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1. INTRODUCTION
In [1], we proposed a novel approach for scheduling. The

underlying idea of our declarative scheduling approach is
to (1) treat sets of requests as data collections and to (2)
employ database query processing techniques over this re-
quest data to produce high-quality schedules in an efficient
and flexible manner. Scheduling protocols are implemented
as queries that select those requests from the request data
collections whose execution does not violate the scheduling
constraints (e.g. correctness criteria and service-level agree-
ments).

We denote such queries implementing scheduling protocols
declaratively as declarative protocol implementations (DPI).
DPIs are much more concise, easier to understand and eas-
ier to modify than an imperative scheduler implementation.
Our approach allows for an easy definition of scheduling
protocols of different categories such as traditional lock-
based, application-specific consistency, QoS-based and mul-
tiversioning scheduling protocols. Additionally, declaratively
formulated scheduling constraints are specified very close to
their formal definition and allow to prove the correctness of
such declarative scheduling protocol implementations.

In this technical report, we illustrate the way of proving
DPIs on the basis of the strong two-phase locking (SS2PL)
protocol (also known as rigorous 2PL). For the DPIs of other
protocols, the proof can be done in an equivalent manner.

The remainder of this technical report is as follows: We
present the core ideas of our declarative scheduling approach
in Section 1.1 and give the definition of SS2PL in Section
1.2. Section 1.3 covers necessary notational remarks. The
SS2PL DPI and its correctness proof are given in Section
1.4 resp. Chapter 2.

1.1 Declarative Scheduling
In this work, we limit the discussion to scheduling atomic

database requests such as read operations of a transaction
i on object A denoted as ri(A), write operations wi(A),
abort operations ai and commit operations ci. To store these
requests in a database, we make use of the database schema
illustrated in Figure 1. An attribute description is given in
Table 1.

R (TA, Seq, Op, Ob)
H (ID, TA, Seq, Op, Ob)
E (ID, TA, Seq, Op, Ob)

Figure 1: Schema of Declarative Scheduler

To ease the presentation, we proof the correctness of the

Table 1: Attribute Descriptions
Attribute Description
ID Consecutive request ID
TA Transaction ID
Seq Request sequence within a transaction
Op Operation type (read/write/abort/commit)
Ob Object ID

declarative SS2PL protocol implementation on the basis of
this basic database schema. We omit other possible non-key
attributes which are not constrained.

The declarative scheduler stores all new requests sent by
the clients in relation R which acts as a buffer for requests
that have to be scheduled for execution. Relation H com-
prises prior executed requests in their execution order, i.e.,
it stores the schedule that has been generated so far. It
is needed because most scheduling constraints cannot be
evaluated without information about the generated sched-
ule. Example: Classical implementations of lock-based pro-
tocols store the locks hold by transactions explicitly. In the
declarative implementation of such protocols we do not store
those locks explicitly. Instead, we use query processing to
determine on the fly which transactions logically hold locks
on which objects based solely on information in relation H.
Relation E is used to buffer requests that have already been
chosen for execution.

The declarative scheduler generates a schedule for incom-
ing client requests by applying the algorithm presented in
Figure 2. The algorithm consists of seven steps which are
repeated infinitely. We refer to one execution of the while
loop as a scheduler iteration. The steps executed during
each scheduler iteration are explained in the following: (1)
All requests which have been executed during the last iter-
ation are deleted from relation R (line 4). (2) All requests
send by the clients since the last iteration are inserted into
relation R by GetNew() (line 5). (3) Afterwards, requests
that cannot be executed during the current and any future
scheduler iterations are removed from R (line 6). The DPI
Revoked query is executed over relationsR andH to identify
these requests (Revoked(H,R)). (4) We execute the Sched-
ule query to identity which of the pending requests from
relation R should be executed next. The result of Sched-
ule is stored in relation E (line 7). This means, instead of
scheduling request per request we schedule sets of requests
(all requests of relationR) at once. (5) Once the statements
have been inserted into relation E , they get executed state-
ment per statement (line 8). (6) These executed requests



are inserted into relation H (line 9). (7) All requests that
are irrelevant for scheduling decisions (identified by running
the DPI query Irrelevant(H)) are deleted from relation H
(line 10).

1 H = E = R = ∅
2 while t rue do
3 begin
4 R = R− E ;
5 R = R∪GetNew() ;
6 R = R−Revoked(H,R) ;
7 E = Schedule(H,R) ;
8 Execute(E) ;
9 H = H ∪ E ;

10 H = H− Irrelevant(H) ;
11 end

Figure 2: Pseudocode of Declarative Scheduler

1.2 Strong 2PL Protocol
As already mentioned, our declarative scheduler is capa-

ble of applying various scheduling protocols of different cate-
gories. To illustrate the way of proving their correctness, we
chose the lock-based scheduling protocol SS2PL. The SS2PL
protocol specifies that for each transaction the following con-
straints 1-5 of the 2PL protocol must hold [2]:

1. An object has to be locked before it can be read or
written.

2. A transaction may not acquire a lock if already holding
the lock.

3. A transaction has to respect the locks on the relevant
object held by other transactions based on the follow-
ing lock compatibility table [2]:

Lock requested
si(A) xi(A)

Lock sj(A) + -
currently xj(A) - -

held no lock + +

The table is to be read as follows: a requested lock
(s denotes shared lock, x denotes exclusive lock) of
transaction i on an object A may be granted if it does
not conflict (+) with a currently held lock on object A
of transaction j (i 6= j). Otherwise it conflicts (-) and
the requested lock may not be granted.

4. All locking operations of a transaction (including read
and write lock operations) have to precede the first
unlock operation of this transaction. This defines two
phases for each transaction, a growing and a shrinking
phase.

5. A transaction has to release all its locks at its end.

The SS2PL protocol additionally specifies a sixth constraint
[2]:

6. All locks of a transaction t, including its exclusive write
and shared read locks, are held until t terminates, i.e., t
releases all its locks not before it commits resp. aborts.

The SS2PL protocol guarantees that every schedule pro-
duced by this protocol fulfills these six constraints. Such
schedules are always serializable and fulfill the strictness cri-
terion [2].

1.3 Notational Remarks
Our prototype requires DPI queries to be expressed in

SQL. However, for reasons of space and readability, all DPI
queries are given as domain relational calculus (DRC) ex-
pressions in this paper. We use the following notational
conventions for DRC: Capital letters denote variables and
small letters indicate constants. All variables that are not
used in an universal quantification are implicitly assumed to
be existentially quantified. For instance, instead of
∃A, B(I(A, B) ∧ ¬∃C, D(J(C, D))) we write I(A, B)∧ ¬J(C, D).
Unrestricted existentially quantified variables are represented
by and disjunctive use of constants is represented by |.
Thus, for the DRC expression I(A, B)∧ (A = a∨A = c) we
use the shortcut I(a|c, ). We define aggregation as:

{G1, G2, . . . , Gn, F1(A1), F2(A2), . . . , Fn(An) | E}

where E is a DRC expression, G1, . . . , Gn are attributes on
which to group (can be empty), and each Fi is an aggregate
function over attribute Ai. We make use of set functions
such as union ∪ and difference −.

The use of DRC instead of SQL is unproblematic, because
the translation of a DRC expression into an SQL statement
is straightforward. For example, the SQL query presented
below selects all operations of already committed transac-
tions:

SELECT TA, Seq ,Op,Ob
FROM H as h1
WHERE EXISTS ( SELECT ∗

FROM H as h2
WHERE h1 .TA=h2 .TA AND
( h2 .Op=’ a ’ OR h2 .Op=’ c ’ )

)

This query can easily and shorter be formulated in DRC
as:

{T, N, A, O|H( , T, N, A, O, , ) ∧H( , T, , a|c, , , )}

1.4 Declarative SS2PL Protocol Implementa-
tion

The tasks of scheduling requests and updating history in-
formation is modeled by iteratively applying the following
three queries, called the declarative protocol implementation
or DPI, that implement these tasks for the scheduling pro-
tocol of the application:

• Schedule: Identifies which requests should be exe-
cuted next without breaking any of the scheduling con-
straints (e.g. strong consistency) based on historic re-
quest data.

• Revoked: Removed requests of transactions from R
which cannot finish their executions.

• Irrelevant: Removes parts of the history that are not
relevant anymore for future scheduling decisions.

For the SS2PL DPI, we make use of relations Xi and Si.
Thereby, i denotes the state of these relations at the end



of scheduler run i. Xi resp. Si contain all objects which
are write-locked resp. read-locked including the transaction
holding the lock. We never materialize these relations. In-
stead, they are realized as queries. This means locking infor-
mation is never actually stored, but extracted from relation
Hi on the fly. The DRC formulations of Xi and Si are as
follows:

Xi+1={O, T |Hi( , T, , w, O) ∧ ¬Hi( , T, , a|c, )}
Si+1={O, T |Hi( , T, , r, O) ∧ ¬Hi( , T, , w, O)∧

¬Hi( , T, , a|c, )}

The SS2PL Schedule query is illustrated in Figure 3. The
SS2PL Schedule query selects those statements from rela-
tion R which can be executed safely without violating the
SS2PL constraints defined in Section 1.2. This includes
all statements contained in relation R without two sets of
statements: No operations accessing write-locked objects
(OpsOnXLO) and no write operations accessing read-locked
objects (WOpsOnSLO) may be selected from relation R.
Additionally, only one statement per object (MinStmtPer-
Obj ) may be selected from relation R. Otherwise, the third
SS2PL constraint, defined in Section 1.2, does not hold for
the resulting instance of relation H. Aborts as well as com-
mits may always be selected for execution.

MinStmtPerObj is selecting only one statement per op-
eration because of the following reason: Assume R contains
two operations w1(A) and w2(A) that want to write an un-
locked object A. If both requests get chosen by the SS2PL
Schedule query, this would result in a conflict with constraint
3 in Section 1.2. Even if the selection of the two operations
r3(A) and r4(A) does not lead to a violation, for simplicity
we decided for the more strict strategy to choose only one
statement per object (e.g. r3(A)). The other operations
(e.g. r4(A)) will be considered at the next scheduler run.
But the Schedule query can easily be extended to be able to
handle multiple read operations on the same object in the
same scheduler run.

The statements selected from Schedule get inserted into
H: H = H ∪ E . Thereby, a unique ID is assigned to every
statement (GenID()) to establish a total request order in H.

2. CORRECTNESS PROOF
In this subsection, we prove that the DRC formulation

of the SS2PL protocol, shown in Figure 3, fulfills the six
correctness conditions outlined in Section 1.2. To prove this
claim, we have to show that the state of relation H produced
by each scheduler iteration conforms to conditions 1-6 of the
SS2PL protocol presented in Section 1.2.

At first, we recursively define the state of the request
database relations (RDB) after scheduler iteration i+1 based
on scheduler iteration i and the initial state of these rela-
tions to show the development of relation Hi. Afterwards,
we translate conditions 1-6 presented in Section 1.2 into a
DRC formulation C1-C6 over relation H and define what it
means that a state of relation H respects the SS2PL proto-
col.

Definition 1 (Request database state). For an in-
put sequence <New0,. . . , Newi>, i ∈ N , we call the tuple
RDBi = (Hi,Ri, Ei, Newi) the request database state after

scheduler iteration i. RDBi is defined recursively:

i ≤ 0 : Hi = Ei = Ri = Newi = ∅

i > 0 : Ri+1 = Ri ∪Newi+1 − {T, N, A, O | Ei( , T, N, A, O)}
Ei+1 = Schedule(Ri+1,Hi)

Hi+1 = Hi ∪ Ei+1

An example illustrating the request database state of six
scheduler iterations is given in Figure 4. As defined in Def-
inition 1, the presented relations show the instances at the
end of the scheduler iteration. For illustration purposes, we
did not delete the irrelevant requests from H. Instead, we
solely mark them with grey background.

In the DRC translation we often refer to operations that
were executed at scheduler iteration i. We use HE

i as a
shortcut for HE

i = Hi −Hi−1 resp.
{I, T, N, A, O | Hi(I, T, N, A, O)∧¬Hi−1(I, T, N, A, O)} with
i > 0, i.e., the operations that got included into the history
exactly at scheduler run i. We define HE

i = ∅ for i ≤ 0.
We assume that all transactions respect the following pre-

conditions: (P1) If R contains a request r from transaction
T then no further requests of this transaction will be added
until request r is processed, i.e., a transaction waits until
its current request is executed before issuing new requests.
(P2) No transaction is taking any actions after its commit
or abort.

These preconditions can be expressed in DRC as follows:

(P1) : ∀T, N, i : Ri(T, N, , )⇒ ¬Ri(T, N2, , ) ∧N 6= N2

(P2) : ∀T, h, i : h < i ∧HE
h ( , T, , a|c, )⇒ ¬HE

i ( , T, , , )

Note that P2 is equivalent to the following formulation:

∀h, i, T : h < i ∧HE
i ( , T, , , )⇒ ¬HE

h ( , T, , a|c, )

Mapping the SS2PL constraints to our declarative ap-
proach results in the DRC expressions C1-C6 presented in
the definition below.

Definition 2 (SS2PL protocol). A sequence of states
of relation H respects the SS2PL protocol iff the following
conditions hold:

Condition C1: An object has to be locked before it can be
read or written. This condition can be expressed in DRC as:

∀T, O, i : HE
i ( , T, , r, O)⇒ Si+1(O, T ) ∨ Xi+1(O, T )

∧∀T, O, i : HE
i ( , T, , w, O)⇒ Xi+1(O, T )

We do not lock objects in advance. Instead, Schedule does
not select requests accessing locked objects. And there can
not arise a locking problem between requests selected at the
same scheduler run due to MinStmtPerObj as explained in
Section 1.4.

Condition C3: A transaction has to respect the locks on
the relevant object held by other transactions based on the
lock compatibility table.

∀O, T, T2, i : Xi+1(O, T ) ∧ T 6= T2 ⇒ ¬Xi+1(O, T2)

∧∀O, T, T2, i : Xi+1(O, T ) ∧ T 6= T2 ⇒ ¬Si+1(O, T2)

∧∀O, T, T2, i : Si+1(O, T ) ∧ T 6= T2 ⇒ ¬Xi+1(O, T2)

Condition C4: All locking operations of a transaction (in-
cluding read and write lock operations) have to precede the



X = {O, T |H( , T, , w, O) ∧ ¬H( , T, , a|c, )}
S = {O, T |H( , T, , r, O) ∧ ¬H( , T, , w, O) ∧ ¬H( , T, , a|c, )}

OpsOnXLO = {T, N, O|R(T, N, , O) ∧ X (O, T2) ∧ T 6= T2}
WOpsOnSLO = {T, N, O|R(T, N, w, O) ∧ S(O, T2) ∧ T 6= T2}

LegalOps = {T, N, O|R(T, N, , O)∧
¬OpsOnXLO(T, N, O) ∧ ¬WOpsOnSLO(T, N, O)}

MinStmtPerObj = {O, Min(T )|LegalOps(T, , O)}
Schedule = {GenID(), T, N, A, O|R(T, N, A, O)∧

(MinStmtPerObj( , T ) ∨ (A = a ∨A = c))}

Figure 3: SS2PL DPI

first unlock operation of this transaction. This defines two
phases for each transaction, a growing and a shrinking phase.

This condition is automatically fulfilled by condition C6.
Condition C5: A transaction has to release all its locks at

its end.

∀T, h, i : h < i + 1 ∧Hh( , T, , a|c, )

⇒ ¬Xi+1( , T ) ∧ ¬Si+1( , T )

Condition C6: All locks of a transaction t, including its
exclusive write and shared read locks, are held until t termi-
nates, i.e., t releases all its locks not before it commits resp.
aborts.

∀T, O, g, h, i : g ≤ h ≤ i + 1 ∧ Xg(O, T ) ∧ ¬Hi( , T, , a|c)

⇒ Xh(O, T )

∧∀T, O, g, h, i : g ≤ h ≤ i + 1 ∧ Sg(O, T ) ∧ ¬Hi( , T, , a|c)

⇒ Sh(O, T )

Note that condition C2 is trivially fulfilled since DRC re-
lations do not have duplicates by definition.

Furthermore, we require the lemma presented below:

Lemma 1 (One Operation per Iteration and Object).
The DPI query guarantees that at most one operation per
object is scheduled during each scheduler iteration:

∀i, T, O, A : HE
i ( , T, , A, O) ∧A = r|w ∧ (T 6= T2 ∨A 6= A2)

⇒ ¬HE
i ( , T2, , A2, O)

respectively

∀i, T, O, A : HE
i ( , T, , A, O) ∧A = r|w ∧HE

i ( , T2, , A2, O)

⇒ T = T2 ∧A = A2

Proof. Lemma 1 follows from the definition of MinStmt-
PerObj in the definition of Schedule. We prove the claim
by contradiction.

Assumption of contradiction: We assume the opposite
(negation) of the condition holds for some T, O, A and i:

HE
i ( , T, , A, O) ∧A = r|w ∧ (T 6= T2 ∨A 6= A2)∧

HE
i ( , T2, , A2, O) (1)

From the definition of HE
i ,Hi, Ei and Schedule, we can

deduce that

HE
i = Hi −Hi−1

= Hi−1 ∪ Ei −Hi−1

= Ei

= Schedule(Ri,Hi−1)

={GenId(), T, N, A, O|Ri(T, N, A, O)∧
(MinStmtPerObj( , T ) ∨ (A = a ∨A = c))}

Which means the following equivalence holds for HE
i

∀T, N, A, O : HE
i ( , T, N, A, O)

⇔Ri(T, N, A, O) ∧ (MinStmtPerObj( , T )∨
(A = a ∨A = c))

Using this equivalence to replace HE
i in equation 1 we get:

HE
i ( , T, , A, O) ∧A = r|w ∧ (T 6= T2 ∨A 6= A2)∧

HE
i ( , T2, , A2, O)

⇔ Ri(T, , A, O) ∧ (MinStmtPerObj( , T )∨
(A = a ∨A = c)) ∧A = r|w ∧ (T 6= T2 ∨A 6= A2)∧
Ri(T2, , A2, O) ∧ (MinStmtPerObj( , T2)∨
(A2 = a ∨A2 = c))

From Ri(T, , A, O) ∧ A = r|w follows (A = a ∨ A = c) =
false. And fromRi(T, , A, O)∧A = r|w andRi(T2, , A2, O)
we can deduce (A2 = a∨A2 = c) = false because O = Null
if A2 = a|c and this contradicts with A = r|w.

⇔Ri(T, , A, O) ∧MinStmtPerObj( , T ) ∧A = r|w∧
Ri(T2, , A2, O) ∧MinStmtPerObj( , T2)∧
(T 6= T2 ∨A 6= A2)

This implies:

MinStmtPerObj(O, T ) ∧MinStmtPerObj(O, T2)

If T = T2, then the contradiction follows from P1. If T 6= T2,
the contradiction follows from the semantics of grouping and
aggregation, because aggregation produces a single result
tuple for each group by value (O).

Theorem 1 (Correctness of the SS2PL DPI). Each
sequence of states of relation H <H0,. . . > generated with
an arbitrary input sequence <New0, . . .> according to Defi-
nition 1 respects the SS2PL protocol as defined by Definition
2.



Proof. Theorem 1.
Given the recursive definition of the request database states,
we prove our initial claim by induction over the number i of
scheduler iterations and show that each state of relation Hi

conforms to the SS2PL protocol.
Therefore, we first prove that Hi with i = 0 conforms

to the SS2PL protocol. Assuming that Hi for scheduler
iterations i = x is correct, we proof the correctness of Hi

for i = x + 1. Thus, all states of relation Hi conform to the
SS2PL protocol, i.e., conditions C1 to C6 hold for all states
of relation Hi.

The proofs are done by transforming C1-C6 using X , S,
P1 and P2 and by showing that C1-C6 evaluate to true for
the corresponding request database state. This approach
does not only apply for proving the correctness of the SS2PL
DPI but also to the DPIs of other scheduling protocols.

Induction start

From the definition of the initial state of the request data-
base we know that H0 = E0 = R0 = New0 = ∅. In the
proofs for each condition C1 to C6, we can omit universal
quantified variables that range over the number of scheduler
iterations, since for all request database relations version 0
is the only one that is defined at scheduler iteration 0.

Conditions C1-C6 trivially evaluate to true since by defi-
nition H0 = E0 = R0 = New0 = HE

0 = ∅.
Furthermore, Si = Xi = ∅ for i ≤ 1:

X1={O, T |H0( , T, , w, O) ∧ ¬H0( , T, , a|c, )}
={O, T |false ∧ true}
={O, T |false}
=∅

S1={O, T |H0( , T, , r, O) ∧ ¬H0( , T, , w, O)∧
¬H0( , T, , a|c, ))}

={O, T |false ∧ true ∧ true)}
={O, T |false)}
=∅

Condition C1:

∀T, O : HE
0 ( , T, , r, O)⇒ S1(O, T ) ∨ X1(O, T )

∧∀T, O : HE
0 ( , T, , w, O)⇒ X1(O, T )

HE ,S,X evaluate to false since HE
i = ∅ for i ≤ 0 and Si =

Xi = ∅ for i ≤ 1 by definition

⇔ ∀T, O : false⇒ false ∨ false

∧ ∀T, O : false⇒ false

⇔ true

Condition C3:

∀O, T, T2 : X1(O, T ) ∧ T 6= T2 ⇒ ¬X1(O, T2)

∧∀O, T, T2 : X1(O, T ) ∧ T 6= T2 ⇒ ¬S1(O, T2)

∧∀O, T, T2 : S1(O, T ) ∧ T 6= T2 ⇒ ¬X1(O, T2)

S,X evaluate to false since Si = Xi = ∅ for i ≤ 1 by defini-
tion

⇔ ∀O, T, T2 : false ∧ T 6= T2 ⇒ true

∧ ∀O, T, T2 : false ∧ T 6= T2 ⇒ true

∧ ∀O, T, T2 : false ∧ T 6= T2 ⇒ true

⇔ true

Condition C5:

∀T, h : h < 1 ∧Hh( , T, , a|c, )⇒ ¬X1( , T ) ∧ ¬S1( , T )

H,S,X evaluate to false since Hi = ∅ for i ≤ 0 and Si =
Xi = ∅ for i ≤ 1 by definition

⇔ ∀T, h : h < 0 ∧ false⇒ true ∧ true

⇔ true

Condition C6:

∀T, O, g, h : g ≤ h ≤ 1 ∧ Xg(O, T ) ∧ ¬H0( , T, , a|c)

⇒ Xh(O, T )

∧∀T, O, g, h : g ≤ h ≤ 1 ∧ Sg(O, T ) ∧ ¬H0( , T, , a|c)

⇒ Sh(O, T )

H,S,X evaluate to false since Hi = ∅ for i ≤ 0 and Si =
Xi = ∅ for i ≤ 1 by definition

⇔ ∀T, O, g, h : g ≤ h ≤ 1 ∧ false ∧ true⇒ false

∧ ∀T, O, g, h : g ≤ h ≤ 1 ∧ false ∧ true⇒ false

⇔ true

Induction step

We already proved that conditions C1 to C6 hold for relation
Hi with i = 0. Assuming that conditions C1 to C6 hold for
Hi with i = x, we now show that these conditions hold for
Hi with i = x + 1 too. Thus, conditions C1 to C6 hold for
states of relation H.

Condition C1:

∀T, O, i : HE
i ( , T, , r, O)⇒ Si+1(O, T ) ∨ Xi+1(O, T )

∧∀T, O, i : HE
i ( , T, , w, O)⇒ Xi+1(O, T )

We set i = x + 1 and remove the universal quantification on
i.

∀T, O : HE
x+1( , T, , r, O)⇒ Sx+2(O, T ) ∨ Xx+2(O, T )

∧∀T, O : HE
x+1( , T, , w, O)⇒ Xx+2(O, T )

Proving first universal quantification of C1. First, we prove
the first of the two universal quantifications of C1.

∀T, O : HE
x+1( , T, , r, O)⇒ Sx+2(O, T ) ∨ Xx+2(O, T )

(S,X) Replace S and X by their definition

⇔ ∀T, O : HE
x+1( , T, , r, O)⇒

(Hx+1( , T, , r, O) ∧ ¬Hx+1( , T, , w, O)∧
¬Hx+1( , T, , a|c, ))

∨ (Hx+1( , T, , w, O) ∧ ¬Hx+1( , T, , a|c, ))



To prove that this part of the condition holds we distinguish
two cases. Either Hx+1( , T, , w, o) holds (case 1) or
¬Hx+1( , T, , w, o) holds (case 2). Assume case 1 holds:

⇔ ∀T, O : HE
x+1( , T, , r, O)⇒

(Hx+1(I, T, , r, O) ∧ false ∧ ¬Hx+1( , T, , a|c, )

∨ (true ∧ ¬Hx+1( , T, , a|c, ))

⇔ ∀T, O : HE
x+1( , T, , r, O)⇒ false∨

(true ∧ ¬Hx+1( , T, , a|c, ))

⇔ ∀T, O : HE
x+1( , T, , r, O)⇒ ¬Hx+1( , T, , a|c, )

If ¬Hx+1( , T, , a|c, ) holds then also ¬(HE
u ( , T, , a|c, ) ∧

u ≤ x + 1) holds by Hi ⊆ Hi+1 which follows from the
recurisve definition of H:

⇔ ∀T, O : HE
x+1( , T, , r, O)

⇒ ¬Hx+1( , T, , a|c, )∧
∀T, O, u : ¬Hx+1( , T, , a|c, )

⇒ ¬(HE
u ( , T, , a|c, ) ∧ u ≤ x + 1)

(Trans) By transitivity

⇔ ∀T, O, u : HE
x+1( , T, , r, O)

⇒ ¬(HE
u ( , T, , a|c, ) ∧ u ≤ x + 1)

(Rewr) Rewrite implication

⇔ ∀T, O, u : ¬HE
x+1( , T, , r, O)∨

¬(HE
u ( , T, , a|c, ) ∧ u ≤ x + 1)

(De Morgan) Apply De Morgan’s law, reordering

⇔ ∀T, O, u : ¬(HE
x+1( , T, , r, O) ∧ u ≤ x + 1)∨

¬HE
u ( , T, , a|c, )

(Rewr) Rewrite implication

⇔ ∀T, O, u : HE
x+1( , T, , r, O) ∧ u ≤ x + 1

⇒ ¬HE
u ( , T, , a|c, )

Now we have to distinguish two cases. Either u = x + 1
holds (case 1a) or u < x + 1 holds (case 1b). Assuming case
1a holds, both requests,Rx( , T, , r, O) andRx+1( , T, , a|c, ),
would have been in relation Rx+1 which contradicts pre-
condition P1. Thus, ¬HE

u ( , T, , a|c, ) and the implication
evaluate to true. Assuming case 1b holds, the implication is
fulfilled by definition of precondition P2.
Assume case 2 holds:

⇔ ∀T, O : HE
x+1( , T, , r, O)⇒ Hx+1(I, T, , r, O)∧

true ∧ ¬Hx+1( , T, , a|c, )

∨ (false ∧ ¬Hx+1( , T, , a|c, )

(Del) Delete irrelevant terms

⇔ ∀T, O : HE
x+1( , T, , r, O)⇒ Hx+1(I, T, , r, O)∧

¬Hx+1( , T, , a|c, )

A tuple of HE
x+1 is always a tuple of Hx+1 by definition of

HE (HE
x+1 ⊆ Hx+1):

⇔ ∀T, O : HE
x+1( , T, , r, O)

⇒ true ∧ ¬Hx+1( , T, , a|c, )

¬Hx+1( , T, , a|c, ) evaluates to true for the same reasons
as in cases 1a and 1b

⇔ ∀T, O : HE
x+1(I, T, , r, O)⇒ true

⇔ true

Proving the second universal quantification of C1. Now we
prove the second quantification of the condition C1.

∀T, O : HE
x+1( , T, , w, O)⇒ Xx+2(O, T )

(X) Substitute X by its definition

⇔ ∀T, O : HE
x+1( , T, , w, O)

⇒ Hx+1( , T, , w, O) ∧ ¬Hx+1( , T, , a|c, )}

If we rewrite the implication a→ (b∧¬c) to (a→ b)∧ (a→
¬c) we get:

⇔ ∀T, O : (HE
x+1( , T, , w, O)⇒ Hx+1( , T, , w, O))

∧ (HE
x+1( , T, , w, O)⇒ ¬Hx+1( , T, , a|c, ))

A tuple of HE
x+1 is always a tuple of Hx+1 by definition of

HE (HE
x+1 ⊆ Hx+1).

⇔ ∀T, O : true ∧ (HE
x+1( , T, , w, O)

⇒ ¬Hx+1( , T, , a|c, ))

IfHE
x+1( , T, , w, O), noHx+1( , T, , a|c, ) may exist for the

same reasons as in cases 1a and 1b

⇔ ∀T, O : true ∧ true

⇔ true

Condition C3:

∀O, T, T2, i : Xi+1(O, T ) ∧ T 6= T2 ⇒ ¬Xi+1(O, T2)

∧∀O, T, T2, i : Xi+1(O, T ) ∧ T 6= T2 ⇒ ¬Si+1(O, T2)

∧∀O, T, T2, i : Si+1(O, T ) ∧ T 6= T2 ⇒ ¬Xi+1(O, T2)

We set i = x + 1 and prove the three universal quantified
sub-expressions of C3 separately by contradiction.

∀O, T, T2 : Xx+2(O, T ) ∧ T 6= T2 ⇒ ¬Xx+2(O, T2)

∧∀O, T, T2 : Xx+2(O, T ) ∧ T 6= T2 ⇒ ¬Sx+2(O, T2)

∧ ∀O, T, T2 : Sx+2(O, T ) ∧ T 6= T2 ⇒ ¬Xx+2(O, T2)

Proving the first universal quantification of C3. We prove
the first universal quantification of C3 by contradiction.

Assumption of contradiction: We assume the opposite
(negation) of the first quantification holds.

∀O, T, T2 : Xx+2(O, T ) ∧ T 6= T2 ⇒ ¬Xx+2(O, T2)

(Neg) Negation

⇔ Xx+2(O, T ) ∧ T 6= T2 ∧ Xx+2(O, T2)

(X) Substitute X by its definition

⇔ Hx+1( , T, , w, O) ∧ ¬Hx+1( , T, , a|c, ) ∧ T 6= T2

∧Hx+1( , T2, , w, O) ∧ ¬Hx+1( , T2, , a|c, )

From Lemma 1 we know that the two operations on O have
to have been scheduled during different scheduler iterations



h and i, i for the operation executed by T and h for the
operation of transaction T2 with either h < i or i < h. Since
the use of T and T2 in the condition is symmetric, let wlog
h < i. Thus, we can deduce that i = x + 1.

⇔ h < x + 1 ∧HE
x+1( , T, , w, O) ∧ ¬Hx+1( , T, , a|c, )∧

T 6= T2 ∧HE
h ( , T2, , w, O) ∧ ¬Hx+1( , T2, , a|c, )

From ¬Hx+1( , T2, , a|c, ), h < x + 1, and the definition of
X , we follow that Xx+1(O, T2) holds. Based on the recursive
definition of H, we know that HE

x+1( , T, w, O) implies
LegalOpsx+1(T, N, O) which in turn implies
¬OpsOnXLOx+1(T, N, O) ∧ ¬WOpsOnSLOx+1(T, N, O) ,
i.e., HE

x+1 can only contain the tuple HE
x+1( , T, w, O) if

this tuple belongs to LegalOpsx+1. This stands in con-
tradiction with OpsOnXLOx+1(T, N, O) which follows from
Xx+1(O, T2).

Proving second universal quantification of C3. We proceed
by proving the second universal quantification of C3 by con-
tradiction:

∀O, T, T2 : Xx+2(O, T ) ∧ T 6= T2 ⇒ ¬Sx+2(O, T2)

(X) Substitute X by its definition and rewrite implication

⇔ ∀O, T, T2 : ¬(Hx+1( , T, , w, O)∧
¬Hx+1( , T, , a|c, ) ∧ T 6= T2)

∨ ¬(Hx+1(I, T2, , r, O) ∧ ¬Hx+1( , T2, , w, O)∧
¬Hx+1( , T2, , a|c, )

Assumption of contradiction: We assume the opposite
(negation) of the quantification holds.

⇔ Hx+1( , T, , w, O) ∧ ¬Hx+1( , T, , a|c, ) ∧ T 6= T2

∧Hx+1(I, T2, , r, O) ∧ ¬Hx+1( , T2, , w, O)∧
¬Hx+1( , T2, , a|c, )

Using the same argument as for the first quantification in
C3, we can deduce that the read and write operation on O
have been executed during different scheduler runs, sched-
uler run i, for the operation executed by T , and sched-
uler run h, for the operation executed by T2, with either
h < i, i = x + 1 or i < h, h = x + 1.

Asume case h = x + 1 holds:

⇔ i < x + 1 ∧Hi( , T, , w, O) ∧ ¬Hi( , T, , a|c, ) ∧ T 6= T2

∧Hx+1(I, T2, , r, O) ∧ ¬Hx+1( , T2, , w, O)∧
¬Hx+1( , T2, , a|c, )

We know that Xx+1(O, T ) and the contradiction follows
from

Hx+1(I, T2, , r, O)⇒ LegalOpsx+1(T2, N, O)

⇒ ¬OpsOnXLOx+1(T2, N, O)

 ⇔ OpsOnXLOx+1(T2, N, O)⇐ Xx+1(O, T )

Asume case i = x + 1 holds:

⇔ h < x + 1 ∧Hx+1( , T, , w, O) ∧ ¬Hx+1( , T, , a|c, )∧
T 6= T2 ∧Hh(I, T2, , r, O) ∧ ¬Hh( , T2, , w, O)∧
¬Hh( , T2, , a|c, )

If i = x+1, we know that Sx+1(O, T2) and the contradiction

follows from:

Hx+1(I, T, , w, O)⇒ LegalOpsx+1(T, N, O)

⇒ ¬WOpsOnSLOx+1(T, N, O)

 ⇔WOpsOnSLOx+1(T2, N, O)⇐ Sx+1(O, T2)

Proving third universal quantification of C3. Proving the
third part of C3 is redundant since the proof of the second
part applies for the third part as well due to equivalence of
both parts:

∀O, T, T2 : Sx+2(O, T ) ∧ T 6= T2

⇒ ¬Xx+2(O, T2)

(Rewrite) Rewrite implication

⇔ ∀O, T, T2 : ¬(Sx+2(O, T ) ∧ T 6= T2)∨
¬Xx+2(O, T2)

(De Morgan) Apply De Morgan’s law

⇔ ∀O, T, T2 : ¬Sx+2(O, T ) ∨ ¬(T 6= T2)∨
¬Xx+2(O, T2)

(Order) Rearranging

⇔ ∀O, T, T2 : ¬Xx+2(O, T2) ∨ ¬(T 6= T2)∨
¬Sx+2(O, T )

(De Morgan) Apply De Morgan’s law

⇔ ∀O, T, T2 : ¬(Xx+2(O, T2) ∧ T 6= T2)∨
¬Sx+2(O, T )

(Rewrite) Rewrite for implication

⇔ ∀O, T, T2 : Xx+2(O, T2) ∧ T 6= T2

⇒ ¬Sx+2(O, T )

Renaming the variables in the formula we establish the equiv-
alence with the second part:

⇔ ∀O, T, T2 : Xx+2(O, T ) ∧ T 6= T2 ⇒ ¬Sx+2(O, T2)

Condition C5:

∀T, h, i : h < i + 1 ∧Hh( , T, , a|c, )

⇒ ¬Xi+1( , T ) ∧ ¬Si+1( , T )

In condition C5, we replace i with x + 1.

∀T, h : h < x + 2 ∧Hh( , T, , a|c, )

⇒ ¬Xx+2( , T ) ∧ ¬Sx+2( , T )

(X ,S) Substitute X and S by their definition

⇔ ∀T, h : h < x + 2 ∧Hh( , T, , a|c, )⇒
¬(Hx+1( , T, , w, O) ∧ ¬Hx+1( , T, , a|c, ))∧
¬(Hx+1(I, T, , r, O) ∧ ¬Hx+1( , T, , w, O)∧
¬Hx+1( , T, , a|c, ))

(De Morgan) Apply De Morgan’s law

⇔ ∀T, h : h < x + 2 ∧Hh( , T, , a|c, )⇒
(¬Hx+1( , T, , w, O) ∨Hx+1( , T, , a|c, ))∧
(¬Hx+1(I, T, , r, O) ∨Hx+1( , T, , w, O)∨
Hx+1( , T, , a|c, ))



If Hh( , T, , a|c, ) then also Hx+1( , T, , a|c, ) with h <
x + 1 by Hi ⊆ Hi+1 which follows from the recursive defini-
tion of H.

⇔ ∀T, h : h < x + 1 ∧Hh( , T, , a|c, )⇒
(¬Hx+1( , T, , w, O) ∨ true)∧
(¬Hx+1(I, T, , r, O) ∨Hx+1( , T, , w, O) ∨ true)

⇔ true

Condition C6:

∀T, O, g, h, i : g ≤ h ≤ i + 1 ∧ Xg(O, T ) ∧ ¬Hi( , T, , a|c)

⇒ Xh(O, T )

∧∀T, O, g, h, i : g ≤ h ≤ i + 1 ∧ Sg(O, T ) ∧ ¬Hi( , T, , a|c)

⇒ Sh(O, T )

Proving first universal quantification of C6. We replace the
i with x + 1 and remove the universal quantification on i.

∀T, O, g, h : g ≤ h ≤ x + 2 ∧ Xg(O, T ) ∧ ¬Hx+1( , T, , a|c)

⇒ Xh(O, T )

We replace X by its definition.

⇔ ∀T, O, g, h : g ≤ h ≤ x + 2 ∧Hg−1( , T, , w, O)∧
¬Hg−1( , T, , a|c, )

∧ ¬Hx+1( , T, , a|c)⇒ Hh−1( , T, , w, O)∧
¬Hh−1( , T, , a|c, )

From ¬Hx+1( , T, , a|c) ∧ g ≤ h ≤ x + 2 we deduce that
¬Hh−1( , T, , a|c, ) and ¬Hg−1( , T, , a|c, ) hold, because
the highest value g − 1 and h− 1 can have is x + 1.

⇔ ∀T, O, g, h : g ≤ h ≤ x + 2 ∧Hg−1( , T, , w, O) ∧ true∧
¬Hx+1( , T, , a|c)⇒ Hh−1( , T, , w, O) ∧ true

⇔ ∀T, O, g, h : g ≤ h ≤ x + 2 ∧Hg−1( , T, , w, O)∧
¬Hx+1( , T, , a|c)⇒ Hh−1( , T, , w, O)

If Hg−1( , T, , w, O) ∧ g ≤ h ≤ x + 2 holds then
Hh−1( , T, , w, O) evaluates to true by Hi ⊆ Hi+1 which
follows from the recursive definition of H.

⇔ ∀T, O, g, h : g ≤ h ≤ x + 2 ∧Hg−1( , T, , w, O)∧
¬Hx+1( , T, , a|c)⇒ true

⇔ true

Proving second universal quantification of C6. We replace
the i with x + 1 and remove the universal quantification on
i.

∀T, O, g, h : g ≤ h ≤ x + 2 ∧ Sg(O, T ) ∧ ¬Hx+1( , T, , a|c)

⇒ Sh(O, T )

At first, we replace S by its definition.

⇔ ∀T, O, g, h : g ≤ h ≤ x + 2 ∧Hg−1( , T, , r, O)∧
¬Hg−1( , T, , w, O) ∧ ¬Hg−1( , T, , a|c, )∧
¬Hx+1( , T, , a|c)⇒ Hh−1( , T, , r, O)∧
¬Hh−1( , T, , w, O) ∧ ¬Hh−1( , T, , a|c, )

From ¬Hx+1( , T, , a|c) ∧ g ≤ h ≤ x + 2 we deduce that
¬Hh−1( , T, , a|c, ) and ¬Hg−1( , T, , a|c, ) hold, because
the highest value g − 1 and h− 1 can have is x + 1.

⇔ ∀T, O, g, h : g ≤ h ≤ x + 2 ∧Hg−1( , T, , r, O)∧
¬Hg−1( , T, , w, O) ∧ true ∧ ¬Hx+1( , T, , a|c)

⇒ Hh−1( , T, , r, O) ∧ ¬Hh−1( , T, , w, O) ∧ true

⇔ ∀T, O, g, h : g ≤ h ≤ x + 2 ∧Hg−1( , T, , r, O)∧
¬Hg−1( , T, , w, O) ∧ ¬Hx+1( , T, , a|c)

⇒ Hh−1( , T, , r, O) ∧ ¬Hh−1( , T, , w, O)∧

IfHg−1( , T, , r, O)∧g ≤ h ≤ x+2 holds thenHh−1( , T, , r, O)
evaluates to true by Hi ⊆ Hi+1.

⇔ ∀T, O, g, h : g ≤ h ≤ x + 2 ∧Hg−1( , T, , r, O)∧
¬Hg−1( , T, , w, O) ∧ ¬Hx+1( , T, , a|c)

⇒ true ∧ ¬Hh−1( , T, , w, O)

⇔ ∀T, O, g, h : g ≤ h ≤ x + 2 ∧Hg−1( , T, , r, O)∧
¬Hg−1( , T, , w, O) ∧ ¬Hx+1( , T, , a|c)

⇒ ¬Hh−1( , T, , w, O)

Now we have to distinguish two cases. Either
¬Hh−1( , T, , w, O) holds (case 1) orHh−1( , T, , w, O) holds
(case 2).

Case 1, assuming ¬Hh−1( , T, , w, O) holds, then also
¬Hg−1( , T, , w, O) holds by Hi ⊆ Hi+1 which follows from
the recursive definition of H

⇔ ∀T, O, g, h : g ≤ h ≤ x + 2 ∧Hg−1( , T, , r, O) ∧ true∧
¬Hx+1( , T, , a|c)⇒ true

⇔ true

Case 2, assumingHh−1( , T, , w, O) holds, then Xh−1(O, T )
holds. And because of condition C3, transaction T may not
hold a shared lock while holding an exclusive lock. Thus,
we follow that the lock hold by T changed from a shared to
an exclusive lock and the first universal quantification of C6
hold, which we have proved before.

We proved that conditions C1-C6 hold for each state of
relation H. For simplicity, we did not yet consider the Ir-
relevant query, which deletes statements from relation H
which are irrelevant for scheduling decisions. Now, we have
to show that the execution of Irrelevant has no influence on
the correctness of relation H. Therefore, we have to adapt
Definition 1 to Definition 3.

Note that the step to remove revoked requests (Revoked
query) from relation R as explained in Section 1.1 does not
influence the correctness of Schedule. This is because Re-
voked() deletes requests which have not been scheduled and
does not touch information of relation H.

Definition 3 (Request database state’). For an in-
put sequence <New0, . . . , Newi>, i ∈ N , we call the tuple
RDBi = (Hi,Ri, Ei, Newi) the request database state after
scheduler iteration i. RDBi is defined recursively:

Hi = Ei = Ri = Newi = ∅, for i ≤ 0

Ri+1 = Ri ∪Newi+1 − {T, N, A, O | Ei( , T, N, A, O)}
Ei+1 = Schedule(Ri+1,Hi)

Ti+1 = Hi ∪ Ei+1

Hi+1 = Ti+1 − Irrelevant(Ti+1)



(Thereby, Ti denotes an auxiliary set to define H)

Theorem 2 (Equivalence of Definition 1 and 3).
Each sequence of states <H0,. . . > of relation H generated
with an arbitrary input sequence <New0,. . . > according to
Definition 1 is equal to a generation according to Definition
3.

Proof. Theorem 2.
Relation H gets changed by (a) the insertion of the state-
ments selected by Schedule and (b) the deletion of state-
ments of unfinished transactions by Irrelevant. We have to
show two facts: (1) Irrelevant does not influence the set of
requests selected by Schedule. (2) Conditions C1-C6 hold for
the states of relationH despite of the execution of Irrelevant.

Fact 1: In Schedule, only the selection of read and write op-
erations is based on information of relationH, more precisely
S and X . S and X only consider statements of non-finished
transactions. And Irrelevant only deletes statements of al-
ready finished transactions:

Irrelevant = {I, T, N, A, O | H(I, T, N, A, O)∧
H( , T, , a|c, )}

We prove that Irrelevant executed in scheduler iteration
i does not change Xi+1 by contradiction.

Xi+1={O, T |Hi( , T, , w, O) ∧ ¬Hi( , T, , a|c, )}

I.e. the following rule holds for X :

∀O, T, i : Xi+1(O, T )⇒ Hi( , T, , w, O) ∧ ¬Hi( , T, , a|c, )

Assumption of contradiction: We assume that a transac-
tion lost a write lock after Irrelevant has been executed.

Since by definition Irrelevant only deletes tuples, it has
to have deleted a write statement. But also by definition,
Irrelevant only deletes statements if Hi( , T, , a|c, ) holds.
Thus, the contradiction follows from:

¬Hi( , T, , a|c, )
 ⇔ Hi( , T, , a|c, )}

We prove that Irrelevant executed in scheduler iteration
i does not change Si+1 by contradiction.

Si+1={O, T |Hi( , T, , r, O) ∧ ¬Hi( , T, , w, O)∧
¬Hi( , T, , a|c, )}

I.e. the following rule holds for X :

∀O, T, i : Si+1(O, T )⇒ Hi( , T, , r, O) ∧ ¬Hi( , T, , w, O)∧
¬Hi( , T, , a|c, )

Assumption of contradiction: We assume that a transac-
tion lost a read lock after Irrelevant has been executed.

Since by definition Irrelevant only deletes tuples, it has
to have deleted a read statement. But since by definition,
Irrelevant only deletes statements if Hi( , T, , a|c, ) holds.
Thus, the contradiction follows from:

¬Hi( , T, , a|c, )
 ⇔ Hi( , T, , a|c, )

From this we follow that Fact 1 holds.

Fact 2: Now we have to show that Irrelevant does not
violate any proof of conditions C1-C6.

Condition C1:

∀T, O, i : HE
i ( , T, , r, O)⇒ Si+1(O, T ) ∨ Xi+1(O, T )

∧∀T, O, i : HE
i ( , T, , w, O)⇒ Xi+1(O, T )

Assume condition C1 holds for some i after Definition 1.
We have to show that after deleting the requests from Ir-
relevant this condition still holds. If Irrelevant deletes any
request of a transaction T from the history, it deletes all re-
quests of T . Therefore, if Irrelevant deletes all reads of trans-
action T on object O (changing the evaluation of the left
hand side of the implication to false: Hi( , T, , r, O)), then
also the right hand side of the implication evaluates to false,
because Si+1(O, T ) requiresHi( , T, , r, O) orHi( , T, , w, O)
and Xi+1(O, T ) requiresHi( , T, , w, O). If Irrelevant deletes
writes of transaction T on object O (changing the evaluation
of the left hand side of the implication of the second univer-
sal quantification to false: Hi( , T, , w, O)), then also the
right hand side of the implication evaluates to false, because
Xi+1(O, T ) requires Hi( , T, , w, O). Controversially, if the
deletions of Irrelevant cause the right hand side to evaluate
to true, then we can use the same argument to show that
the left hand side does too.

Condition C3:

∀O, T, T2, i : Xi+1(O, T ) ∧ T 6= T2 ⇒ ¬Xi+1(O, T2)

∧∀O, T, T2, i : Xi+1(O, T ) ∧ T 6= T2 ⇒ ¬Si+1(O, T2)

∧∀O, T, T2, i : Si+1(O, T ) ∧ T 6= T2 ⇒ ¬Xi+1(O, T2)

Assume condition C3 holds for some i after Definition 1.
We have to show that after deleting the requests from Irrele-
vant this condition still holds. Assume Irrelevant deletes all
or non requests a transaction T from the history, the right
side of the implications do not change. The lefts sides of
the implications can only change to false. Hence, the case
true⇒ false is not possible.

Condition C5:

∀T, h, i : h < i + 1 ∧Hh( , T, , a|c, )

⇒ ¬Xi+1( , T ) ∧ ¬Si+1( , T )

Assume condition C5 holds for some i after Definition 1. We
have to show this condition still holds after Definition 3. If
Irrelevant deletes any request of a transaction T from the
history, it deletes all requests of T . Therefore, if Irrele-
vant deletes an abort or commit statement of transaction T
(changing the evaluation of the left hand side of the impli-
cation to false), then the right hand side of the implication
does not change. This is because Irrelevant solely deletes
requests and due to P3. Thus, C5 evaluates to true.

In the induction step for condition C5, we stated that if
Hh( , T, , a|c, )∧h < x + 1 holds then alsoHx+1( , T, , a|c, )
holds, as shown in the following excerpt of the proof of con-
dition C5:

⇔ ∀T, h : h < x + 2 ∧Hh( , T, , a|c, )⇒
(¬Hx+1( , T, , w, O) ∨Hx+1( , T, , a|c, ))∧
(¬Hx+1(I, T, , r, O) ∨Hx+1( , T, , w, O)∨
Hx+1( , T, , a|c, ))



If Hh( , T, , a|c, ) then also Hx+1( , T, , a|c, ) with h <
x + 1:

⇔ ∀T, h : h < x + 1 ∧Hh( , T, , a|c, )⇒
(¬Hx+1( , T, , w, O) ∨ true)∧
(¬Hx+1(I, T, , r, O) ∨Hx+1( , T, , w, O) ∨ true)

⇔ true

But even if Irrelevant deletes the abort resp. commit
statement andHx+1( , T, , a|c, ) evaluates to false, this does
not influence the result of the proof because Irrelevant al-
ways deletes all tuples of a finished transaction by definition.
Thus, the proof evaluates to true as follows:

⇔ ∀T, h : h < x + 2 ∧Hh( , T, , a|c, )⇒
(¬Hx+1( , T, , w, O) ∨Hx+1( , T, , a|c, ))∧
(¬Hx+1(I, T, , r, O) ∨Hx+1( , T, , w, O)∨
Hx+1( , T, , a|c, ))

⇔ ∀T, h : h < x + 1 ∧Hh( , T, , a|c, )⇒
(true ∨ false) ∧ (true ∨ false ∨ false)

⇔ true

Condition C6:

∀T, O, g, h, i : g ≤ h ≤ i + 1 ∧ Xg(O, T ) ∧ ¬Hi( , T, , a|c)

⇒ Xh(O, T )

∧∀T, O, g, h, i : g ≤ h ≤ i + 1 ∧ Sg(O, T ) ∧ ¬Hi( , T, , a|c)

⇒ Sh(O, T )

Assume condition C6 holds for some input sequence af-
ter Definition 1. We have to show that C6 holds too after
Definition 3. We prove this fact by contradiction.

Assumption of contradition: Condition C6 breaks for an
i. I.e., the opposite holds.

(g ≤ h ≤ i + 1 ∧ Xg(O, T ) ∧ ¬Hi( , T, , a|c) ∧ ¬Xh(O, T ))

∨(g ≤ h ≤ i + 1 ∧ Sg(O, T ) ∧ ¬Hi( , T, , a|c) ∧ ¬Sh(O, T ))

We have to distinguish two cases. Either the first part
evaluates to true or the second one.

First part: The first part evaluates to true if Xg(O, T )
holds for some O and T and ¬Hi( , T, , a|c) and ¬Xh(O, T )
hold as well. This is not possible because, firstly, this con-
tradicts to C6 and, secondly, Irrelevant always deletes all
tuples of T by definition, i.e., Xg(O, T ) would not hold after
an execution of Irrelevant.

The second part is analog.

Thus, Fact 2 holds and Irrelevant does not influence the
correctness of relation H and Schedule always selects the
same set of statements independent of the execution of Ir-
relevant.
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