
Multi-layered approach to aligning

heterogeneous ontologies

William Sunna

Department of Computer Science, University of Illinois at Chicago
851 S. Morgan St. (M/C 152), Chicago, IL 60607, USA

Abstract

In various domain specific applications with heterogeneous databases, an ontology-
driven approach to data integration relies on the alignment of the concepts of a
global ontology that describes the domain, with the concepts of the ontologies that
describe the data in the local databases. Once the alignment between the global
ontology and each local ontology is established, agreements that encode a vari-
ety of mappings between concepts are derived. In this way, users can potentially
query hundreds of distributed databases using a single query that hides the under-
lying heterogeneities. Using our approach, querying can be easily extended to new
data sources. In this paper, we propose our “multi-layered” ontology alignment ap-
proach and the underlying algorithms that are used to establish mappings between
the concepts. We also present the AgreementMaker, our ontology alignment tool
that implements our approach, our tool displays the ontologies, supports several
“mapping layers” visually, presents automatically generated mappings, and finally
produces the agreements.

1 Introduction

Database concepts in various domains of knowledge are often categorized and described us-
ing ontologies. Such ontologies may be created independently by domain experts who have
minimum or no communication among them. As a result, similar concepts can be described
differently in a given domain of knowledge and their categorization can result in hetero-
geneous ontologies. Querying distributed databases represented by heterogenous ontologies
collectively can be very challenging since it requires the querying system to be aware of each
ontology that is used in every system and what each concept each ontology refers to. For
this we have proposed an integration framework to facilitate the access to the information

Email address: [wsunna]@cs.uic.edu (William Sunna ).



that is contained in distributed and heterogeneous databases [11]. Our approach relies on
the alignment of ontologies, that is, on establishing mappings among related concepts in
two heterogeneous ontologies. When such mappings have been established, we say that the
two ontologies are aligned or matched. We consider two different network architectures: a
centralized architecture and a peer-to-peer (P2P) architecture. In the former architecture,
there is a global ontology. Each distributed ontology is aligned with the global ontology. As
a consequence, a query expressed in terms of the concepts of the global ontology can be
translated into a query to one of the distributed or local databases using the mappings that
are established during the alignment process. In the latter architecture, a query to one of
the peers, the source peer, can be translated into a query to another peer, the target peer,
provided that the ontologies of the two peers have been aligned. Whichever the architecture,
querying can be easily extended to new databases. In this paper we refer to a global ontology
or a source peer as a source ontology and we refer to a local ontology or a target peer as the
target ontology.

In order to resolve heterogeneities and bridge the gap between distributed systems, we pro-
pose our multi-layered approach to ontology alignment, whose functionality extends that of
our previous work [11,13,12]. In our approach, mappings are determined semi-automatically,
using both automatic and manual methods. To establish such mappings, our approach uses
four mapping layers. Three of these layers use automatic methods and the other one uses
manual methods.In the first layer, the concepts of the ontologies are automatically mapped
to each other based on their definition and relative locations in the ontological structures.
The user manually maps concepts in the second alignment layer where mapping types are
used to specify the relationships between mapped concepts. In the third layer, an automatic
procedure is invoked which deduces more mappings by looking at previous mappings in the
context of the ontologies. Finally, in the fourth layer, an automatic procedure is used to
consolidate all the mappings produced from previous alignment layers. To apply our multi-
layered approach, we created a visual tool, the AgreementMaker, which implements our four
layers of mappings. Our tool allows the user to load two ontologies that get displayed side
by side to be aligned. Upon aligning the ontologies, our tool generates an agreement doc-
ument which stores the results of the mappings from the four layers to be used with end
applications such as those providing querying capabilities across distributed systems. Our
tool provides a graphical user interface that allows the user to perform manual mappings
and invoke automatic mappings in the the various mapping layers. In creating the graphical
user interface, we took into consideration many visual issues such as how to display large
ontologies, how to present the results of the mapping layers to the user, and how to avoid
congestion of the displayed information.

Several ontology alignment techniques and strategies have been proposed to achieve the goal
of database interpretability. On one hand, some of these techniques make use of the labels,
the properties, and the definitions the concepts to determine the mappings between them.
On the other hand, other techniques make use of the location of the concepts in the on-
tological structure to determine the mappings. In establishing mappings between concepts,
similarities are determined to measure how close or accurate the mappings are relative to
reality. Achieving high measures of similarities will increase the level of confidence in the

2



alignment technique, therefore designers of such techniques always try to make use of what-
ever information they can obtain about a concept in the source ontology in order to find
a very good match for it in the target ontology. In this paper, we will present an overview
of several alignment techniques and alinement tools in Section 2. As far as our alignment
approach is concerned, we will concentrate on our first layer of mapping where we propose
three similarity calculation algorithms that are used to map concepts. The first algorithm
simply measures how similar concepts are to each other by examining their definitions as
provided by a dictionary, the second algorithm reconfigures the similarity results from the
first algorithm by considering the similarities of the parent concepts. Finally, the third algo-
rithm reconfigures the similarity of the first algorithm by considering the similarity of sibling
concepts.

The rest of this paper is organized as follows. In Section 2, we give an overview of related work
in the area. We present our multi-layered approach to ontology alignment and an overview of
our alignment tool in Section 3. In Section 4 we present our automatic similarity algorithms
that support the first layer of mapping in our multi-layered approach along with the results
of applying these algorithms on four sets of heterogenous ontologies. Finally, in Section 5,
we outline our future work.

2 Related Work

In this section, we cover several ontology alignment(matching) techniques that are close to
our alignment techniques. In addition, we survey several visual ontology alignment tools.

2.1 Ontology Alignment Techniques

In their survey paper, Shvaiko and Euzenat [33] provide a comparative review of recent
schema and ontology matching techniques in the context of a new classification system they
propose. In their system, they present a classification system of ontology based matching
techniques (strategies), the techniques are classified as element level or structure level. In
the element level, the techniques are further classified into string based, language based,
linguistic based, constraint based, or alignment reuse based. In the structure level, the tech-
niques are further classified as graph based, taxonomy based, or model based. In order to
derive mappings between concepts during the alignment process of ontology, the element
based techniques consider the labels of concepts, their definitions, the language they are ex-
pressed in, and any possibility to reuse previous mappings to derive new ones. Likewise, the
structure based techniques consider the location of the concept in the ontological structure
whether it was a tree or a graph or any model that the ontology is expressed in and how
the mappings of concepts can contribute to the mappings of adjacent concepts. According
to their classification system, our alignment techniques fall into a subset of element level
category because of our definition mapping layer, and structure level category because of

3



our context mapping layer. We will present our alignment techniques in more details in Sec-
tion 4. Next we present a survey of some of the ontology based matching techniques and
where they fall in Shvaiko and Euzenat classification.

OLA [17] is an alignment tool that was developed by teams at the University of Montreal
and INRIA Rhone Alpes. The main purpose of this tool is to align ontologies expressed in
OWL [4]. OLA offers parsing and visualization of OWL-Lite and OWL-DL ontologies, in
addition it offers computations of similarities between concepts from the ontologies being
aligned. OLA employs linguistic element level and structure level based techniques. OLA
allows manual construction of alignments by composing entity pairs from the two aligned
ontologies and it uses existing mappings as a starter for automated mappings. In OLA, the
available knowledge about the concepts in the aligned ontologies is taken into consideration
prior to the alignment process, this requires the tool user who is performing the alignment
to make some selections in choosing appropriate alignment methods available in the tool.
In designing OLA, one main goal is to achieve the highest level of automation since full
automation cannot be achieved. For this goal to be satisfied, OLA expects the user to provide
a minimal set of parameters at the initial steps of the alignment process and then leave it for
the tool to accomplish the full alignment task at the end without any human intervention.
OLA follows category-dependent comparison strategy that is concepts are categorized as
classes, objects, properties, and relations, only concepts of the same category of classification
will be compared. Furthermore, for each category there are sets of customized similarity
functions that are used in establishing mappings between the concepts in the category,
unlike what we have in our approach, OLA has the limitations that similarities between
concepts do not contribute or affect the similarities of their neighbors. The first step in OLA’s
alignment process is to parse the input OWL ontologies and build a labeled OL-Graph [18],
vertices on the graph are further categorized to classes, objects, relations, properties, property
instances, data types, data values, or property instances. The OL-Graph allows the expression
of specialization between classes and relations, instantiation between objects and classes,
attribution between classes and properties, and valuation between properties and objects.
The second step after building the OL-Graph is to apply the category oriented similarity
functions, some of these functions employ string distances and lexical distances to compute
the similarities with the help of the WordNet dictionary [29].

RiMOM [34] (Risk Minimization based Ontology Mapping) is a system that intends to
combine different strategies to achieve optimal alignment from a source ontology to a tar-
get ontology that are input to the system. There are two types of defined strategies in
the system: linguistic based techniques (includes edit-distance and statistical-learning), and
structure based techniques (includes similarity-propagation, property-to-property propaga-
tion, and concept-to-property propagation). RiMOM first examines the structural similarity
of the ontologies and the label similarity of the concepts in the ontologies to determine which
strategies to use in the alignment process. For example, if there is a high similarity in labels,
RiMOM will rely more on linguistic based strategies to find the matchings between concepts.
RiMOM then applies the selected alignment strategies; each strategy outputs its own inde-
pendent results, the results are then combined using a linear-interpolation method. Finaly,
RiMOM applies a refinement procedure to prune alignments which represent bad matchings

4



between concepts. RiMOM aims to address mainly three types of challenges: (1) achieving
high quality alignments using automatic matching algorithms; (2) enhance performance of
the system to find the alignments efficiently; and (3) automatically adjusting the selection
of alignment strategies for different sets of source and target ontologies. Compared to our
approach, we are also using multiple matching techniques, some of the differences of our
approach is that we take into consideration the relationships between the various concepts
in the ontology in deciding the similarities. That is to say that if two concepts match, then
most likely their children will match with a high similarity and their grand children will
match with a lower similarity measure. Compared to their approach in combing results of
the various strategies, our tool allows experts to review the results of the mapping strategies
and determine the importance of each one, this way we reach better end results and allow
the user the flexibility to rank the results from our mapping strategies in different ways.

In their paper [28], Melnik et al. propose a simple structural model based level technique that
can be used in matching a variety of data structures (referred to as models). Models can be
data schemas, data instances, or a mixture of both. In their approach, models are converted
to directed labelled graphs. Their matching algorithm takes two graphs to be aligned as an
input and generates mappings between their corresponding concepts. For their algorithm to
work, they rely on the fact that concepts from the two graphs are similar when their adjacent
concepts on the graphs are similar, the algorithm starts with obtaining initial mappings
between concepts in the two input graphs using a string matching function which returns
initial similarities between matched concepts. Having established the initial mappings, the
algorithm proceeds in iterations to establish more mappings between other concepts, this
is done based on the assumption that in every iteration whenever any two concepts in the
input models matched with some similarity measure, the similarity of their adjacent concepts
increases. The iterations continue “flooding” the similarities across the concepts in the graphs
until a fixed point is reached where similarity measures for all concepts have been stabilized.

FOAM [5] (Framework for Ontology Alignment and Mapping) is proposed by Ehrig et al. In
their framework, they try to address several requirements that may have been overlooked by
existing alignment methods. Theses requirements are: (1) obtaining high quality results; (2)
Achieving high level of efficiency when aligning two ontologies; (3) allow users to interact
when needed; (4) provide flexibility with respect to use cases; and (5) allow for adjustment
and parametrization. To meet the requirement of achieving high quality alignment results,
FOAM employs structure level based techniques. For example, entities are considered similar
to each other if their super concepts are similar. This resembles our mapping by context
layer approach where mappings propagate automatically from concepts to their parents in
the ontological trees. To meet the efficiency requirements, FOAM implements an intelligent
selection algorithm to single out concepts that are good candidates to be matched. In order
to provide flexibility in ontology alignment based on use cases, the system can automatically
select between mapping algorithms for its input ontologies, for example, if the ontologies are
very large, the system selects efficient approaches to be used for the alignment of these large
ontologies.

In their paper [24] Lopez et al. shift the focus of the reader away from traditional ontology

5



mapping to other requirements that have been neglected. Some examples of these require-
ments are: (1) matching multiple online ontologies instead of two only; (2) mapping ontologies
that are not close to one another; (3) focus on efficiency not only the quality of matching
like most approaches concentrate on; and (4) concentrate on instance level matching as it
has been ignored because the focus was always on concept level matching. They introduce
their PowerMap algorithm which represents a new generation of algorithms where ontolo-
gies get mapped at run time instead at the design time. To allow for this, semantic search
engines were built (such as Swoogle [15]) which can crawl and index the online sematic data
to enable the PowerMap algorithm to go online and retrieve ontologies that are related to
the user’s query. The PowerMap algorithm is the core component of PowerAqua ontology
based question answering application [23] that tries to answer questions asked in natural
language by making use of the available online semantic data. The PowerAqua application
proceeds with determining the ontologies that are relevant to the question asked by the user,
element based matching techniques are used at this step to identify such ontologies. Once
the ontologies are retrieved, PowerAqua applies a filtering algorithm to exclude ontologies
that may be ambiguous and only keep those who can potentially provide the most amount of
information in answering the user’s question. To allow for this, PowerAqua uses more com-
plex algorithms, for example, if the user question contains the term “Capital” which refers
to the geographical city where the government of a county is located, then PowerAqua will
exclude ontologies that contain information related to “Capital” which refer to an asset or
wealth. After excluding the ambiguous ontologies, the application will return the remaining
sets of ontologies that jointly contain enough information to provide the answer to the ques-
tion posed by the user. Our approach is widely different from PowerMap, we concentrate on
mapping two ontologies to each other, while PowerMap concentrates on mapping the user’s
questions to a collection of online ontologies on run time. However, some of the matching
techniques that are used in the PowerMap algorithm are similar to the one we are using such
as relying on WorldNet [29] and syntactic matching algorithm. One difference is that our
system also relies on deducing mappings based on previous mappings, and taking advantage
of similarities of concepts in determining the similarity of their neighbors.

Silva et al. [6] discuss the situation when different mapping agents establish different seman-
tic bridges between concepts of two ontologies, namely the source ontology and the target
ontology. A mapping agent is defined as an approach or a strategy that is used to establish
mapping from the concepts in a source ontology to the concepts of a target ontology. Each
mapping is referred to as a semantic bridge. Due to the inherent and subjective nature of
ontologies, different agents establish different semantic bridges for the same set of ontologies.
This may cause conflicts when interpretability occurs between such agents when they are
used to align two ontologies. To address this issue, they propose an approach to ontology
mapping negotiation where various agents are able to achieve consensus among each others.
Their approach is based on utility functions that evaluate the confidence of the mapping
rules established by the agents and according to the confidence measure, the mapping rule
proposed by an agent is accepted, rejected, or negotiated. Negotiation of mapping rules re-
quires relaxation (increase) of confidence values so the mapping rules get accepted. A utility
function is used to determine whether the relaxation should take place or not based on eval-
uating the effort needed to do that. While expert intervention is needed for the negotiation

6



process, Silva et al. try to establish an automatic consensus building algorithm among two
agents. In our approach, multiple mapping strategies are used (alignment layers), each layer
proposes a set of mappings between the source ontology and the target ontology. At the very
end, a consolidation mapping layer is applied where users supply a priority measures for the
other mapping layers, if the mapping layers are in conflict, the layer that has the highest
priority measure will dominate and considered for the final results.

2.2 Visual Ontology Alignment Tools

In this section, we present a survey of some visual ontology alignment tools and the features
they present.

Chimaera [27] is a software tool developed by the KSL group at Stanford, and provides tools
for merging different ontologies created by different authors and for diagnosing individual
or multiple ontologies. Chimaera is implemented as a web-based, its graphical user interface
consists of a set of commands accessible via spring loaded menus and supports drag and drop
editing. The interface displays the classes and slots in current knowledge base being edited
and allows users to check the automated merging procedure by highlighting the classes that
need the user’s attention.

COMA++ [7] is a schema and ontology mapping tool which utilizes several matching algo-
rithms. The tool is mainly composed of five parts: the Model and the Mapping Pool which
provide data management for the ontologies and their matchings in the memory, the Repos-
itory which stores match-related data, the Match Customizer which configures the matchers
and match strategies, and finally the Execution Engine which performs the match opera-
tions. COMA++ supports iterative automatic matching of schema or ontology components:
first, the candidate components for mappings are identified, then several matching algo-
rithms are performed in the Execution Engine to calculate similarities. Finally the results
of the similarity calculations are combined to derive correspondences between the candidate
components. The automatic matching process proceeds in iterations where the results of
every iteration can be used as an input to the next iteration. COMA++ implements several
matching strategies such as: (1) the fragment based divide and conquer matching strategy
which decomposes the ontologies into fragments and then tries to match the fragments first
before matching their components. (2) reuse oriented matching which makes use of previous
mappings in deciding new ones. COMA++ supports multiple schema and ontology formats
such as OWL, XSD, and XML. In comparison, we have a similar approach because we also
use several matching algorithms in our mapping process. In addition, we reuse previous
mappings to discover new mappings in an iterative fashion. The graphical user interface of
COMA++ is quite similar to ours. Besides a menu, there are three main areas; a panel for
management and match functions on the left, and two panes for displaying the source and
target schemas.

Falcon-AO [22] is an automatic ontology alignment tool that matches based on linguistic and
graph matching of the ontologies. Falcon-AO’s graphical interface provides users with the

7



view of entities from both the ontologies being mapped and also the result of the automatic
mapping performed on them. Unlike our tool, Falcon-AO does not represent the input on-
tologies as tree structures. Similar to our tool’s definition mapping strategy, Falcon tries to
align ontologies using linguistic similarity between two entities relying on their names, labels,
comments and other descriptive information. Falcon-AO’s linguistic matcher relies on lexical
comparison and statistical analysis. The graph matcher in Falcon-AO uses directed bipartite
graphs to represent ontologies and measures the structural similarity between graphs.

Clio [20] is a graphical tool used for semi-automatically mapping simple relational and XML
schemas. In contrast, our mapping tool supports mapping of different types of ontologies
such as OWL [4] in addition to mapping XML schemas. Using Clio, the user loads a source
schema and a target schema and establishes connections between objects in both schemas
graphically. Such connections are referred to as value correspondences, which express how an
object or more in the source schema are transformed into a target value. Clio has a mapping
engine that incrementally produces SQL queries that realize the mappings implied by the
correspondences. Clio systematically ranks and generates mappings and helps the user in
selecting between alternative mappings if needed. Our mapping tool also provides automatic
help to the user by evaluating previous mappings to produce new ones. Clio’s graphical user
interface operates in two modes: (1) the Schema View mode which allows the user to see a
representation of the schemas and edit any of them. (2) the Data View mode which helps
the user to see the actual data related to the schema.

MapOnto [3], inspired by Clio, is a research prototype for semantically mapping between
database schemas and ontologies as well as between different database schemas. MapOnto
works in an interactive and semi-automatic manner, taking input from user for creating
simple attribute-to-attribute correspondence and finally selecting the best mapping out of
a list of logical formulas generated. These logical formulas are generated by the tool using
knowledge embedded in the ontologies. Also, these logical formulas are ordered to suggest
to the user the most reasonable mapping between the two models. MapOnto’s graphical
interface is based on Protégé [19]. Unlike our tool, the correspondences between attributes
are not represented by lines in the interface, but as logical formulas displayed in a separate
pane.

3 The AgreementMaker Framework

We have been working on a framework that supports the alignment of two heterogenous
ontologies. In our framework, we introduce an alignment approach which utilizes different
matching techniques between the concepts of the aligned ontologies. each matching technique
is embedded in a what we refer to as mapping layer [14]. We currently have four layers in
our framework with the possibility of adding more mapping layers in the future. Unlike all
the alignment techniques mentioned in Section 2, the motivation behind our framework is
to allow for the addition of as many mapping layers as possible in order to capture a wide
range of relationships between concepts. Our current mapping layers utilize element based

8



alignment techniques (first layer) and structural based alignment techniques (first layer and
third layer). This is in addition to allowing domain expert to utilize their knowledge in
order to contribute to the alignment process (second layer). We also developed a software
tool which implements our approach, the name of our tool is the AgreementMaker. Next we
present a summary of our multi-layered approach and our alignment tool.

3.1 Multi-Layered Approach

In our ontology alignment approach, the mappings between concepts of two heterogenous
ontologies are determined semi-automatically, that is, they are partly established manually
by the user and partly determined using several automatic procedures. We refer to this
semi-automatic approach as a multi-layered approach which consists of four mapping layers.
Three of these layers are automatic and one is manual. In the first layer, the concepts of
the two ontologies are automatically compared to each other based on their definition and
relative location to the other concepts in the ontological structures as will be explained in
Section 4. The user manually matches concepts in the second alignment layer where mapping
types are used to specify the relationships between mapped concepts. In the third layer,
an automatic bottom-up deduction procedure is invoked which deduces more mappings by
looking at previous mappings in the context of the ontologies [10]. Finally, in the fourth layer,
an automatic procedure is used to consolidate all the mappings produced from previous
alignment layers. In contrast to our third layer of mapping, we are considering adding a
layer that embeds a top-bottom deduction approach as described in [32]. Depending on
the nature of the application, some layers may play more important role in aligning the
ontologies modelling the application than other layers. In this paper, we concentrate on the
first layer where we explore how similarities between concepts contribute to the similarity
of their adjacent concepts in many different ways. For more details about our multi-layered
approach, please refer to [14].

3.2 The AgreementMaker

The AgreementMaker is our software tool which implements our multi-layered approach to
ontology alignment. The interface of our tool allows for the user to load two ontologies side-
by-side and display each one as a tree of concepts as shown in Figure 1. We refer to the first
ontology as the source, and to the second ontology as the target. After loading the ontologies,
users can start the alignment process by mapping corresponding concepts manually and/or
by invoking procedures that map them automatically. The mapping information is displayed
in the form of annotated lines connecting nodes. The source ontology is displayed on the left
hand side and the target one is displayed on the right hand side. The interface allows for
selective expansion or contraction of parts of the ontological trees to facilitate browsing and
mapping. Concepts names are displayed in rectangular nodes on the ontological trees, while
additional information can be either displayed or hidden to avoid visual overloading. Users

9



can customize the interface by changing the background color of the canvas, the color of the
ontological trees, and the color of the connecting lines.

Fig. 1. Results of running three of the mapping layers.

The underlying infrastructure of the AgreementMaker consists of four main modules: The
Graphical User Interface, the Ontology Parser, the Mapping Engine, and the Agreement
Document Generator. Figure 2 shows a diagram of the architecture of our tool. Following,
we describe each module in our tool:

Fig. 2. System architecture of the AgreementMaker.

10



3.2.1 Graphical User Interface

The graphical user interface (Figure 3) assists the user in making the mapping decisions. It
is customizable, allowing the user to select colors for the various objects and to expand or
collapse parts of the ontologies. The menu bar supports standard operations such as opening
files, undoing and redoing actions, and getting help. The central part of the user interface
displays the rendered ontologies. It also displays the results of the mappings that result from
the various mapping layers. In addition, the interface is capable of displaying information
such as comments, properties, and class relationships for any selected concept in a separate
pane (hidden in the figure). This information can help the user when mapping concepts
manually. Finally, the control panel on the lower part of the interface contains buttons to
invoke the various automatic mapping procedures and to select whether to show or hide
results of any of the four mapping layers.

Fig. 3. The User Graphical Interface of the AgreementMaker showing the Menu Bar on the top,
the Description Pane on the right, the Control Panel on the bottom, and the Canvas in the middle
where the global ontology is displayed on the left and the local ontology on the right.

3.2.2 The Ontology Parser

The AgreementMaker maps ontologies expressed in XML, RDFS, OWL, or N3 [8]. These
ontologies are parsed and converted into our own tree structures using this module. The

11



ontology files are parsed using various application programming interfaces (APIs): Xalan
APIs are used for XML schemas, Jena APIs [25] are used for RDFS [26] ontologies, and
OWL Pellet [4] is used for N3 and OWL ontologies.

3.2.3 The Mapping Engine

This module is responsible for running the matching algorithms of the four mapping layers on
the loaded ontologies. The mapping engine reports the matching results in the form of lines
connecting concepts from the source ontology to the target ontology. In a typical alignment
session, the user invokes the definition mapping layer, then performs manual mappings, and
then invokes the mapping by context layer [10] in an iterative fashion. After the mappings are
established using the three layers, the user invokes the mapping by consolidation layer [12]
to generate the final results.

3.2.4 The Agreement Document Generator

This module takes the information of the mappings generated by the mapping engine and
stores it in the agreement document, which is the final output of the alignment process. The
agreement document contains the alignment information that relates the two ontologies in an
XML file. In addition, our tool is extendible and can be configured to reformat the agreement
document in any format that is convenient for the end systems that use the document.

3.3 User Interaction

In the process of demonstrating the usability of the AgreementMaker in this section, we will
use two types of geospatial ontologies. The first type is in the domain of wetland classification
systems, and the second type is in the domain of land use code specification. For wetland
ontologies, we will use the “Cowardin” wetland classification system [9] which is adopted by
the United States as the source ontology , and the the wetland classification system used in
South Africa [16] as the target ontology. As for the land use code ontologies, we will use a
global land use classification ontology for the state of Wisconsin which describes land use
codes on the state level as the source ontology. For the target ontology, we will use a local
land classification ontology which describes land use codes for a selected county in the state
of Wisconsin [13].

Our tool enables the user to map concepts from the source ontologies to target ontologies
using the graphical user interface. Upon loading the ontologies in our tool, they will be
displayed in tree like structures as shown in Figure 4. In the figure, the user loaded the
“Cowardin” wetland classification as the source ontology which appears on the left hand
side, and the the South African wetland classification system as the target ontology which
appears on the right hand side. The ontologies are displayed on the canvas in a hierarchal
fashion where lower level concepts belong to higher level ones. For example, the concepts

12



Rock Bottom, Unconsolidated Bottom, Aquatic Bed, and Reef belong to the concept Subtidal
which in turns belong to the concept Marine in the source ontology.

In designing our user interface, we addressed many issues which affect the usability of our
tool. We list several of these issues next and outline the rationale for our design decisions

3.3.1 Ontology display

Our ontologies are displayed as outline trees in the main central part of the user interface of
the tool as shown in Figure 1. By using the outline trees, ontology browsing becomes similar
to directory browsing, which is familiar to most users. We have implemented such trees so as
to allow for the selective expansion or contraction of parts of the tree to facilitate browsing
and mapping especially in the case when the ontologies are large.

3.3.2 Meta information display

Ontologies, such as those represented in OWL, have properties associated with their concepts,
which can be used in the definition layer to compute similarity among the concepts. In
addition, by displaying it, such information can be taken into account by the user when
establishing manual mappings. If this information were displayed on the main canvas together
with the ontologies, then it would cause visual overloading. Furthermore, it could interfere
with the readability of the concept names. For these reasons, we provide a description pane
(which can be hidden when not needed) that displays the description of any selected concept.
For example, the description of the concept Intertidal appears in the upper part of the
description pane as shown in Figure 4. The upper part of the description pane is dedicated
to the display of information that is associated with the concepts of the source ontology
while the lower part is dedicated to the display of information for the local target ontology.

3.3.3 Similarity display

Upon invoking the mapping by definition layer, a measure of the similarity among concepts
is calculated to determine possible mappings and lines are drawn that display those possible
mappings. To increase the clarity of the picture, the user can specify a similarity threshold
so that only the lines that have similarity measures greater or equal to the selected threshold
will be displayed. In addition, a maximum number of such possible mappings (as associated
with each concept) can be specified. Figure 5 shows the result of running the definition layer,
as displayed to the user. In this particular case, the user has selected a threshold of 75%.
The user also selected to see a maximum of two relations per concept in the source ontology.
For example, the concept Aquatic Bed of the Subtidal Estuarine subcategory in the source
ontology is related to the concept Aquatic Bed of the Subtidal Marine subcategory with a
similarity measure of 75%. At the same time, it is related to the concept Aquatic Bed of the
Subtidal Estuarine subcategory in the target ontology with a similarity measure of 100%.
As previously mentioned, the user can collapse and expand the ontology trees to display

13



Fig. 4. Description of the selected concept appears in the description pane.

only the concepts of interest and therefore only the associated similarities. To facilitate the
reading of the lines that display the matched concepts, they can be highlighted and made
bold when the associated concept is selected. For example, in Figure 5 the concept Aquatic
Bed has been selected and therefore both the matching lines that are connected to it and
their similarity measures are highlighted and made bold.

Fig. 5. Results of running the mapping by definition layer.

14



3.3.4 Manual mapping

To facilitate the manual mappings that are performed by the user, a mapping menu is used
that contains various mapping types that are used to relate concepts [13]. The user can select
one or more concepts in the source ontology and map them to one or more concepts in the
target ontology. Figure 6 shows an example where the user is mapping the concept Aviation
to the concept Aircraft Transportation as an exact match for two ontologies describing land
use codes [13]. After manually establishing a connection between those concepts, a menu that
displays the different mapping types is displayed, so that the most appropriate mapping type
can be chosen.

Fig. 6. Performing manual mapping between two concepts.

3.3.5 Simultaneous matching displays

An important issue is related to the presentation of the results of all the mapping layers to
the user without visual overloading. To resolve this issue, the concepts that are mapped in
a given layer are displayed using the same color. In this way, the user can easily distinguish
which concepts are mapped by which layers. Another issue is the display of matching concepts
that have been mapped by more than one layer. To improve readability, we allow the user to
hide the results of any of the mapping layers and to redisplay them as desired. In this way,
users can focus only on a subset of the layers at a time. Figure 1 shows the mappings that
result from two of the mapping layers when aligning ontologies describing land use codes [13].
In the figure, lines with similarity measures result from the definition layer. Concepts that
were connected in this way include Personal Services, Business Services, and Professional
Services. Other concepts such as Finance, Insurance, and Real Estate in the source ontology
were mapped manually by the user.

3.3.6 Color selection.

We give the user the flexibility of choosing the colors of the various visual components. This
feature may be important for users who suffer from color blindness or other related visual

15



problems. Our tool enables the user to change the color of the background, of the ontology,
and of the highlighted concepts. The tool also enables the user to choose the color of the
similarity lines that are produced by the definition mapping layer, by the manual mapping
layer, and by the context mapping layer.

4 Automatic Similarity Algorithms

In order to achieve a high level of confidence in performing automatic alignment of two het-
erogenous ontologies, thorough understanding of the identities of the concepts of the aligned
ontologies is highly desired. For this we propose algorithms that investigate the identities
of the ontological concepts prior to making a decision on how they should be mapped. In
our algorithm we consider the labels and the definitions of the ontological concepts on one
hand and the relative positions of concepts in the ontological tree on the other hand. We
aim to utilize every piece of information about a concept to realize and understand what
entity in reality it refers to. Our alignment algorithm enables the user to select one of the
following three matching procedures: (1) applying the base similarity calculations only; (2)
applying the base similarity calculations followed by the Descendant’s Similarity Inheritance
(DSI) algorithm; or (3) applying the base similarity calculations followed by the Sibling’s
Similarity Contribution (SSC) algorithm. We apply any of these procedures in our first layer
of mapping, next we explain each of these procedures in greater details.

4.1 Base similarity calculations

The very first step in our approach is to establish initial mappings between the concepts of
the source ontology and the concepts of the target ontology. These initial mappings will be
a starting point for both the DSI and SSC algorithms as will be explained in Sections 4.2
and 4.3. In order to accomplish this task, we try to find matching concepts in the target
ontology for each concept in the source ontology. This is achieved by defining a similarity
function that takes a concept in the source ontology and a concept in the target ontology
and returns a similarity measure between them. If the similarity measure is equal or above a
ceratin reasonable threshold decided by the user, then the two input concepts are considered
a match to one another. In what follows we present the details of finding base similarities
between a concept in the source ontology and a concept in the local ontology:

• Let S be a the source ontology.
• Let T be a the target ontology.
• Let C be a concept in the source ontology S.
• Let C’ be a concept in the target ontology T.
• Let base sim(C,C’) = M be a similarity function such that when applied to C and C’, it

yields a similarity measure M between the values 0% and 100%.

16



• Let TH be a threshold value such that if M≥ TH, then C’ is considered a matched concept
with C.

• ∀ C ∈ S, find all C’∈ T such that base sim(C,C’) ≥ TH
• Let MS(C) be a set that contains all concepts in T that match the concept C in S after

applying the base similarity algorithm the concept C with all the concepts in T. We will
refer to this set as the Mapping Set of the concept C

In order to find the similarity measure between two concepts, we utilize their labels and
definitions as provided by a dictionary. Following are the steps in determining the similarity
between two concepts C and C’ by looking at their labels (label(C) and label(C’)):

• If label(C) is identical to the label(C’), then return a similarity of 100%
• Else, apply the treat string() function on label(C) and label(C’), this function separates a

composite string that contains multiple words into its components. For example, in an on-
tology that contains concepts related to types of weapons, if label(C) = “air-to-air-missile”,
then the string of the label will be converted to “air to air missile” after applying the
function. Similarly, if label(C) = “ServerSoftware” in an ontology that contains concepts
related to computers and networks, it will be converted to “Server Software” after apply-
ing the treat string(label(C)) function. The function also takes care of words separated by
the underscore “ ” characters.

• After applying the treat string() function to label(C) and label(C’), check if the two result-
ing labels are identical, if true, return a similarity measure of 100%, else proceed to the
next step.

• Remove all “Stop words” (such as: “the”, “a”, “to”, ...etc) from label(C) and label(C’).
• Retrieve the definitions of every remaining word in the labels from the dictionary. For

label(C), concatenate the definition of all the word that make up the label into the string
D. For label(C’), concatenate the definitions of all the words that make up the label into
the string D’

• Apply the stemming algorithm [21] on every word in D and D’. On a high level, the
algorithm traces words back to their roots, for example it reduces the words “directed”
and “directing” to “direct” and “direct” consecutively. This way the two words become
comparable to each other.

• Let len(D) be the number of words in the string D, and len(D’) be the number of words
in the string D’. Let common count(D,D’)be the number unique common words between
D and D’.

• Compute base sim(label(C),label(C’)) as: common count(D,D’)×2
len(D)+len(D′)

• If base sim(label(C),label(C’)) ≥ TH, then add C’ to MS(C) .

4.2 Descendant’s Similarity Inheritance (DSI) algorithm

Establishing base similarities between the concepts of the source ontology and the concepts
of the target ontology may not be enough to achieve a high degree of precision in relating the
two ontologies to each other. Consider this situation for example when aligning ontologies

17



in the wetland classification domain. The first ontology describes the “Cowardin” wetland
classifican system , and the second ontology describes the South African wetland classification
system. Figure 7 shows a part of the “Cowardin” system on the left hand side as a source
ontology and a part of the South African wetland classification system on the right hand side
as a target ontology. When calculating the base similarities between the concepts of the two
ontologies, the concept Reef which belongs to the Intertidal wetland subsystem in the source
ontology will yield a base similarity measure of “100%” with the concept Reef which belongs
to the Intertidal wetland subsystem in the target ontology. Furthermore, it will also yield
a base similarity measure of “100%” with the concept Reef which belongs to the Subtidal
wetland subsystem in the target ontology. The later base similarity measure is misleading
because it does not correctly express the true meaning of the relationship between the two
concepts that should not be related because they belong to different wetland subsystems.

Fig. 7. An example of a case where misleading mappings may occur.

In order to eliminate such situations, we propose the DSI algorithm which reconfigures the
base similarity between the concepts based on the similarity of their parent concepts. We
define the DSI reconfigured similarity between a concept C in S and a concept C’ in T as
DSI sim(C,C’). In what follows we present the details on how to determine DSI sim(C,C’)

• Let path len root(C) be the number of concepts between the concept C in S and the root
of the ontological tree S. For example, in Figure 8, path len root(C) = 2.

• Let path len root(C’) be the number of concepts between the concept C’ in T and the
root of the ontological tree T. For example, in Figure 8, path len root(C’) = 2.

• Let parenti(C), be the ith concept from the concept C to the root of the source ontology
S, where i is a value between 0 and path len root(C). For example, in Figure 8, parent1(C)
is the concept B.

• Let parenti(C’), be the ith concept from the concept C’ to the root of the source ontology
T, where i is a value between 0 and path len root(C’). For example, in Figure 8, parent1(C’)
is the concept B’.

18



• We define DSI sim(C,C’) as:

0.75 × base sim(C,C’)+
∑n

i=1(base sim(parent i(C),parent i(C’)))× 2(n+1−i)
n(n+1)

× 0.25), where

n = minimum(path len root(C),path len root(C’)).

The main characteristic of the DSI algorithm is to allow the parent concepts of a given
concept to play a role in the identification process of the concept. The immediate parent
of a concept contributes more to the identity of the concept than its grandparent, and the
grandparent concept contributes more than the great grandparent, and so on until the root
is reached. This can be demonstrated by considering the example in Figure 8. In the figure,
we show how the DSI similarity is determined between the concept C in the source ontology
S (shown in the left hand side of the figure) and the concept C’ in the target ontology T
(shown in the right hand side of the figure) when applying the DSI algorithm. The DSI
similarity is determined by summing 75% of the base similarity betweenCand C’ to 17% of
the base similarity of their immediate parents (B and B’ ) to finally 8% of the base similarity
of their grandparents (A and A’ ).

Fig. 8. Applying the DSI algorithm to calculate the similarity between C and C’

Considering the case in Figure 7, the base similarity between the concepts Intertidal in the
source ontology and the concept Subtidal in the target ontology is 37%. The base similarity
between the concepts Marine in the source ontology and the concept Marine in the target
ontology is 100%. When applying the DSI algorithm, the DSI similarity between the concept
Reef which belongs to the Intertidal wetland subsystem in the source ontology and the
concept Reef which belongs to the Subtidal wetland subsystem in the target ontology will
be 88%. Applying the DSI algorithm again between the concept Reef which belongs to the
Intertidal wetland subsystem in the source ontology and the concept Reef which belongs
to the Intertidal wetland subsystem in the target ontology will yield a similarity of 100%.
Therefore, we conclude that the later similarity case should be considered when reporting the
results. This is one example that shows how the DSI algorithm can be useful in determining
more accurate similarity measures between concepts.

19



4.3 Sibling’s Similarity Contribution (SSC) algorithm

In this algorithm, siblings of a concept contribute to the identification of the concept. This
may further enhance the quality of the automatic alignment process. Similar to the DSI
algorithm, the SSC algorithm reconfigures the base similarities between concepts. We de-
fine the SSC reconfigured similarity between a concept C in S and a concept C’ in T as
SSC sim(C,C’). In what follows we present the details on how to determine this similarity:

• Let sibling count(C) be the number of sibling concepts of the concept C in S. For example,
in Figure 9, sibling count(C) = 2.

• Let sibling count(C’) be the number of sibling concepts of the concept C’ in T. For exam-
ple, in Figure 9, sibling count(C’) = 3.

• Let SS(C) be a set of all sibling concepts of a concept C in S
• Let SS(C’) be a set of all sibling concepts of a concept C’ in T
• Let Si be a the ith sibling concept of C where S i ∈ SS(C), i is a value between 1 and

sibling count(C).
• Let S’j be a the jth sibling concept of C’ where S j ∈ SS(C ′), j is a value between 1 and

sibling count(C’).
• We define SSC sim(C,C’) only if both SS(C) and SS(C’) are not empty as:

0.75 × base sim(C,C’) +0.25
n
× ∑n

i=1max(base sim(Si,S’1),...,base sim(Si,S’m)), where n
=sibling count(C) and m = sibling count(C’).

Fig. 9. Applying the SSC algorithm to calculate the similarity between C and C’

The main characteristic of the SSC algorithm is allow the siblings of a given concept to
play a role in the identification process of the concept equally. This can be demonstrated
by considering the example in Figure 9. In the figure, we show how the SSC similarity
is determined between the concept C in the source ontology S (shown in the left hand

20



side of the figure) and the concept C’ in the target ontology T (shown in the right hand
side of the figure) when applying the SSC algorithm. The SSC similarity is determined
by adding 75% of the base similarity between C and C’ to 12.5% of the maximum base
similarity of ((D,D’),(D,E’), and (D,F’)) to finally 12.5% of the maximum base similarity
of ((E,D’),(E,E’), and (E,F’)).

Similar to Melnik’s similarity flooding algorithm described in [28], both our DSI and SSC
algorithms depend on establishing initial similarities between concepts before they can be
executed. Unlike Melnik’s similarity flooding algorithm, our DSI and SSC algorithms do not
run in multiple iterations that keep reconfiguring the similarities between concepts until the
similarities become stable. The penalty paid in running multiple iterations of the flooding
algorithm is a possible degradation in the run time performance of the process on the account
of obtaining high quality results. In order to confirm this, we are planning to run several test
cases in order to compare the run time performance between our algorithms and Melnik’s
similarity flooding algorithm.

4.4 Evaluation of our Similarity Algorithms

To validate our base similarity, DSI, and SSC algorithms, we present the results of aligning
four sets of ontologies provided by the Ontology Alignment Evaluation Initiative (OAEI) [33].
The first set contained two ontologies describing classifications of various weapon types, the
second set contained two ontologies describing attributes of people and pets , the third set
contained two ontologies describing classifications of computer networks and equipments,
and the fourth one contains general information about Russia. Each set contains a source
ontology, a target ontology, and the expected alignment results between them. In our val-
idation process, for each set of ontologies, we capture the number of discovered relations
between the concepts of the source ontology and the concepts of the target ontologies for
each algorithm. Each relationship represents a mapping from a concept C in the source
ontology S to a matching target ontology concept C’∈ MS(C) with the highest similarity
measure. Obviously, Concepts in the source ontologies with empty mapping sets do not estab-
lish any relations with any concepts in the target ontologies. After capturing the discovered
relations for each set, we count how many of these relations are valid when compared with
the expected alignment results for this set. Having figured the count of correct relations, we
calculate the precision and the recall for each test case. The precision is calculated by divid-
ing the number of discovered valid relations to the total number of discovered relations, the
recall is calculated by dividing the number of discovered valid relations to the total number
of valid relations as provided by the expected alignment results.

Upon aligning the ontologies in the first set, the DSI algorithm yielded slightly higher results
than the SSC which also yielded a slightly higher the the base similarity algorithm as shown
in Figure 10. Upon aligning the ontologies of the second set, all three algorithms yielded
exact results for recall and precision as shown in Figure 11.

The SSC algorithm yielded better recall and precision results than the other two algorithms

21



Fig. 10. Applying Base similarity, DSI, and SSC algorithms on ontologies describing weapons

Fig. 11. Applying Base similarity, DSI, and SSC algorithms on ontologies describing people and
pets

when aligning the third set of ontologies as shown in Figure 12. Finally as shown in Figure 13,
upon aligning the fourth set the DSI algorithm yielded the highest results for precision and
recall followed by the SSC algorithm then the base similarity algorithm.

The differences of the recall and precision values for a given algorithm when applied across
different test cases are mainly due to the way the input ontologies are formulated. For ex-
ample, in the first set and the second set, the relations between the concepts, their parents,
and their siblings do not contribute to refining the base similarity results. However, the rela-
tionships between the concepts and their siblings added value in refining the base similarity
results when aligning the third set. The relationships between the concepts and their parents
added value in refining the results when aligning the fourth set. Therefore, the selection of
an appropriate matching algorithm should be done after a preliminary examination of the
concepts in the ontologies and how they relate to each other. Mochol et al. [30] present a
methodology on how to select an appropriate matching algorithm for a specific alignment
case by having a domain expert fill a questionnaire about the nature of the ontologies to be

22



Fig. 12. Applying Base similarity, DSI, and SSC algorithms on ontologies describing computer
networks

Fig. 13. Applying Base similarity, DSI, and SSC algorithms on ontologies containing general infor-
mation about Russian

aligned.

5 Future work

Alignment of ontologies is a very hot topic that is pursued by many researchers around the
world. The most challenging part of this type of research is the validation of any proposed
automatic alignment technique. There are many reasons why the validation process is a grey
area for many researchers, in what follows we list some of these reasons:

• There is a lack of real world ontology sets that are good candidates for alignment.
• The evaluation of results from aligning two ontologies may differ from one person to

another. The main reason for this is that the concepts can be matched with different

23



matching criterion, for example, matching the concepts “man” and “woman” is considered
valid based on the criterion that both concepts are of the same class “human being” while
it may be considered as invalid (bad match) based on the criterion that they are opposite
in “sex”.

• All the alignment algorithms are semi-automatic, this is mainly because of the previous
reason. Ontology Domain experts are always expected to interfere in order to validate
the automatically generated mappings, override what they consider “invalid” mappings,
and map what was not matched by the automatic alignment process. Different domain
experts may end up with different alignment results because they may differ in how they
understand or interpret the meanings of of concepts within the context of their ontologies.

• The value of aligning ontologies is still not visible in the real world applications. As dis-
cussed in the Ontology Alignment Evaluation Initiative 2006 Campaign [1] sessions, the
current focus is on exploring more automatic alignment techniques. In the near future, the
focus should be shifted to exploring practical ways on how to deploy such techniques in
the industry in order to solve real world business problems.

In order to overcome the above obstacles in validating various approaches to ontology alig-
ment, the Ontology Alignment Evaluation Initiative (OAEI) [33] was established as a part of
the International Workshop on Ontology Matching which is correlated with the International
Semantic Web Conference (ISWC). Every year, the workshop proposes several sets of on-
tologies to be aligned, each set contains a source ontology and a target ontology. A group of
domain experts decide the results of aligning the source and target ontologies in the proposed
sets and keep the results hidden from the public to enable for an international contest in
aligning these sets. Researchers around the world develop automatic alignment algorithms in
order to compete in the OAEI contest, they submit their algorithm in a standardized format
to the contest organizers who run them against the proposed sets of ontologies. The results
of each algorithm are then evaluated against the expected results that were decided by the
experts in order to determine the winners of the contest.

My plan is to compete in the upcoming OAEI contest which will be held as a part of the
Workshop on Ontology Matching in The 6th International Semantic Web Conference and
the 2nd Asian Semantic Web Conference in Busan, South Korea [2]. The contest will take
place in November, 2007. My goal is to obtain reasonably results in the contest in order to
prove that my automatic alignment techniques described in Section 4 are capable of solving
common ontology alignment problems.

One important point to mention is that the competition does not fully validate my ontology
alignment approach described in Section3. The reason is that every competitor is allowed to
enter with only one automatic matching algorithm. Therefore, if I introduce more layers in
my multi-layered framework, I can only participate with one. Furthermore, any layer that
contains an alignment methodology which requires full or partial human intervention can-
not be evaluated by the contest. A major part of my research is to propose an extensible
semi-automatic ontology alignment framework where different mapping layers complement
each other. As depicted from the alignment results in Section 4.4, the input ontologies play
a major role in the success of a given alignment algorithm. It is expected that depending

24



on the nature of the input ontologies, some matching techniques can perform better than
others [30]. Therefore there is a necessity of either combing multiple semi-automatic align-
ment techniques together (as pointed out in [31]) or selectively preferring some techniques
over the others to achieve valid and reasonable alignment results. Again, to reiterate, there
are many non-deterministic factors in the ontology alignment process such as the nature of
the input ontology, the level of heterogeneity of the input ontologies, and the variation of
the definition of what is considered a “match” between concepts. All these non-deterministic
factors support the need for a semi-automatic multi-layered approach like ours to achieve
perfect results in aligning real world ontologies in various domains. This is mainly what
distinguishes our approach from the rest of the approaches described in Section 2.

Another major and important challenge which is widely ignored [34] is the enhancement
of the runtime performance of automatic alignment techniques. The main focus has been
given to obtaining reasonably valid alignment results while little focus has been given to
tune the performances of the alignment algorithms. Problems can arise when aligning very
large ontologies if the runtime performance tuning of the alignment algorithm is neglected,
especially if the algorithm is deployed in production in a highly paced industrial firm that has
a small processing window for the algorithm to run. To address this concern, I am planning to
propose a methodology that will perform sub-tree matching prior to performing concept level
matching. This methodology will significantly reduce the number of comparisons between
concepts and enhance the run time of our automatic matching algorithms.

In order to prepare for OAEI competition which will take place in November, 2007. I am
planning to do the following:

• Adjust the parameters of my DSI and SSC alignment algorithms as necessary in order to
achieve higher precision and recall values for the test cases I am currently experimenting
with.

• Propose and implement a strategy to tune the performance of my alignment algorithms is
such a way that will not compromise the quality of the alignment results.

• Run several test cases to compare the run time performance and the quality of alignment
results between my alignment algorithms and Melnik’s similarity flooding algorithm as
mentioned earlier in Subsection 4.3.

Acknowledgments

I would like to thank Prof. Isabel Cruz for being a great advisor, supporter, and academic
mentor through out the stages of this research. I would like to also thank Dr. Nancy Wie-
gand and Steve Ventura, from the Land Information and Computer Graphics Facility at the
University of Wisconsin-Madison for the discussions on land use problems. In addition, I
would like to thank Sujan Bathala, Mohammad Noman, and Nalin Makar for their active
participation in the development of the AgreementMaker.

25



References

[1] http://oaei.ontologymatching.org/2006.

[2] http://www.iswc07.org.

[3] Y. An, A. Borgida, and J. Mylopoulos. Inferring Complex Semantic Mappings Between
Relational Tables and Ontologies from Simple Correspondences. In OTM Conferences (2),
pages 1152–1169, 2005.

[4] G. Antoniou and F. van Harmelen. Web Ontology Language: OWL. In Handbook on Ontologies,
pages 67–92. 2004.

[5] B. Ashpole, M. Ehrig, J. Euzenat, and H. Stuckenschmidt, editors. Integrating Ontologies ’05,
Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies, Banff, Canada, October
2, 2005, volume 156 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

[6] B. Ashpole, M. Ehrig, J. Euzenat, and H. Stuckenschmidt, editors. Integrating Ontologies ’05,
Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies, Banff, Canada, October
2, 2005, volume 156 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

[7] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm. Schema and Ontology Matching with
COMA++. In SIGMOD Conference, pages 906–908, 2005.

[8] T. Berners-Lee, D. Connolly, E. Prud’homeaux, and Y. Scharf. Experience with N3 rules. In
Rule Languages for Interoperability, 2005.

[9] L. M. Cowardin, V. Carter, F. C. Golet, and E. T. LaRoe. Classification of Wetlands and
Deepwater Habitats of the United States, 1979.

[10] I. Cruz and A. Rajendran. Exploring a New Approach to the Alignment of Ontologies.
In Semantic Web Technologies for Searching and Retrieving Scientific Data Workshop,
International Semantic Web Conference, Sanibel Island, Florida, 2003.

[11] I. F. Cruz, A. Rajendran, W. Sunna, and N. Wiegand. Handling Semantic Heterogeneities
using Declarative Agreements. In International ACM GIS Symposium, pages 168–174, 2002.

[12] I. F. Cruz, W. Sunna, and K. Ayloo. Concept Level Matching of Geospatial Ontologies. In GIS
Planet Second Conference and Exhibition on Geographic Information, Estroil, Portugal, 2005.

[13] I. F. Cruz, W. Sunna, and A. Chaudhry. Semi-Automatic Ontology Alignment for Geospatial
Data Integration. In Proc. 3rd Int. Conf. on Geographic Information Science (GIScience),
LNCS 3234, Springer Verlag, pages 51–66, Adelphi, MD, 2004.

[14] I. F. Cruz, W. Sunna, N. Makar, and S. Bathala. A Visual Tool for Ontology Alignment
to Enable Geospatial Interoperability. Journal of Visual Languages and Computing. (Coming
soon), 2007.

[15] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. Doshi, and J. Sachs.
Swoogle: a Search and Metadata Engine for the Semantic Web. In CIKM ’04: Proceedings
of the thirteenth ACM international conference on Information and knowledge management,
pages 652–659, New York, NY, USA, 2004. ACM Press.

26



[16] J. Dini, G. Gowan, and P. Goodman. South African National Wetland Inventory., 1998.

[17] J. Euzenat, P. Guégan, and P. Valtchev. Ola in the Oaei 2005 Alignment Contest. In Integrating
Ontologies, 2005.

[18] J. Euzenat and P. Valtchev. Similarity-Based Ontology Alignment in Owl-Lite. In ECAI, pages
333–337, 2004.

[19] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson, N. F.
Noy, and S. W. Tu. The Evolution of Protégé: an Environment for Knowledge-Based Systems
Development. Int. J. Hum.-Comput. Stud., 58(1):89–123, 2003.

[20] M. A. Hernández, R. J. Miller, and L. M. Haas. Clio: A Semi-Automatic Tool For Schema
Mapping. In SIGMOD Conference, 2001.

[21] D. A. Hull. Stemming Algorithms: A Case Study for Detailed Evaluation. Journal of the
American Society of Information Science, 47(1):70–84, 1996.

[22] N. Jian, W. Hu, G. Cheng, and Y. Qu. FalconAO: Aligning Ontologies with Falcon. In
Integrating Ontologies, 2005.

[23] V. Lopez, E. Motta, and V. Uren. PowerAqua: Fishing the Semantic Web. 2006.

[24] V. Lopez, M. Sabou, and E. Motta. Powermap: Mapping the Real Semantic Web on the Fly.
In International Semantic Web Conference, pages 414–427, 2006.

[25] B. McBride. Jena: A Semantic Web Toolkit. IEEE Internet Computing, 6(6):55–59, 2002.

[26] B. McBride. The Resource Description Framework (RDF) and its Vocabulary Description
Language RDFS. In Handbook on Ontologies, pages 51–66. 2004.

[27] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An Environment for Merging and
Testing Large Ontologies. In Seventeenth International Conference on Principles of Knowledge
Representation and Reasoning (KR-2000), pages 483–493, 2000.

[28] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versatile Graph Matching
Algorithm and its Application to Schema Matching. In Proceedings of the 18th International
Conference on Data Engineering (ICDE.02), 2002.

[29] G. A. Miller. Wordnet: An Online Lexical Database. Technical report, Prenceton University,
1990.

[30] M. Mochol, A. Jentzsch, and J. Euzenat. Applying an Analytic Method for Matching Approach
Selection. In International Workshop on Ontology Matching (OM-2006) collocated with the 5th
International Semantic Web Conference (ISWC-2006), Athens, Georgia, USA, 2006.

[31] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema Matching. VLDB
J., 10(4):334–350, 2001.

[32] M. A. Rodŕıguez and M. J. Egenhofer. Determining semantic similarity among entity classes
from different ontologies. IEEE Trans. Knowl. Data Eng., 15(2):442–456, 2003.

[33] P. Shvaiko and J. Euzenat. A Survey of Schema-Based Matching Approaches. In J. Data
Semantics IV, volume 3730 of Lecture Notes in Computer Science, pages 146–171. Springer,
2005.

27



[34] J. Tang, J. Li, B. Liang, X. Huang, Y. Li, and K. Wang. Using Bayesian Decision for Ontology
Mapping. Web Semant., 4(4):243–262, 2006.

[35] C. T. Yu and W. Meng. Principles of database query processing for advanced applications.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

28


