation

31

T
ab

le
4.

1.
T

h
e

si
m

u
la

ti
on

to
ol

p
ar

am
et

er
s

d
es

cr
ip

ti
on

P
ar

am
et

er
D

es
cr

ip
ti

on
K

ey
D

ef
au

lt
V

al
u

e
ex

am
p

le

In
st

an
ce

s
co

u
n
t

(s
ta

rt
u

p
sc

ri
p

t)

N
u

m
b

er
of

in
st

an
ce

s
to

st
ar

t

on
ea

ch
p

h
y
si

ca
l

m
ac

h
in

e
-

1
10

n
M

ax
B

in
om

ia
l

gr
ap

h
m

ax
im

u
m

co
n

n
ec

ti
on

s
n

m
ax

3
5

E
x
tr

a
C

on
n

ec
ti

on
s

D
ir

ec
t

co
n

n
ec

ti
on

s
p

o
ol

si
ze

ex
tr

ac
on

s
0

3

R
er

ou
ti

n
g

fr
eq

u
en

cy
R

er
ou

ti
n

g
fr

eq
u

en
cy

in

m
il

li
se

co
n

d
s

re
ro

u
te

fr
eq

10
00

30
00

M
es

sa
ge

si
ze

M
es

sa
ge

si
ze

in
B

y
te

s
m

sg
si

ze
40

96
65

53
6

M
es

sa
ge

s
co

u
n
t

N
u

m
b

er
of

m
es

sa
ge

s
fo

r

ea
ch

In
st

an
ce

to
se

n
d

m
sg

co
u

n
t

10
00

10
00

00

D
at

a
d

is
tr

ib
u

ti
on

(O
p

ti
on

al
)

A
co

m
m

a-
se

p
ar

at
ed

ar
ra

y

re
p

re
se

n
ts

th
e

p
er

ce
n
ta

ge

of
ex

tr
a

d
at

a
to

lo
ad

on

ea
ch

in
st

an
ce

d
at

ad
is

t
n
u

ll
3,

5,
16

,1
5

32

Table 4.2. The simulation tool results description

Result (Per instance) Description

Test duration The total time elapsed to finish the process (query)

Simulation time The time elapsed while sending the messages

Messages sent, received,

forwarded during simulation
Messages transactions readings during the simulations

Messages sent, received,

forwarded before simulation
Messages transactions readings before the simulations

Messages sent, received,

forwarded after simulation
Messages transactions readings after the simulations

Latencies readings Different latency readings (Min, Max, Median, Average . . .)

4.2.1 The Controller Module. A remote HTTP module to control the workflow

of the simulation, it is used to keep the instances in sync with each other. We used

Redis (redis.io) and Webdis (webd.is) to create a remote HTTP controller server.

The data are stored on a Redis server, and we used Webdis to reach Redis via HTTP.

It is used by the startup script to declare each physical machine’s IP address. After

all the machines become ready, it is used to set the bootstrap trigger. When the

instances are running, this module is used to store the configurations for each test.

It is also used to keep the nodes in sync and aware of each other. At the end of the

simulation, it used to record the simulation results.

4.2.2 The Startup Script. A bash script that is started on every physical

machine. It clones the project from Github, then announces the machine IP to the

remote controller, it also announces the number of instances to be initiated. After

that, it waits for the bootstrap key to be set on the controller. When the bootstrap

key is set, it launches the instances and waits for them to finish executing. If no

errors were returned from the instances, it loops over what it does. See Figure 4.1.

4.2.3 The Main Module. This module is the instance module, every process of

this module is an instance of the simulation. It starts by reading the configurations

redis.io
webd.is

33

Figure 4.1. Startup Script Flowchart

from the remote controller, and starts its TCP connections listener, and announces its

IP and port to the controller. Afterward, it waits for all the expected instances to start

their listeners. Then, it calculates it calculates the Binomial Graph overlay based on

the configurations provided. It also calculates the routes to every other instance and

open TCP connections with the instances that it has a direct connection with. Using

the remote controller, it waits again for all the other instances to be ready. Once

all the instances are ready and connected, it starts to generate and send messages

to random destinations and keeps the stats updated. During the simulation, this

module frequently calculates the most congested routes and opens direct connections

with the most congested routes. Finally, when all the nodes complete the simulation,

it records the results it collected to the remote controller. See Figure 4.2.

34

F
ig

u
re

4.
2.

M
ai

n
(i

n
st

an
ce

)
M

o
d
u
le

F
lo

w
ch

ar
t

35

4.3 Experiments

We conducted multiple experiments using the simulation tool described above.

In these experiments we tweaked some parameters, such as the number of direct con-

nections, number of instances, data chunk size, and the percentages of data distribu-

tion over nodes; the data distribution was skewed in some cases, and it was random

in others. In some test cases, some delays were frequently introduced to achieve more

fairness among the processes. Most of the test cases were retried many times to make

sure that the readings are accurate and consistent.

For this experiment, the hardware setup we used was Chameleon Chameleon

Cloud Baremetal instances (chameleoncloud.org). Baremetal instances offer 48

Hyper-threaded cores processor, 128 GBs of memory, and a dedicated network 10 Gi-

gaBit/Second bandwidth. We used 15 physical machines. In some cases we launched

3 instances on each, in other cases we launched 4.

4.3.1 Experiment Results. The results of this experiment were grouped into 2

major groups.

4.3.1.1 Forwarded Messages Count. The messages forwarded are the messages

sent through the intermediate hops to a destination. When the connection is direct

to the destination, there are no forwarded messages.

Small rate - around 1% - of reduction in forwarded messages count was noticed

with random data distribution, where the data are uniformly distributed between

the cluster instances. This was expected since with the hybrid approach the direct

connections pool size is reduced from the number of the original topology is enforcing.

Hence it is reducing the average diameter for every other route that is not replaced

with a direct connection.

chameleoncloud.org

36

On the other hand, when we skewed the data distribution, and the reduction

in data forwarded messages count was ranging from 10% to 30% depending on the

data distribution. See Figure 4.3, Figure 4.4, Figure 4.5, and Figure 4.6.

Figure 4.3. Messages Forwarded distribution, showing 16% saving in wasted messages,
data points are per instance ID

Figure 4.4. Messages Forwarded distribution, showing 24% - 27% saving in wasted
messages, data points are per instance ID

As a side effect, we noticed that the running instances were more evenly uti-

37

Figure 4.5. Variance in the number of messages forwarded between nodes for every
approach, data points are sorted based on the number of forwarded messages

Figure 4.6. Variance in the number of messages forwarded between nodes for every
approach, data points are per instance ID

38

lized. The instances introduced less variance between them in the number of messages

forwarded. This effect is taking place since more congested routes will be relieved with

direct connections, that will relieve all the intermediate hops for that particular route.

This effect is great for load balancing. See Figure 4.5 and Figure 4.6.

4.3.1.2 Time Benefits. This reading is for the benefit in time for the overall

processing time; the time elapsed for all the instances to finish working.

As like forwarded messages count, no Time benefit was recorded when the data

were uniformly distributed over the nodes. This was expected since the whole-system

average diameter diminished. Moreover, around 1%-2% reduction in performance was

noticed. We believe this is due to TCP reconnecting overhead.

With skewed data distribution and on a stressed enough machine, the time

benefit recorded around 5% - 10% reduction in total processing time, see Table 4.3.

4.3.1.3 Other readings. Some improvements were noticed with average and

median latency. The latency improvements were not consistent over the whole system,

since the machines where all on the same switch.

As we already know, transferring data over the network needs to use CPU and

memory. Sending fewer messages over the network will save the CPU, and memory

usage. Moreover, it will reduce the congestion over the network resources, hence

saving network bandwidth for other messages and other queries to be sent over. This

leads to better utilizing the CPU for the actual work that matters and increasing the

network efficiency.

39

T
ab

le
4.

3.
T

im
e

b
en

efi
t

w
it

h
d
iff

er
en

t
co

n
fi
gu

ra
ti

on
s

M
es

sa
ge

s

C
ou

n
t

M
es

sa
ge

s

S
iz

e

In
st

an
ce

s

C
ou

n
t

C
on

n
ec

ti
on

s

C
ou

n
t

D
at

a

S
ke

w
ed

D
el

ay
s

U
se

d

B
in

om
ia

l

A
ve

rg
ag

e

T
im

e
(S

ec
)

H
y
b
ri

d

A
ve

ra
ge

T
im

e
(S

ec
)

T
im

e

B
en

efi
t

(S
ec

)

B
en

efi
t

P
er

ce
n
ta

ge
C

la
ri

fi
ca

ti
on

s

30
0K

64
K

B
60

12
Y

es
50

m
s

55
7

50
2

55
10

D
el

ay
s,

m
es

sa
ge

s
si

ze
,

an
d

en
ou

gh
in

st
an

ce
s

w
er

e
su

ffi
ci

en
t

to

st
re

ss
th

e
sy

st
em

30
0K

64
K

B
60

10
Y

es
N

o
50

7
46

6
41

8

W
it

h
ou

t
th

e
D

el
ay

s,

th
e

p
er

fo
rm

an
ce

b
o
os

t

w
as

le
ss

30
0K

25
6K

B
40

10
Y

es
10

0
m

s
92

8
86

7
61

7

D
el

ay
s,

an
d

b
ig

ge
r

m
es

sa
ge

s
w

er
e

su
ffi

ci
en

t

to
st

re
ss

th
e

sy
st

em
d
es

p
it

e

th
e

u
se

of
fe

w
er

in
st

an
ce

s

30
0K

64
K

B
60

16
N

o
N

o
32

2
35

2
-3

-1

W
it

h
u
n
if

or
m

ly
d
is

tr
ib

u
te

d

d
at

as
et

,
n
o

p
er

fo
rm

an
ce

ga
in

,
-1

%
d
ro

p
in

ti
m

e
is

d
u
e

to
T

C
P

re
co

n
n
ec

ti
n
g

ov
er

h
ea

d

30
0K

64
K

B
60

12
N

o
N

o
31

8
32

4
-6

-2

2%
d
ro

p
in

ti
m

e
d
u
e

to

T
C

P
re

co
n
n
ec

ti
n
g

ov
er

h
ea

d

40

CHAPTER 5

CONCLUSION

In data-parallel systems that scale up to thousands of nodes where data shuf-

fling operations are necessary for the job processing, network configuration is critical

to optimize resources utilization, system performance, system balance, and system

scalability. Data-buffering and messages chunk size to be sent over the network are

critical parameters that need to be tweaked to improve performance and resources

utilization. With small size messages, higher CPU utilization, higher latencies, and

lower throughput were noticed. On the other hand, extremely large messages also

yielded higher latencies and unstable throughput for the overall system. The network

connections concurrency degree is another major factor that can affect system perfor-

mance and scalability. Hence, keeping an unlimited number of concurrent connections

is impossible. CPU, memory, and state management will suffer as the network con-

nections count increases; eventually, the hosting machine will fail. Keeping only a few

concurrent connections yielded lower throughput. On the other extreme, too many

connections produced higher CPU utilization, higher latencies, and unstable through-

put. Not to forget, the more network connections, the more memory is consumed.

Network overlayed topologies such as Binomial Graph and Torus enforce a

limited number of concurrent network connections while keeping the average diameter

as short as possible. The value of the limit on the number of simultaneous network

connections must be well evaluated and carefully selected to maximize performance

and scalability. Implementing these topologies expands system scalability. However,

with these topologies, some destinations are farther than the others; they maintain

higher diameters to be reached. When these routes are congested, more system

41

resources are utilized to forward the messages over the hops to the destination. By

using the hybrid approach and make use of direct connections when necessary to

relieve the congested routes is advantageous to reduce the amount of data repeatedly

sent over the network. As a consequence, The system performance will be boosted,

and the resources will be better utilized.

The decrease in the node degree in favor of the direct connections pool causes

a reduction in the average diameter of the network framework graph. Hence, with

evenly distributed data there are fewer benefits. Contrariwise, with data that are

skewed and not evenly partitioned data, the hybrid approach is saving great fractions

of the wasted (rerouted/forwarded) messages and awarding a decent performance

boost. Reducing the number of messages forwarded leads to a reduction in CPU and

memory utilization, that can be utilized for other tasks on a busy system.

Even though the experiments showed us that the hybrid approach increased

the system load balancing, but the hybrid approach working mechanism could affect

the nodes’ degree equality, where some receiver nodes might have too many incoming

connections. Hence, getting the communication graph to be irregular. This could

happen only where the data are highly skewed, and there are a few values that are

excessively repeated. However, a simple solution idea for this problem can be granting

the receiver nodes the control to accept or reject the direct connections requests, in the

case of being overwhelmed and already received enough incoming direct connections.

42

CHAPTER 6

FUTURE WORK AND RECOMMENDATIONS

The tool we described in Chapter 3 can be used with topologies that enforce

a limit on the number of concurrent connections to configure the limit depending on

the machine’s resources correctly.

Although the idea described in Chapter 4 proved that it could improve per-

formance and resources utilization, it also demonstrated that the direct connections

portion of the number of connections allowed on the system is critical. The reduction

in the number of connections (the topologies degree limit) will lead to possible longer

average route length, that will affect all the routes. Depending on the network uti-

lization, and the data heuristics, the direct connections portions can be decided and

reserved. Conducting more experiments to optimize this ratio can be advantageous.

Rerouting algorithm proposed in this dissertation is a lightweight algorithm.

More sophisticated algorithms can be tested to employ this hybrid approach better.

Using previously executed queries heuristics to anticipate how could this query be ex-

ecuted to utilize the direct connections better. The currently implemented algorithm

decides its routes based on local congestion information, it tries to optimize locally.

Rerouting based on global information by using information from other nodes to as-

sess the whole overlayed network congestion can turn up better rerouting decisions.

Another benefit of using global, and comprehensive knowledge about the communi-

cations framework is to employ the direct connections within the original overlayed

topologies. Information about the direct connections on each other node can be used

to exploit the direct connections further and reduce the number of hops to distant

destinations.

43

BIBLIOGRAPHY

[1] M. Asay, “Why the world’s largest Hadoop installation may soon become
the norm,” 2014. [Online]. Available: https://www.techrepublic.com/article/
why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/

[2] Hadoop, Apache, “Powered by Apache Hadoop.” [Online]. Available:
https://wiki.apache.org/hadoop/PoweredBy#Y

[3] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[4] A. Hadoop, “Hadoop,” 2009.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets.” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed data-
parallel programs from sequential building blocks,” in ACM SIGOPS operating
systems review, vol. 41, no. 3. ACM, 2007, pp. 59–72.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google file system. ACM, 2003,
vol. 37, no. 5.

[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed
file system,” in Mass storage systems and technologies (MSST), 2010 IEEE 26th
symposium on. Ieee, 2010, pp. 1–10.

[9] D. Borthakur, “The hadoop distributed file system: Architecture and design,”
Hadoop Project Website, vol. 11, no. 2007, p. 21, 2007.

[10] J. Arnold, B. Glavic, and I. Raicu, “HRDBMS: Combining the Best of Modern
and Traditional Relational Databases,” Illinois Institute of Technology, Depart-
ment of Computer Science, PhD Oral Qualifier, 2015.

[11] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and
T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,” Proceedings
of the VLDB Endowment, vol. 3, no. 1-2, pp. 330–339, 2010.

[12] T. Angskun, G. Bosilca, and J. Dongarra, “Binomial graph: A scalable and
fault-tolerant logical network topology,” in International Symposium on Parallel
and Distributed Processing and Applications. Springer, 2007, pp. 471–482.

[13] Y. Saad and M. H. Schultz, “Topological properties of hypercubes,” IEEE Trans-
actions on computers, vol. 37, no. 7, pp. 867–872, 1988.

[14] B. Khasnabish, “Topological properties of Manhattan street networks,” Elec-
tronics Letters, vol. 25, no. 20, pp. 1388–1389, 1989.

[15] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa,
P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken et al., “Blue
Gene/L torus interconnection network,” IBM Journal of Research and Develop-
ment, vol. 49, no. 2.3, pp. 265–276, 2005.

https://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
https://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
https://wiki.apache.org/hadoop/PoweredBy#Y

44

[16] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing
data transfers in computer clusters with orchestra,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, pp. 98–109, 2011.

[17] Amazon Web Services, “Amazon EC2 Pricing.” [Online]. Available: https:
//aws.amazon.com/ec2/pricing/on-demand/

[18] M. J. Karol, “Optical interconnection using shufflenet multihop networks in
multi-connected ring topologies,” in ACM SIGCOMM Computer Communica-
tion Review, vol. 18, no. 4. ACM, 1988, pp. 25–34.

[19] S. Ohring and S. K. Das, “Folded petersen cube networks: New competitors for
the hypercubes,” in Parallel and Distributed Processing, 1993. Proceedings of the
Fifth IEEE Symposium on. IEEE, 1993, pp. 582–589.

[20] K. N. Sivarajan and R. Ramaswami, “Lightwave networks based on de Bruijn
graphs,” IEEE/ACM Transactions on Networking (TON), vol. 2, no. 1, pp. 70–
79, 1994.

[21] G. Panchapakesan and A. Sengupta, “On a lightwave network topology using
kautz digraphs,” IEEE Transactions on Computers, vol. 48, no. 10, pp. 1131–
1137, 1999.

[22] J. R. Goodman and C. H. Sequin, “Hypertree: A multiprocessor interconnection
topology,” IEEE Transactions on Computers, no. 12, pp. 923–933, 1981.

[23] S. Campbell, M. Kumar, and S. Olariu, “The hierarchical cliques interconnection
network,” Journal of Parallel and Distributed Computing, vol. 64, no. 1, pp. 16–
28, 2004.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable
content-addressable network. ACM, 2001, vol. 31, no. 4.

[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications,” ACM SIGCOMM
Computer Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

[26] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems,” in IFIP/ACM International
Conference on Distributed Systems Platforms and Open Distributed Processing.
Springer, 2001, pp. 329–350.

[27] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubia-
towicz, “Tapestry: A resilient global-scale overlay for service deployment,” IEEE
Journal on selected areas in communications, vol. 22, no. 1, pp. 41–53, 2004.

[28] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang,
and I. Raicu, “ZHT: A light-weight reliable persistent dynamic scalable zero-
hop distributed hash table,” in Parallel & distributed processing (IPDPS), 2013
IEEE 27th international symposium on. IEEE, 2013, pp. 775–787.

[29] D. DeWitt and J. Gray, “Parallel database systems: the future of high per-
formance database systems,” Communications of the ACM, vol. 35, no. 6, pp.
85–98, 1992.

[30] IITDBGroup, “HRDBMS.” [Online]. Available: https://github.com/
IITDBGroup/HRDBMS

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/IITDBGroup/HRDBMS
https://github.com/IITDBGroup/HRDBMS

45

[31] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaf-
tan, M. J. Franklin, A. Ghodsi et al., “Spark sql: Relational data processing in
spark,” in Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, 2015, pp. 1383–1394.

[32] L. Lin, V. Lychagina, W. Liu, Y. Kwon, S. Mittal, and M. Wong, “Tenzing a sql
implementation on the mapreduce framework,” 2011.

[33] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-reduce
framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1626–1629,
2009.

[34] Wikipedia contributors, “Nagle’s algorithm — Wikipedia, the free encyclopedia,”
2018. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Nagle%
27s algorithm&oldid=840406204

https://en.wikipedia.org/w/index.php?title=Nagle%27s_algorithm&oldid=840406204
https://en.wikipedia.org/w/index.php?title=Nagle%27s_algorithm&oldid=840406204

	ACKNOWLEDGEMENT
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	[0.75in][r]1. INTRODUCTION
	[0.3in][r]1.1. Data-parallel Systems
	[0.3in][r]1.2. Problem And Motivation

	[0.75in][r]2. RELATED WORK
	[0.3in][r]2.1. Network Logial Topologies
	[0.3in][r]2.2. HRDBMS

	[0.75in][r]3. UNDERSTANDING THE EFFECT OF HIGH DEGREE CONCURRENT CONNECTIONS
	[0.3in][r]3.1. The Simulation Tool
	[0.3in][r]3.2. Experiments

	[0.75in][r]4. USING DIRECT CONNECTIONS POOL TO IMPROVE DATA-SHUFFLE
	[0.3in][r]4.1. Solution Idea
	[0.3in][r]4.2. The Simulation Tool
	[0.3in][r]4.3. Experiments

	[0.75in][r]5. CONCLUSION
	[0.75in][r]6. FUTURE WORK AND RECOMMENDATIONS
	BIBLIOGRAPHY

