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a b s t r a c t

Database Management Systems (DBMS) are routinely used to store and process sensitive enterprise data.
However, it is not possible to secure data by relying on the access control and security mechanisms (e.g.,
audit logs) of such systems alone e users may abuse their privileges (no matter whether granted or
gained illegally) or circumvent security mechanisms to maliciously alter and access data. Thus, in
addition to taking preventive measures, the major goal of database security is to 1) detect breaches and
2) to gather evidence about attacks for devising counter measures. We present an approach that eval-
uates the integrity of a live database, identifying and reporting evidence for log tampering. Our approach
is based on forensic analysis of database storage and detection of inconsistencies between database logs
and physical storage state (disk and RAM). We apply our approach to multiple DBMS to demonstrate its
effectiveness in discovering malicious operations and providing detailed information about the data that
was illegally accessed/modified.
© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Database Management Systems (DBMSes) are commonly used
to store sensitive data and, accordingly, significant effort has been
invested into securing DBMSes with access control policies.
However, once a user has gained elevated privileges in the DBMS
(either legitimately or through an attack), the security scheme put
into effect can be bypassed, and therefore, can no longer assure
that data is protected according to policy. A well-known fact from
security research and practice is that it is virtually impossible to
create security measures that are unbreakable. For example, access
control restrictions 1) may be incomplete, allowing users to
execute commands that they should not be able to execute and 2)
users may illegally gain privileges by using security holes in DB or
OS code or through other means, e.g., social engineering. Thus, in
addition to deploying preventive measures such as access control,
it is necessary to be able to 1) detect security breaches when they
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occur in a timely fashion and 2) in event of a detected attack collect
evidence about the attack in order to devise counter-measures and
assess the extent of the damage, e.g., what information was leaked
or perturbed. This information can then be used to prepare for
legal action or to learn how to prevent future attacks of the same
sort.

When malicious operations occur, whether by an insider or by
an outside attacker that breached security, an audit log containing a
history of SQL queries may provide the most critical evidence for
investigators (Mercuri, 2003). The audit log can be used to deter-
mine whether data has been compromised and what records may
have been accessed. DBMSes offer built-in logging functionality but
can not necessarily guarantee that these logs are accurate and have
not been tampered with. Notably, federal regulations, such as the
Sarbanes-Oxley Act (S.-O. Act) and the Health Insurance Portability
and Accountability Act (A. Act, 1996), require maintaining an audit
trail, yet the privileged user can skirt these regulations by manip-
ulating the logs. In such cases, companies maintaining these sys-
tems are, technically, in violation of these regulations. Hence,
assurance that security controls have been put into place properly
cannot rest merely on the existence of logging capabilities or the
representations of a trusted DBA. Internal controls are needed in
order to assure log integrity.
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Fig. 1. Illustrates that the active records for Peter and Bob can be explained by audit log events, whereas the deleted record Malice can not be explained by any audit log events.
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Example 1. Malice is the database administrator for a government
agency that keeps criminal records for citizens (an example instance is
shown in Fig. 1). Malice recently got convicted of fraud and decided to
abuse her privileges and delete her criminal record by running
DELETE FROM Record WHERE name ¼ ‘Malice’. However, she is
aware that database operations are subjected to regular audits to
detect tampering with the highly sensitive data stored by the agency.
To cover her tracks, Malice deactivates the audit log before running the
DELETE operation and afterwards activates the log again. Thus, there
is no log trace of her illegal manipulation in the database. However,
database storage on disk will still contain evidence of the deleted row
(until several storage artifacts caused by the deleted are physically
overwritten). Our approach detects traces of deleted and outdated
record versions and matches them against the audit log to detect such
attacks and provide evidence for how the database was manipulated.
Using our approach, we would detect the deleted row and since it does
not correspond to any operation in the audit log we would flag it as a
potential evidence of tampering.

In Section Reliability of Database Logs we showcase, for several
databases, how an attacker like Malice can ensure that her opera-
tions are not being included in the audit log. Given that it is possible
for a privileged attacker to erase log evidence and avoid detection,
the challenge is to detect such tampering and collect additional
evidence about the nature of the malicious operations (e.g., recover
rows deleted by a malicious operation). It may not be immediately
clear that this recovery of evidence is possible at all. However, any
operation leaves footprints in database storage on disk (writes) or
in RAM (both reads and writes). For instance, DBMSes mark a
deleted row rather than overwrite it. Thus, if we recover such ev-
idence directly from storage then, at least for some amount of time
until the deleted value is overwritten by future inserts, wewould be
able to detect that there exists a discrepancy between the content
of the audit log and database storage.

Given that evidence of operations exists in database storage, the
next logical question to ask is whether Malice can remove this
evidence by modifying database files directly. While a user with
sufficient OS privileges may be able to modify database files, it is
extremely challenging to tamper with database storage directly
without causing failures (e.g., DBMS crashes). Direct manipulation
of DBMS files will uncover the tampering attempt because: 1) in
addition to the actual record data on a page, the database system
maintains additional references to that record (e.g., in index
Fig. 2. Architecture of
structures and page headers). Deleting a record from a page
without modifying auxiliary structures accordingly will leave the
database in an inconsistent state and will lead to crashes; 2) da-
tabases have built-in mechanisms to detect errors in storage, e.g.,
checksums of disk pages. A tampering attempt has to correctly
account for all of these mechanisms; 3) incorrect storage for a value
can corrupt a database file. To directly modify a value, an attacker
needs to know how the DBMS stores datatypes.

Because it is not only hard but, at times, next to impossible to
spoof database storage, it follows that database storage can provide
us with valuable evidence of attacks. We use an existing forensic
tool called DICE (Wagner et al., 2017) to reconstruct database
storage. However, we are still left with the problem of matching
recovered artifacts to queries in audit log e doing so requires a
thorough analysis of how database storage behaves. Our approach
automatically detects potential attacks by matching extracted
storage entries and reporting any artifacts that cannot be explained
by logged operations (summarized in Fig. 2). Our method is
designed to be both general (i.e., applicable to any relational
database) and independent (i.e., entirely outside of DBMS control).
Our system DBDetective inspects database storage and RAM
snapshots and compares what it finds to the audit log; the analysis
of this data is then done out of core without affecting database
operations. DBDetective can operate on a single snapshot from
disk or RAM (i.e., multiple snapshots are not required), but addi-
tional snapshots provide extra evidence and improve detection
quality. Data that has changed between two snapshots need be
matched only against audit log entries of commands that were
executed during the time span between these snapshots. Thus,
more frequent snapshots increase the detection accuracy because it
is less likely to match a row against an incorrect operation and the
probability that deleted rows are still present is higher. Moreover,
frequency of snapshots increase the performance of detection
because a smaller number of recovered rows have to be matched
against a smaller number of operations. We can reduce storage
requirements by only storing deltas between snapshots in the same
fashion as incremental backups are used to avoid the storage
overhead of full backups.

Our focus is on identifying the likelihood of database tampering,
as well as pointing out specific inconsistencies found in database
storage. Determining the identity of the party responsible for
database tampering is beyond the scope of this paper. Due to the
the DBDetective.
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volatile nature of database storage, it is not possible to guarantee
that all attacks will be discovered. We will discuss how false neg-
atives or positives can occur for particular types of tampering in
Sections Detecting hidden record modifications and Detecting
inconsistencies for read-only queries. It may sound unsatisfactory
that we are not able to detect all attacks. However, these types of
attack bypass the database audit log and thus have no chance of
being detected natively.

In this paper, we demonstrate techniques to detect and identify
database operations that were masked by the perpetrator through
use of our system DBDetective. For each of the major DBMSes we
evaluated, we assumed that the DBMS has enabled an audit log to
capture SQL commands that are relevant to an investigation. We
further assumed an attacker who found away to prevent logging of
executed malicious commands by: a) deactivating audit policies
and temporarily suspending logging or b) altering the existing audit
log (both discussed in Section Reliability of database logs).

By applying forensic analysis techniques to database storage or
buffer cache andmatching evidence uncovered by these techniques
against the audit log, we can:

� Detect multiple types of database access and manipulation that
do not appear in the DBMS audit log.

� Classify unattributed record modifications as an obfuscated
INSERT, DELETE, or UPDATE command.

� Detect cached data from (read-only) SELECT queries that
cannot be derived from activity in the audit log.

The rest of the paper is organized as follows: Section Related
work covers related work. Section Reliability of database logs dis-
cusses DBMS logging mechanisms and how operations can be
hidden from logs by an attacker. Section Detecting hidden record
modifications details how table modifications that are missing
from the log files can be identified in storage. Section Detecting
inconsistencies for read-only queries discusses how read-only
(SELECT) queries hidden from the logs can be detected based on
memory snapshots. We evaluate our system in Section
Experiments.

Related work

Database forensics

Database page carving (Wagner et al., 2017) is a method for
reconstructing the contents of a relational database without relying
on file system or DBMS metadata. Database carving is similar to
traditional file carving (Garfinkel, 2007; Richard and Roussev,
2005) in that data, including deleted data, can be reconstructed
from images or RAM snapshots without the use of a live system. The
work in (Wagner et al., 2015) presented a comparative study of the
page structure of multiple DBMSes. Subsequent work (Wagner
et al., 2016) described how long forensic evidence resides within
a database even after being deleted and defragmented. While a
multitude of built-in and 3rd party recovery tools (e.g
(OfficeRecovery; Percona; Phoenix)) can extract database storage,
none of these tools are helpful for independent audit purposes
because they only recover “active” data. A forensic database tool
(just like a forensic file system tool) should also reconstruct unal-
located pieces of data, including deleted rows, auxiliary structures
(indexes) or buffer cache space.

For our storage analysis we rely on DICE tool created byWagner
et al. (2016). DICE accepts a snapshot of disk or RAM and produces
text output listing all reconstructed content. We contacted Wagner
et al. to acquire a copy for the experimental evaluation presented
here.
Database auditing and security

Peha used one-way hash functions to verify an audit log and
detect tampering (Peha, 1999). They relied on an external, trusted
notary to keep track of every transaction. Snodgrass et al. also used
a one-way hash function to validate audit logs (Snodgrass et al.,
2004). Alternatively, their hash function uses the record itself and
a last modification timestamp, avoiding the external notary. Pavlou
et al. expanded this work by determining when audit log tampering
occurred (Pavlou and Snodgrass, 2008). While this mechanism
ensures an accurate audit log with high probability by sending the
secure hashes to a notarization service, it is ultimately useless if
logging has been disabled by a privileged user. Our approach de-
tects log tampering even if logs files have been disabled.

Sinha et al. used hash chains to verify log integrity in an offline
environment (Sinha et al., 2014). In this situation, communication
with a central server is not required to ensure log authenticity.
Crosby et al. proposed a data structure called a history tree to
reduce the log size produced by hash chains in an offline envi-
ronment (Crosby and Wallach, 2009). Rather than detecting log
tampering, Schneier and Kelsey made log files impossible to read
and impossible to modify (Schneier and Kelsey, 1999). Under this
framework, an attacker does not know if his activity has been
logged, or which log entries are related to his activity.

An event log can be generated using triggers, and the idea of a
SELECT trigger was explored for the purpose of logging (Fabbri
et al., 2013). This would allow all table access to be logged e but
a malicious user could also utilize triggers to remove traces of her
activity or simply bypass a SELECT trigger by creating a temporary
view to access the data.

ManageEngine's EventLog Analyzer (Eventlog Analyzer) pro-
vides audit log reports and alerts for Oracle and SQL Server based
on actions, such as user activity, record modification, schema
alteration, and read-only queries. However, the Eventlog Analyzer
creates these reports based on native DBMS logs. Like other forensic
tools, this tool is vulnerable to a privileged user who has the ability
to alter or disable logs.

Network-based monitoring methods have received significant
attention in audit logging research because they can provide in-
dependence and generality by residing outside of the DBMS. IBM
Security Guardium Express Activity Monitor for Databases (Ibm
Security Guardium Express Activity Monitor for Databases, 2017)
monitors incoming packets for suspicious activity. If malicious ac-
tivity is suspected, this tool can block database access for that
command or user. Liu and Huang (2009) monitored DBAs and other
users with privileged access. Their method identifies and logs
network packets containing SQL statements.

The benefit of monitoring activity over the network and,
therefore, beyond the reach of DBA's, is the level of independence
achieved by these tools. On the other hand, relying on network
activity ignores local connections to the DBMS and requires
intimate understanding of SQL commands (i.e., an obfuscated
command could fool the system). By contrast, our approach de-
tects both local and network activity because SQL is ultimately
run against the database instance affecting database storage
state.

Reliability of database logs

An attacker can alter two types of logs to interfere with an
investigation: write-ahead logs (WAL) and audit logs (event history
records). WALs record databasemodifications at a low level in order
to support ACID guarantees, providing a history of recent table
modifications. Audit logs record configured user database actions,
including SQL operations and other user activity.
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WALs

WALs cannot normally be disabled or easily modified, and
require a special-purpose tool to be read (e.g., Oracle LogMiner or
PostgreSQL pg_xlogdump). Some DBMSes allow WALs to be
disabled for specific operations, such as bulk load or structure
rebuild. Thus inserting records without leaving a log trace can be
done through this feature. Since the WAL file format is not human-
readable, and requires specific tools for parsing, this would seem to
protect it from tampering. However, DBMSes (including Oracle,
MySQL, PostgreSQL, and SQL Server) allow the administrator to
switch to a new WAL file and delete old WAL files. Therefore,
executing a WAL switch and deleting the original WAL can effec-
tively allow a user to perform transactions without leaving a WAL
record. For example, an administrator could switch from log file A
to log file B, perform the malicious SQL operation(s), switch back to
log file A (or a new log file C), and delete log file B. For example, to
implement this operation in Oracle:

1) ALTER DATABASE ADD LOGFILE (‘path/logB.rdo’)
2) ALTER SYSTEM SWITCH LOGFILE

3) Run the malicious SQL operation(s)
4) ALTER SYSTEM SWITCH LOGFILE

5) ALTER DATABASE DROP LOGFILE MEMBER ‘path/logB.rdo’

Audit logs

Audit logs store executed SQL commands based on logging
policies that are configured by database administrators. Therefore,
an administrator can disable logging or modify individual log re-
cords as they see fit. For example, records in the Oracle sys.aud$
table can be modified with SQL commands, and records in the
PostgreSQL pg_audit log and MySQL general query log are stored as
human-readable text files. Table 1 summarizes how to modify the
audit log for three major DBMSes.

Detecting hidden record modifications

When a table record is inserted or modified, a cascade of storage
changes occurs in the database. In addition to the affected record's
data itself, pagemetadatamay be updated (e.g., a deletemark is set)
and page(s) of an index storing the record may change (e.g., to
reflect the deletion of a record). Each of the accessed pages would
be brought into RAM if it is not already cached. Row identifiers and
structure identifiers can be used to tie all of these changes together.
Furthermore, DBAs can also disable logging for bulk modifications
(for performance considerations); this privilege can be exploited to
hide malicious modifications. In this section, we describe how we
detect inconsistencies between modified records and logged
commands.

Deleted records

Deleted records are not physically erased but rather marked as
“deleted” in the page; the storage occupied by the deleted row
becomes unallocated space, and eventually will be overwritten by
Table 1
Commands to edit the audit log.

DBMS Command

Oracle SQL commands against sys.aud$
PostgreSQL Edit files in the pg_log directory
MySQL Edit the general_log_file
a new row. Unlike audit log records, these alterations to database
storage cannot be bypassed or controlled e thus if a recon-
structed deleted record does not match the WHERE-clause con-
dition of any delete statement in the audit log, then a log record is
missing.

DICE returns the status of each row as either “deleted” or
“active.” Reconstructed deleted rows and the audit log are used in
Algorithm 1 to determine if a deleted row can be matched with at
least one DELETE command. Here we use condðdÞ to denote the
condition of delete d. The conditions of delete operations may
overlap, potentially creating false-negative matches (i.e., a delete's
condition may match a row that was already deleted by another
DELETE). However, we are interested in identifying deleted rows in
storage that do not match any delete operation in the log. A false-
negative match presents a problem if it hides a missing match
with a delete that the attacker attempted to hide. Only if all
reconstructed deleted rows that the attacker attempted to hide
have false-negative matches will the attack go unnoticed, because a
single unaccounted for deleted record is sufficient to detect suspi-
cious activity.
Fig. 3 gives an example for detecting unaccounted deleted rows.
DICE reconstructed three deleted rows from the Customer table:
(1,Christine, Chicago), (3,Christopher, Seattle), and
(4,Thomas, Austin). The log file contains two operations:
DELETE FROM Customer WHERE City ¼ ‘Chicago’ (T1) and
DELETE FROM Customer WHERE Name LIKE ‘Chris%’ (T2). In
Algorithm 1, DeletedRows was set to the three reconstructed
deleted rows. Algorithm 1 returned (4,Thomas, Austin), indi-
cating that this deleted record could not be attributed to any of the
deletes. We cannot decide which operation caused deletion of
(1,Christine, Chicago) row (T1 or T2), but that is not neces-
sary for our purpose of finding that record #4 is an unattributed
delete.
Inserted records

New inserted rows are either appended to the end of the last
page (or a new page if the last page is full) of a table or overwrite
free space created by previously deleted rows. A new row has to be
smaller than or equal to the old deleted row to overwrite its pre-
vious storage location; some databases (Oracle and PostgreSQL)
explicitly delay the overwriting unallocated page space. When an
inserted row is smaller than the deleted row, only a part of the
deleted row is overwritten leaving traces of the old row behind. If
an “active” new table row does not match any of the insert oper-
ations from the audit log, then this row is a sign of suspicious ac-
tivity. These “active” records are used in Algorithm 1 to determine if
a reconstructed row can be attributed to an insert from the audit
log.



Fig. 3. Detecting unattributed deleted records.

Fig. 4. Detecting unattributed inserted and updated records.
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Fig. 4 shows an example for detecting an INSERT operation that
does not match any commands in the audit log. The log contains six
operations. As rows are inserted from T1 to T4, they are appended
to the end of the table. At T5, (3,Lamp) was deleted followed by an
insert of (5,Bookcase) at T6. Since row (5,Bookcase) is larger
than the deleted row (3,Lamp), it is appended to the end of the
table. DICE reconstructed five active records, including (0,Dog) and
(2,Monkey). Rows was initialized to the five reconstructed active
rows for Algorithm 2. Algorithm 2 thus returned (0,Dog) and
(2,Monkey) because these records could not be matched to logged
inserts (only the latter is an INSERT as we will see in Section
Updated Records). The character p foundwith (0,Dog) was not part
of the record, indicating that this record overwrote a previously
deleted row. Since (0,Dog) is one character smaller than (3,Lamp)
and the last character from (3,Lamp) was found, it was likely that
(0,Dog) overwrote the deleted record (3,Lamp). We describe how
to confirm this in Section Indexes.
Updated records

An UPDATE operation is essentially a DELETE operation fol-
lowed by an INSERT operation. To account for updated rows, we
use unmarked deleted rows returned by Algorithm 1 and un-
marked inserted rows returned by Algorithm 2 as the input for
Algorithm 3. If a deleted row can be matched to the WHERE clause
of an update, then this deleted row operation is marked as pre-
sent in the log. Next, if an unmarked inserted row can be
matched to the value from the SET clause, and the inserted row
matches all values in the deleted row except for the SET clause
value, then this inserted row operation is present in the log.
Currently, our implementation is limited to simple SET clause
expressions of the form A ¼ c for an attribute A and constant c. In
the algorithm, we use condðuÞ for an update u to denote the
update's WHERE clause condition and setðuÞ to denote the its set
clause. Furthermore, we use APPLY(r,s) to denote evaluating SET-
clause s over row r.
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Fig. 4 also shows an example of how we detect an UPDATE
operation not present in the log. Algorithm 1 returned the row
(2,Desk), and Algorithm 2 returned the row (0,Dog) and (2,
Monkey). Using these sets of records, Algorithm 3 returned
(2,Desk) as the list of deleted records, and (0,Dog) and (2,Mon-
key) as the list of inserted records. Additionally, Algorithm 3
recognized the shared value, 2, for the first column in (2,Desk) and
(2,Monkey). While this does not confirm an UPDATE operation by
itself, it is reasonable to conclude that (2,Desk) was updated to
(2,Monkey).
Indexes

In some cases, records from table pages are insufficient to draw
reliable conclusions about record modification. For example, in
Fig. 4 we did not have enough information to confirm that
(3,Lamp) was overwritten by (0,Dog). Reconstructed index pages
provide additional information because deleted index values have
a significantly longer lifetime compared to deleted records
themselves (Wagner et al., 2016). Using the pointer associated
with deleted (but still recoverable) index entry allows us to
determine values previously stored at a particular location within
a page.

Fig. 5 demonstrates how old index values supply evidence of a
deleted record that was overwritten by new values. The index
stores the furniture table ID and a pointer to the row address.
Using index pointers, we can be certain that the overwritten row
once stored record with ID of 3. This allows us to extrapolate a
partial deleted record, (3, ?), that we can include in Algorithms 1
and 3. If a secondary index on the second column (furniture
name) is available, we could also extrapolate Lamp from the
index.
Fig. 5. Matching index va
Detecting inconsistencies for read-only queries

DBMSes use a component called buffer manager to cache pages
from disk into memory. Data is read into the buffer pool in units of
pages, that can be reconstructed by DICE. In this section, we
describe how artifacts carved from the buffer pool can be matched
to read-only queries in the audit log. A database querymay use one
of two possible way of accessing a table: a full table scan (FTS) or
an index scan (IS). An FTS reads all table pages, while an IS uses an
index structure (e.g., B-Tree) to retrieve a list of pointers refer-
encing particular table pages (or rows) to be read based on a
search key. All accessed index pages and some of the table pages
(depending on access type) are placed in the buffer pool by the
DBMS.

Full table scan

When a query uses an FTS, only a small part of a large table will
be cached. A small table (relative to the buffer pool size) may be
cached in its entirety. Every database stores a unique page identifier
within the page header which allows us to efficiently match cached
pages to their counterpart on disk. The particular number of pages
cached by a FTS can be derived from the size of the table, although it
is not always proportional (e.g., a larger table may result in fewer
cached pages). Thus, after FTS is executed, typically pages from the
physical end of table storage would be in the cache (i.e., a few pages
including the one where new inserts would be appended). In Sec-
tion Read-Only Query Detection we analyze caching behaviour for
multiple DBMSes.

Fig. 6 provides an example of an FTS over the Employee table.
We can identify pages that belong to Employee by the structure
identifier 131, which is stored in the page header. DICE can return
just the page structure identifiers (without parsing page content)
at a much faster speed. Both Q2 and Q4 access Employee via an
FTS. Each time the Employee table is scanned, the same four
pages (identifiers: 97, 98, 99, and 100) from the table are loaded
into the buffer pool. Therefore, when four pages with the page
identifiers 97, 98, 99, and 100 and a structure identifier of 131
are found in memory, a FTS on the Employee table can be
assumed.

Index access

DMBSes use IS to optimize performance for queries that access
data based on the key attributes of an index. Caching of index pages
identifies what attribute was queried (a query posed conditions
over this attribute) and provides a rough estimate of what value
lues to table records.



Fig. 6. Read-only query matching between disk and buffer cache.
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range was selected for an indexed attribute (since values stored in
index pages are ordered). Cached index pages are more precise in
determining what the query accessed because cached table pages
contain the entire table row (regardless of which columns were
accessed), but index pages contain only the relevant columns. A
sequence of index pages in the buffer pool that does not correspond
to any logged query can present evidence of hidden access. Algo-
rithm 4 describes how to use theminimum andmaximumvalues of
index pages to determine if a cached index page can be attributed
to logged query. Again, condðqÞ denotes the conditions used by
query q (OR'ed together).

Fig. 6 shows examples of index accesses on the Customer table.
The Customer table's structure identifier is 124, and the secondary
index on the C_City column has a structure identifier of 126. Q1
filters on the city Dallas, and it caches the index pagewith identifier
2. This page has a minimum value of Chicago and a maximum
value of Detroit. Q3 filter on the city Jackson, and it caches the
index page with the page identifier of 4. This page has a minimum
value of Houston and amaximumvalue of Lincoln. If a query in the
audit log filters on a values within the minimum and maximum
range of values for an index page, then that page can be attributed
to that query.
Data lifetime in memory

As new data is read into cache, old data is evicted (using a buffer
replacement strategy such as LRU) providing us with an approxi-
mate timeline of recent accesses. A malicious user can not directly
control the buffer pool; regardless of one's permission level, there
are no direct APIs to control buffer pool behavior. Assuming that the
attacker cannot do something as conspicuous as powering down
the computer, the only available command is to flush the cache
(only available in Oracle, SQL Server and MySQL). Interestingly,
flushing buffer cache will mark pages as unallocated instead of
physically evicting any data from RAM.
Experiments

Our experiments use three databases (Oracle, PostgreSQL, and
MySQL) that we consider representative (both open- and closed-
source, all three very widely used) due to space limitations. We
have used data and queries fromTPCC (Kohler et al.,; Raab,1995) and
SSBM (O'Neil et al., 2009) benchmarks. These benchmarkswere used
because theywere designed tomeasure the performance of DBMSes.

Our experiments were carried out on servers with an Intel
X3470 2.93 GHz processor and 8 GB of RAM running Windows
Server 2008 R2 Enterprise SP1 or CentOS 6.5. Windows OSmemory
snapshots were generated using a tool called User Mode Process
Dumper (version 8.1). We used regular SATA magnetic drives for
storage and processing. Linux OS memory snapshots were gener-
ated by reading the process’ memory under /proc/$pid/mem.

Experiment 1: DBDetective performance evaluation

The objective of this experiment is to explore the costs associ-
ated with using DBDetective and the estimated reaction time to
detect tampering. In Part-A of this experiment, we provide cost
estimates to perform memory snapshots. In Part-B, we test the
carving process performance against database files. In Part-C, we
test the carving speed against memory snapshots.

Part A. To estimate the cost to perform memory snapshots, we
copied a 2.5 GB snapshot from an Oracle database process to a
magnetic disk. This operation took approximately 31 s. In practice,
the snapshot cost is dominated by the cost of writing the result to
disk but and can be sped up significantly by shipping data to a
remote machine or using a faster drive (e.g., PCIe). As long as
snapshots are taken as often as the entire buffer pool is replaced by
query activity, we expect to detect most activity.

Part B. To obtain a performance estimate for file carving, we ran
DICE tool against five Oracle database files ranging in size from
1 MB to 3 GB. All Oracle files contained 8 KB database pages. We
observed that DICE parsed the files at an average rate of 1.1 MB/s
and continued to scale linearly with respect to the file size (using
SATA magnetic disk).

Part C. Finally, we tested the performance of the carving tool
against memory snapshots of Oracle buffer cache. We collected a
2.5 GB snapshot taken from the Oracle database process and an
8 GB snapshot of the entire RAM content. Each of the snapshot
required detecting and parsing the contents of roughly 80,000
pages (600MB). The 2.5 GB snapshot was carved at a rate of 4.2 MB/
s, and the 8 GB snapshot was carved at a rate of 13.2 MB/s. We can
thus conclude that the runtime of page parsing depends solely on
the number of database pages rather than raw file size.
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Record modification detection

Experiment 2: deleted record detection
The objective of this experiment is to identify deleted rows from

storage that could not be matched to commands in the log files. We
also evaluate the situation where a row deleted by a malicious
query was overwritten or was attributed to a non-malicious query
(a false-negative match).

Part A. For this experiment we use MySQL. By default, MySQL
creates an index-organized table (IOT) when a primary key is
declared for a table. MySQL uses the primary key as the row
identifier, and all rows are physically ordered within index (leaf)
pages by the row identifier. If no primary key is declared, MySQL
will synthesize a unique row identifier for each row. MySQL
stores the row identifier as the pointer in the index value-pointer
pairs.

We initially startedwith the Item table (100 K records) from the
TPCC benchmark. We created a primary key on the I_ID column, a
secondary index on the I_Name column, and a secondary index on
the I_IM_ID column. Next, we issued two delete commands:

(Delete 1) DELETE FROM Item WHERE I_Name LIKE ‘w2G%’

(Delete 2) DELETE FROM Item WHERE I_IM_ID ¼ 8563.

Delete 1 represents malicious activity, and was therefore
removed from the log. Delete 1 deleted records with the I_ID

values of 92328 and 95136. Delete 2 is in the log and was
responsible for deletion of 10 records. We used DICE to reconstruct
deleted rows from Item in storage: and 12 deleted rows were
reconstructed.

Algorithm 1 returned one record with the I_ID value of 92328.
11 of the deleted records were matched with the logged Delete 2
command: the 10 records it deleted and the record with I_ID

95136. Even though the 11th record was caused by Delete 1, it
resulted in false-negative match to Delete 2 because it happened to
have a I_IM_ID value of 8563. However, false-negatives are only
problematic if they prevent all maliciously deleted records to be
detected.

Part B. Realistically, investigators may not be able to perform
forensic analysis at the most opportune time. We next consider
what determination can be made if the trace of the maliciously
deleted record has been overwritten.

To instrument an overwrite of a deleted record in an IOT, a
record with the same primary key value had to be inserted. We
inserted the record (92328,100,DBCarver1,0.0, This is a

trick1). The original deleted record with the I_ID value of
92328 was permanently overwritten. However, the secondary
indexes on I_Name and I_IM_ID columns retain traces of this
record until something causes an index rebuild. The pointers
stored with index values are the row identifiers (or primary key)
for table records.

We found that the row identifier 92328 had two entries in the
I_Name index: the value for the current (new) record, w2GSyV-
RavpUbCr2bEzqOb for the old record, and two entries in the
I_IM_ID index: the value for the current record and 4763 for the
overwritten record. This allowed us to extrapolate a partial deleted
record as an input to Algorithm 1: (92328,4763,w2GSyVRav-
pUbCr2bEzqOb,?,?). Since Algorithm 1 could not match the
partial record to any of the logged commands, it also provides ev-
idence of the missing log record.

Experiment 3: updated record detection
The objective of this experiment is to identify the by-product of

an UPDATE operation in persistent storage that can not be matched
to commands in the log. Similar to Experiment 2: Deleted Record
Detection-B, we evaluated records that were overwritten by an
in-place UPDATE.
Part A.We again useMySQL and the Item table with 100�a K rows
and indexes defined as in previous experiments. Records in Item
include (53732, 1004, Name_Val53732, 14.55, Data_Val53732)
where Name_Val53732 is Us65fCVCCfrOMDT6bpDDE and Data_-

Val53732 is mpDSxHpz0ftrSI2aP0rXpZhdY-

SakGcqrSqeI6a6p2cE4Q. All of INSERT commands creating the
table were logged. Next, we issued an update, UPDATE Item SET

I_Name ¼ ‘DBCarver’ WHERE I_ID ¼ 53732 to simulate mali-
cious activity, and removed this operation from the log. We then
passed the database files containing the Item table and the I_Name
secondary index to DICE.

Algorithm 2 returned the record (53732, 1004, DBCarver,

14.55, Data_Val53732) since it does not match any logged
INSERT command. DICE did not return deleted rows because when
the row was updated, the new version of the row physically over-
wrote the old version. Two pieces of evidence help classify the row
53732 as an overwrite of a deleted row: table pages and the pages
for the index on I_Name. In the table page, the new row used less
storage space than the old overwritten row. Therefore, part of the
old rowwas still presente 13 characters from the last columnwere
reconstructed: SqeI6a6p2cE4Q. These 13 characters could be
distinguished from new row because new row metadata specifies
where the current row ends. This behavior is illustrated in Fig. 4. In
the secondary index page, the pointer (or row identifier) 53732 had
two entries, both with the new value (DBCarver) and the old value
(Name_Val53732). Since the value DBCarver was present in the
current active record, we could assert that DBCarver overwrote
Name_Val53732. This allowed us to extrapolate a partial pre-update
record, (53732, ?, Name_Val53732, ?, ?) despite the fact that it
was destroyed.

Part B. Having detected unmatched active record (53732, 1004,
DBCarver, 14.55, Data_Val53732), and a partially reconstructed
deleted record, (53732, ?, Name_Val53732, ?, ?), we can link them as
evidence of an update in Algorithm 3. First, we use Algorithm 1,
which returned our partially deleted record as not a non-match.We
next added our partially deleted record 53732 to Deleted and our
active record to Inserted in Algorithm 3.

Algorithm 3 returned (53732, 1004, DBCarver, 14.55,

Data_Val53732) as an active record and (53732, ?, Name_-

Val53732, ?, ?) as a deleted record. Since they share the 53732

primary key value, it is reasonable to conclude that these records
should match with an UPDATE command, rather than both a
DELETE and INSERT. Technically, this behavior could be caused by
a hidden combination of DELETE and INSERT e either way, we
uncovered a maliciously hidden modification. We can also deter-
mine that the third column was changed from Name_Val53732 to
DBCarver.

Experiment 4: modified record detection
We now explore the objectives of Experiments 1 and 2 in an

Oracle setting. In Part A of this experiment, we identify the by-
products of DELETE and UPDATE commands in storage that do
not match any logged operations. In Part B, we simulated a scenario
in which deleted records are overwritten. We then determined
what malicious DELETE and INSERT commands could still be
detected. In Part C, we used available indexes and results from Part
B to match UPDATE operations.

Unlike MySQL, Oracle does not create an IOT by default when a
primary key is declared (IOTs must be created explicitly). Instead, a
regular B-Tree index is created on the primary key. Without IOT,
unique row identifier are not stored with each row. Instead, Oracle
uses physical row identifiers consisting of a structure identifier,
page identifier, and row's position within the page.

Part A. We use the TPCC NewOrders (NO_O_ID, NO_D_ID,

NO_W_ID) table with 9 K rows. We declared a primary key on the
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NO_O_ID column and a secondary index on the NO_D_ID column.
Next, we issued the following queries to simulate malicious
activity:
We removed both Command 1 and Command 2 from the log.
We then passed the database files containing the NewOrders table
and both indexes to DICE.

We reconstructed the deleted record (2500, 1, 1) caused by
Command 1. A copy of the indexed values for this record were
reconstructed from the primary and secondary index. DICE also
reconstructed the active record (2700, 777, 1) e Command 2
caused an in-place update and overwrote the old version, (2700,
1, 1). However, the old NO_D_ID value is still present in the index,
and could be mapped back to the overwritten row.

Part B. To continue this experiment, we simulated normal
database activity to observe what causes commands from
Experiment 4: Modified Record Detection-A to be no longer
immediately detectable. This was done by repeatedly deleting 10
records using the NO_O_ID column, and inserting 20 records. We
passed the database files containing the NewOrders table and in-
dexes to DICE after each set of operations. We passed the carved
output to Algorithms 1 and 2 after each set of operations.

After the first and second sequence of 30 commands, Algorithm
1 returned (2500, 1, 1), and Algorithm 2 returned (2700, 777,

1). This meant that we had detected a DELETE command and an
INSERT command missing from the log file. After the third set of
commands, Algorithm 1 did not return any records because (2500,
1, 1) was overwritten by an inserted record, and Algorithm 2
returned (2700, 777, 1). Now, only an INSERT command was
only detected as missing from the log file.

Part C. While we detected missing operations during our
simulation, wewanted to see if indexes can serve as an extra source
of evidence of malicious activity. The unidentified DELETE com-
mand was no longer detected after the third set of database activity
commands, and the unidentified INSERT command could have
actually been an in-place update that we demonstrated in
Experiment 3: Updated Record Detection.

The third set of database activity commands overwrote the
deleted record of interest, seemingly avoiding detection. However,
we found multiple values for the pointer to this record in both the
primary key index and the secondary index. We then reconstructed
a partial deleted record using the index values that weren't found in
the current record: (2500, 1, ?). Algorithm 1 did not associate this
partial record with any DELETE command in the log file since all of
the DELETE commands were on the primary key. Therefore, we had
found evidence of a DELETE operation not recorded in the log files.

Throughout all of the database activity, we detected that the
record (2700, 777, 1) was part of an INSERT command removed
from the log files. However, more conclusions could be derived
from the index values.We found the one value for the pointer in the
primary key index, but we found two values for the same pointer in
the secondary index. This indicated that the record was likely
updated by a previous command. Given the one value in the pri-
mary key index and the two values in the secondary index, we
could reconstruct the partial deleted record: (2700, 1, ?). Finally,
Algorithm 3 identified the commonality, 2700, between the unat-
tributed active record, (2700, 777, 1), and the partial deleted
record, (2700, 1, ?). Based on this result, it was reasonable to
assume that the record with the NO_O_ID value of 2700 was
involved in a hidden UPDATE command.

Read-only query detection

Experiment 5: full table scan detection
Part A. The objective of this experiment is to demonstrate full table

scan (FTS) detection. FTSes leave a consistent pattern of pages in the
buffer cache for each table they accesswhich can be detected in RAM.

We used a PostgreSQL DBMS with 8 KB pages and a buffer cache
of 128 MB (or 16,000 pages). We evaluated FTS for two tables: the
Item table (1284 pages) from the TPCC benchmark and the Line-
Order table (77 K pages) from the SSBM. To do this, we ran three
queries that all used an FTS. The first query accessed Item, and the
second and third queries accessed LineOrder.

In Snapshot 1, we observed 32 pages from the Item table. These
32 pages that DICE reconstructed represented the 32 highest page
identifiers for Item table (i.e., the last 32 pages in the physical
database file), just as described in Fig. 6. We verified that this is the
case by inputting the Item database file into DICE. We did not
observe any other cached table pages or cached index pages related
to the Item table in the buffer cache. In Snapshot 2, DICE recon-
structed the same 32 pages from Item and an additional 32 pages
from LineOrder. The by-product from scanning Item was still
detectable in memory, although it is unallocated space from
DBMS's perspective. Similar to the Item FTS, the 32 pages cached for
LineOrder had the highest page identifiers from the database file
where LineOrder was stored. For Snapshot 3, DICE returned 32
pages fromItem and 64 pages from LineOrder. The Item pages
were the same pages from Snapshots 1 and 2. The new set of 32
pages from LineOrder had the exact same page identifiers, found
at a different location in the memory snapshot. Each FTS access
demonstrated a consistent caching pattern in PostgreSQL, 32 pages
for every table, producing a new set of pages at a location in
memory adjacent to the previous pattern thereby creating a crude
timeline of queries in buffer cache. Note that other DBMSes exhibit
their own (consistent) caching pattern for an FTS. For example, the
exact number of pages cached for a table in Oracle is not constant,
but relies on a predictable pattern for each table.

Part B. To demonstrate that FTS caching depends on buffer cache
size, we increased buffer cache to 256 MB in PostgreSQL and per-
formed the same sequence of queries. As a result, we observed that
the FTS(Item) query switched to caching the whole table (all 1284
pages). However, the FTS(LineOrder) query cached 32 pages each
in the exact same pattern as before. In general, DBMSes use an
internal heuristic threshold to decide when a whole table is “small
enough” to be fully read into the buffer cache.

Experiment 6: index access detection
The objective of this experiment is to demonstrate index access

detection. When a table is accessed using an index, both the index
pages and table pages are cached in memory. The ordered values
stored in the index pages (leaves and intermediate nodes) provide a
rough estimate of the range of values accessed by a query.

For this experiment, we used a PostgreSQL DBMS with 8 KB
pages and a buffer cache of 128 MB (or 16,000 pages). We created
the Item table with a secondary index on the I_NAME column. Next,
we issued two queries that used an index access for the Item table:



Table 2
Index page contents found in memory.

Snapshot Index page Min val Max val

1 1 a6j3 … AaBD …

1 2 AaBD … ac5U …

2 3 b76G … bAGT …

2 4 BaGW … bcDi …
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Query 1 selected 105 rows (0.08 selectivity) and Query 2
selected 109 rows (0.08 selectivity). After each query, we captured a
cache snapshot that we passed to DICE.

DICE reconstructed 102 table pages and 2 leaf index pages from
thememory snapshot after Query 1. Since Query 1 used a secondary
index (the table is not organized on this column), almost every
accessed row cached a new table page. DICE reconstructed 94 new
table pages and 2 new index leaf pages from the memory snapshot
after Query 2, while the pages cached by Query 1 remained in
memory. Similar to Query 1, Query 2 cached a page for almost every
row selected. Since the indexes stored ordered values, they pro-
vided an estimate of how the table was accessed. Table 2 summa-
rizes the detailed breakdown of index page contents returned by
DICE. Table 2 shows that a value range between ‘a6j3’ and ‘AaBD’
must have been read to cache index page 1, a value between ‘AaBd’
and ‘ac5U’ was accessed to cache index page 2, a value between
‘b76G’ and ‘bAGT’ must have been to read to cache index page 3,
and a value between ‘BaGW’ and ‘bcDi’was accessed to cache index
page 4. These index value ranges matched to Query 1 and Query 2
in Algorithm 4.

Conclusions and future work

Audit logs and other build-in DBMS security mechanisms are
designed to detect or prevent malicious operations executed by an
attacker. An inherent weakness of such mechanisms is that at-
tackers with sufficient privileges can bypass them to hide their
tracks. We present and thoroughly evaluate DBDetective, an
approach for detecting database operations that were hidden by an
attacker by removing them from the audit log and collecting evi-
dence about what data was accessed and modified by an attacker.
Our approach relies on forensic inspection of database storage and
correlates this information with entries from an audit log to un-
cover evidence of malicious operations. Importantly, database
storage is nearly impossible to spoof and, thus, is a much more
reliable source of tampering evidence than, e.g., audit logs.

Given that storage snapshots provide incomplete information,
we will explore probabilistic matching that determines the
likelihood of a storage artifact being caused by the operations in the
audit log, exploit additional constraints based on temporal ordering
of operations, simulate partial histories of SQL commands from an
audit log for more precise matching, and dynamically adapt the
frequency of taking snapshots based on detected anomalies.
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