
Smile: Enabling Easy and Fast Development of

Domain-Specific Scheduling Protocols

Christian Tilgner1, Boris Glavic2, Michael Böhlen1, and Carl-Christian Kanne3

1 University of Zurich
2 University of Toronto

3 University of Mannheim
{tilgner,boehlen}@ifi.uzh.ch, glavic@cs.toronto.edu,

kanne@informatik.uni-mannheim.de

Abstract. Modern server systems schedule large amounts of concur-
rent requests constrained by, e.g., correctness criteria and service-level
agreements. Since standard database management systems provide only
limited consistency levels, the state of the art is to develop schedulers
imperatively which is time-consuming and error-prone. In this poster, we
present Smile (declarative Scheduling MIddLEware), a tool for develop-
ing domain-specific scheduling protocols declaratively. Smile decreases
the effort to implement and adapt such protocols because it abstracts
from low level scheduling details allowing developers to focus on the pro-
tocol implementation. We demonstrate the advantages of our approach
by implementing a domain-specific use case protocol.

1 Introduction

Modern application servers handle large numbers of concurrent requests which
have to be scheduled according to, e.g., correctness criteria like classical serializ-
ability or service-level agreements (SLAs). Standard database management sys-
tems (DBMSs) offer a limited amount of fixed consistency levels, do not provide
sophisticated support for SLAs and, thus, often cannot be used to satisfy domain-
specific scheduling requirements. The state of the art is to develop schedulers
imperatively for applications like Amazon, Ebay or Yahoo [2,5] which yields fine-
tuned schedulers satisfying the application’s scheduling constraints. But proce-
dural implementations of schedulers can be complex and difficult to understand,
especially if the request types and correctness criteria are less well studied than,
e.g., classic serializability. Adapting schedulers to evolving requirements results
in expensive and error-prone re-implementations. With our approach we address
these issues by leveraging a declarative language to implement schedulers which
has been shown to be beneficial in previous work [1,3].

1.1 Banking Scenario

We use the following simplified banking scenario to illustrate the shortcom-
ings of standard DBMSs with regard to non-standard scheduling requirements.
A bank institute serves normal and premium customers holding bank accounts.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 128–131, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Smile: Enabling Easy and Fast Development 129

A domain expert defines the following constraints: (C1) Account data has to be
accessed under strong consistency to obviate inconsistent states and (C2) Do not
schedule requests for normal customers, if there are pending requests from pre-
mium customers. How can a scheduler developer implement these constraints?
Constraint C1 can be realized with standard DBMSs by applying a high isola-
tion level, but C2 is not supported by standard DBMSs. The alternative is to
develop a new scheduler from scratch which is expensive and error-prone.

2 Smile: Declarative Scheduling Middleware

Smile, our declarative scheduling middleware prototype, allows the implemen-
tation of domain-specific scheduling constraints. Executable scheduling proto-
cols are specified with few lines of code, paving the way for sophisticated and
easy-to-reason-about scheduling protocols. Our approach is based on a generic
formal framework called Oshiya1 that models the scheduling state as a set of
so-called scheduling relations, e.g., one relation stores the schedule produced so
far. Scheduling logic is encapsulated in a set of declarative queries called schedul-
ing queries. To produce a schedule (sequence of scheduling relation states), Smile
schedules multiple requests at the same time by repeatedly executing the schedul-
ing queries over the scheduling relations.

This approach has several advantages: (1) Smile abstracts from low level
scheduling details that are independent of the scheduling constraints such as
parallelism in the scheduler code, queueing of incoming requests, or managing
(network) connections. Developers can focus on the protocol implementation
(the scheduling queries) itself, which decreases the amount of code and the ef-
fort needed to implement or adapt schedulers. We developed scheduling queries
for the strong two-phase locking (SS2PL) protocol [4] as well as for a data depen-
dent, relaxed consistency protocol. (2) Smile’s underlying model allows to specify
scheduling protocols close to their formal definition, facilitating reasoning over
properties of protocol implementations such as verifying their correctness. For
instance, we have proven the correctness of the scheduling queries implementing
SS2PL [4]. (3) The separation of scheduling logic and scheduler implementation
opens up interesting optimization opportunities that we plan to investigate in fu-
ture work. E.g., using specialized execution engines to execute scheduling queries
and controlling the trade-off between the time spent for scheduling requests and
the time spent to execute them. (4) Scheduling sets of requests at the same time
can improve the performance for large numbers of concurrent requests [3].

2.1 Oshiya Scheduling Model

In Oshiya [3], the scheduling state (requests to schedule and history information
needed for scheduling decisions) is stored in three scheduling relations: Pendin-
gRequests (R) buffers requests that have to be scheduled for execution. Relevan-
tHistory (H) stores prior executed requests in their execution order, modelling
1 Oshiya refers to the passenger arrangement staff at Japanese train stations who help

to fill a train by pushing people onto the train or guiding people to free railway cars.

130 C. Tilgner et al.

the schedule generated so far. Executable (E) buffers requests chosen for exe-
cution. Scheduling protocols are realized as three scheduling queries: QSchedule,
QRevoked, QIrrelevant. Given previously executed requests, these queries deter-
mine in which order to execute pending requests. The scheduler state is advanced
in iterative steps by applying a generic scheduling algorithm (shown in Fig. 2)
that evaluates the scheduling queries over the current instances of the schedul-
ing relations. The algorithm is the same for every protocol, but is parameterized
by the protocol specific scheduling relations schemata and scheduling queries.
Each scheduler iteration (while loop) performs the following steps: (1) Requests
scheduled in the previous iteration are removed from R. (2) Newly arrived client
requests (N) are added to R. (3) QRevoked determines transactions that have
to be aborted since the requests cannot be executed due to constraint viola-
tions or blocking. (4) QSchedule implements the scheduling protocol. It selects
all requests from R that can be executed in this iteration without violating the
protocol constraints. (5) Requests in E are executed and (6) added to H. (7)
QIrrelevant identifies those requests from H that are irrelevant for future schedul-
ing decisions, and is used to prune H so that it does not grow continuously.

2.2 Smile Architecture

The Smile prototype implements the Oshiya scheduling model outlined in the
last subsection using three threads (ClientWorker, Declarative Scheduler and
Executor), all running independently and continuously. The Smile architecture
is shown in Figure 1 with arrows denoting data flow.

Clients

Smile
ClientWorker

Executor

Return
request
replies

DBMS

Insert new
requests

Select
next

statement

Declarative Scheduler

Execute()

Revoked

Irrelevant

Schedule

Protocol
Library

Runtime
Statistics
Collection

Q

Q

Q
R

H

E

Fig. 1. Smile Architecture

H = E = R = ∅
while t rue do begin

1 R = R− E ;
2 R = R ∪ N ;
3 R = R− QRevoked(H,R) ;
4 E = QSchedule(H,R) ;
5 Execute(E) ;
6 H = H∪ E ;
7 H = H− QIrrelevant(H) ;

end

Fig. 2. Smile Algorithm

ClientWorker. This thread manages client connections. The ClientWorker
thread receives new requests from clients, buffers these client requests in a queue
and periodically inserts them into R as batch job (Step 2).

Declarative Scheduler. This thread performs request scheduling by periodi-
cally executing QRevoked, QSchedule and QIrrelevant (Steps 3, 4, 7).

Executor. The Executor thread is executing the scheduled requests located in
E against the DBMS by repeating the following steps: Retrieve the request with
the smallest ID from E , execute it against the back-end DBMS, return the request
result to the client that has sent this request, and delete it from E (Step 5).

Smile: Enabling Easy and Fast Development 131

Protocol Library. Smile offers a protocol library providing the scheduler de-
veloper with pre-cooked scheduling queries (e.g., for SS2PL). These scheduling
queries can be used out of the box or as a starting point to develop domain-
specific protocols. We expect developers to extend this library over time with
their own protocol modules.

Runtime Statistics Collection. We let Smile gather statistics about the be-
haviour of its operations at runtime such as the cardinalities of R, H and E and
the execution times of the scheduling queries. In future work, we plan to expose
this information to the scheduler developer for the use in the scheduling queries
and let her provide policies for scheduling the execution of the Smile threads.

We developed strategies deciding when to pause a thread ensuring an efficient
resource usage. E.g., running the Executor while E is empty wastes resources.

2.3 Example: Use Case Implementation

We sketch the protocol implementation of the use case to illustrate the simplicity
and conciseness of our approach. Scheduling queries are given as domain rela-
tional calculus (DRC) expressions. A simplified DRC formulation of QSchedule

implementing the use case constraints is:

QSchedule = {S, C | is2PL(S, C)∧
∃C2(C2 =′ premium′ ∧ (is2PL(, C2) ⇒ C =′ premium′))}

We use a declarative implementation of SS2PL to realize constraint C1. Predicate
is2PL(S, C) uses R to determine all requests S with their customer class C that
can be executed without violating the SS2PL constraints that have to hold for
the generated schedule (requests in relation H). We use S as a shorthand for
the request related attributes of is2PL (transaction ID etc.). Using Oshiya, we
can implement scheduling constraint C2 as follows: If there exists at least one
request of a premium customer (C2 =′ premium′ ∧ is2PL(, C2)), then only
premium requests are selected by QSchedule (C =′ premium′).

References

1. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.:
Boom Analytics: Exploring Data-Centric, Declarative Programming for the Cloud.
In: EuroSys, pp. 223–236 (2010)

2. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.-A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s Hosted Data
Serving Platform. PVLDB 1(2), 1277–1288 (2008)

3. Tilgner, C.: Declarative Scheduling in Highly Scalable Systems. In: EDBT/ICDT
Workshops, pp. 41:1–41:6 (2010)

4. Tilgner, C., Glavic, B., Boehlen, M., Kanne, C.-C.: Correctness Proof of the Declar-
ative SS2PL Protocol Implementation. Technical Report IFI-2010.0008, University
of Zurich, Department of Informatics (2010)

5. Vogels, W.: Data Access Patterns in The Amazon.com Technology Platform. In:
VLDB, vol. 1 (2007)

	Smile: Enabling Easy and Fast Development of
Domain-Specific Scheduling Protocols
	Introduction
	Banking Scenario

	Smile: Declarative Scheduling Middleware
	Oshiya Scheduling Model
	Smile Architecture
	Example: Use Case Implementation

	References

