
Declarative Serializable Snapshot Isolation

Christian Tilgner1, Boris Glavic2, Michael Böhlen1, and Carl-Christian Kanne3

1 University of Zurich,
{tilgner,boehlen}@ifi.uzh.ch

2 University of Toronto,
glavic@cs.toronto.edu

3 University of Mannheim
kanne@informatik.uni-mannheim.de

Abstract. Snapshot isolation (SI) is a popular concurrency control pro-
tocol, but it permits non-serializable schedules that violate database in-
tegrity. The Serializable Snapshot Isolation (SSI) protocol ensures (view)
serializability by preventing pivot structures in SI schedules. In this pa-
per, we leverage the SSI approach and develop the Declarative Serializ-
able Snapshot Isolation (DSSI) protocol, an SI protocol that guarantees
serializable schedules. Our approach requires no analysis of application
programs or changes to the underlying DBMS. We present an implemen-
tation and prove that it ensures serializability.

1 Introduction

Snapshot Isolation (SI) [3] is a popular multiversion concurrency control (MVCC)
protocol, but it permits non-serializable schedules. Fekete et al. [9] showed that
every non-serializable SI schedule necessarily contains an access pattern with two
consecutive vulnerable edges (see Sec. 2.2), and Cahill et al. [5] presented the
Serializable Snapshot Isolation (SSI) protocol that ensures serializable schedules
by preventing such structures.

We leverage the ideas of SSI, define pivot structures and propose the Declara-
tive Serializable Snapshot Isolation (DSSI) protocol, a declarative technique that
guarantees serializable schedules by preventing pivot structures while maintain-
ing the advantages of SI. We implement DSSI using our declarative scheduling
model called Oshiya. Oshiya models the scheduler state (including the gener-
ated schedule) in so-called scheduling relations and formalizes a protocol as
a protocol specification. A protocol specification is a set of constraints speci-
fied as boolean domain relational calculus expressions that have to hold for all
scheduling relation states. In Oshiya, a protocol specification is implemented
as declarative scheduling queries. Request scheduling is performed by applying
a generic scheduling algorithm that repeatedly executes the scheduling queries
over the scheduling relations. The queries determine the pending requests that
can be added to the relation modelling the schedule without violating the pro-
tocol specification. We show how to detect and prevent pivot structures using
Oshiya and implement the DSSI protocol specification as scheduling queries. Our

J. Eder, M. Bielikova, and A.M. Tjoa (Eds.): ADBIS 2011, LNCS 6909, pp. 170–184, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Declarative Serializable Snapshot Isolation 171

implementation is concise and close to the formal protocol specification which
enables us to prove its correctness. The main contributions of the paper are:

• We introduce DSSI, a protocol that ensures serializable SI executions, and
formalize it as an Oshiya protocol specification.

• Using Oshiya we develop an SQL implementation of DSSI.
• We prove that the implementation ensures serializable schedules.

The paper structure is as follows: Sec. 2 describes SI and reviews the approach
applied by the SSI protocol to detect non-serializable schedules. Sec. 3 introduces
Oshiya. Sec. 4 shows how we model data snapshots and presents schemata for
the scheduling relations. Sec. 5 formalizes the DSSI protocol. Sec. 6 presents the
DSSI scheduler implementation. Sec. 7 proves that our implementation ensures
serializable executions. We review related work in Sec. 8 and conclude in Sec. 9.

2 Background: Snapshot Isolation and Serializability

We model a transaction ti as a sequence of read and write requests (denoted as
ri(x) resp. wi(x) where x stands for the accessed data item). Each transaction
finishes with an abort (ai) or commit (ci) request. The write-set WSi of ti con-
tains all data items written by ti. A history (schedule) is a sequence of interleaved
executions of requests from a set of concurrent transactions. The requests in a his-
tory are totally ordered. We write p <H q if request p is executed before request
q. Let boti denote the begin of ti (when ti executed its first request) and eoti its
end (when ti aborted resp. committed). The execution interval of a committed
transaction ti is [boti, ci], the one of a non-aborted, possibly committed transac-
tion ti is [boti, li] (li is ti’s latest operation). Two committed transactions ti and tj
overlapped if: Overlappedij ⇔ [boti, ci]∩ [botj , cj] �= ∅. Two non-aborted (maybe
active) transactions ti and tj overlap if: Overlapij ⇔ [boti, li] ∩ [botj , lj] �= ∅.

2.1 Snapshot Isolation

SI is a multiversion concurrency protocol that maintains multiple versions of data
items (tuples). Each write wi(x) creates a new version of item x that is visible to
other transactions after ci. Each read ri(x) accesses the latest version of x written
by transactions that committed before boti. Moreover, a transaction always sees
the versions it created itself. Under SI, reads are never delayed because of write
requests of concurrent transactions and vice versa. SI avoids inconsistent read
anomalies because transactions never access partial results of other concurrent
transactions. SI requires disjoint write-sets of concurrent committed transactions
which is, e.g., ensured by the First-Committer-Wins (FCW) rule. FCW specifies
that a transaction is aborted if a concurrent transaction with an overlapping
write-set already committed. FCW also prevents lost updates. A typical anomaly
that leads to non-serializable SI histories is the Write Skew [3], detailed in Ex. 1.

Example 1. Consider history Hws in Fig. 1. Initially, data items x = 50 and
y = 50 are consistent and satisfy constraint C = x+ y ≥ 0. Transaction t1 reads

172 C. Tilgner et al.

t

t

time

1

2

r(x) r(y)

r(x) r(y) w(x) c

w(y) c

x=50
y=50

x= -40
y= 50

x= -40
y= -40

Fig. 1. History Hws

t
1

t
2

ee
1 2

Fig. 2. MVSG for History Hws

x and y. A concurrent transaction t2 reads x and y, writes x (after subtracting
90) and commits (after checking C). Finally, t1 writes y (after subtracting 90)
and commits (after checking C). In the final state, C is violated although t1 and
t2 checked C explicitly before committing. This happens because C is checked
on the version of x and y that is visible to t1 and t2 and not on the final state
resulting from their interleaved execution.

2.2 Detecting Non-serializable Histories

Serializability of SI histories can be checked using a multiversion serialization
graph MV SG = (N, E) [5]. The MVSG of a history H is a graph that contains
a node for each committed transaction ti of H : ti ∈ N ⇔ ci ∈ H . It contains an
edge from transaction ti to transaction tj with i �= j if (a) wi(x) <H wj(x), (b)
wi(x) <H rj(x), or (c) ri(x) <H wj(x). An edge of type (c) that occurs between
two overlapped transactions ti and tj is called a vulnerable edge [9]. A pivot
structure is defined as follows: Overlappedij∧(ri(x) <H wj(x))∧Overlappedjk∧
(rj(x) <H wk(x)). Fekete et al. [9] showed that every MVSG of a non-serializable
SI history must contain a pivot structure. The existence of a pivot structure is a
necessary but not sufficient condition for the non-serializability of an SI history.
Thus, an SI history is serializable if its MVSG does not contain pivot structures.

Example 2. Fig. 1 shows history Hws. Vulnerable edges are shown as dotted
lines. The MVSG for Hws in Fig. 2 has a node for each committed transaction
of Hws (t1 and t2) and two edges e: (e1) from t1 to t2 due to r1(x) <H w2(x);
(e2) from t2 to t1 due to r2(y) <H w1(y). Hws is not serializable and, thus, the
MVSG contains a pivot structure (two consecutive vulnerable edges e1 and e2).

2.3 Serializable Snapshot Isolation Protocol

The SSI protocol proposed by Cahill et al. [5] ensures serializability by pre-
venting pivot structures. The main idea is to check SI histories at runtime for
structures that can evolve into pivot structures. We call such structures potential
pivot structures. A potential pivot structure is defined as: Overlapij ∧ (ri(x) <H

wj(x)) ∧ Overlapjk ∧ (rj(x) <H wk(x)) ∧ ¬(ci ∧ cj ∧ ck). I.e., a potential pivot
structure is a pivot structure without the requirement that the three (not nec-
essarily distinct) participating transactions have committed. It evolves into a
pivot structure once all participating transactions have committed. The set of
transactions in potential pivot structures is naturally a superset of the trans-
actions in pivot structures. For each detected potential pivot structure, one of

Declarative Serializable Snapshot Isolation 173

the participating transactions is aborted to prevent it from evolving into a pivot
structure. This approach guarantees that the resulting histories are serializable,
but it may produce false positives, i.e., not every potential pivot structure finally
results in a non-serializable history. Our implementation leverages this idea and
aborts transactions that participate in potential pivot structures (see Sec. 6).

3 Declarative Scheduling Model

We propose a declarative scheduling model [13] called Oshiya1 to model and
implement DSSI. The main ideas of Oshiya are: (1) The state of a scheduler
(including the history it produces) is modeled as instances of three scheduling
relations : PendingRequests (R) buffers arriving client requests for scheduling.
RelevantHistory (H) stores already executed requests in their execution order,
and models the schedule generated so far. Executable (E) buffers requests that
have been scheduled for execution. (2) Oshiya formalizes a protocol as a set of
constraints, called protocol specification, that have to hold for each generated
state of H. (3) The protocol specification constraints are implemented as declar-
ative scheduling queries: QSchedule, QRevoked, QIrrelevant. Request scheduling is
performed by repeatedly executing the scheduling queries over the scheduling
relations to determine which of the pending requests in R can be added to H
without violating the protocol specification constraints.

Example 3. For presentation purposes, we use simplified schemata for the schedul-
ing relations in this example. Assume the following schema for relations R and E :
(TA, Op, Ob). For each request, TA is the transaction executing the request, Op
is the type of operation (e.g., r for a read), and Ob is the data object the opera-
tion accesses. Relation H has an additional attribute ID for recording the request
execution order. Using this schema, the scheduler state after scheduling the first
request from history Hws (Fig. 1) is as follows:

R1
TA Op Ob . . .
1 r x

H1
ID TA Op Ob . . .
1 1 r x

E1
TA Op Ob . . .
1 r x

The state of the scheduler is advanced in iter-
1 H = E = R = ∅
2 while t rue do begin
3 R = R − E ;
4 R = R ∪ N ;
5 R = R − QRevoked(H,R) ;
6 E = QSchedule(H,R) ;
7 Execute(E) ;
8 H = H ∪ E ;
9 H = H − QIrrelevant(H) ;

10 end

ative steps by applying a generic scheduling al-
gorithm (shown on the right) that evaluates the
scheduling queries over the current instances of the
scheduling relations. Each iterative step (one while
loop), called scheduler iteration, schedules multi-
ple requests at once, resulting in updated instances
of the scheduling relations. This is in contrast to
DBMSs that schedule requests individually. The algorithm is the same for every
protocol, but it is parameterized by the protocol specific schema of the scheduling

1 Oshiya refers to the passenger arrangement staff at Japanese train stations who help
to fill a train by pushing people onto the train or guiding them to free railway cars.

174 C. Tilgner et al.

relations and the scheduling queries. N is the set of newly arrived client requests.
QRevoked identifies nonexecutable requests (e.g., deadlocked) (line 5). QSchedule,
the main scheduling query, identifies the pending requests from R that should
be selected for execution in this iteration (line 6). QIrrelevant returns requests
that are irrelevant for future scheduling decisions. They are removed from H
(line 9). In the remainder of this paper we limit the discussion to QSchedule.

Example 4. Reconsider the scheduler state from Ex. 3. Two new requests got
inserted into R at the beginning of scheduler iteration 2: r1(y), r2(x). Assume
that running the scheduling queries selected both request from R for execution.
This leads to the following updated scheduler state:

R2
TA Op Ob . . .
1 r y
2 r x

H2
ID TA Op Ob . . .
1 1 r x
2 1 r y
3 2 r x

E2
TA Op Ob . . .
1 r y
2 r x

Applying the scheduling queries to a set of newly arrived requests N , each sched-
uler iteration produces new instances of the scheduling relations R, H and E .
This yields a sequence of states of H called history, defined below. We use this
definition of history to reason over the properties of a protocol and to prove the
correctness of a scheduler implementation.

Definition 1 (History). Let I =< N0,. . . > be a sequence of sets of input
requests. Let q be protocol-specific versions of the scheduling queries. We define
the history Hq(I) generated according to q over input I as < H0, . . . >, where Hi,
called a history state, is the state of relation H after the ith scheduler iteration
produced using q to parameterize the generic algorithm and Ni as input N . In
the paper, we drop q and I if it is clear from the context and solely use H.

In the remainder of this paper, we use H to denote both the history relation and
one history state and drop indices on H if the scheduler iteration is irrelevant
for the discussion (same holds for R, E and N). According to the algorithm
presented above, the history state Hi is a cumulative snapshot, i.e., it includes
all previous history states Hj with j < i.

Example 5. For instance, the history states shown below could be the result of
scheduling the requests I =< {(1, r, x), (2, r, x)}, {(1, r, y)}, {(2, r, y)} >:

H0
ID TA Op Ob . . .

H1
ID TA Op Ob . . .
1 1 r x

H2
ID TA Op Ob . . .
1 1 r x
2 1 r y
3 2 r x

H3
ID TA Op Ob . . .
1 1 r x
2 1 r y
3 2 r x
4 2 r y

We model a protocol as a set of constraints called protocol specification. A pro-
tocol specification constraint is a boolean domain relational calculus expression
over histories. We allow quantification over scheduler iterations to enable, e.g.,
constraints that check the order of requests in the history.

Definition 2 (Protocol Specification). A protocol specification Φ is a set of
boolean domain relational calculus expressions over H.

Declarative Serializable Snapshot Isolation 175

The formalization of a protocol as logical constraints and its implementation as
queries allows us to formally reason about the correctness of an implementation.
Given a protocol specification Φ and an implementation of this protocol as a
set q of scheduling queries, the definition presented below defines what it means
for q to correctly implement Φ. Intuitively, this is the case if for every input I,
the history created by our scheduling algorithm using q satisfies Φ. We use this
definition in Sec. 7 to prove the correctness of our DSSI implementation.

Definition 3 (Correctness of Scheduling Queries). Scheduling queries q
satisfy a protocol specification Φ, denoted as q |= Φ, if for every input sequence
I the generated history H produced using q satisfies Φ: Hq(I) |= Φ.

3.1 Assumptions and Notational Remarks

We make the following assumptions: (1) Client requests read resp. manipulate
only one tuple. (2) A transaction waits until its current request is executed
before issuing new requests. (3) Object identifiers are unique over all relations.
(4) Rollbacks of transactions are considered as regular requests issued by clients.
Extending Oshiya to schedule complex queries like joins or range queries is an
interesting avenue for future work. Assumptions 2-4 simplify the presentation,
but can be changed with minor modifications to Oshiya.

Scheduling queries and protocol specifications are given as domain relational
calculus expressions. Capital letters denote variables, small letters indicate con-
stants and ε denotes null. All non-target variables not used in a universal quantifi-
cation are implicitly existentially quantified. E.g., instead of {A | ∃B : (I(A, B)
∧ ¬∃C : (J(C, A)))} we write {A | I(A, B)∧ ¬J(C, A)}. Unrestricted existen-
tially quantified variables are displayed as an underline (“ ”), disjunctive use of
constants by “|”. E.g., for the expression I(A, B) ∧ (A = a ∨ A = c) we use the
shortcut I(a|c,). We define aggregation as: {G, F1(A1), . . . , Fn(An) | E}. E is a
domain relational calculus expression, G is a set of attributes on which to group
on (can be empty), and each Fi is an aggregate over attribute Ai.

4 Modeling Data Relation Snapshots and Defining the
Oshiya Scheduling Relation Schemata for DSSI

In order to implement DSSI with Oshiya, we have to (1) specify the schema of the
scheduling relations that model the scheduler state, (2) formalize the protocol
specification based on these relations (Sec. 5), and (3) implement the protocol
specification as scheduling queries (Sec. 6). In this section, we show how to adapt
data relation schemata to support data item versions (Sec. 4.1) and develop
protocol-specific schemata for the Oshiya scheduling relations (Sec. 4.2).

4.1 Modeling Snapshots with Data Relations

We model snapshots explicitly by extending the schemata of data relations. This
allows us to achieve DB independence and to run DSSI on DBMSs that do not

176 C. Tilgner et al.

support snapshots. We identify a version of data item x using a tuple (TA, Seq)
where TA is the transaction that created the version and Seq is the position of
the request within this transaction. Of course, versions can be modeled differently
but this is orthogonal to our approach and beyond the scope of this paper.
Given a database schema with relations R1, . . . , Rn, we map each relation Ri

to a relation R′
i which has four additional attributes. These attributes store the

version identifier for the creator transaction (CTA and CSeq) and, if applicable,
for the transaction that deleted the data item (DTA and DSeq). The primary
key of R′

i is the primary key of Ri union the attributes CTA and CSeq.

Example 6. Assume a bank stores account data with account numbers and bal-
ances in relation Accounts(AccNr,Bal). We map this relation to Accounts′ by
extending its schema with the four additional attributes mentioned above. An
example instance shown on the right con- Accounts′

AccNr Bal CTA CSeq DTA DSeq
x 5 1 1 - -
x 10 2 2 - -
x 15 3 1 - -

tains an initial version of object x created
by transaction t1 (CTA = 1, CSeq = 1)
and two new versions created by t2 and t3.

4.2 Oshiya Scheduling Relation Schemata

For DSSI, we use the schemata for scheduling relations R, H and E shown below.
For simplicity, we present only attributes needed for scheduling and omit those
necessary for request execution (e.g., the value to be written for write requests).

R (TA,Seq,Op,OID) H (ID,TA,Seq,Op,OID,OTA,OSeq) E (ID,TA,Seq,Op,OID,OTA,OSeq)

For each incoming request, we insert a tuple into R storing an identifier Ti

for the transaction ti that issued the request (TA), the request position within
this transaction (Seq), the type of operation (read, write, abort or commit,
stored in attribute Op) and the data object the requests is applied to (OID).
Transactions identifiers (TA) are ordered, i.e., if boti < botj then Ti < Tj. H
and E contain additional attributes: ID records the execution order of requests.
For read requests, OTA and OSeq store which object version was read by the
request. These attributes correspond to the data relations attributes CTA and
CSeq.

Example 7. Assume the instances of relations R and H displayed below.
H contains the requests that produced the R

TA Seq Op Ob
H
ID TA Seq Op Ob OTA OSeq
1 1 1 w x - -
2 1 2 c - - -
3 2 1 r x 1 1
4 2 2 w x - -
5 3 1 w x - -
6 2 3 c - - -
7 4 1 r x 2 2

state of relation Accounts′ from Ex. 6: (1) and
(2) Transaction t1 created the initial version
of object x and committed. (3) Transaction t2
read this version of object x. (4) and (5) t2
and t3 wrote new versions of object x. (6) t2
committed. (7) t4 read the new version cre-
ated by t2. At this iteration, R contains no
pending requests that have to be scheduled.

Declarative Serializable Snapshot Isolation 177

5 DSSI Protocol Specification

We now develop the protocol specification for DSSI based on the scheduling
relations presented in Sec. 4. Recall from Sec. 3 that a protocol specification
models a protocol as a set of domain relational calculus expressions over histories.

To formalize SI with Oshiya, we use views over relation H to get the relevant
information described in Sec. 2. For bot, we use view BOT (TA, ID) querying for
each transaction (TA) the ID of its first request in H. EOT (TA, Op, ID) selects
for each finished transaction ti (TA) the ID of its final request in H (corre-
sponds to eoti) and whether ti aborted or committed (Op). Overlap(TA1, TA2)
contains all pairs of concurrently executed, non-aborted transactions, i.e., they
do not have to be committed. PotPivotStr(TA1, TA2, TA3) selects all triples of
transactions forming potential pivot structures as described in Sec. 2.3.

C1 (Read Versions). The SI protocol specifies [3,5,14] that a read request ri(x)
of a transaction ti reads ti’s most recent changes to x. If no such changes exist,
then ri(x) reads the latest version of x created by transactions that committed
before ti started. These conditions are formalized as protocol specification con-
straint C1 (a) and (b) shown in Fig. 3: (a) The first case applies if a transaction
T has written object O before reading a version (X, Y) of O:

H(I, T, N, r, O, X, Y) ∧ H(I2, T, N2, w, O, ,) ∧ I2 < I

It follows that T read a version it created itself (X = T) and (X, Y) is the latest
version produced by T before the read (no newer versions exist):

X = T ∧ N2 = Y ∧ ¬(H(, T, N2, w, O, ,) ∧ Y < N2 < N)

(b) The second case applies if T has not written O before the read was executed:
¬(H(I2, T, , w, O, ,) ∧ I2 < I). It follows that (1) O was written by another
transaction X and X committed before T started. (2) (X, Y) has to be the
latest version written by X and (3) there may not be another version written by
a transaction T2 that committed after X but before T started:
(1) X �= T ∧ EOT (X, c, I3) ∧ BOT (T, I4) ∧ I3 < I4 (2) ¬(H(, X, N3, w, O, ,) ∧ N3 > Y)

(3) ¬(H(, T2, , w, O, ,) ∧ EOT (T2, c, I5) ∧ I4 < I5 < I3)

C2 (FCW). SI requires disjoint write-sets for all committed concurrent trans-
actions. Protocol specification constraint C2 (see Fig. 3) models this condition
as follows. If (1) two overlapping transactions T and T2 (2) both wrote the same
object O and (3) T did already commit, then (4) T2 did not commit:

(1) Overlap(T, T2) (2) H(, T, , w, O, ,) ∧H(, T2, , w, O, ,)

(3) EOT (T, c,) (4) ¬EOT (T2, c,)

C3 (Serializability). Recall that an SI history is serializable, if it does not
contain pivot structures. In constraint C3 (see Fig. 3), we follow the approach
outlined in Sec. 2.3: If (1) relation H contains a potential pivot structure, then
we require that (2) at least one of the participating transactions did not commit:

(1) PotPivotStr(T, T2, T3) (2) ¬(EOT (T, c,) ∧ EOT (T2, c,) ∧ EOT (T3, c,))

178 C. Tilgner et al.

(C1) (a) ∀I, N, O, T, X, Y : H(I, T, N, r, O, X, Y) ∧ H(I2, T, N2, w, O, ,) ∧ I2 < I ⇒
X = T ∧ N2 = Y ∧ ¬(H(, T, N3, w, O, ,) ∧ Y < N3 < N)

(b) ∀I, N, O, T, X, Y : H(I, T, N, r, O, X, Y) ∧ ¬(H(I2, T, , w, O, ,) ∧ I2 < I) ⇒
X �= T ∧ EOT (X, c, I3) ∧ BOT (T, I4) ∧ I3 < I4 ∧ ¬(H(, X, N3, w, O, ,) ∧ N3 > Y)∧
¬(H(, T2, , w, O, ,) ∧ EOT (T2, c, I5) ∧ I3 < I5 < I4)

(C2) ∀O, T, T2 : Overlap(T, T2) ∧ H(, T, , w, O, ,) ∧ H(, T2, , w, O, ,) ∧ EOT (T, c,)

⇒ ¬EOT (T2, c,)

(C3) ∀T, T2, T3 : PotPivotStr(T, T2, T3) ⇒ ¬(EOT (T, c,) ∧ EOT (T2, c,) ∧ EOT (T3, c,))

Fig. 3. DSSI Protocol Specification

6 DSSI Implementation

Recall that with Oshiya, protocols are implemented as scheduling queries. We
implemented all scheduling queries for DSSI, but in this paper we only de-
scribe QSchedule. Our prototype implementation of Oshiya requires the schedul-
ing queries to be expressed in SQL. However, for conciseness, domain relational
calculus expressions are used throughout this section. QSchedule is developed in
two steps. First we present queries necessary to detect potential pivot structures
(Sec. 6.1). Afterwards, we use these queries to implement QSchedule (Sec. 6.2).
Recall that detecting potential pivot structures and aborting one of the partic-
ipating transactions ensure serializability. However, this approach may detect
false positives (see Sec. 2). Studying the trade-off between the number of false
positives and the cost of scheduling is an interesting avenue for future work.

6.1 Detecting Potential Pivot Structures

We now discuss how to express BOT , EOT , Overlap and PotPivotStr introduced
in Sec. 5 as queries over H. BOT and EOT are defined below. E.g., EOT queries
for each finished transaction T its abort resp. commit state (A) and its eot (I)
which is equal to the ID of its abort resp. commit request in H.

BOT = {T, I | H(I, T, , , , ,) ∧ ¬(H(I2, T, , , , ,) ∧ I2 < I)}
EOT = {T, A, I | H(I, T, , A, , ,) ∧ A = a|c}

Overlapping transactions are inferred as specified below. Two (1) non-aborted
transactions T1 and T2 overlap if (2) bot1 <H bot2 and (3) bot2 <H c1 (if T1 has
already committed) or (4) the symmetric case holds:

Overlap = {T1, T2 | T1 �= T2 ∧ ¬EOT (T1|T2, a,) ∧ (1)

((BOT (T1, I) ∧ BOT (T2, I2) ∧ I < I2 ∧ (2)

(EOT (T1, c, I3) ⇒ I2 < I3)) ∨ (3)

(BOT (T2, I2) ∧ BOT (T1, I) ∧ I2 < I ∧ (EOT (T2, c, I3) => I < I3)))} (4)

We use PotVulnEdge to query all potential vulnerable edges between concurrent,
non-aborted transactions T and T2 (potential, because T and T2 might not yet
have committed). PotPivotStr detects potential pivot structures by checking for
transactions (T2) that have both an incoming and outgoing PotVulnEdge:

Declarative Serializable Snapshot Isolation 179

PotVulnEdge = {T, T2 | H(I, T, , r, O, ,) ∧ H(I2, T2, , w, O, ,) ∧ Overlap(T, T2) ∧ I < I2}
PotPivotStr = {T, T2, T3 | PotVulnEdge(T, T2) ∧ PotVulnEdge(T2, T3)}

Example 8. We show the results of the queries defined above (highlighted) for
the history state H from Ex. 7. For instance, PotVulnEdge contains one potential
vulnerable edge from transaction t2 to t3, because t2 and t3 overlap and t2 read
object x and afterwards t3 wrote a new version of object x (r2(x) <H w3(x)).

H
ID TA Seq Op Ob OTA OSeq
1 1 1 w x - -
2 1 2 c - - -
3 2 1 r x 1 1
4 2 2 w x - -
5 3 1 w x - -
6 2 3 c - - -
7 4 1 r x 2 2

BOT
TA ID
1 1
2 3
3 5
4 7

EOT
TA Op ID
1 c 2
2 c 6

Overlap
TA1 TA2
2 3
3 2
3 4
4 3

PotVulnEdge
TAout TAin
2 3

PotPivotStr
TA1 TA2 TA3

6.2 QSchedule

The DSSI version of QSchedule implementing the protocol specification con-
straints C1-C3 is shown in Fig. 4. According to the SI conditions, all write,
abort, and read requests from R may always be selected for execution. QSchedule

selects all of these requests using queries AbortWrites and Reads. Which commit
requests can be selected without violating constraints C2 and C3 is determined
through query ValidCommits. In QSchedule, function GenID() generates unique
values for the ID attribute of H (modelling the execution order of requests).

Read Requests (C1). The Reads query uses LVV (last valid version) to select
for each read request of transaction T on object O the version (T2, N2) that has
to be read. Recall that attributes OTA and OSeq of relations E and H identify
a version of an object O. Version (T2, N2) is computed in two steps. LastOTA
queries the transaction identifier (T2) of the transaction that wrote the version
of O that has to be read by T . Based on this information LVV determines N2,
the Seq value of the latest write request of T2 on object O. T2 is the maximal
value from the following union: (a) T2=T if T itself created versions of O and
(b) transactions that wrote a version of O and committed before T started.
(a)H(, T2, , w, O, ,) ∧ T = T2 (b)H(, T2, , w, O, ,) ∧ EOT (T2, c, I2) ∧ (BOT (T, I) ⇒ I2 < I)

Example 9. Consider H from Ex. 8. r2(x) read the initial version of object x
(since c1 <H bot2) and r4(x) read the version written by t2 (since c2 <H bot4).

Commit Requests (C2 and C3). To guarantee that constraints C2 and C3
hold for each history produced by QSchedule, we have to prevent commit requests
to be executed if (1) the commit would violate the FCW rule (C2) or (2) the
commit would violate serializability (C3). There are two possible ways how the
execution of commit requests can violate the FCW rule: (1a) A commit is from
a transaction whose write-set overlaps with the one of a concurrent but already
committed transaction and (1b) if R contains commit requests from multiple

180 C. Tilgner et al.

QSchedule = {GenID(), T, N, A, O, T2, N2 | R(T, N, A, O) ∧ (ValidCommits(T, N, T2, N2)

∨AbortsWrites(T, N, T2, N2) ∨ Reads(T, N, T2, N2))}
AbortsWrites = {T, N, ε, ε | R(T, N, a|w,)}

Reads = {T, N, T2, N2 | R(T, N, r, O) ∧ LVV (T, O, T2, N2)}
LVV = {T, O, T2, MAX(N2) | LastOTA(T, O, T2) ∧ H(, T2, N2, w, O, ,)}

LastOTA = {T, O, MAX(T2) | R(T, , r, O) ∧ ((H(, T2, , w, O, ,) ∧ T = T2)∨
(H(, T2, , w, O, ,) ∧ EOT (T2, c, I2) ∧ (BOT (T, I) ⇒ I2 < I)))}

ValidCommits = {T, N, ε, ε | NonForbCs(T, N) ∧ ¬DelayedCs(T, N)}
DelayedCs = {T, N | NonForbCs(T, N) ∧ NonForbCs(T2,)∧

H(, T, , w, O, ,) ∧ H(, T2, , w, O, ,) ∧ T > T2}
NonForbCs = {T, N | R(T, N, c,) ∧ ¬(ForbCs(T, N) ∨ ForbCinPPS(T, N))}

ForbCinPPS = {T, N | R(T, N, c,) ∧ PotPivotStr(T2, T3, T4) ∧ (T = T2|T3|T4)∧
¬(R(T5, , c, ,) ∧ (T5 = T2|T3|T4) ∧ T < T5)}

ForbCs = {T, N | R(T, N, c,) ∧ H(, T, , w, O, ,) ∧H(, T2, , w, O, ,)∧
Overlap(T, T2) ∧ EOT (T2, c,)}

Fig. 4. QSchedule

transactions with overlapping write-sets, then only one of these transaction may
commit. Note that in the concrete implementation, commits identified to violate
C2 or C3 are selected by QRevoked and aborted.

We use a two stage approach to select valid commits: In step 1, query Non-
ForbCs selects commits from R and filters out commits of case 1a using query
ForbCs and those of case 2 using query ForbCinPPS. NonForbCs may still con-
tain sets of commit requests from transactions with overlapping write-sets (case
1b). We only allow the oldest transaction from each set to commit. Therefore, in
step 2, query ValidCommits selects all requests from NonForbCs and uses query
DelayedCs to keep only the commit request of the oldest transaction for each
set of transactions with overlapping write-sets.

Step 1. Query ForbCs (case 1a) identifies commits of transactions T that (a)
wrote an object also written by an (b) overlapping committed transaction T2.

(a) H(, T, , w, O, ,) ∧ H(, T2, , w, O, ,) (b) Overlap(T, T2) ∧ EOT (T2, c,)

ForbCinPPS (case 2) selects a commit of transaction T from R if (a) T belongs
to potential pivot structure p and (b) R does not contain a commit request of a
younger transaction T5 (recall that bot1 < bot2 ⇒ T1 < T2) also belonging to p.
Thus, if R contains commits of more than one of the transactions belonging to
p, we disallow only the youngest one to commit (and abort it using QRevoked).
(a) PotPivotStr(T2, T3, T4) ∧ (T = T2|T3|T4) (b) ¬(R(T5, , c, ,) ∧ (T5 = T2|T3|T4) ∧ T < T5)

Example 10. Consider the instances of R and H shown below that model history
Hws from Fig. 1. To keep the example simple, we do not show the actions of
transaction t0 that created the initial versions of objects x and y. Requests c1

and c2 belong to the same potential pivot structure p. Their execution can lead
to a write skew violating C3. QSchedule selects c1 (smallest TA value). c2 (commit
of youngest transaction) is selected by ForbCinPPS and aborted to break p.

Declarative Serializable Snapshot Isolation 181

R
TA Seq Op Ob
1 4 c -
2 4 c -

Q
S

c
h

e
d

u
le

F
o
rb

C
s

D
e
la

y
e
d
C

s

F
o
rb

C
in

P
P

S

X
X

H
ID TA Seq Op Ob OTA OSeq
1 1 1 r x 0 1
2 1 2 r y 0 2
3 2 1 r x 0 1
4 2 2 r y 0 2
5 1 3 w x - -
6 2 3 w y - -

Overlap
TA1 TA2
1 2
2 1

PotVulnEdge
TAout TAin
2 1
1 2

PotPivotStr
TA1 TA2 TA3
1 2 1
2 1 2

Step 2. DelayedCs detects case 1b by selecting all transactions T from NonFor-
bCs where (a) NonForbCs contains another transaction T2 which (b) wrote an
object O that has also been written by T and (c) which is older than T .

(a) NonForbCs(T2,) (b) H(, T, , w, O, ,) ∧ H(, T2, , w, O, ,) (c) T > T2

Example 11. Consider the instances of R and H displayed below. QSchedule se-
lects all read (r6(x)) and write (w7(y)) requests. c3 belongs to ForbCs because
transaction t3 wrote the same object as the concurrent but already committed
transaction t2 and is, thus, not allowed to commit. c4 and c5 belong to NonFor-
bCs, but t4 and t5 both wrote the same object x. ValidCommits selects only c4

(oldest transaction from the set {t4, t5} of transactions with overlapping write-
set). c5 is filtered out by DelayedCs.

R
TA Seq Op Ob
3 2 c -
4 3 c -
5 2 c -
6 1 r x
7 1 w y

Q
S

c
h

e
d

u
le

V
a
li
d
C

o
m

m
it

s

D
e
la

y
e
d
C

s

N
o
n
fo

rb
C

s

F
o
rb

C
in

P
P

S
F
o
rb

C
s

X
X X X

X X
X
X

H
ID TA Seq Op Ob OTA OSeq
1 1 1 w x - -
2 1 2 c - - -
3 2 1 r x 1 1
4 2 2 w x - -
5 3 1 w x - -
6 2 3 c - - -
7 4 1 r x 2 2
8 4 2 w x - -
9 5 1 w x - -

7 Correctness Analysis

We now proof that every history produced under DSSI is serializable. Recall
that an SI history is serializable if it does not contain a pivot structure. Thus,
we can show this fact by proving that H cannot contain a potential pivot struc-
ture between committed transactions (equivalent after Sec. 2.3). Note that the
influence of the other scheduling queries (mentioned in Sec. 3) on the results of
QSchedule and the compliance of C1 and C2 are not in the scope of this paper.

Theorem 1 (QSchedule Prevents Pivot Structures). QSchedule |= C3

Proof. We omit to prove that the query PotPivotStr returns all potential pivot
structures contained in H, because the proof is trivial. We proof Theorem 1 by
contradiction. Assume the negation of C3 holds:

¬(∀T, T2, T3 : PotPivotStr(T, T2, T3) ⇒ ¬(EOT (T, c,) ∧ EOT (T2, c,) ∧ EOT (T3, c,)))

⇔ ∃T, T2, T3 : PotPivotStr(T, T2, T3) ∧ EOT (T, c,) ∧ EOT (T2, c,) ∧ EOT (T3, c,)

182 C. Tilgner et al.

Let k be the first scheduler iteration where this equation holds for a fixed T1,
T2, T3 and T4.

⇔ ∃T, T2, T3, k : PotPivotStrk(T, T2, T3) ∧ EOTk(T, c,) ∧ EOTk(T2, c,) ∧ EOTk(T3, c,)

Without loss of generality, let T3, the transaction at the third position of the
potential pivot structure (PotP ivotStr(T, T2, T3)), be the youngest transaction
of the participating transactions. This assumption does not result in a loss of
generality, because the position of T3 is irrelevant for the rest of the proof. There
must exist a scheduler iteration i < k where T3 has not yet committed but al-
ready belongs to PotPivotStr.

⇒ ∃i : PotPivotStri (T, T2, T3) ∧ T3 > T ∧ T3 > T2 ∧ ¬EOTi(T3, c,)

It follows that the commit request c3 of T3 occurs in relation R at some sched-
uler iteration j (i < j < k). To be executed, c3 has to belong to the set of
non-forbidden commits (NonForbCs). We can assume PotPivotStri(T, T2, T3) ⇒
PotPivotStrj (T, T2, T3).

⇒ ∃j : PotPivotStrj (T, T2, T3) ∧ T3 > T ∧ T3 > T2 ∧ ¬EOTj(T3, c,) ∧ NonForbCsj (T3 ,)

We now replace NonForbCs by its definition and, afterwards, remove terms that
are not needed to derive the contradiction:

⇔ ∃j : PotPivotStrj (T, T2, T3) ∧ T3 > T ∧ T3 > T2 ∧ ¬EOTj(T3, c,) ∧
Rj(T3, , c,) ∧ ¬ForbCsj (T3,) ∧ ¬ForbCinPPSj (T3,)

⇒ ∃j : PotPivotStrj (T, T2, T3) ∧ T3 > T ∧ T3 > T2 ∧ Rj(T3, , c,) ∧ ¬ForbCinPPSj (T3,)

Since c3 in R is the commit request of the youngest transaction participating
in p, R cannot contain a commit request of a transaction that is both younger
than T3 and also belongs to p:

⇔ ∃j : Rj(T3, , c,) ∧ PotPivotStrj (T, T2, T3) ∧ ¬(Rj(T4, , c,) ∧ T4 = T |T2 ∧ T4 < T3) ∧
¬ForbCinPPSj (T3,)

From the first line of the equation shown above, we can follow ForbCinPPSj (T3,)
which leads to the contradiction and, thus, proves Theorem 1:

⇒ ∃j : ForbCinPPSj (T3,) ∧ ¬ForbCinPPSj (T3,) ⇒ � �

8 Related Work

The ACTA framework allows to formalize properties of transaction models us-
ing first-order formulas over schedules [6]. Its conciseness and clarity inspired us
to implement schedulers based on declarative protocol specifications. The basic
ideas of Oshiya have been presented in [13], but this work focused on single-version
protocols (2PL) and did not consider correctness. Recent research projects lever-
age the advantages of declarative languages in various areas [2,4,7,12,15,16]. The
Boom approach uses Overlog to build distributed systems [2], e.g., a scheduler
for MapReduce tasks with policies like First-Come-First-Served. In contrast to
our approach, Boom does not focus on DB requests or consistency.

Application analysis techniques have been presented in [10,9] to determine
if applications generate serializable executions when running on a system that

Declarative Serializable Snapshot Isolation 183

applies SI. The key idea is that DBAs analyze transaction programs, produce
static dependency graphs and manually check for dangerous access patterns lead-
ing to non-serializability. Some approaches modify transaction programs to en-
sure serializable SI schedules: Fekete [9] proposed the techniques Materialize and
Promotion to achieve serializability. Jorwekar et al. [11] tried to automate the
check whether non-serializable SI executions can occur. However, this approach
still requires manual confirmation and modification. Fekete [8] executes certain
transactions of pivot structures under S2PL, others run under SI. This approach
requires the underlying platform to support both S2PL and SI. Alomari et al. [1]
set exclusive locks in an External Lock Manager (ELM) to ensure serializability
with SI. In contrast to DSSI, these approaches do not work for ad-hoc transac-
tions and require static analysis or manual program modifications.

Another line of work focused on modifying the SI algorithm of the underlying
system to ensure serializability. The closest approach to DSSI is the SSI proto-
col [5] described in Sec. 2.3. This approach modifies the DB lock manager with
an additional type of locks that are used to detect potential pivot structures.
DSSI infers all necessary information to detect and prevent these structures from
relation H. Our implementation works with DBMSs out of the box. The under-
lying DBMS does not even need to provide SI since we model data versions in
a standard relational schema (see Sec. 4). Using Oshiya, the implementation of
DSSI is close to its formal specification, which enabled us to prove its correctness.

9 Conclusions and Future Work

We develop Declarative Serializable Snapshot Isolation (DSSI) using our declar-
ative scheduling model Oshiya. DSSI ensures serializable schedules by avoid-
ing pivot structures and provides DB independence. We formally define DSSI
as an Oshiya protocol specification, present a scheduler implementation, and
prove that the implementation ensures serializability. In future work, we will
experimentally evaluate the performance of DSSI and investigate the trade-offs
involved in reducing the amount of false positives.

References

1. Alomari, M., Fekete, A., Röhm, U.: A Robust Technique to Ensure Serializable
Executions with Snapshot Isolation DBMS. In: ICDE, pp. 341–352 (2009)

2. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.:
Boom Analytics: Exploring Data-Centric, Declarative Programming for the Cloud.
In: EuroSys, pp. 223–236 (2010)

3. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A Critique
of ANSI SQL Isolation Levels. In: SIGMOD, pp. 1–10 (1995)

4. Böhm, A., Marth, E., Kanne, C.-C.: The Demaq System: Declarative Development
of Distributed Applications. In: SIGMOD, pp. 1311–1314 (2008)

5. Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable Isolation for Snapshot Databases.
TODS 34(4), 1–42 (2009)

184 C. Tilgner et al.

6. Chrysanthis, P.K., Ramamritham, K.: ACTA: A Framework for Specifying and
Reasoning about Transaction Structure and Behavior. In: SIGMOD, pp. 194–203
(1990)

7. Chu, D., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica,
I.: The Design and Implementation of a Declarative Sensor Network System. In:
SenSys, pp. 175–188 (2007)

8. Fekete, A.: Allocating Isolation Levels to Transactions. In: PODS, pp. 206–215
(2005)

9. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Making Snapshot
Isolation Serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005)

10. Fekete, A.D.: Serializability and Snapshot Isolation. In: Australasian Database
Conference, pp. 201–210 (1999)

11. Jorwekar, S., Fekete, A., Ramamritham, K., Sudarshan, S.: Automating the De-
tection of Snapshot Isolation Anomalies. In: VLDB, pp. 1263–1274 (2007)

12. Kot, L., Gupta, N., Roy, S., Gehrke, J., Koch, C.: Beyond Isolation: Research
Opportunities in Declarative Data-Driven Coordination. SIGMOD Rec. 39, 27–32
(2010)

13. Tilgner, C.: Declarative Scheduling in Highly Scalable Systems. In: EDBT/ICDT
Workshops, pp. 41:1–41:6 (2010)

14. Weikum, G., Vossen, G.: Transactional Information Systems. Morgan Kaufmann
Publishers, San Francisco (2002)

15. White, W., Demers, A., Koch, C., Gehrke, J., Rajagopalan, R.: Scaling Games to
Epic Proportions. In: SIGMOD, pp. 31–42 (2007)

16. Yang, F., Shanmugasundaram, J., Riedewald, M., Gehrke, J.: Hilda: A High-Level
Language for Data-Driven Web Applications. In: ICDE (2006)

	Declarative Serializable Snapshot Isolation
	Introduction
	Background: Snapshot Isolation and Serializability
	Snapshot Isolation
	Detecting Non-serializable Histories
	Serializable Snapshot Isolation Protocol

	Declarative Scheduling Model
	Assumptions and Notational Remarks

	Modeling Data Relation Snapshots and Defining the Oshiya Scheduling Relation Schemata for DSSI
	Modeling Snapshots with Data Relations
	Oshiya Scheduling Relation Schemata

	DSSI Protocol Specification
	DSSI Implementation
	Detecting Potential Pivot Structures
	QSchedule

	Correctness Analysis
	Related Work
	Conclusions and Future Work
	References

