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Transfer learning is an effective technique for tuning a deep learning model when training data or computa-

tional resources are limited. Instead of training a new model from scratch, the parameters of an existing “base

model” are adjusted for the new task. The accuracy of such a fine-tuned model depends on the suitability of

the base model chosen. Model search automates the selection of such a base model by evaluating the suitability

of candidate models for a specific task. This entails inference with each candidate model on task-specific data.

With thousands of models available through model stores, the computational cost of model search is a major

bottleneck for efficient transfer learning.

In this work, we present Alsatian, a novel model search system. Based on the observation that many

candidate models overlap to a significant extent and following a careful bottleneck analysis, we propose

optimization techniques that are applicable to many model search frameworks. These optimizations include:

(i) splitting models into individual blocks that can be shared across models, (ii) caching of intermediate

inference results and model blocks, and (iii) selecting a beneficial search order for models to maximize sharing

of cached results. In our evaluation on state-of-the-art deep learning models from computer vision and natural

language processing, we show that Alsatian outperforms baselines by up to ~14×.
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1 Introduction
The increased accuracy of deep learning (DL) models compared to classical machine learning

models has revolutionized many fields in research and industry. Nevertheless, developing a custom

model from scratch is out of reach for many users due to limited availability of training data, limited

computational resources, and a lack of experts with sufficient knowledge to develop new models.

Deep transfer learning (DTL) [17], where a base model trained for one domain is fine-tuned for a

different target domain using a training dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 , has become a popular approach to address

these challenges. DTL significantly reduces training time and requires less training data when

compared to training from scratch [7, 17].

Authors’ Contact Information: Nils Strassenburg, nils.strassenburg@hpi.de, Hasso Plattner Institute, University of Potsdam,

Potsdam, Germany; Boris Glavic, bglavic@uic.edu, University of Illinois Chicago, Chicago, USA; Tilmann Rabl, tilmann.

rabl@hpi.de, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/6-ART127

https://doi.org/10.1145/3725264

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 127. Publication date: June 2025.

https://doi.org/10.1145/3725264
https://doi.org/10.1145/3725264
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725264


127:2 Nils Strassenburg, Boris Glavic, & Tilmann Rabl

Finding the right base model is critical for DTL – it has been shown that fine-tuning a random or

generic model typically results in poor performance while choosing a suitable model significantly

improves model accuracy [41]. Therefore, a machine learning (ML) engineer tasked with developing

a DLmodel for a labeled dataset𝐷𝑡𝑎𝑟𝑔𝑒𝑡 , ideally wants to automatically identify a suitable base model

from a company-internal or a public model store. The selected model should follow a preferred

architecture to ensure compatibility, ease integration, as well as leverage existing optimizations.

Moreover, it should maximize the likelihood of successful transfer learning.

The amount of publicly available models has significantly increased in recent years [9]. On the

one hand, this increases the chance that a suitable base model is available for DTL. On the other

hand, keeping track of all available models is challenging even for ML experts. Automated model
search systems have emerged as a potential solution for this problem. Model search has received

significant attention from industry (e.g., Google/Google Brain [25, 30, 41], AWS [2, 11, 29, 36], and

Facebook AI [36]) and the ML research community [4, 15, 16, 20, 42, 62, 63, 67]. These techniques

automate the process of choosing a base model by evaluating the suitability of many models, such

as those available in public model stores [21, 39, 56] for the target domain. Naive approaches that

rely solely on model metadata are not effective for selecting a good base model [29, 41]. At the

other end of the spectrum, fine-tuning all available models is prohibitively expensive. For example,

Renggli et al. [42] report a runtime of more than 13 days for 100 models on a single GPU machine.

The state-of-the-art are feature-based model search techniques [4, 29, 30, 41]. These methods first

extract features for every model by applying the first blocks of the model (the so-called feature
extractor) to the dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 and then calculate a proxy score for the suitability of the model for

the new task by, for example, training a fully connected neural network layer [41] and measuring

the accuracy of this proxy model on 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 .

Model selection based on proxy scores has been demonstrated to be effective for selecting

suitable base models [41]. However, even though generating proxy scores is less costly than full

fine-tuning, it remains a significant bottleneck in the model search process. This is also due to the

large number of available models. For example, Hugging Face (HF) now hosts over one million

public models [9] including hundreds to thousands of fine-tuned variants for popular architectures

such as ResNet [18], ViT [13], and BERT [12].

Prior work proposes two techniques for reducing the runtime of model search: improving proxy

scoring and speeding up feature extraction. Improved proxy scoring methods include using k-

nearest neighbors classifiers [38, 42], heuristics [30], or recommendation models [29], to bypass

the need to train a fully connected layer. However, feature extraction is the real bottleneck in

model search, because it requires data preparation and inference with a large part of the model

(see Section 3). To optimize feature extraction time, Renggli et al. [42] propose successive halving
which progressively narrows the model search space using proxy scoring with subsets of 𝐷𝑡𝑎𝑟𝑔𝑒𝑡

of increasing size. Even with these optimizations, model search still takes multiple hours to days

and it turns out that no matter whether successive halving is used or not, feature extraction is still

the main bottleneck [20, 30, 62]. In early iterations (small subsets of 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 ), model loading is the

bottleneck while inference is the main bottleneck in later iterations (larger subsets of 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 ).

Analyzing the characteristics of typical sets of candidate models, we observed substantial overlap

between models, which allows for significant optimization of feature extraction. This potential has

been ignored by prior model search systems. We analyzed 2,800 models from HF as well as best

practices for transfer learning proposed in ML textbooks [7, 17, 66], tutorials [1, 6, 55], and recent

research on transfer learning [22, 23, 27, 28, 31, 32, 35, 44]. A common thread is that many models

are generated by fine-tuning popular architectures. While fine-tuning all layers of a model is a

common approach, often only a subset of a model’s parameters are adjusted leading to substantial

overlap between the fine-tuned and base model.
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Fig. 1. Optimized feature based model search

In this paper, we address the challenge of efficiently managing and querying model data to

improve the performance of the feature extraction step in model search. Drawing inspiration from

closely related work in the database community [16, 35, 42] as well as result caching, multi-query

optimization, and common sub-expression elimination, we develop new techniques to exploit the

overlap between models. These techniques can be used by any model search approach that utilizes

feature extraction and also for other inference tasks with multiple, similar models. We implement

these techniques in a model search system called Alsatian that applies three optimizations to

speed up model search with successive halving: 1 partial model access, 2 caching of intermediate

inference results, and 3 optimizing the search order.

Figure 1 shows an example model search using Alsatian. The candidate models are M1, M2,

M3, andM4, consisting of three blocks each. Note that these models share some blocks (e.g., 𝐵1).

To reduce storage requirements, Alsatian stores each block exactly once, no matter how many

models the block belongs to. To calculate the proxy score for M1 we first read its blocks (𝐵1 to

𝐵3) from Alsatian’s model store and then apply the model to the current subset of 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 (feature

extraction). Alsatian caches the outputs (inference results) for blocks 𝐵1 and 𝐵2 as these results

will be reused for M3. For M3, we only have to load 𝐵6 and apply it to the cached result for 𝐵2 to

compute the feature extractor result for M3. That is, for M3 we 1 avoid loading the whole model

and 2 inference with the full model. After calculating the proxy score forM3, we score models

M4 and M2 in the same manner.

Note that if storage used for caching is limited, then a careful choice of search order (execution
plan) can significantly impact performance. For example, assume that we can cache only one

intermediate output at a time. Then using the search order M1, M2,M3,M4, we have to compute

𝐵2’s output twice. However, for the orderM1,M3,M4,M2, 𝐵2’s output is computed only once.

Using metadata about the block structure of the candidate models, Alsatian determines a beneficial

execution plan 3 .
In summary, we make the following contributions:

(1) We analyze existing state-of-the-art model search techniques and identify I/O and compute

as major bottlenecks.
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(2) We propose a new approach that exploits the similarity between models by caching parts of

models and caching (intermediate) inference results. These optimizations can be applied to

any feature-based model search technique without changing its output.

(3) The problem of selecting a search order that minimizes execution time is computationally

hard. We present an efficient heuristic algorithm that returns an optimal plan as long as the

available space for caching is above a threshold that depends on the set of candidate models.

Importantly, this condition often holds for real-world candidate models.

(4) We evaluate our approach implemented in Alsatian using synthetically generated as well as

publicly available computer vision and natural language processing models and demonstrate

that Alsatian outperforms the best baseline by up to 10.7×.
The remainder of this paper is structured as follows. In Section 2, we provide background on DTL

and model search techniques, followed by an analysis of bottlenecks for model search in Section 3.

In Section 4, we introduce our optimized model search approach Alsatian and then discuss its

execution planner in Section 5. We evaluate Alsatian and compare it to existing approaches in

Section 6, and then we give an overview of related work in Section 7. We conclude in Section 8.

The source code for Alsatian and artifacts are publicly available.
1

2 Background
In this section, we first describe how DL models are structured and give an overview of deep

transfer learning (DTL). We then introduce feature-based model search and the successive halving

approach we optimize in this work.

2.1 Deep Transfer Learning
Structure of a DL Model. A modelM is composed of blocks 𝐵1, . . . 𝐵𝑚 each consisting of one

or more layers (e.g., transformer or bottleneck blocks [17, 18, 58]). For example, in PyTorch this

hierarchical structure of models is typically achieved by nesting PyTorch modules to represent

blocks and layers. Inference with a model on a dataset 𝐷 returns a prediction by evaluating 𝐵1

on 𝐷 , then feeding the result 𝐵1 (𝐷) into 𝐵2 to compute 𝐵2 (𝐵1 (𝐷)) and so on. In domains such as

computer vision and natural language processing, DL models can be logically divided into a feature

extractor that is a prefix of the model’s blocks and a problem-specific head [12, 13, 18, 43]. As we

will discuss further in Section 6.3, the block structure of a model and what blocks belong to the

feature extractor is typically explicitly declared (we validated this on ∼ 2800 models from HF). For

most models, the feature extractor makes up the largest part of the model. The head of the model

typically contains one or more fully connected layers translating the output of the feature extractor

into the actual prediction. Figure 2 shows an example of a DL model that consists of seven layers.

The first six layers are grouped into three blocks and belong to the feature extractor while the last

layer is the head which, in this example, predicts whether the extracted features represent an item

in Class 1 or Class 2.

C1

C2

Feature Extraction Classification

Generic Domain Specific

Fig. 2. Deep learning model divided into layers and blocks

1
https://github.com/hpides/alsatian
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Deep Transfer Learning. The layers of a DLmodel close to the input learn more generic features,

while layers closer to the head learn more domain-specific features, as indicated in Figure 2 by the

arrow above the model [61, 65]. This is why deep transfer learning (DTL) [17] reuses large parts of

DL models to develop new models which speeds up training and requires significantly less training

data. Two commonly used approaches for DTL are feature-extraction and fine-tuning. In both cases,

we first select a base model to transfer parameters from and adjust its head for the new use case.

This is done by freezing a certain number of blocks (i.e., the parameters of these blocks will not be

adjusted during training) and training the model on the dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 . For feature extraction, we

freeze all layers of the feature extractor and only train a new head. For fine-tuning, we unfreeze

parts of the feature extractor [7, 17, 40]. The optimal number of layers to tune is considered a

hyperparameter for the training process and depends on many factors such as domain similarity,

dataset size, and compute budget [35]. Freezing no or only a few layers allows us to adjust large

parts of the model which might boost performance but increases the risk of overfitting and leads to

slower training.

2.2 Model Search
Model Search with Proxy Scoring. In model search, we are given a dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 for a target

domain and a set of candidate models 𝑴 = {M𝑖 }𝑛𝑖=1. The goal is to select one of these models as a

base model for transfer learning. The brute force approach for model search is to fine-tune every

candidate model and select the fine-tuned model that performs best. This is prohibitively expensive.

As we will explain in more detail in Section 7, model search techniques that rely on metadata alone

are efficient, but often fail to identify a suitable base model. A technique that has been successfully

employed in related work is to apply the feature extractor of each candidate modelM𝑖 to 𝐷𝑡𝑎𝑟𝑔𝑒𝑡

and then compute a proxy score to estimate the suitability ofM𝑖 as a base model for DTL. Different

methods have been proposed for proxy scoring. For example, training a fully connected layer as a

classifier on the feature extractor’s output and using the classifier’s accuracy as the model’s proxy

score [41].

Figure 3 shows an overview of the model search process with proxy scoring [42]. We split the

target dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 into a training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 and test dataset 𝐷𝑡𝑒𝑠𝑡 . The feature extraction

step consists of the following substeps:

• Prepare data: we load every data partition into memory and pre-process it to match the input

dimensions of the model. For example, for images, this may require rescaling the image.

• Prepare model: We load every model’s parameters from a model store into RAM and then

move the model from RAM to GPU memory.

• Inference: we perform inference on the data using the feature extractor of the model to

transform the training data 𝐷𝑡𝑟𝑎𝑖𝑛 and test data 𝐷𝑡𝑒𝑠𝑡 into feature matrices.

The proxy scoring step uses the feature matrices returned by the previous step to calculate a

proxy score that estimates how well a fine-tuned version of the model performs on 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 .

• Train a proxy model: we train a fully connected layer as a proxy model using the features

produced by the feature extraction step and the labels from 𝐷𝑡𝑟𝑎𝑖𝑛 .

• Evaluate proxy model: we use the features produced for the test dataset 𝐷𝑡𝑒𝑠𝑡 by the feature

extraction step to evaluate the proxymodel’s performance (e.g., [42] uses the model’s accuracy

as the proxy score).
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Feature Extraction
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Model Store
0.89
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0
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Fig. 3. Feature-based model scoring

Successive Halving and SHiFT. Most related work has focused on developing better or faster

proxy scoring methods [20, 30, 62]. But, since feature extraction is the actual bottleneck, Renggli et

al. [42] propose successive halving and implement this technique in their system called SHiFT. The

system was evaluated on transfer learning tasks where all layers of the base model are fine-tuned,

but the approach is also applicable to the other transfer learning variants discussed in Section 2.1.

Successive halving prunes poorly performing models using proxy scoring with subsets of the data.

We optimize successive halving in Alsatian.

Successive halving starts with the full set of candidate models 𝑴0 = {M𝑖 }𝑛𝑖=1 and prunes models

until a desired number 𝑘 of models remains. The approach subsamples 𝐷𝑡𝑟𝑎𝑖𝑛 to create subsets

𝐷1, . . . , 𝐷𝑙 of exponentially increasing size (i.e., |𝐷𝑖+1 | = 2|𝐷𝑖 |). In each iteration 𝑖 of successive

halving, the algorithm uses 𝐷𝑡𝑒𝑠𝑡 and 𝐷𝑖 to compute proxy scores for all models and filters out

the
|𝑴𝑖 |
2

models from 𝑴𝑖 with the lowest proxy scores. The result is the set of models 𝑴𝑖+1 to be

used in the next iteration. The initial dataset size |𝐷1 | is chosen such that in the last iteration the

complete training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 is used. This approach reduces the cost from 𝑂 (𝑛 ·𝑚), where 𝑛 is

the number of candidate models and𝑚 is the size of 𝐷𝑡𝑟𝑎𝑖𝑛 , to 𝑂 (log𝑛 ·𝑚).
Figure 4 shows an example with eight models. We start by splitting 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 into four partitions:

three partitions for training data 𝐷1 to 𝐷3 that double in size, and one partition 𝐷𝑡𝑒𝑠𝑡 for testing.

In the first iteration, we extract features and compute proxy scores using the test data and the

smallest training data partition 𝐷1 to rank all models. Afterward, we prune the four models with

the lowest proxy scores. In the second iteration, we compute proxy scores for the four remaining

models using the smallest two training data partitions 𝐷1 and 𝐷2 and use the test data 𝐷𝑡𝑒𝑠𝑡 to

compute scores and prune two more models. In the third iteration, we use all data (𝐷1 to 𝐷3) for

feature extraction and proxy scoring and prune one model leaving us with only one model. This

model will be used for DTL.

Models

Data

Iteration 1 Iteration 2 Iteration 3

0.42 0.87 0.31 0.49 0.85 0.86

0.79 0.22 0.75 0.89 0.81 0.75 0.87 0.91

D1 D2 D3 Dtest D1 D2 D3 Dtest D1 D2 D3 Dtest

Fig. 4. Successive halving
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(a) 9216 data points, no caching (b) 1024 data points, no caching

(c) 96 data points, no caching (d) 1024 data points, cache input after 3rd last block

Fig. 5. Runtime breakdown for scoring a single model

3 Bottlenecks Analysis
To better understand the bottlenecks of model search with proxy scoring and the potential impact

of caching (intermediate) inference results, we measure the runtime for computing proxy scores

for a model in various settings. We use a server with a 64-core AMD Ryzen CPU with 2.48 GHz

and an NVIDIA RTX A5000 GPU (for details see Section 6) and focus on the individual steps of:

(1) preparing the model, (2) preparing the data including preprocessing such as resizing of images,

(3) extracting features by performing inference on a target dataset, i.e., evaluating each block of the

model on the output of the previous block or, in case of the first block on the target data 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 ,

and (4) calculating the proxy score by training and evaluating a fully connected layer over the

extracted features for 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 (which is split into 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡 as described in Section 2.2). We

vary the model architecture, the choice of which intermediate inference results to cache, and the

dataset size by sampling from the ImageNet dataset [24].

Effects of Dataset Size. We observe that the runtime for larger datasets (Figure 5(a)) is dominated

by inference, especially for larger models such as ResNet-152, EfficientNetV2-L, and ViT-L-32. For

smaller datasets, which are representative of early iterations of successive halving, the main

bottleneck stems from preparing the model: for 96 data points as shown in Figure 5(c) and ResNet

-152 (ViT-L-32) almost 60% (80%) of the time is spent on preparing the model. An exception are

small models like ResNet-18 for which data preparation dominates, but even for ResNet-18 we

observe that inference only has a significant impact for larger datasets.

Caching. To simulate caching of intermediate inference results, we evaluated inference with the

same models, but only for the last 𝑛 blocks of the feature extractor. Figure 5(d) shows the runtime

distribution for preparing the data by loading cached intermediate inference results from SSD and

reusing them so that we only evaluate the last 𝑛 = 3 blocks of the feature extractor. Preparing the

model is now the dominating factor: ∼40% for ResNet-18 up to ∼90% for ViT-L-32.
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Summary. The key insights of our bottleneck analysis are:

• Feature extraction (preparing the model, preparing the data, and performing inference) is the

overall bottleneck.

• Without caching, inference is the bottleneck for large datasets and model preparation for

smaller datasets. The exceptions are small models for which data preparation dominates.

• When caching intermediate inference results and, thus, only evaluating the last few blocks of

a model’s feature extractor, model preparation is the most significant bottleneck.

4 Alsatian: Efficient Model Search
In this section, we introduce the Alsatian framework. Based on the bottlenecks we identified for

model search with proxy scoring, we optimize the performance of feature extraction through

caching and the careful selection of a beneficial execution order without altering the model search

result. We first present an overview of Alsatian in Section 4.1, discuss our model and data store in

Section 4.2, and describe our execution engine in Section 4.3. Finally, we discuss Alsatian’s planner

in Section 5 that uses a simple, yet efficient, algorithm that produces optimal plans as long as

sufficient memory is available for caching.

4.1 Alsatian Overview
Alsatian optimizes model search with successive halving as described in Section 2.2. We assume

that we are given a storage budget 𝑠𝑐𝑎𝑐ℎ𝑒 for caching and have a model store that allows access to

models on a block-level granularity. Amodel search query consists of conditions for filtering models

based on their metadata (e.g., consider computer vision models with less than 100M parameters),

a target dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 , and the result size, a parameter set by the user that dictates how many

models should be returned as the final result of model search. The target dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 consists

of labeled training examples for the task the returned models should solve, for example, a set of

labeled images. Figure 6 shows a high-level overview of Alsatian. We start by passing the query

and the dataset to the model store and the data store 1 . The model store collects metadata for all

models that fulfill the constraints and collects the initial set of models 𝑴0 2 . The data store splits
𝐷𝑡𝑎𝑟𝑔𝑒𝑡 into a test dataset 𝐷𝑡𝑒𝑠𝑡 and a training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 . It then determines the number of

successive halving iterations based on the number of models in 𝑴0 such that the last iteration will

return the requested number of result models. For that we create subsamples 𝐷1, . . . , 𝐷𝑙 of 𝐷𝑡𝑟𝑎𝑖𝑛

of exponentially increasing size; one for every iteration 𝑖 of successive halving 3 .

Successive Halving. In each iteration of successive halving, the execution planner requests
metadata about the models 𝑴𝑖 and the dataset 𝐷𝑖 to generate an execution plan for scoring these

models using 𝐷𝑖 . The execution planner generates a task tree (TT) for the current set of candidate

models that encodes which block inference tasks have to be executed for feature extraction, the

proxy scoring tasks, and all the dependencies between these tasks 4 . Afterward, Alsatian generates

an execution plan by traversing the TT 5 . The execution engine evaluates the plan by iterating

over the execution steps in the plan and performs operations such as accessing data chunks 𝐷𝑖 from

the data store, reading model blocks from the model store, reading cached intermediate results for

blocks or adjusting the cache content using its caching service, extracting features, and calculating

proxy scores 6 . Based on the calculated proxy scores, the execution engine then prunes half of the

models with the lowest proxy scores from the TT 7 . The remaining models are the set of models

𝑴𝑖+1 for the next iteration of successive halving. The process terminates once |𝑴𝑖 | is equal to the

user-provided result size and Alsatian.
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Fig. 6. Alsatian Overview

Implementation. We implement Alsatian as a Python-based framework that uses PyTorch to

execute inference and proxy scoring. We assume that models and blocks are represented as PyTorch

Modules,2 that the feature extractor is represented as a sequence of blocks using PyTorch Sequential3

or ModuleList4 objects, and that the model declares its feature extractor and classification head. For

all models from PyTorch Hub and HF we analyzed, these conditions hold or can be achieved with

minimal effort. In future work, we plan to extend our implementation to support arbitrary models

by parsing their execution DAG.

As proposed in related work [42], we execute all core DL tasks (e.g., inference and training)

on a GPU and all other tasks (e.g., execution planning and data preparation) on the CPU. We

store 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 on an SSD, and the models on an HDD. Analyzing inference time and intermediate

result sizes on a model block granularity, we observe that there is no need to distinguish between

GPU memory or CPU memory for caching. The reason is that accessing the cached intermediate

from GPU memory or transferring it from CPU memory via the CPU-GPU interconnect is always

significantly faster than recomputing the result. For example, the inference time of a single ViT-L-32

block is approximately 3 ms, but loading a batch of intermediate results from CPU to GPU memory

takes only ∼0.3 ms. We set the caching budget 𝑠𝑐𝑎𝑐ℎ𝑒 for intermediate results to the sum of the

system’s GPU and CPU memory. Additionally, we cache model parameters on SSD to avoid having

to repeatedly load them from HDD.

4.2 Model & Data Store
We store models as a sequence of blocks in the model store. For every block we record a series

of characteristics: the block’s architecture, the block’s parameters, the block’s output dimensions,

the block’s storage size, and hashes of the block’s parameter and architecture forming a unique

content-based identifier for a block. Overlap between models is determined based on the block

hashes, and shared blocks are only stored once.

2
https://pytorch.org/docs/stable/generated/torch.nn.Module.html

3
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html

4
https://pytorch.org/docs/stable/generated/torch.nn.ModuleList.html
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The data store provides access to chunks of the dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 and to complementary metadata

such as the number of items in every chunk. To prepare the data, the data store requests the number

of models that should be ranked and splits the data into multiple chunks: one test data chunk 𝐷𝑡𝑒𝑠𝑡

of a fixed size and multiple training data chunks 𝐷𝑖 ; one for every iteration of successive halving.

The training data chunks are generated such that the size of chunk 𝐷𝑖 is twice the size of chunk

𝐷𝑖−1 and that the full training dataset is used in the last iteration of successive halving.

4.3 Execution Planner & Execution Engine
The execution planner (see Section 5) generates an execution plan 𝑃 consisting of a sequence

of execution steps 𝑃 = (S1, . . . ,S𝑛). Each execution step falls into one of the three categories

Block-Inference-Step (BI -Step), Score-Model-Step (SM-Step), or Modify-Cache-Step (MC-Step) and
is executed by the execution engine.

A BI -Step performs inference for a sequence of model blocks 𝐵1 to 𝐵𝑘 . For such a step we record

the input data partition of the first block in the sequence (𝐵1) and record where the output of 𝐵𝑘
should be cached. To execute a BI -Step, the execution engine prepares a model consisting of the

model blocks 𝐵1 to 𝐵𝑘 , which are fetched from the model store. Afterward, the execution engine

requests the input data from the data store or cached intermediate results from the caching service.

Finally, it prepares the sequence of blocks, feeds the input data batch-wise through the blocks, and

caches the output at the dedicated cache location. Note that the output of a BI -Step will be used at

least once and, thus, has to be stored in the cache.

A SM-Step calculates the proxy score for a given set of extracted features (outputs of a block)

and corresponding labels. We record what scoring method should be used (such as training and

classification with a fully connected layer), a list of model IDs to score, and references to the relevant

input features and labels. To execute a SM-Step, the execution engine requests all referenced training

and test data features and labels from the caching service to train and evaluate the proxy model on

the GPU. To avoid data preparation bottlenecks and fully utilize the GPU, the execution engine

prepares input data and labels exactly once and caches them on the GPU or in CPU memory. This

is possible even for datasets with multiple thousands of items because a single input feature uses

less than 10KB and is thus relatively small compared to most intermediate inference results.

A MC-Step deletes intermediate inference results from the cache or moves such results to a

different device (e.g., from CPU memory to SSD). To execute a MC-Step the execution engine

forwards the request to the caching service that will move the data or mark it for deletion.

5 Execution Planner
The execution planner generates plans for a single iteration of successive halving. For each iteration,

it generates a task tree (TT) encoding the block inference and proxy scoring tasks to be executed

during this iteration and their dependencies. The planner then traverses the TT to create an

execution plan 𝑃 = (S1, . . . ,S𝑛) consisting of a sequence of execution steps S𝑖 that is passed to

the execution engine. We describe the generation of the TT in Section 5.1, our definition of an

execution plan in Section 5.2, and present a heuristic algorithm to generate the execution plan in

Section 5.3. In Section 5.4, we show that our algorithm is optimal when the caching budget C is

sufficiently large, and discuss how we handle the case when this condition does not hold.

5.1 Task Trees
Task Tree Structure. Given a dataset, the TT 𝑇 = (𝑉 , 𝐸) is the data structure that represents all

operations and their dependencies that we have to execute to extract features for a set of models

and to calculate their proxy scores. Each vertex 𝑣 ∈ 𝑉 of the TT represents an intermediate result

and each edge (𝑣1, 𝑣2) ∈ 𝐸 represents a computation (block inference or proxy scoring) that takes
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𝑣1 as input and returns 𝑣2. We use 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑇 ) to denote all leaf nodes of𝑇 which represent the proxy

scores we have to compute. Additionally, we define a function mem : 𝑉 → N that associates each

vertex (block inference result) with a storage cost; a function cost : 𝐸 → N that associates each

edge (inference with a block or proxy scoring step) with a computational cost; and a function

cmem : 𝐸 → N that associates each computation (edge) with a memory footprint. The execution

planner will use the TT to determine an execution plan that minimizes the sum of the computation

cost cost for steps in the plan while ensuring that the total memory requirements of the cached

intermediate inference results and storage costs for the computation (the blocks themselves) never

exceed the cache size 𝑠𝑐𝑎𝑐ℎ𝑒 . Note that a block can be released from cache once its output has been

produced, but outputs may be kept in cache for several execution steps. Furthermore, typically

cmem(𝐵) ≪ mem(𝑅) where 𝑅 is the output of the block 𝐵. Thus, for simplicity, we ignore cmem in

the following.

Building Task Trees. The two core operations the TT has to support are adding a new model

(its metadata) and pruning a set of models. We add new models when collecting the models 𝑴0

relevant to our search query and we prune models after every iteration of successive halving.

Figure 7 shows an example of a TT constructed for three models M1,M2, andM3. On the top

we show the models — each consisting of six blocks, some of which are shared. Below we show how

these models are transformed into a TT. All TTs have a distinguished root node that represents the

input data and have one edge for every block inference or proxy scoring task we have to process.

Edges representing a block also store a set of model identifiers recording all models the block

belongs to. In the middle of Figure 7, we show the situation where models M1 and M2 have been

added to the tree already. Note how these two models share two nodes in the task tree for the two

blocks (𝐵1 and 𝐵2) they have in common. As model M3 shares a prefix of 4 blocks with M2, when
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adding this model to the TT, new nodes are only created for the last two blocks of the model (𝐵11

and 𝐵12).

To prune a model (e.g.,M2 as shown in Figure 8) from the TT, we traverse the TT in breadth-

first (BF) order and remove the model’s identifier from all edges. Any edges whose set of models is

empty after this step will be deleted as these block inference tasks will not have to be executed in

any future iterations of successive halving.

5.2 Execution Plans
A TT for a dataset 𝐷𝑘 and set of models 𝑴𝑘 records all tasks we have to execute in iteration 𝑘 of

successive halving and their dependencies. As mentioned above, an execution plan 𝑃 consists of

a sequence of steps S1 to S𝑛 . We use C𝑖 to denote the content of the cache after execution step

S𝑖 . In each step S𝑖 of an execution plan 𝑃 we either (1) compute the result 𝑅𝑖 of a block 𝐵𝑖 whose

input 𝑅 𝑗 is currently in the cache (𝑅 𝑗 ∈ C𝑖 ) or which is applied to the input data 𝐷𝑘 ; (2) compute

the proxy score based on a block’s output 𝑅𝑖 that is currently in cache (𝑅𝑖 ∈ C𝑖 ); or (3) adjust the
content of the cache by adding or dropping intermediate results. The cost of an execution plan 𝑃

with steps S1, . . . ,S𝑘 is cost(𝑃) = ∑𝑘
𝑖=1 cost(S𝑖 ). As proxy scores have to be computed exactly

once for each modelM ∈ 𝑴𝑘 in every execution plan for a TT 𝑇 , we can ignore their cost when

determining an optimal plan as it is common to every execution plan. Furthermore, as the cost

of cache operations is neglectable compared to the cost of block inference steps, we ignore them.

Thus, the cost of a plan is simply the sum of the costs of its block inference steps, say for blocks 𝐵1

to 𝐵𝑙 :
∑𝑙

𝑖=1 cost(𝐵𝑖 ). Note that we may have to execute a block inference step of a TT 𝑇 more than

once if the result of the block is needed more than once and we do not have sufficient cache to

keep the result of the block in cache until it is needed again.

An execution plan 𝑃 is valid if it produces proxy scores for all models in 𝑴𝑘 and there does not

exist a step S𝑖 ∈ 𝑃 where C𝑖 exceeds the cache budget 𝑠𝑐𝑎𝑐ℎ𝑒 . We call an execution plan optimal
if it is valid and has the minimal cost among all valid plans. The minimum cache requirement

C𝑚𝑖𝑛 of an execution plan 𝑃 is equal to the maximal size of the cache C𝑖 across all execution
steps of the plan. Thus, 𝑃 is valid if C𝑚𝑖𝑛 ≤ 𝑠𝑐𝑎𝑐ℎ𝑒 . While generating an optimal execution plan

that minimizes C𝑚𝑖𝑛 is NP-hard in general [3, 60], we present a simple heuristic algorithm and

analyze its minimum caching requirements. We demonstrate that this algorithm is optimal when

𝑠𝑐𝑎𝑐ℎ𝑒 is larger than the generated plan’s minimum caching requirement C𝑚𝑖𝑛 , independent of

the computational costs of individual blocks. Fortunately, as we demonstrate experimentally, this

condition often holds. Furthermore, we discuss how to reduce the caching requirement of a plan

generated by our algorithm by splitting the input data 𝐷𝑘 into multiple chunks that are processed

independently and argue that this is potentially more effective than applying a more expensive

planning algorithm.

5.3 The DFS+ Optimization Algorithm
Our optimization algorithm which we call 𝐷𝐹𝑆+ generates an execution plan using a depth-first

search (DFS) traversal of the TT. 𝐷𝐹𝑆+ starts at the root node and traverses one edge at a time

(executes one block inference step) in DFS order. For any intermediate result 𝑅 (a node 𝑣) created

by inference with a block 𝐵 (corresponding to the edge ending in 𝑣), we cache 𝑅 until all children

of 𝑣 have been traversed (all blocks or proxy scoring steps that take 𝑅 as input have been executed).

Once all children of a node 𝑣 have been traversed, we can release 𝑅 from the cache as it will not

be needed again. 𝐷𝐹𝑆+ traverses the children of a node in increasing order of their minimum

cache requirement, i.e., the smallest possible 𝑠𝑐𝑎𝑐ℎ𝑒 required to traverse the subtree rooted at the

child with 𝐷𝐹𝑆+. We explain how to determine the minimum cache requirement for a node in the
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following. The rationale for using DFS order is that DFS first processes all nodes in a subtree before

traversing to a sibling of a node and, thus, allows us to release the node from the cache as soon

as possible. The motivation for processing children in increasing order of their minimum cache

requirements (s) is that once the last child (the one with the highest minimum cache requirement)

has been processed we can delete its parent from the cache to free up space to process the subtree

with the highest minimum cache requirement.

Determining Minimum Cache Requirements for Subtrees. We determine the minimum

cache requirement for any subtree of a TT𝑇 through a top-down traversal followed by a bottom-up

traversal and another top-down traversal of 𝑇 . During the top-down traversal, we accumulate the

total memory required to produce the intermediate inference result corresponding to a node 𝑣

which requires caching all ancestors of the node 𝑣 and 𝑣 itself. For each node 𝑣 we memorize this

cost. Intuitively, this cost will be the size of the cache right after reaching the node if we ignore

that we can delete nodes from the cache after their last child has been processed. In the bottom-up

traversal, we set the minimum cache requirement for each node to the maximum requirement in

the subtree rooted at the node. At this point each node is associated with a cache requirement that

is equal to the largest cache that will be created while traversing the subtree rooted at the node,

still ignoring that nodes can be released once their last child in 𝐷𝐹𝑆+ traversal order has been

processed. In the second top-down traversal, we adjust the cache requirements to take this into

account. For that, the cost of the parent 𝑣 ′ of a node 𝑣 is removed from all nodes below 𝑣 if 𝑣 has

the largest cache requirement among all children of its parent 𝑣 ′ as we can then release the parent

right after processing 𝑣 .

Figure 9 shows an example of these three steps. The TT contains intermediate block results 0 to

7 (the orange values shown on the left indicate their size). Figure 9(a) step (1): we traverse the TT

using DFS and accumulate every path’s cache requiremnt from the root to the leaves indicated as the

numbers on the edges. For example, to reach node 7, we need to compute and cache intermediates 0,

1, 3, and 7 with a total cost of 9+ 4+ 2 = 15. Figure 9(b) shows step (2). We recursively propagate the

maximum caching requirement of every sub-tree up to its root. For example, the minimum cache

requirement propagated to intermediate 2 is 19 =𝑚𝑎𝑥 (19, 17) and the minimum cache requirement

propagated to intermediate 1 is also 19 = 𝑚𝑎𝑥 (19, 15). Figure 9(c) shows step (3). We adjust the

(a) Accumulate costs (b) Propagate costs (c) DFS+ traversal

Fig. 9. Example for computing minimum cache requirements to determine a child traversal order for 𝐷𝐹𝑆+:
(a) accumulate size of the cache used to traverse a path from the root to a node using a top-down traversal;
(b) determine the minimum cache requirement for each subtree as the maximum cache size in the subtree;
(c) adjust the minimum cache requirements of edges ending in a node 𝑣 whose parent has the highest
cache requirement among all its siblings by removing the storage size of the parent from all edges below 𝑣 .
Intermediate storage costs are shown in orange, the calculated costs in blue, the maximum is marked in bold,
and the traversal order is shown in black below the paths.
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cost of the descendents of every node 𝑣 that has the highest requirement among all its siblings.

For instance, the requirement for node 4 is adjusted to 10 as we can release 1 with cost 9 from the

cache immediately after materializing intermediate 2. The minimum cache requirement C𝑚𝑖𝑛 for

an execution plan 𝑃 generated by 𝐷𝐹𝑆+ is equal to the maximum minimum cache requirement

among nodes in the task tree.

Generating the Execution Plan. Continuing with the example shown in Figure 9(c), once the

cache requirements have been determined and we have confirmed that C𝑚𝑖𝑛 for the plan 𝑃 will be

less than the caching budget 𝑠𝑐𝑎𝑐ℎ𝑒 , we generate and execute the plan 𝑃 . As mentioned above when

traversing the tree to generate the plan, we always traverse the children of a node in increasing order

of the minimum cache requirements, for example, we process intermediate 3 before intermediate

2. This leads to the overall traversal sequence of 0, 1, 3, 7, 6, 2, 5, 4 with a maximum caching

requirement of 15. The reason why the budget does not exceed 15 when computing intermediates

4 and 5 is that once we computed intermediate 2, we can remove intermediate 1 from the cache

because all paths depending on it already have been computed. This allows us to, for example,

traverse from node 2 to node 4 with a budget of 10 instead of 19. We map the generated traversal

order to an execution plan 𝑃 by adding one Block-Inference-Step or Score-Model-Step for every

edge we traverse and a Modify-Cache-Step whenever we can release a cached intermediate.

5.4 Optimality of DFS+
Note that 𝐷𝐹𝑆+ traverses each edge (block) exactly once. As any execution plan has to execute

each block at least once and as the cost of a plan is the sum of its block execution costs, any plan

produced by 𝐷𝐹𝑆+ is optimal (has minimal compute cost) as long as it is valid (does not exceed

the cache budget 𝑠𝑐𝑎𝑐ℎ𝑒 ). Note that this argument does not rely on the computational costs for

individual blocks meaning optimality is guaranteed independent of what the compute costs are.

While we demonstrate in Section 6 that available memory for caching is typically sufficiently large,

we nonetheless provide a solution that handles the case when the minimum cache requirement of

the plan produced by 𝐷𝐹𝑆+ exceed 𝑠𝑐𝑎𝑐ℎ𝑒 .

Instead of resorting to a more expensive planning algorithm, we deal with plans exceeding the

cache size by splitting the input data for the TT into smaller chunks as the size of intermediates is

proportional to the input data size. If the plan for a data chunk 𝐷𝑘 exceeds the cache budget, we

execute the execution plan 𝑖 > 1 times, each time over a partition of 𝐷𝑘 of size 𝑑𝑖 = |𝐷𝑘 | · (1/𝑖).
This reduces the cache requirement by a factor 𝑑𝑖 , but is associated with the overhead of preparing

each involved model blocks 𝑖 times. However, because the consecutive runs are executed without

any interruption, most model blocks are likely cached by the OS and as a backup, we also cache

them on SSD. That is, the additional overhead introduced by partitioning 𝐷𝑘 is small as long as

each partition is sufficiently large. However, this is often the case exceeding the caching budget

𝑠𝑐𝑎𝑐ℎ𝑒 is more likely to happen in late iterations of successive halving as the dataset size and, thus,

also the cache requirements are proportional to the size of 𝐷𝑘 which increases exponentially in

the number of iterations. Even though the number of models decreases exponentially over the

iterations this also decreases the potential for sharing which in turn often causes the growth in

data size to outweigh the decrease in the number of models.
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6 Evaluation
In this section, we evaluate Alsatian and compare its performance to several baselines. We first

describe our evaluation setup. Afterward, we analyze Alsatian’s end-to-end search time in Section 6.1

to Section 6.3 across different computer visionmodel architectures, model candidate sets, and dataset

sizes. In Section 6.4 we investigate how Alsatian performs with limited memory and in Section 6.5

we evaluate the model search time for models in the natural language processing domain. We

conclude the section with a discussion of our results in Section 6.6.

Hardware and Software. We evaluate our system on a server with an AMD Ryzen 3995WX

64-Core CPU with 2.48 GHz, two NVIDIA RTX A5000 GPUs, 64GB RAM, a SAMSUNG MZVL21-

T0HCLR-00BL7 SSD, and a RAID 5 setup with three WDC WD10EZEX-08W HDDs. Experiments

are run inside a docker container based on the nvidia/cuda:11.3.0-devel-ubuntu20.04 image with

docker version 24.0.2, Python 3.8, and PyTorch 2.2.0. We limit the container’s resources to one GPU,

half of the server’s CPU cores, and the read speed of the model store to 200MB/s. We start with cold

cache and execute 3-5 runs. The variance of our measurements is so low that we report median

values, but no confidence intervals.

Baselines. We compare Alsatian with two baselines presented by Renggli et al. [42]. The first

one iterates sequentially through all models, performs feature extraction, and uses a fully connected

layer for proxy scoring. We refer to this approach as Base. The second approach follows the same

pattern as Base but applies successive halving. We refer to this approach as SHiFT even though

the SHiFT approach, as presented by Renggli et al. [42] adaptively decides between Base and

successive halving based on a cost model. We implement Alsatian as a standalone system built

on top of PyTorch. In contrast, SHiFT is implemented as a server-client system that distributes

computations (inference and proxy scoring) and executes them in docker containers. To guarantee

a fair comparison, we re-implement Base and SHiFT as a standalone PyTorch based system.

Models. We use three sets of candidate models for our evaluation. Models in M𝑠𝑦𝑛 use architec-

tures from real world models with synthetically generated parameters;M𝑡𝑟𝑎𝑖𝑛 are models using

real architectures trained on real datasets; andM𝐻𝐹 are publicly available models from Hugging

Face (HF).

For M𝑠𝑦𝑛 , we focus on the architectures listed in Table 1. The first three models, ResNet-18,

ResNet-152, and EfficientNetV2-L, are convolutional image classification models commonly used in

related work on model search [25, 29, 30, 36, 41, 42, 62]. The last two models, ViT-L-32 and BERT, are

popular transformer-based architectures for image and text classification, respectively. We generate

M𝑠𝑦𝑛 by adding models for every architecture as follows: We first add a model pre-trained on

ImageNet to the model set. We then generate a new model by randomly picking a base model from

the already existing models, copying its parameter into a new model, sampling a random number 𝑛

of blocks to fine-tune from a distribution, randomly initializing blocks marked for fine-tuning, and

Table 1. Set of selected model architectures with the number of parameters, and model size in MB.

Name #Parameters Size Reference

ResNet-18 11,689,512 46.8 MB [18]

ResNet-152 60,192,808 241.7 MB [18]

EfficientNetV2-L 118,515,272 476.7 MB [45]

ViT-L-32 306,535,400 1,226.3 MB [13]

BERT 109,482,240 438.0 MB [12]
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add the new model to our model set. We consider three different truncated normal distributions for

𝑛 representing the scenarios of ~50% of retrained layers (Top 50%), ~25% of retrained layers (Top
25%), and fine-tuning the last few layers (Top Layers) that were mentioned frequently in related

work [19, 22, 23, 27]. These synthetic models allow us to gain detailed insights since they differ

from real models only in their parameter values but neither in their model architecture nor in their

number of parameters which guarantees equivalent computational demands for every substep of

feature extraction and proxy scoring.

To collect models forM𝑡𝑟𝑎𝑖𝑛 we follow the same procedure as forM𝑠𝑦𝑛 but fine-tune the models

for 20 epochs using an Adam optimizer with a learning rate of 0.001. As data we randomly pick one

of the ImageWoof [14], Stanford Dogs [24], Stanford Cars [26], CUB-200 Birds [59], or the Food

101 [5] datasets for every fine-tuning process.

ForM𝐻𝐹 , we collect over 2800 models from HF across 28 architectures for the task categories of

image classification, object detection, image feature extraction, and image-to-text. For every task

category, we consider all models where its base model appears on the first two result pages (the

most popular models based on downloads) and has more than 5 registered fine-tuned variants
5
.

6.1 End-to-end Search Time
In this section, we useM𝑠𝑦𝑛 and analyze the end-to-end time of Alsatian compared to Base and
SHiFT for searching through 35 models. We vary the model architecture, the model similarity

distribution, and the number of items in the target dataset by sampling subsets of the ImageNet

dataset [24]. The left column of Figure 10 shows the runtime of model search over 2000 data items

for several model similarity distributions. The right column of Figure 10 shows the same setting but

with 8000 data items. Figure 11 shows a time breakdown for a subset of the scenarios for the steps

of prepare data, prepare model, inference, and proxy scoring. Overall we observe that Alsatian
outperforms the baselines for all settings with improvements of up to 13.6× compared to
Base and 10.7× compared to SHiFT .

Model Similarity Distribution. Figure 10 shows that for a given architecture and a constant

number of data items, Alsatian’s search time drastically decreases with more overlap between the

models while Base’ and SHiFT ’s performance are not affected. Comparing the numbers for 2000

data items in Figure 10(a), Figure 10(c), and Figure 10(e) observe that SHiFT is only up to 0.3× faster

than the baseline and its performance does not improve when models are more similar. In contrast,

Alsatian already outperforms Base and SHiFT by 3-4× for Top 50% and is more than one order of

magnitude faster for Top Layers. The trends for 8000 data items shown in Figure 10(b), Figure 10(d),

and Figure 10(f) are similar, with the difference that SHiFT outperforms Base by up to 2×.
The reason for Base’s and SHiFT ’s constant performance across different model similarity distri-

butions is that both approaches process every model individually and do not exploit model overlap.

Comparing the results from Figure 11(a) with Figure 11(b), we observe that the cost of the substeps

is not affected by model overlap. In contrast, Alsatian plans the execution to maximize caching and

reuse of intermediate computations, reducing the time to prepare the data, to prepare the model,

and to perform inference. As shown in Figure 11(d) and Figure 11(e), the performance of these three

substeps improves when model similarity is increased. The only step with constant cost is proxy

scoring because the number and size of the extracted features are not affected by our optimizations

and the results of proxy scoring cannot be reused.

5
For a detailed list of model architectures see our repository.
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(a) 2000 items, Top 50% (b) 8000 items, Top 50%

(c) 2000 items, Top 25% (d) 8000 items, Top 25%

(e) 2000 items, Top Layers (f) 8000 items, Top Layers

Fig. 10. End-to-end times for searching through 35 models across different architectures and number of items.

(a) ResNet-152,
8000 items,
Top 50%

(b) ResNet-152,
8000 items,
Top Layers

(c) ResNet-152,
2000 items,
Top Layers

(d) ResNet-152,
8000 items ,
Alsatian

(e) ViT-L-32,
8000 items,
Alsatian

Fig. 11. Time breakdown for several configurations varying number of items andmodel similarity distributions.
B - Base, S - SHiFT , A - Alsatian; 50 - Top 50%, 25 - Top 25%, top - Top Layers
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Dataset Size. Next, we analyze the impact of the size of 𝐷𝑡𝑟𝑎𝑖𝑛 on performance. Both SHiFT and

Alsatian scale better to large datasets than Base. When we increase the dataset size from 2000 to

8000 for the scenario of Top Layers as shown in Figure 10(e) and Figure 10(f), the absolute model

search time increases for all methods. For 2000 items SHiFT is slightly faster than Base and for 8000
items SHiFT ’s speedup is 1.5-2×. For Alsatian, the improvements over Base are up to 11.5× for 2000

items, and more than 13.6× for 8000 items.

The reasons for the increased cost of Base is evident from the breakdowns in Figure 11(b) and

Figure 11(c). The dataset size increases the input size for data preparation, inference, and proxy

scoring. This scales these subsetps proportionally to the dataset size while the time to prepare the

model stays constant.

SHiFT and Alsatian scale better to larger datasets than Base because they use successive halving.

This reduces the inference time but requires repeatedly preparing models or parts of models and

loading them to DRAM and GPU memory. As shown in Figure 11(c), for small datasets SHiFT ’s
improvement of inference time is small which can only partially compensate for the overhead in

model preparation. In contrast, as shown in Figure 11(b), for larger datasets the inference time gets

proportionally larger which compensates for model preparation overheads. These effects were also

observed by Renggli et al. [42]. Alsatian has lower model preparation overhead because it only

loads and prepares parts of models. This reduces the model preparation time and increases the

likelihood of model parts being available in the OS cache.

Model Architecture. Evaluating how the model architecture affects search time, we observe

that: (1) Searching through larger models takes longer. (2) The relative speedups for the Top 50%
distribution are largest for the convolutional architectures, but for the Top 25% and the Top Layers
distribution most significant for the transformer-based architecture ViT-L-32.

The reason for (1) is that larger models have more parameters, perform more complex computa-

tions, and have larger features. This increases the model preparation, inference, and proxy scoring

time. To explain (2), we analyze the number of parameters and inference time for our models at

the granularity of individual blocks. As shown in Figure 12(a), the number of parameters and the

inference time is close to constant across all blocks for the ViT-L-32 architecture. However, for

convolutional models such as the ResNet-152 the first few layers are most expensive in terms of

inferences. The number of parameters is low for early layers, constant for most of the middle blocks

and very high for the last few blocks (Figure 12(b)). As shown in Figure 11(e) and Figure 11(d),

for both architecture types the inference time decreases by a similar amount with more similar

models. For the ViT-L-32 architecture the “prepare model” time decreases proportionally with

model overlap, for ResNet-152 the “prepare model time” decreases less because the last few blocks

are not shared and are the largest blocks in terms of parameters.

(a) ViT-L-32 (b) ResNet-152

Fig. 12. Number of parameters and inference time per architecture block.
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6.2 Real Models
We now evaluate how the findings for M𝑠𝑦𝑛 translate to real models by picking 2000 data items, a

Top 25% model similarity distribution, and the candidate model setM𝑡𝑟𝑎𝑖𝑛 .

The results for synthetic and real models in Figure 10(c) and Figure 13 are similar. The reason

is that the synthetic and real models do not differ in computational complexity and number of

parameters. The experiments with synthetic and real models only differ in pruning decisions. For

Base and SHiFT we see an equivalent search time for both settings because both approaches process

every model individually and are thus not affected by pruning decisions. For Alsatian, we sometimes

see a faster and sometimes a slower search time for real models. The reason is that different pruning

orders lead to different amounts of overlapping parameters which has a direct impact on the model

preparation and inference time and thus on the search time.

Fig. 13. Search over 35 models per architecture, 2000 items, Top 25% model similarity.

6.3 Hugging Face Models
We useM𝐻𝐹 to evaluate our approach on ∼2800 real models fromHF and to validate that (i) publicly

available models are structured in blocks and this structure can be automatically detected without

human intervention, (ii) there is significant overlap between model, and (iii) Alsatian significantly

improves the end-to-end search performance for these models.

Explicit Declaration of Model Architecture. All models inM𝐻𝐹 explicitly declare their feature

extractor as a backbone or encoder component. These feature extractors are structured in blocks

defined as PyTorch Modules and are combined into a larger model using either a PyTorch ModuleList
or a PyTorch Sequential object (as for the models on PyTorch’s website) making it easy identify the

model’s structure and access individual model blocks.

Model Overlap. We observe that freezing parts of a model during fine-tuning, as suggested in

textbooks and related work [17, 22, 23, 27, 28], is common in M𝐻𝐹 . For object detection models,

the most common approach is freezing the initial blocks of the image feature extractor, followed

by training only the final layers or using custom freezing scheme. For example, for Facebook’s

DETR-50 architecture, 87% of the 420 models have significant overlap with the base model [47]. For

84% the first blocks of the image feature extractor are frozen, for 3% only the last few layers of the

feature extractor are adjusted. For Microsoft’s conditional object detection model and a variation

of Facebook’s DETR-50, 90% and 94% of the available models have significant overlap [46, 48]. For

image classification, feature extraction, and image-to-text models, we see less strict fine-tuning

patterns and block overlap. Most training methods fine-tune the entire model or a large portion,
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followed by approaches that train only the final layers or use a custom number of frozen blocks.

As a result, for models like TrOCR or YOLOS-small, we find few instances with overlap [51, 54].

However, we also find cases like ResNet-18, ResNet-152, and DINOv2-L, where for up to 63% of the

models, only the last layers were fine-tuned [49, 50, 53].

Model Search. We select a subset ofM𝐻𝐹 with ∼500 model across twelve model architectures,

focusing on architectures similar to the ones from M𝑠𝑦𝑛 (such as vision transformers and ResNet-

based architectures [49, 50, 52]) and some new architectures (such as DINOv2, and detection

transformer (DETR) models from Facebook and Microsoft [46, 47, 53]). For ten of the architectures,

we have less than 100 models and include all of them. For the large ViT architecture we use ∼100
models, and for the smaller object detection architecture, approximately ∼200 models. We evaluate

two scenarios: a per-architecture search similar to the previous experiments and searching through

all 500 HF models. In both cases, Alsatian outperforms Base and SHiFT .
Figure 14 shows a subset of the single architecture search results. For a dataset size of 2000

(Figure 14(a)), Alsatian improves Base from 1.7× for the HF ResNet-152 up to 4.8× for DETR-50.

Similarly, Alsatian improves SHiFT between 1.6× and 4×. For dataset size 8000 (Figure 14(b))

Alsatian’s improvements over Base is up to 6.1×, and slightly decrease compared to SHiFT with an

improvement of up to 3.4×. The variation in improvements is caused by the variation in model

overlap across the architectures. For the ResNet-152 architecture, there are fewer identical blocks

and, thus, less opportunity for sharing results. For DINOv2 and DETR-50 there are many shared

blocks leading to better performance for Alsatian. For the larger target dataset (8000 data points)
inference is the bottleneck, reducing the impact of repeatedly loading models during successive

halving. This explains the increased performance of Alsatian and SHiFT compared to Base.

(a) 2000 items

(b) 8000 items

Fig. 14. Search over Hugging Face models per architecture.
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Figure 15 shows that Alsatian outperforms Base and SHiFT when searching over all HF models:

approximately 2.1× for 2000 items and up to 3.8× for 8000 items in Figure 15(b). The reason for

SHiFT ’s poor performance and Alsatian’s smaller advantage compared to single architecture search

experiments is that the combined model parameter size of all models exceeds the caching budget

for model caching. Consequently, both Alsatian and SHiFT load a subset of the model parameters

multiple times from storage. Since the relative time spent on model loading is much larger for

scenarios with little data, this effect is stronger for 2000 items than for 8000 items.

(a) 2000 (b) 8000

Fig. 15. Search over approximately 500 Hugging Face models of different architectures.

6.4 Memory Budget Experiments
To evaluate how the methods perform with limited memory, we choose M𝑠𝑦𝑛’s most memory-

intense workload – a search over 35 ViT-L-32 models following the Top 50% distribution – and

execute it on the same setup as before while limiting the memory to 64GB, 10GB, and 5GB and

prevent swapping. For the execution, we limit the number of dataloader workers (which have a

significant memory footprint) to three. This is to have the same setup across configurations and to

guarantee that Base and SHiFT do not run out of memory for the 5GB configuration. We further

assume 𝑆cache is sufficient to store all final model outputs. The reason is that neural networks usually

transform high-dimensional data into lower-dimensional features and while intermediate results

for blocks early in the sequence can be large, the final model output is typically small (e.g., 256KB

with batch size 32 for ResNet-152).

Figure 16 shows a breakdown of the search time for the same set of 35 ViT-L-32 models varying

the memory limit. Regardless of the memory budget, Alsatian outperforms the other approaches

significantly even though the models we search through overlap by less than 50%. Figure 16(a)

shows that, as expected, Base is least affected by reducing the memory budget. Base does not actively
cache any intermediates while the amount of input data and the complexity of the computation

stays constant. Thus, the time to prepare the data, to perform inference, and to calculate the proxy

score are almost constant regardless of the memory budget. The slight increase in end-to-end

time stems from an increase in model preparation time. Base accesses every model twice (once for

training and once for testing) and first loads the model into CPU memory and from there to the

GPU. For the 64GB configuration there is enough capacity for data preparation and to cache the

entire model. But with less memory, once the model is on the GPU, most of the CPU memory is

used for data preparation. This prevents the OS from caching the entire model and slows down

preparing the model for the second time.
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(a) Base (b) SHiFT (c) Alsatian

Fig. 16. Model search for 35 ViT-L-32 models, Top 50% distribution, and limited available memory for caching.

SHiFT and Alsatian are both more affected by a limited memory budget than Base. The time

needed to prepare the data, to perform inference, and to calculate the proxy score are almost

constant, but the time to prepare the model increases. The reason for the increase is – same as for

Base – that with limited memory the OS can cache only a limited amount of models. With SHiFT
and Alsatian both iterating over many models multiple times these approaches are much more

affected by a limited memory budget than Base. Even though Alsatian and SHiFT access the same

models. Alsatian is less affected by limited memory because SHiFT always accesses entire models

while Alsatian loads models partially and also implements caching of blocks on SSD.

The fact that SHiFT is faster with 5GB of memory compared to 10GB of memory can be explained

by a detailed analysis of the individual iterations of successive halving. The 5GB configuration

is only faster for the first two iterations of successive halving. For the remaining iterations, the

10GB variant is faster than the 5GB variant. Looking at the time distribution per execution step,

with 5GB of memory, PyTorch’s data loaders cache the input data less aggressively than with 10GB

which slightly slows down the data preparation step. This has the effect that the 10GB variant has

less I/O budget for loading the model from persistent storage during the first successive halving

iterations, which increases the time to prepare the models more than it saves by caching more

input data. Later, once many models are pruned from the search space, larger parts of the models

fit in the cache, and preparing the model is not the bottleneck anymore because of the increased

amount of data per model.

6.5 Language Models
To see how the methods perform in other domains we extend our evaluation to natural language

processing. We chose the BERT [12] model from M𝑠𝑦𝑛 which uses a transformer architecture and

is, thus, conceptually similar to modern large language models.

Analog to the previous analysis of vision models, we consider three model similarity distributions

(Top 50%, Top 25%, and Top Layers) and run a search over 2000 and 8000 items of the Large Movie

Review sentiment classification dataset [33]. Figure 17 shows the search time for 2000 items.

We observe similar trends as in the previous experiments on vision models. In particular, the

behavior is similar to that of ViT-L-32 which has the most similar architecture to BERT. Base’s and
SHiFT ’s performance is not influenced by a change in model similarity distribution because these

approaches compute models individually. SHiFT is slightly faster than Base because it can prune

poorly performing models early while Alsatian outperforms Base by more than 13.8×.
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(a) Top 50% (b) Top 25% (c) Top Layers

Fig. 17. Search over 35 BERT models using 2000 items

6.6 Discussion
We have shown that Alsatian effectively eliminates bottlenecks in feature-based model search.

Alsatian outperforms related work by more than an order of magnitude and shows significant

improvements even with highly restricted memory resources. Importantly, our approach does not

alter the results produced by feature extraction and can be adopted by any existing feature-based

model search system.

Despite the growing popularity and availability of foundation models, model search remains a

critical task for two key reasons. First, foundation models are often fine-tuned for custom tasks,

creating many similar models. Thus, efficient model search is essential to select the most promising

candidates for DTL. Second, for simple and frequently repeated tasks, smaller and more specialized

“traditional” models often match or even surpass foundation models in terms of accuracy, while

requiring significantly fewer resources [8]. This creates a strong incentive to focus on creating

such specialized models.

One direction to extend Alsatian is to support distributed execution of feature extraction. A

simple way is to add execution steps to a queue and let multiple accelerators or servers work on

processing the queue which is also what Renggli et al. propose [42]. A more sophisticated approach

is to partition the search workload based on the task tree. By distributing an entire subtree of the

task tree to a single accelerator or sever, we minimize duplicated caching of intermediates and

model parameters.

Another direction for future work is auto-tuning hyper-parameters for inference. Currently,

Alsatian uses a fixed configuration for parameters like batch size, number of workers, and successive

halving that result in good performance for our hardware setup. In the constrained memory

experiment, the number of workers and the batch size impact data preparation and inference time

either directly through a higher degree of parallelism or indirectly by allocating or freeing resources

for caching. Tuning these parameters on the fly for new target systems or using historic execution

traces has the potential to further speed up feature extraction and model search.

7 Related Work
Model Search. The ML community has proposed several methods for estimating the trans-

ferability of models and their feature extractors to new tasks. Most baselines are metadata or

feature-based. Metadata-based methods include heuristics that use the model’s performance on a

fixed set of datasets as a predictor for the model’s performance on a new dataset [41] or the number

of parameters in combination with the number of items in the dataset to determine whether a
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model is suitable for a dataset [4]. Feature-based method follow the two-step process of feature

extraction and proxy scoring as described in Section 2. Several proxy scores have been proposed

including using a linear classifier of fully connected neural network layer [30, 42], logistic clas-

sifier [4], KNN classifier [4, 42], applying recommendation models [29], and metrics using the

Pearson product-momentum correlation in combination with the Spearman correlation [4], Gauss-

ian mixture models [30], or the logarithm of maximum evidence [62]. Our optimizations can be

applied by any model search framework that uses proxy scoring.

Model Search Systems. To the best of our knowledge, the only two model search systems are

SHiFT [42] and Sommelier [16]. We already described SHiFT in Section 2.2 and used it as a baseline

in our experimental evaluation. Sommelier indexes models based on their resource consumption

and functional equivalence in terms of prediction performance to answer queries like: “given a

ResNet model find a model that consumes 20% less resources and whose accuracy is no more than

5% less than the reference model”. Answering this type of query is an orthogonal to the problem

we solve in this work.

Caching Intermediates for ML Pipelines. Caching and reuse of intermediate results for ML

pipelines has been studied in [10, 35, 37, 57, 60]. Closest to our work is Nautilus [35]. Nautilus

is a system that optimizes the parallel training of deep learning models for transfer learning by

identifying and eliminating redundant computations. The authors first fuse different models into a

multi-model graph. This inspired us to build our task tree which acts as an index structure on top

of the models in the model store. However, Nautilus uses an integer linear program (ILP) to decide

what intermediates of the fused models to materialize and greedily combines models to maximize

GPU utilization which does not fit searching through deep learning models with successive halving.

Model Stores. Model stores like PyTorchHub [39] or HuggingFace [21] as well as ML lifecycle

management tools likeMLFlow [64] orModelDB [57, 64] provide access tomodels but do not support

feature-based model search. They use the deep learning framework’s default model serialization

formats which are not designed for fast fine granular access to model layers as needed for Alsatian.

MMlib [44] or ModelHub [34] include more sophisticated ways of saving and accessing models but

optimize in directions that are orthogonal to our work. MMlib focuses on fast model archival and a

reduced storage footprint while sacrificing fast model loading. ModelHub optimizes for reducing

the storage footprint for a set of models by using compression and finding optimal spanning trees

leading to increased access times for full precision models.

8 Conclusion
In this paper, we present Alsatian, a system that optimizes the execution of feature-based model

search techniques for deep learning models. Alsatian analyses the model search space, plans the

model search using a task tree, and allows fine-granular model access to optimize model search by

caching model parameters and intermediates. In our evaluation of state-of-the-art computer vision

and language models, we show that Alsatian speeds up model search by more than one order of

magnitude.

Acknowledgments
This work was partially funded by the German Research Foundation (ref. 414984028 and ref.

556566056), the European Union’s Horizon 2020 research and innovation programme (ref. 957407),

and is in part supported by NSF awards IIS-2420577 and IIS-2420691.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 127. Publication date: June 2025.



Alsatian: Optimizing Model Search for Deep Transfer Learning 127:25

References
[1] 2024. CS231n Convolutional Neural Networks for Visual Recognition. https://cs231n.github.io/transfer-learning/

[2] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C Fowlkes, Ste-

fano Soatto, and Pietro Perona. 2019. Task2vec: Task embedding for meta-learning. In Proceedings of the IEEE/CVF
international conference on computer vision. 6430–6439.

[3] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya Parameswaran. 2015. Principles of

dataset versioning: Exploring the recreation/storage tradeoff. In Proceedings of the VLDB endowment. International
conference on very large data bases, Vol. 8. NIH Public Access, 1346. Issue: 12.

[4] Daniel Bolya, Rohit Mittapalli, and Judy Hoffman. 2021. Scalable diverse model selection for accessible transfer learning.

Advances in Neural Information Processing Systems 34 (2021), 19301–19312.
[5] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. 2014. Food-101–mining discriminative components with

random forests. In Computer vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014,
proceedings, part VI 13. Springer, 446–461.

[6] Sasank Chilamkurthy. 2024. Transfer Learning for Computer Vision Tutorial — PyTorch Tutorials 2.2.2+cu121

documentation. https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

[7] Francois Chollet. 2021. Deep learning with Python. Simon and Schuster.

[8] Timothy Dai, Austin Peters, Jonah B Gelbach, David Freeman Engstrom, and Daniel Kang. 2024. tailwiz: Empowering

Domain Experts with Easy-to-Use, Task-Specific Natural Language Processing Models. In DEEM. 12–22.

[9] Clément Delangue. 2023. Hugging Face just crossed 1,000,000 free public models. https://x.com/clementdelangue/

status/1839375655688884305?s=43

[10] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Ziawasch Abedjan, Tilmann Rabl, and Volker Markl. 2020. Optimizing

Machine Learning Workloads in Collaborative Environments. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1701–1716.

[11] Aditya Deshpande, Alessandro Achille, Avinash Ravichandran, Hao Li, Luca Zancato, Charless Fowlkes, Rahul Bhotika,

Stefano Soatto, and Pietro Perona. 2021. A linearized framework and a new benchmark for model selection for

fine-tuning. arXiv preprint arXiv:2102.00084 (2021).
[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computational Linguistics, Minneapolis,

Minnesota, 4171–4186. doi:10.18653/v1/N19-1423

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An

Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In International Conference on Learning
Representations. https://openreview.net/forum?id=YicbFdNTTy

[14] Fastai. 2024. Imagenette: A smaller subset of 10 classes from Imagenet. https://github.com/fastai/imagenette

[15] Lukas Garbaciauskas, Max Ploner, and Alan Akbik. 2024. Choose Your Transformer: Improved Transferability

Estimation of Transformer Models on Classification Tasks. In Findings of the Association for Computational Linguistics:
ACL 2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). 12752–12768.

[16] Peizhen Guo, Bo Hu, and Wenjun Hu. 2022. Sommelier: Curating DNN models for the masses. In Proceedings of the
2022 International Conference on Management of Data. 1876–1890.

[17] Aurélien Géron. 2022. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O’Reilly Media, Inc.".

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
[19] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo,

Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for NLP. In International conference on
machine learning. PMLR, 2790–2799.

[20] Long-Kai Huang, Junzhou Huang, Yu Rong, Qiang Yang, and Ying Wei. 2022. Frustratingly Easy Transferability

Estimation. In Proceedings of the 39th International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato

(Eds.). PMLR, 9201–9225. https://proceedings.mlr.press/v162/huang22d.html

[21] Hugging Face. 2024. Hugging Face: Machine Learning Platform. https://huggingface.co/

[22] Digvijay Ingle, Rishabh Tripathi, Ayush Kumar, Kevin Patel, and Jithendra Vepa. 2022. Investigating the Characteristics

of a Transformer in a Few-Shot Setup: Does Freezing Layers in RoBERTa Help?. In Proceedings of the Fifth BlackboxNLP
Workshop on Analyzing and Interpreting Neural Networks for NLP, Jasmijn Bastings, Yonatan Belinkov, Yanai Elazar,

Dieuwke Hupkes, Naomi Saphra, and Sarah Wiegreffe (Eds.). Association for Computational Linguistics, Abu Dhabi,

United Arab Emirates (Hybrid), 238–248. doi:10.18653/v1/2022.blackboxnlp-1.19

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 127. Publication date: June 2025.

https://cs231n.github.io/transfer-learning/
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://x.com/clementdelangue/status/1839375655688884305?s=43
https://x.com/clementdelangue/status/1839375655688884305?s=43
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://github.com/fastai/imagenette
https://proceedings.mlr.press/v162/huang22d.html
https://huggingface.co/
https://doi.org/10.18653/v1/2022.blackboxnlp-1.19


127:26 Nils Strassenburg, Boris Glavic, & Tilmann Rabl

[23] Ibrahem Kandel and Mauro Castelli. 2020. How deeply to fine-tune a convolutional neural network: a case study using

a histopathology dataset. Applied Sciences 10, 10 (2020), 3359. doi:10.3390/app10103359 Publisher: MDPI.

[24] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. 2011. ImageNet Dogs Dataset. http:

//vision.stanford.edu/aditya86/ImageNetDogs/

[25] Simon Kornblith, Jonathon Shlens, and Quoc V Le. 2019. Do better imagenet models transfer better?. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2661–2671.

[26] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 2013. 3d object representations for fine-grained categorization.

In Proceedings of the IEEE international conference on computer vision workshops. 554–561.
[27] Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What would elsa do? freezing layers during transformer fine-tuning.

arXiv preprint arXiv:1911.03090 (2019).
[28] Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea Finn. 2022. Surgical

fine-tuning improves adaptation to distribution shifts. arXiv preprint arXiv:2210.11466 (2022).
[29] Hao Li, Charless Fowlkes, Hao Yang, Onkar Dabeer, Zhuowen Tu, and Stefano Soatto. 2023. Guided recommendation for

model fine-tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3633–3642.
[30] Yandong Li, Xuhui Jia, Ruoxin Sang, Yukun Zhu, Bradley Green, Liqiang Wang, and Boqing Gong. 2021. Ranking

neural checkpoints. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2663–2673.
[31] Qiuru Lin, Sai Wu, Junbo Zhao, Jian Dai, Meng Shi, Gang Chen, and Feifei Li. 2023. SmartLite: A DBMS-Based Serving

System for DNN Inference in Resource-Constrained Environments. PVLDB 17, 3 (2023), 278–291.

[32] Abhilasha Lodha, Gayatri Belapurkar, Saloni Chalkapurkar, Yuanming Tao, Reshmi Ghosh, Samyadeep Basu, Dmitrii

Petrov, and Soundararajan Srinivasan. 2023. On surgical fine-tuning for language encoders. arXiv preprint
arXiv:2310.17041 (2023).

[33] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011. Learning

Word Vectors for Sentiment Analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, 142–150.

http://www.aclweb.org/anthology/P11-1015

[34] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. Towards unified data and lifecycle management for deep

learning. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 571–582.
[35] Supun Nakandala and Arun Kumar. 2022. Nautilus: An Optimized System for Deep Transfer Learning over Evolving

Training Datasets. In Proceedings of the 2022 International Conference on Management of Data. ACM, Philadelphia PA

USA, 506–520. doi:10.1145/3514221.3517846

[36] Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. 2020. LEEP: A New Measure to Evaluate

Transferability of Learned Representations. In Proceedings of the 37th International Conference on Machine Learning.
PMLR, 7294–7305. https://proceedings.mlr.press/v119/nguyen20b.html

[37] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-grained Lineage Tracing and Reuse in Machine

Learning Systems. In Proceedings of the 2021 International Conference on Management of Data. ACM, Virtual Event

China, 1426–1439. doi:10.1145/3448016.3452788

[38] Joan Puigcerver, Carlos Riquelme Ruiz, Basil Mustafa, Cedric Renggli, André Susano Pinto, Sylvain Gelly, Daniel

Keysers, and Neil Houlsby. 2021. Scalable Transfer Learning with Expert Models. In International Conference on
Learning Representations. https://openreview.net/forum?id=23ZjUGpjcc

[39] PyTorch Team. 2024. Models and Pre-trained Weights. https://pytorch.org/vision/stable/models.html

[40] Sebastian Raschka. 2024. Build a Large Language Model (From Scratch). Manning.

[41] Cedric Renggli, André Susano Pinto, Luka Rimanic, Joan Puigcerver, Carlos Riquelme, Ce Zhang, and Mario Lučić.

2022. Which model to transfer? finding the needle in the growing haystack. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 9205–9214.

[42] Cedric Renggli, Xiaozhe Yao, Luka Kolar, Luka Rimanic, Ana Klimovic, and Ce Zhang. 2022. SHiFT: an efficient, flexible

search engine for transfer learning. Proceedings of the VLDB Endowment 16, 2 (2022), 304–316. Publisher: VLDB

Endowment.

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. Mobilenetv2:

Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[44] Nils Strassenburg, Ilin Tolovski, and Tilmann Rabl. 2022. Efficiently Managing Deep Learning Models in a Dis-

tributed Environment. In Proceedings 25th International Conference on Extending Database Technology ( EDBT 2022 ).
OpenProceedings.org. doi:10.48786/EDBT.2022.12

[45] Mingxing Tan and Quoc Le. 2021. Efficientnetv2: Smaller models and faster training. In International conference on
machine learning. PMLR, 10096–10106.

[46] Hugging Face team. 2025. Conditional DETR model with ResNet-50 backbone. https://huggingface.co/microsoft/

conditional-detr-resnet-50

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 127. Publication date: June 2025.

https://doi.org/10.3390/app10103359
http://vision.stanford.edu/aditya86/ImageNetDogs/
http://vision.stanford.edu/aditya86/ImageNetDogs/
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1145/3514221.3517846
https://proceedings.mlr.press/v119/nguyen20b.html
https://doi.org/10.1145/3448016.3452788
https://openreview.net/forum?id=23ZjUGpjcc
https://pytorch.org/vision/stable/models.html
https://doi.org/10.48786/EDBT.2022.12
https://huggingface.co/microsoft/conditional-detr-resnet-50
https://huggingface.co/microsoft/conditional-detr-resnet-50


Alsatian: Optimizing Model Search for Deep Transfer Learning 127:27

[47] Hugging Face team. 2025. DETR (End-to-End Object Detection) model with ResNet-50 backbone. https://huggingface.

co/facebook/detr-resnet-50

[48] Hugging Face team. 2025. DETR (End-to-End Object Detection) model with ResNet-50 backbone (dilated C5 stage).

https://huggingface.co/facebook/detr-resnet-50-dc5

[49] Hugging Face team. 2025. ResNet. https://huggingface.co/microsoft/resnet-18

[50] Hugging Face team. 2025. ResNet-152 v1.5. https://huggingface.co/microsoft/resnet-152

[51] Hugging Face team. 2025. TrOCR (base-sized model, fine-tuned on SROIE). https://huggingface.co/microsoft/trocr-

base-printed

[52] Hugging Face team. 2025. Vision Transformer (base-sized model). https://huggingface.co/google/vit-base-patch16-

224-in21k

[53] Hugging Face team. 2025. Vision Transformer (large-sized model) trained using DINOv2. https://huggingface.co/

facebook/dinov2-large

[54] Hugging Face team. 2025. YOLOS (small-sized) model. https://huggingface.co/hustvl/yolos-small

[55] TensorFlow. 2024. Transfer Learning and Fine-Tuning. https://www.tensorflow.org/tutorials/images/transfer_learning

[56] TensorFlow Team. 2024. TensorFlow Hub: A Repository of Trained Machine Learning Models. https://www.tensorflow.

org/hub

[57] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan, Saadiyah Husnoo, Samuel Madden, and

Matei Zaharia. 2016. ModelDB: A System for Machine Learning Model Management. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics (HILDA ’16). Association for Computing Machinery, New York, NY, USA, 1–3.

doi:10.1145/2939502.2939516

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia

Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems, Vol. 30. Curran
Associates, Inc. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[59] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. 2022. CUB-200-2011. doi:10.22002/

D1.20098

[60] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya Parameswaran. 2018. Helix: Holistic

optimization for accelerating iterative machine learning. arXiv preprint arXiv:1812.05762 (2018).
[61] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transferable are features in deep neural

networks? Advances in neural information processing systems 27 (2014).
[62] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. 2021. Logme: Practical assessment of pre-trained models

for transfer learning. In International Conference on Machine Learning. PMLR, 12133–12143.

[63] Kaichao You, Yong Liu, Ziyang Zhang, Jianmin Wang, Michael I. Jordan, and Mingsheng Long. 2022. Ranking and

Tuning Pre-Trained Models: A New Paradigm for Exploiting Model Hubs. J. Mach. Learn. Res. 23 (2022), 209:1–209:47.
[64] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth Murching,

Tomas Nykodym, Paul Ogilvie, Mani Parkhe, and others. 2018. Accelerating the machine learning lifecycle with

MLflow. IEEE Data Eng. Bull. 41, 4 (2018), 39–45.
[65] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In Computer

Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer,
818–833.

[66] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. 2023. Dive into Deep Learning. Cambridge University

Press.

[67] Zhi Zhang, Qizhe Zhang, Zijun Gao, Renrui Zhang, Ekaterina Shutova, Shiji Zhou, and Shanghang Zhang. 2024.

Gradient-based Parameter Selection for Efficient Fine-Tuning. In CVPR. 28566–28577.

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 127. Publication date: June 2025.

https://huggingface.co/facebook/detr-resnet-50
https://huggingface.co/facebook/detr-resnet-50
https://huggingface.co/facebook/detr-resnet-50-dc5
https://huggingface.co/microsoft/resnet-18
https://huggingface.co/microsoft/resnet-152
https://huggingface.co/microsoft/trocr-base-printed
https://huggingface.co/microsoft/trocr-base-printed
https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/facebook/dinov2-large
https://huggingface.co/facebook/dinov2-large
https://huggingface.co/hustvl/yolos-small
https://www.tensorflow.org/tutorials/images/transfer_learning
https://www.tensorflow.org/hub
https://www.tensorflow.org/hub
https://doi.org/10.1145/2939502.2939516
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.22002/D1.20098
https://doi.org/10.22002/D1.20098

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Transfer Learning
	2.2 Model Search

	3 Bottlenecks Analysis
	4 Alsatian: Efficient Model Search
	4.1 Alsatian Overview
	4.2 Model & Data Store
	4.3 Execution Planner & Execution Engine

	5 Execution Planner
	5.1 Task Trees
	5.2 Execution Plans
	5.3 The DFS+ Optimization Algorithm
	5.4 Optimality of DFS+

	6 Evaluation
	6.1 End-to-end Search Time
	6.2 Real Models
	6.3 Hugging Face Models
	6.4 Memory Budget Experiments
	6.5 Language Models
	6.6 Discussion

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

