
EFFICIENT SCORING AND RANKING OF EXPLANATION FOR

DATA EXCHANGE ERRORS IN VAGABOND

BY

ZHEN WANG

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science
in the Graduate College of the
Illinois Institute of Technology

Approved
Advisor

Chicago, Illinois
May 2014

ACKNOWLEDGMENT

I would like to express my special appreciation and thanks to my advisor

Professor Dr. Glavic, who have supported me throughout entire process. You have

been a tremendous mentor for me. Your advices have been priceless.

I would also like to thank Professor Francis Leung for serving as my committee

member even during his most busy schedule. I want to thank you for letting my

defense be an enjoyable moment, and for your brilliant comments and suggestions,

thanks to you.

At the end I would like express appreciation to my friends and families who

supported me in studying at IIT, and incentivized me to strive towards my goal.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . iii

LIST OF TABLES . v

LIST OF FIGURES . vi

LIST OF SYMBOLS . vii

ABSTRACT . viii

CHAPTER

1. INTRODUCTION . 1

2. RELATED WORKS . 3

3. BACKGROUND . 4

4. NEW SCORING FUNCTIONS 13

4.1. Weighted Combined Scoring Function 13
4.2. Type-Weighted Size of Explanation Scoring Function 19
4.3. Error Type Homogeneity Scoring Function 22

5. BOUNDARY RANKER . 30

5.1. Introduction . 30
5.2. Boundaries of Scoring Functions 30
5.3. Implementation of Boundary Ranker 30
5.4. Example . 33

6. EXPERIMENTS . 36

7. CONCLUSIONS . 38

BIBLIOGRAPHY . 39

iv

LIST OF TABLES

Table Page

3.1 FlightInfo (Target) . 6

3.2 PlaneInfo(Source) . 7

3.3 TicketPool(Source) . 8

3.4 UserInfo(Source) . 8

3.5 Booking(Source) . 9

3.6 MemberInfo(Target) . 10

6.1 Explanation Generation Time(Sec), Data Size = 1000, Default Ranker 36

6.2 Explanation Generation Time(Sec), Error Size = 200, Default Ranker 37

v

LIST OF FIGURES

Figure Page

4.1 Counter-example of Monotonicity for fEH 23

vi

LIST OF SYMBOLS

Symbol Definition

ǫ error

λ error explanation

Λ error explanation set

T Error Types

↝ explain(s)

vii

ABSTRACT

Data exchange has been widely used in big data era. One challenge for data

exchange is to identify the true cause of data errors during the schema translation.

The huge amount of data and schemas make it nearly impossible to find “the” correct

solution. Vagabond system is developed to address this problem and use best-effort

methods to rank data exchange error explanations base on the likelihood that they

are the correct solutions. Ranking done on scoring functions that model some aspects

of explanation sets. Examples of these properties include complexity(size of explana-

tion), and side effect size(number of correct data values that will be affected by the

changes).

The thesis introduced three new scoring functions to increase the applicability

of Vagabond under various data exchange scenarios. We prove that the monotonicity

property required by Vagabond may not hold for some of the new scoring functions,

so a new generic ranker is also introduced to efficiently rank error explanations for

these new scoring functions as well as for future scoring functions that have boundary

property. We can efficiently compute upper or lower bounds on the score of partial

solutions. We also completed some performance experiments on the new scoring

functions and the new ranker. The experiment result proves that the new scoring

functions introduced in this thesis have a scalable performance.

viii

1

CHAPTER 1

INTRODUCTION

Data exchange has been widely used in big data era. It takes source schema

and target schema as input and generate mappings between the schemas. These

mappings are then used to generate an instance of the target schema based on an

existing instance of the source schema. During this process, data errors may occur

due to any reason such as source data error, mapping error etc. Given the large size

of data exchange scenarios, it may not be possible to identify the correct explanation

for these data exchange errors.

The Vagabond system [6] addresses this problem. It can evaluate error expla-

nations using scoring functions which compute explanation scores according to two

existing scoring functions, e.g. size of explanation scoring function, and side effect

size scoring function.

In this thesis, we introduce new scoring functions including weighted com-

bined scoring function , type weighted size of explanation scoring func-

tion , and error explanation homogeneity scoring function . We prove that

the monotonicity property required by Vagabond for ranking explanations may not

hold for some of the new scoring functions, so a new generic ranker is also introduced

to efficiently rank error explanations for these new scoring functions as well as for

future scoring functions that exhibit boundary properties. The new boundary ranker

can exploit the upper and lower bound of the new scoring functions as well as that

of future scoring functions to prune the solution space early on.

The thesis consists following chapters, Chapter 2 will review and evaluate how

existing research addresses how to efficiently explain data exchange errors. Chapter 3

introduces necessary background knowledge that covers data exchange, explanation

2

ranking, Vagabond, monotonicity properties, and information theory. The chapter

concludes by representing the essential problem of developing new scoring functions

and ranking algorithms that exploit bound properties of scoring functions.

Chapter 4 will describe the new scoring functions and prove respective disprove

their monotoncity properties as well as bounds. Chapter 5 will focus on the new

generic ranker that use bounds on partial solutions to prune the solution space. The

new ranker performance will be experimentally evaluated in chapter 6. The last

chapter will summarize the results and discuss future works.

3

CHAPTER 2

RELATED WORKS

As data exchange error explanation becomes more common, it’s not surprising

that a large body of researches have addressed the problem. Each of these researches

have its own solution. Some important works are stated here, and they all have their

advantages and disadvantages.

The paper by Ronald, Phokion and Miller introduced and proved some prop-

erties of data exchange in [4], which proves the need of efficiently debugging in data

exchange mapping scenarios. A systematic debugging and ranking system Vagabond

was introduced to solve the debugging problem. [6]

The Vagabond system uses best-effort methods to solve the error explanation

ranking issue for data exchanges. It currently supports two scoring functions and

several rankers including the A-star ranker and the skyline ranker [2]. However, there

are some cases where these two functions may not work well. Detailed examples will

be given in background chapter.

The survey done in [8] evaluated techniques can efficiently rank SQL query

results, however, ranking error explanations in data exchange can still be complicated

due to the amount of candidates.

The pruning technique introduced in [11, 9] shows how pruning can increase

efficiency in machine learning systems. The basic idea of pruning is to priority select

partial solutions that have a higher possibility to get better results. The criteria of

selection is based on bound values. Let’s say a lower score is a better solution, than

a partial solution with lower low bound is a better candidate for complete solution.

4

CHAPTER 3

BACKGROUND

To better understand the research topic, readers are expected to have knowl-

edge including but not limited to database system, data exchange, data exchange

errors, information theory. Some key terminologies will be explained in this chapter

and examples will be provided. Then we prove the importance and uniqueness of the

thesis topic.

Consider an online ticket booking system that allows users check available

tickets and prices. This scenario covers all necessary materials to understand this

thesis.

First off, we need to store flight and price information into database. Two

database tables, 3.1 and 3.2 store required info, and these tables are called database

schema. The formal definition of database schema is the following:

Definition 1 (Database Schema). : A database schema S = {R1, . . . ,Rn} is a set of

relation schemas. Each relation schema R = {A1, . . . ,An} refers to a finite nonempty

set of attributes. [12, 4, 3]

Consider a database schema “BOOKINGS” including the following source and

target schemas:

Source Schemas:

PlaneInfo(fno; carrier; dept; arrv; model; maxload, time)

TicketPool(fno; price; remain)

UserInfo(uid; fname; lname:string)

Booking(oid; uid; price)

5

Target Schemas:

FlightInfo(fno; carrier; dept; arrv; price; time)

MemberInfo(mid; uid; points)

Now consider that we need to map the data from source schemas to target

schemas. We use source to target tuple generating dependency (st-tgd) to express

mappings in logical formula. Let P denotes PlaneInfo, T denotes TicketPool, F

denotes FlightInfo, a denotes fno, b denotes carrier, c denotes dept, d denotes arrv, e

denotes model, f denotes model, g denotes maxload, h denotes time, i denotes price,

j denotes remain, the mapping is:

∀P (a, b, c, d, e, f, g) ∧ T (a, i, j) → F (a, b, c, d, i, g)

Example instances of S are shown in tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6.

Definition 2 (Database Instance). : A database instance I is a set of relation in-

stances, each relation instance represents a table of data that comes from a subset of

crossproduct of attributes. [12, 4]

One set of instances for the schema BOOKINGS is introduced to help illustrate

future definitions.

Definition 3 (Data Exchange). : Data exchange takes a source schema and a target

schema as input, then the system generates possible mappings between source schema

and target schema[5, 10].

Data lost and errors may occur during the data exchange process due to either

incorrectness in data, or in queries or mapping. This is especially true for large

schemata, where the multi-step process of generating a schema mapping is error-

prone.

6

Table 3.1. FlightInfo (Target)

Fno Carrier Dept Arrv Price Time

3368 United ORD IAD 240 4:40

3368 United ORD IAD 440 11:40

1566 United IAD ORD 280 7:40

1566 United IAD ORD 380 16:40

1259 AA ORD IAD 390 9:10

3405 AA IAD ORD 230 14:20

9321 JetBlue ORD IAD 340 17:00

For example, tables 3.3 and 3.2 are transformed to table 3.1 by the following

SQL query that implements the mapping shown above.:

SELECT fno , c a r r i e r , dept , arrv , pr i ce , time

FROM Ticke t In f o as t , P laneIn fo as p

WHERE t . fno = p . fno

This SQL query generates a target instance that contains data shown in table

3.1. We may notice that this table contains some data error marked with grey back-

ground color, these prices are inconsistent with the value in source instance. Now we

introduce some terminologies that will be used later.

Definition 4 (Error Types). : During the data exchange processing, many reasons

may result in various errors in the output data. Based on the cause of errors, e.g.

source data error, incorrect SQL query, we define different error categories. Currently

we have defined defined Source Copy Error, Source Join Error, Correspondence Error,

Superfluous Mapping Error, Source Skeleton Error and Target Skeleton Error. The

7

Table 3.2. PlaneInfo(Source)

Fno Carrier dept arrv Model MaxLoad

3368 United ORD IAD B747 240

1566 United IAD ORD B747 240

1259 AA ORD IAD B737 320

3405 AA IAD ORD B737 320

9321 JetBlue ORD IAD MD90 130

understanding of each error type is not required. Detailed error type definitions will

be introduced for reading purpose.

Definition 5 (Data Exchange Scenario). A data exchange scenario is a tuple M =

(S,T,ΣST ,ΣS ,ΣT ,C, I, J,T ,Map) where ΣS and ΣT are source and target constraints,

and ΣST is a set of st-tgds. T are the transformations implementing the mapping

and Map represents the relationships between scenario elements. We require that

(I, J) ⊧ ΣST , I ⊧ ΣS , and J ⊧ ΣT .

Definition 6 (Errors and Error Sets). Given an instance I, an error is a triple

R.t.A where R is a relation from I, t is a tuple from R, and A is an attribute from

the schema of R. We use AttrPos(I) to denote the set of all potential errors for an

instance I. An error e for a data exchange scenario M is an element of AttrPos(J).

An error set E for a data exchange scenario M is a set of errors.

Definition 7 (Error Groundings). Let e = R.t.A be an error for a data exchange

scenario M. We define the groundings Θ(e) for e as the set of grounded tgds in (I, J)

that have a grounded atom corresponding to R.t in their implication:

Θ(e) = {σ[θ] ∣ (I, J) ⊧ σ[θ] ∧R(t) ◃ σ[θ]}

8

Table 3.3. TicketPool(Source)

Fno Price MaxLoad

3368 240 240

1566 380 240

1259 390 320

3405 230 320

9321 340 130

Table 3.4. UserInfo(Source)

Uid Fname Lname

u1 1 Zhen Wang

u2 2 Santa Uno

u3 3 Rui Yao

For an error set E, we use Θ(E) to denote the union of the sets of groundings for all

errors in the set:

Θ(E) = ⋃
e∈E

Θ(e)

Definition 8 (Explanation). Given a grounding σ[θ] for an error e = R.t.A and data

exchange scenario M, a explanation λ for σ[θ] according to e is a tuple λ = (T,O)

where T is the type of explanation (one of a fixed set of explanation types Type to

be defined below) and O is a set of elements from the data exchange scenario M. We

write λ↝ (σ[θ], e) to denote that λ is an explanation for a grounded tgd σ[θ] ∈ Θ(e)

according to e.

9

Table 3.5. Booking(Source)

Oid Uid $Price

o1 1 1 240

o2 2 1 334

o3 3 3 630

o4 4 3 330

o5 5 1 340

o6 6 3 190

o7 7 3 270

For an explanation λ we define the coverage Cover(λ) as the subset of

AttrPos(J) for which there exists a grounding that is explained by the explana-

tion. The side-effect SE(λ) of an explanation is the target attribute values it covers

in addition to e.

Definition 9 (Coverage and Side-effects). Let λ be an explanation for an error e.

The coverageand side-effects of λ are defined as:

Cover(λ) = {e′ ∣ ∃σ[θ] ∈ Θ(e) ∶ λ↝ (σ[θ], e′)}

SE(λ) = Cover(λ) − {e}

Definition 10 (Covering Explanation Set (CES)). A set Λ of explanations is called

a covering explanation set (CES) for an error set E iff:

∀e ∈ E ∶ ∀σ[θ] ∈ Θ(e) ∶ ∃λ ∈ Λ ∶ λ↝ (e, σ[θ])

The coverage and side-effects of an explanation set are defined as the union of the

10

Table 3.6. MemberInfo(Target)

Mid Uid Fname Lname points

m1 1 1 Zhen Wang 24

m2 2 3 Rui Yao 63

m3 3 3 Rui Yao 33

m4 4 3 Rui Yao 19

m5 5 3 Rui Yao 27

coverage respective side-effects of the explanations in the set:

Cover(Λ) = ⋃
λ∈Λ

Cover(λ)

SE(Λ) = ⋃
λ∈Λ

SE(λ) −E

FCover(Λ) = {e ∣ ∀σ[θ] ∈ Θ(e) ∶ ∃λ ∈ Λ ∶ λ↝ (e, σ[θ])}

The number of CES can be exponential in the size of error set. Intuitively, we

want to check more important, or more possible errors to fix most data problems in

the output schema. By quantifying scores of error explanations, we may rank these

explanations and have a chance to present more likely explanations first. Thus we

come with the following definitions.

Each of these error types has quantifiable properties, thus we may match

the errors with a mathematical equation, which gives a positive score for each error

source. These scores should reflect the likelihood of the error cause to be correct. As

a convention in Vagabond, lower scores means higher importance.

By ranking explanations, we can upfront determine what would be the optimal

error explanation candidates, then we may apply pruning technique to avoid pre-

11

generating the complete solution space, which costs massive computation resources.

Vagabond is built to address the above issues. The system uses several func-

tions to compute a score for each error explanation set and rank these explanation sets

according to scores. These functions are called scoring functions. The monotonicity

property is required by Vagabond ranker so we can incrementally add explanations

into partial explanation set by ensuring the score will not decrease. During ranking,

we can prune the solution space to avoid pre-generating too many CES.

Definition 11 (Monotonicity Properties for Scoring Functions). A scoring function

f ∶ Λ → N0 is a function that maps explanation sets to natural number scores with

f(∅) = 0. A scoring function is called weakly monotone iff for all explanation sets Λ

and single explanation λ for a error set E:

f(Λ) ≤ f(Λ ∪ {λ}) ≤ f(Λ) + f({λ})

A scoring function is called monotone iff it is weakly monotone and for all explanation

sets Λa, Λb, Λc, and Λd:

f(Λa) ≤ f(Λb) ∧ f(Λc) ≤ f(Λd)

⇒f(Λa ∪Λc) ≤ f(Λb ∪Λd)

A scoring function is called strongly monotone iff for all explanation sets Λa and Λb

with Λa ∩Λb = ∅:

f(Λa ∪Λb) = f(Λa) + f(Λb)

Obviously, every strong montone scoring functions is also monotone and weakly mono-

tone.

Definition 12 (Scoring Function). : A scoring function matches each explanation

with an appropriate mathematical equation to compute the error explanation score.

12

In the Vagabond system lower score means better solution, or preferred rank-

ing. Consider an data exchange error scenario. In table 3.6, the last name of m2 is

marked as incorrect. If we use the size of explanation as scoring function, the score

will be 1, because the only explanation for this error is the instance of source data

error. We need to modify the last name in u3 to fix the error in m2. However, consider

the size of side effect scoring function, because tuples affected by the data fix are m3,

m4, and m5, the size of side effect is 3.

As the above example shows, different scoring functions have different numer-

ical scores for the same scenario and explanations. To improve ranking adaptiveness

as well as efficiency, we need to explore the property of scoring functions so we can

select better error explanations correctly and wisely.

13

CHAPTER 4

NEW SCORING FUNCTIONS

4.1 Weighted Combined Scoring Function

As the example of last chapter shows, data exchange errors may be explained

by different causes and same error explanation can have different numerical scores.

Thus for the same data exchange scenario, different scoring functions may have com-

pletely different ranking results. Additionally, based on the complexity and amount

of data exchange scenarios, it is impossible to determine “the” correct explanation

for any data error and scenarios. There is a demand of a scoring function that can

cover different data exchange scenarios and also works well for different types of error

causes.

It has been proven that multiple reasoning will increase the confidence level of

decision making. [7, 13] We propose the weighted combined scoring function fWCS[g,w]

to solve the above concerns. The rational behind fWCS[g,w] is the same as in multiple

reasoning. As one simple scoring function models only one numerical property of

explanation set, we can combine several scoring functions to model multiple properties

of a explanation set at the same time.

Let g denotes a finite non-empty set of weakly monotonic scoring functions, w

is the corresponding weight vector such that 0 < w ≤ 1,∑(w) = 1.

The weighted combined scoring function fWCS[g,w] combines a finite number of

weakly monotonic scoring functions and assign different weights w to these functions

g. These weights can be either inputted by experienced data exchange users who can

utilize their experience to make error explanation bias by giving larger weights to more

likely explanation types, or from historical statistics that store possibility/explanation

power of different scoring functions. This allows data exchange users to build different

14

instances of fWCS[g,w] from different weights of error explanation categories. Users

may leverage their knowledge to create a better suitable function for their specific

mapping scenario.

The example 4.1 shows an an instance of the weighted combined scoring func-

tion and how to compute the score. We will prove later that the new scoring function,

as the linear combination of weakly monotonic scoring functions, is also weak mono-

tonic. This property makes sure that we can apply existing ranking algorithms in

Vagabond to fWCS[g,w].

Definition 13 (Weighted Combined Scoring Function fWCS[g,w]). : Let g1 until gn

denotes weakly monotonic scoring functions, wi, (wi ∈ [0,1],∑n
i=1wi = 1) denotes the

weight of scoring function gi.

The Weighted Combined Scoring Function fWCS[g,w] is defined as:

fWCS[g,w](Λ) =
n

∑
i=1

wi ∗ gi(Λ) (4.1)

Theorem 1 (Weak Monotonicity of fWCS[g,w]). The linear combination of weakly

monotonic scoring functions is also a weakly monotonic scoring function.

Proof. Let fWCS[g,w] = ∑
n
i=1wi ∗ gi(Λ) denote an instance of the weighted combined

scoring function, We need to prove that

fWCS[g,w](Λ) ≤ fWCS[g,w](Λ ∧ {λ}) ≤ fWCS[g,w](Λ) + fWCS[g,w]({λ})

Given the definition of fWCS[g,w], we have:

fWCS[g,w](Λ) = w1 ∗ g1(Λ)) + ⋅ ⋅ ⋅ +wk ∗ gk(Λ))

where all gi functions are weakly monotone scoring functions. Since each gi is weakly

15

monotonic, and weights are non-negative values, we have:

gi(Λ) ≤ gi(Λ ∧ {Λ}) ≤ gi(Λ) + gi({λ})

≡wi ∗ gi(Λ) ≤ wi ∗ gi(Λ ∧ {Λ}) ≤ wi ∗ gi(Λ) +wi ∗ gi({λ})

If we sum up all inequalities of gi, by substituting the above equition with the fWCS

definition, since weights are non-negative. The above equation is equivalent to

fWCS[g,w](Λ) ≤ fWCS[g,w](Λ ∧ {λ}) ≤ fWCS[g,w](Λ) + fWCS[g,w]({λ})

Example - Computing fWCS: Given the database instances in table 3.4, table 3.5

and table 3.6, the error is in tuple m2, and it’s caused by the source data error in u3.

Let size of explanation scoring function fSE({m2}) denotes the score from size

of explanation scoring function. Since there is only one error explanation, the size

of explanation is 1. Let side effect size scoring function fSES({m2}) denotes the score

from side effect size scoring function. Since there are three target attribute values

will be affected if we modify the source data, the side effect size is 3.

Consider an instance of the weighted combined scoring function such that g1 =

fSE, g2 = fSES, let w1,w2 denote the weight of these two scoring function components.

If w1 = 0.33,w2 = 0.67, then the final score of this fWCS[g,w] instance is:

fWCS[g,w] = 0.67fSES + 0.33fSE

= 0.67 ∗ 3 + 0.33 ∗ 1

= 2.34

Let f[] denotes a set of weakly monotonic scoring functions, w[] denotes the

corresponding weights of f[], fWCS[g,w] denotes the instance of the weighted combined

16

scoring function, ExplColl denotes the explanation collection that needs to be ranked.

s denotes the score of Λ given by the instance fWCS[g,w]. The algorithm to compute

the weighted combined score is described in algorithm 1.

Algorithm 1 Weighted Combined Scoring Function

1: Initalization:

2: SizeofExplCollection ← ExplColl.size

3: f[]← ScoringFunctions

4: w[]←WeightsofScoringFunctions

5: s← 0

6: Computation:

7: for i ∈ {1,2, . . . , f[].size} do

8: s← s +wj ∗ gj(ExplColl)

9: end for

10: Return s

Bounds of fWCS:

As we will see later in Chapter 5, the new ranker requires finite boundary

property for scoring functions. Let fWCS denotes an instance of weighted combined

scoring function, wi and gi denotes component weights and scoring functions. Let

LOWf(Λ) and UPf(Λ) denotes low bound and up bound of scoring function f given

explanation set Λ, the bounds of fWCS[g,w] are defined as:

LOWfWCS[g,w](Λ) =
n

∑
i=1

wi ∗LOWgi(Λ)

UPfWCS [g,w](Λ) =
n

∑
i=1

wi ∗UPgi(Λ)

The trick here is to distribute the bound computation to component scoring

17

functions. Since the fWCS is simply a linear combination of the scores, the distributed

computation will keep the correct numerical results for fWCS bounds.

Now we prove the up and low bounds of the scoring functions originally de-

scribed in the Vagabond. Consider a data exchange scenario with candidate expla-

nation collection Λ. Let E denotes the complete set of errors that Λ explains, Epartial

denotes the error set explained by partial solution Λpartial, the bounds of fSE are:

Up Bound: ∣E∣ − ∣Epartial∣ + ∣Λpartial∣

Low Bound: : ∣Λpartial∣ + 1

Proof. The low bound is expecting the next additional explanation will explain all

remaining unexplained errors, so it’s simply the current size of partial explanation

set plus 1.

The up bound expects every single unexplained error requires a unique expla-

nation, thus the up bound is current size of explanation plus the size of remaining

unexplained error set.

For the same data exchange scenario, let SEpartial denotes the current set of

side effects for current partial solution, let SE(λ) denotes the set of side effects for

λ, let Λremain denotes the explanation set that explains uncovered errors in existing

partial solution, let λi denotes every single explanation in Λremain, the bounds of fSES

are:

Up Bound: ∣SEpartial∣ + sum(∣SE(λi)∣)

Low Bound: : max(∣SEpartial ∣,max(min(∣SE(λi)∣)))

18

Proof. The up bound is the worst case that all remaining explanations have side

effects without overlap, that increases the size of side effect to its possible maximum

value.

The low bound is the larger value between the current size of side effect, and

the largest minimum size of side effect in remaining explanations.

19

4.2 Type-Weighted Size of Explanation Scoring Function

As the example 3 shows, existing scoring functions such as side effect size

scoring function and the size of explanation scoring function can only reflect naive

numerical results. However, it’s common that data exchange users want the score to

reflect the category of error explanations.

We introduce the type-weighted explanation size scoring function fTWSE to

solves the above issue by calculating the score as type weighted explanation size.

Let Type denotes the domain of all explanation types, w ∶ Type → [0,1]

denotes a function that assigns a weight between 0 and 1 to each explanation type, E

denotes the complete set of errors ei, Λe denotes the set of all alternative explanations

that explains e. Λ denotes the complete explanation sets. T (λ) denotes the type of

explanation λ. The Type-Weighted Explanation Size Scoring Function fTWES is

defined as:

4.2.1 Definition.

Definition 14 (Type-Weighted Size of Explanation Scoring Function).

fTWSE[w](Λ) = ∑
e∈E,Λ↝E

∑λ∈Λe
w ∗ T (λ)
∣ Λe ∣

(4.2)

Theorem 2 (TWSE Non-Monotonicity). The weak monotonic property does not hold

for fTWSE.

Proof. New λ can potentially has overlap with every existing λ, bringing new or

existing error types. If the weight of the new error type is lower than current average

weight, then it will lower the total average, which means the weak monotonic property

does not hold for this scoring function.

20

Algorithm 2 Type-Weighted Explanation Size Scoring Function

1: Initalization:

2: E ← ∅

3: M ← ∅

4: score← 0

5: for e ∈ {e′∣∃λ ∈ Λ ∶ λ↝ e′} do

6: E ← E ∪ {e}

7: end for

8: for Λi ∈ {Λ} do

9: for λj ∈ Λi do

10: for e ∈ {e′∣λj ↝ e′} do

11: M(e) ←M(e) ∪ {λj}

12: end for

13: end for

14: end for

15: Computation:

16: for e ∈ E do

17: for λ ∈ Λe do

18: score← score +w ∗ T (λ)

19: end for

20: end for

21: Return score

Consider a data exchange scenario with candidate explanation collection Λ.

Let LOWcurrent and UPcurrent denotes the low bound and up bound that need to be

updated. E denotes the complete set of errors that Λ explains, Epartial denotes the

error set explained by partial solution Λpartial, W ∶ w1,w2, . . . wn denotes the weights

21

for corresponding error explanation types. the bounds of fSE are:

Up Bound: UPcurrent +max(wi) ∗ (∣E∣ − ∣Epartial∣)

Low Bound: : LOWcurrent +min(wi)

Proof. The low bound is expecting the next additional explanation will explain all

remaining unexplained errors, so it’s simply the current size of partial explanation

set plus 1 * the minimum weight of explanation type.

The up bound expects every single unexplained error requires a unique expla-

nation, thus the up bound is current up bound plus the size of remaining unexplained

error set times the maximum weight of error types.

22

4.3 Error Type Homogeneity Scoring Function

4.3.1 Introduction. Consider a common data exchange scenario that one target

schemar attribute contains several errors. Intuitively, each e in target schema comes

from identical transformation as well as identical source, thus the error type, if any,

should be identical and here is where we introduce information theory to evaluate the

error source homogeneity for single error.

Entropy function is characterized from Shannon’s entropy[14]. It quantifies

the homogeneity of system parameters, which is the error homogeneity in Vagabond.

We introduce a new scoring function that will quantify the homogeneous property

of ideal error explanation set. The new scoring function, error type homogeneity

scoring function fEH, uses entropy function to compute the homogeneous level of

error explanation candidates.

Let ρ(R,A)(T) denotes the density of error type T among all the error explana-

tions that explain attribute (R,A), the density for error type T that explains (R,A)

is computed as:

ρ(T) =
∣λ∣λ ∈ Λ(R,A) ∧ T (λ) = T ∣

∣Λ(R,A)∣

such that Λ(R,A) ↝ E(R,A).

Given the fact that there could be several types of explanation all explain

E(R,A), and the definition of entropy formula, the error source homogeneity score for

attribute R.A, fEH(Λ(R,A)) is computed as:

fEH(Λ(R,A)) = − ∑
T ∈Type

ρ(T) ∗ log(ρ(T))

Since a explanation set may contain several unrelated attributes, we sum up

the above equation for all attributes in the error set as a final score for fEH scoring

function.

23

Definition 15 (Error Type Homogeneity Scoring Function fEH).

fEH(Λ) = ∑
(R,A)∈TA

∣Λ(R,A)∣
∣Λ∣

∗H(Λ(R,A))

To be consistent with all other scoring functions, the lower score indicates

better solution.

Theorem 3 (fEH Non-Monotonicity - Lemma). The best case of homogeneity score

is 0, while only one type of error dominate the error set.

Depending on the size of error type domain, if all error types are evenly dis-

tributed, the worst case of homogeneity score is infinite.

Theorem 4 (fEH Non-Monotonicity). The explanation homogeneity scoring function

is not weakly monotonic. Scores may either increase or decrease while explanation

set size increases.

Proof. Counter Example

Following tables represents the error type distribution for an abstract data

exchange scenario. Each table shows the error type amount for that attribute. For

example, for attribute A, it there are 98+2 = 100 errors in this attribute, and 98 out

of these 100 errors are explained by T2 type of error explanation, or can be categorized

into T2.

A

2 98

T1 T2

B

1 99

T1 T2

C

2 98

T1 T2

D

1 99

T3 T4

Figure 4.1. Counter-example of Monotonicity for fEH

24

Each table represents a E(R
′,A′). For above four E(R′,A′), we know that

f(a) ≤ f(b), f(c) ≤ f(d)

If the entropy scoring function has the weakly monotonic property, we should have:

f(a ∪ c) ≤ f(b ∪ d)

However, according to our scoring function equation, clearly the above con-

clusion is incorrect. So the weakly monotonic property does not hold for the error

explanation homogeneity scoring function.

4.3.2 Computation Logic. We now present the scoring function algorithm. The

fEH scoring function has four stages, mapping, partitioning, evaluating, as well as

merging.

Mapping

First stage is partitioning the target schema based on e, and create a mapping

relation from single target marker to a set of error explanations.

Let E denotes all target errors, e.g.

E = {e1, e2, . . . , en}, ei = (R, t, a)

where R is relation, t is tuple, a is attribute.

An explanation set for all target errors is

Λ = {λm∣∀λm,∃e ∈ E ∶ λm ↝ e}

Group errors by target attributes:

TA = {(R,A) ∣ ∃t ∶ (R, t,A) ∈ E}

25

Stage 1 mapping for errors and explanations is as follow:

PTA−Λ ∶ TA→ P(Λ)

which is defined as

PTA−E ∶ TA→ P(E)

Partitioning Second stage is merge the error explanations into partial explanation

sets according to e by their combination of relation and attribute. Stage 2 will merge

the partions in stage 1, formulating several partial explanation sets.

Let E(R′,A′) denotes the partial target error set having unique combination of

relation and attribute. e.g.

PTA−E((R′,A′)) = {e ∣ e ∈ E ∧ e.R = R′ ∧ e.A = A′}

We will create several partial explanation sets by the following rule:

PTA−Λ((R′,A′)) = {λ ∣ λ ∈ Λ ∧ ∃e ∈ E(R′,A′) ∶ λ↝ e}

For convenience we write E(R,A) for PTA−E((R,A))

Definition 16 (Error Explanation Partition). : Let Λ denots the explanation set of an

explanation generator, λi, i = 1, . . . , n are explanations in Λ, The following constraint

holds: Λ = {λ1, λ2, . . . , λk}

1. E(λi) /⊆ E(λj), i ≠ j

2. ∀Λ′ ⊆ Λ,∀λ ∈ Λ −Λ′,E(λ) /⊆ Λ′

Evaluating Third stage is evaluate the homogeneity of each partial explanation set

by computing the entropy score of the error explanation set. Stage 3 we compute

entropy score for each partial explanation set.

26

H(Λ(R,A)) = − ∑
T ∈Type

ρ(T) ∗ log(ρ(T))

ρ(T) =
∣{λ∣λ ∈ Λ(R,A) ∧ T (λ) = T }∣

∣Λ(R,A)∣

Merging The last stage is merge partial entropy scores by weighting each entropy

score by their size of coverset percentage over the complete size of target error set.

The last stage is compute weighted combined entropy scores as follow:

fEH(Λ) = ∑
(R,A)∈TA

∣Λ(R,A)∣
∣Λ∣

∗H(Λ(R,A))

27

Algorithm 3 Error Explanation Homogeneity Scoring Function

1: Initalization:

2: E ← ∅

3: M ← ∅

4: score← 0

5: for e ∈ {e′∣∃λ ∈ Λ ∶ λ↝ e′} do

6: E ← E ∪ {e}

7: end for

8: for Λi ∈ {Λ} do

9: for λj ∈ Λi do

10: for e ∈ {e′∣λj ↝ e′} do

11: M(e) ←M(e) ∪ {λj}

12: end for

13: end for

14: end for

15: Computation:

16: for e ∈ E do

17: Λe ← E(e)

18: for λ ∈ Λe do

19: score← score +w ∗ T (λ)

20: end for

21: end for

22: Return score

Given the fact that fEH is not weakly monotonic, we still want to find boundary

property for fEH so we could apply pruning in partial solution base, thus allow us to

increase efficiency of ranking algorithm.

28

Let T denotes the domain of all error types, Tcurrent denotes the domain of

partial explanation error types, let ∣Ti∣Λ denotes the amount of explanations that

belongs to type Ti in Λ, the low bound and up bound computation of fEH are described

as:

Algorithm 4 Low Bound Update For fEH :

1: Initialization:

2: for attr in E do

3: if ∣attr∣ > ∣attrupdate∣ then

4: attrupdate ← attr

5: end if

6: end for

7: for T in {T } do

8: if ∣T ∣ > ∣Tupdate∣ then

9: Tupdate ← T

10: end if

11: end for

12: Update Low Bound:

13: ρnew(Tupdate)← (∣Tupdate∣ + 1)/(∣attrupdate∣ + 1)

14: H(Λ(R,A)∪{λ})←H(Λ(R,A))+ ρ(T) ∗ log(ρ(T))− ρnew(Tupdate) ∗ log(ρnew(Tupdate))

15: tmp← lowBound ∗ ∣Λ∣ −H(Λ(R,A)) ∗ ∣λ(R,A)∣

16: tmp← tmp +H(Λ(R,A)∪{λ}) ∗ (∣λ(R,A)∣ + 1)

17: tmp← tmp/(∣Λ∣ + 1)

18: lowBound← tmp

19: Return lowBound

29

Algorithm 5 Up Bound Update For fEH :

1: Initialization:

2: for attr in E do

3: if ∣attr∣ < ∣attrupdate∣ then

4: attrupdate ← attr

5: end if

6: end for

7: for T in {T } do

8: if ∣T ∣ < ∣Tupdate∣ then

9: Tupdate ← T

10: end if

11: end for

12: Update Up Bound:

13: ρnew(Tupdate)← (∣Tupdate∣ + 1)/(∣attrupdate∣ + 1)

14: H(Λ(R,A)∪{λ})←H(Λ(R,A))+ ρ(T) ∗ log(ρ(T))− ρnew(Tupdate) ∗ log(ρnew(Tupdate))

15: tmp← upBound ∗ ∣Λ∣ −H(Λ(R,A)) ∗ ∣λ(R,A)∣

16: tmp← tmp +H(Λ(R,A)∪{λ}) ∗ (∣λ(R,A)∣ + 1)

17: tmp← tmp/(∣Λ∣ + 1)

18: upBound← tmp

19: Return upBound

30

CHAPTER 5

BOUNDARY RANKER

5.1 Introduction

The existing rankers in Vagabond require monotonicity property. However,

this property may not hold for new scoring functions. To match the requirement of

ranking partial explanation solutions, we need to introduce a new generic ranker that

prunes partial solutions based on score bounds.

To keep consistency of scoring functions, this boundary ranker error explana-

tions set with lower score to be better solutions.

5.2 Boundaries of Scoring Functions

Definition 17 (Finite Boundary). For any given scoring function f and error ex-

planation collection Λ, let q denote the score for any partial explanation at it’s incre-

mental step i.

The up bound UP (f(Λ)) is a value α such that ∀q,α ≥ q.

The low bound LOW (f(Λ)) is a value β such that ∀q, β ≤ q.

5.3 Implementation of Boundary Ranker

Data Strucuture of Boundary Ranker

Definition 18 (IDMap Array). IDMap Array is an array with size equal to the size

of error set. The index of the array i indicates corresponding marker ei. Each element

in the array is an IDMap that represents the mapping relationship between ei and the

Λi, where Λi is the set contains all λj such that λj ↝ ei.

Definition 19 (Partial Explanation Queue). A partial explanation set queue Queuepartial

is a priority queue that ranks elements elePartialQ by their low and up boundaries.

31

Each element consists a vector represents the indexes of λ of this partial solution,

and values of up boundary, low boundary, paritial score, explanation set, as well as

expansion step.

Definition 20 (Complete Explanation Queue). A complete explanation set queue

Queuecomplete is a priority queue that ranks elements eleCompleteQ by their score.

Each element consists a vector represents the indexes of λ of this solution, and

the Λ such that Λ↝ {e}.

Let E.size denotes the size of error set, ScoringFunction denotes the scoring

function that uses the boundary ranker, ExplanationCollection denotes the expla-

nation collection that we need to rank, the algorithm of boundary ranker is described

in algorithm 6.

32

Algorithm 6 Boundary Ranker

1: Initalization:

2: SizeofMarkerSet ← E.size

3: IDMap[]← IDMap < ǫ,Λ > [SizeofErrorSet]

4: f ← ScoringFunction

5: for i ∈ {1,2, . . . , SizeofExplanationCollection} do

6: for j ∈ {1,2, . . . , SizeofExplanationSet} do

7: CurrentExpl ← λi,j

8: IDMap[k] ← IDMap[k] ∪ {λi,j}, (λi,j ↝ ǫk)

9: end for

10: end for

11: Λ0 = IDMap[0]

12: for i ← 1, Λ0.size do

13: λi = Λ0[i], e ← newPartialEle, e.Λ ← {λi}

14: e.upBound← UP (f(Λ0))

15: e.lowBound← LOW (f(Λ0))

16: e.score← f(Λ0)

17: Insert(PartialQueue, e)

18: end for

33

19: Generate Ranked Explanation Sets:

20: while CompleteQueue.size < RequiredRankingSize do

21: PartialEle ← PartialQueue.PopTopElement

22: if ExpandedPartialEle.size == SizeofMarkerSet then

23: Insert(CompleteQueue, ExpandedPartialEle)

24: end if

25: for i← 1, SizeofNextExplset do

26: ExpandedPartialEle.partialExplSet ← PartialEle.partialExplSet∪{λi}

27: ExpandedPartialEle.upBound ← UP (f(PartialEle.partialExplSet))

28: ExpandedPartialEle.lowBound ← UP (f(PartialEle.partialExplSet))

29: ExpandedPartialEle.score ← f(PartialEle.partialExplSet)

30: Insert(PartialQueue, ExpandedPartialEle)

31: end for

32: end while

5.4 Example

Consider an abstract data exchange scenario that uses size of explanation as

scoring function. The IDMap after initialization is:

IDMap[0] = 0 ∶ λ[1,1],1 ∶ λ[1,2]

IDMap[1] = 0 ∶ λ[2,1],1 ∶ λ[2,2]

IDMap[2] = 0 ∶ λ[1,2]

Recall that the length of this IDMap represents the size of error set, so we

have an error set with size equals to 3. Each IDMap element indicates possible error

explanation for the error having the element index. (e.g. for e0, there are two λ can

explain this error, and these two explanations are λ1,1 and λ1,2.)

34

The partial queue is initialized as empty, and we start inserting elements to

the queue by expanding the partial error set, which is in an arbitrary order of error

index. Here we start expanding with e0.

We generate several partial solutions for e0 and insert these partial solutions

as element into partial queue. The queue will sort elements base on bound values and

scores. Assume that after first expanding, the queue status is as follow:

PartialQueue[0] =< ExplIndexV e1 ∶ [1,−1,−2],2,1,1,{λ1,2},1 >

PartialQueue[1] =< ExplIndexV e0 ∶ [0,−1,−1],3,1,1,{λ1,1},1 >

Notice that the top element includes λ1,2 because the explanation also explains

e2, this results in a lower up bound for the solution candidates, thus it’s a preferred

partial solution.

After the first expanding, we pop out the top element in the partial queue,

examine it to check its completeness, now it’s not complete, so we continue to expand

it, the partial queue after inserting new expanded nodes is:

PartialQueue[0] =< ExplIndexV e1 ∶ [1,0,−2],2,2,2,{λ1,2, λ2,1},2 >

PartialQueue[1] =< ExplIndexV e1 ∶ [1,1,−2],2,2,2,{λ1,2, λ2,2},2 >

PartialQueue[2] =< ExplIndexV e0 ∶ [0,−1,−1],3,1,1,{λ1,1},1 >

Now we can see we have two complete nodes in the partial queue, these two

elements will be pop out and transfer to complete queue, which is also the ranked

explanation set as final output. The partial queue after this operation is:

PartialQueue[0] =< ExplIndexV e0 ∶ [0,−1,−1],3,1,1,{λ1,1},1 >

35

The algorithm then continue to run until the partial queue is empty or the

required amount of ranked solutions are filled, whichever comes earlier.

36

CHAPTER 6

EXPERIMENTS

Experiments are conducted on a Ubuntu 14.04 LTS machine with 8GB RAM,

Intel Core i7-4770k @ 3.50GHz x 4. The experiments are designed into two categories,

one focusing on the impact of error ratio with fix amount of data, the other focusing

on the processing time against data size increase.

All data are generated using STBenchmark [1], and error sets are generated

by uniformly select target instance attributes.

Table 6.1 shows the first set of experiments, the fixed size of data is 1000. The

experiment result shows that all scoring functions are nearly linear increasing pro-

portional to the error ratio. However, the explanation homogeneity scoring function

is most sensitive to the error ratio, while size of explanation scoring function is least

sensitive to the error ratio.

Table 6.1. Explanation Generation Time(Sec), Data Size = 1000, Default Ranker

0 200 400 600 800

0

20

40

60

Error Set Size

P
ro
ce
ss
in
g
T
im

e(
se
c)

Size of Explanation Side Effect Size
Weighted Combined Score Type-Weighted Explanation Size
Explanation Homogeneity

37

Table 6.2 shows the second set of experiments, the fixed size of error set is 2000.

The experiment result shows that all scoring functions are nearly linear increasing

proportional to the data size. However, the explanation homogeneity scoring function

is most sensitive to the data size, while size of explanation scoring function is least

sensitive to the data size.

Table 6.2. Explanation Generation Time(Sec), Error Size = 200, Default Ranker

1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

Data Set Size(k)

P
ro
ce
ss
in
g
T
im

e(
se
c)

Size of Explanation Side Effect Size
Weighted Combined Score Type-Weighted Explanation Size
Explanation Homogeneity

38

CHAPTER 7

CONCLUSIONS

As experiment 6.1 and experiment 6.2 show, given fix amount of data, the

error explanation generation time is linear increasing with the error ratio. Also, given

fix amount of error, the error explanation generation time of scoring functions is linear

increasing with the size of data.

For both cases, the explanation homogeneity scoring function is most sensitive

function, while size of explanation scoring function is least sensitive one.

The linear increasing time corresponding to the linear increasing size serves as

a preliminary proof that the new scoring functions introduced in this thesis have a

scalable performance. Additionally, given the limited experiment platform resources,

further large scale experiments are necessary to reveal the the impact of boundary

ranker on the solution base pruning.

39

BIBLIOGRAPHY

[1] Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. Stbenchmark: Towards
a benchmark for mapping systems. 2008.

[2] S Borzsony, Donald Kossmann, and Konrad Stocker. The skyline operator. In
Data Engineering, 2001. Proceedings. 17th International Conference on, pages
421–430. IEEE, 2001.

[3] Rosine Cicchetti, A Hameurlain, and R Traunmuller. Database and expert sys-
tems applications, 2002.

[4] Ronald Fagin, Phokion G Kolaitis, Renée J Miller, and Lucian Popa. Data
exchange: Semantics and query answering. In Database TheoryICDT 2003, pages
207–224. Springer, 2003.

[5] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: semantics and query answering. Theor. Comput. Sci., 336(1):89–124,
2005.

[6] Boris Glavic, Jiang Du, Renée J Miller, Gustavo Alonso, and Laura M Haas.
Debugging data exchange with vagabond. Proceedings of the VLDB Endowment,
4(12), 2011.

[7] Van-Nam Huynh, Yoshiteru Nakamori, Tu-Bao Ho, and Tetsuya Murai.
Multiple-attribute decision making under uncertainty: the evidential reason-
ing approach revisited. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 36(4):804–822, 2006.

[8] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k
query processing techniques in relational database systems. ACM Comput. Surv.,
40(4):11:1–11:58, October 2008.

[9] Michael J Kearns and Yishay Mansour. A fast, bottom-up decision tree pruning
algorithm with near-optimal generalization. In ICML, volume 98, pages 269–277.
Citeseer, 1998.

[10] Phokion G Kolaitis. Schema mappings, data exchange, and metadata manage-
ment. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 61–75. ACM, 2005.

[11] John Mingers. An empirical comparison of pruning methods for decision tree
induction. Machine learning, 4(2):227–243, 1989.

[12] Henryk Rybiński. On first-order-logic databases. ACM Trans. Database Syst.,
12(3):325–349, September 1987.

[13] Glenn Shafer. A mathematical theory of evidence, volume 1. Princeton university
press Princeton, 1976.

[14] Bhu Dev Sharma and RP Singh. A generalization of entropy equation: homoge-
neous entropies. Kybernetika, 21(2):157–163, 1985.

