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Abstract—Analyzing social network structures can provide an
insight into the character of human interactions and commu-
nication mechanisms for solving a variety of social problems.
By applying variable social vector clocks and involving weight
evolution influence, we construct a coupled-weight and directed
link generation algorithm for modeling a social topology in a
closed social group. The degree and weight strength distributions
of simulation topologies demonstrate the scale-free properties and
effectiveness of weight diffusion in the real world.

I. INTRODUCTION

The origin of social networks was a giant transition in the
evolution of information spread. The characteristics of network
topologies give much insight into the patterns on which the
communication connections are based and help us better under-
stand complex social systems, such as human societies [1]. The
communication patterns are deeply controlled by information
diffusion dynamics and interacting processes in many social
networks [2]. Consequently, it is a worthwhile problem to
investigate how communication topology structures form with
network growth. It can provide unprecedented perspectives on
social interaction dynamics.

Many works have given much attention to the influence
of complex network topological structures in a variety of
fields [3][4]. By applying the approach of complex networks
[5][6], the interaction patterns among social groups have been
studied extensively. In most real networks, the connection
link between a pair of nodes is characterized by a varying
weight, like in air traffic or proteomic networks. A weight
can be viewed as the strength or frequency of interactions
in the social network. It has been shown that the weighting
factor strongly influences the characteristics and dynamics of
complex networks in many examples [7][8]. In consequence,
the coupled weight-topology mechanism is naturally applied
to social networks analysis and modeling [9][10]. With this
approach, we can figure out various issues, such as terrorist
attacks, public safety, and economic problems. For example,
Broder et al. [11] analyzed the link structures within web pages
and showed that the distribution of degree of web pages obeys
the power law property.

In reality, the weight-topology coupling dynamics in social
networks is highly affected by social interaction. It is driven
by the cyclic and the focal closure for the evolution processes.
The cyclic closure mechanism relates to the link connection
with neighbors of neighbors. The focal closure process relates

to the link connection independently of the local connectivity
or geodesic distance [12]. These two fundamental mechanisms
are involved in our topology generation model. The stronger
the coupling strength of links, the higher the weights of nodes
connecting them are. As with the weights, every interaction
leads to a stronger connection. Also, the task handling process
of individuals plays an important role in the network evolution.
In a co-evolutionary network, the time factor also affects the
dynamic evolution process of its topological structure [13].
It has been shown that the emergence of bursty dynamics
and Granovetter-type weight-topology structure in evolving
networks can be formulated by inter-event time factor and
weight-topology coupling [14].

There are some well-known topology models in complex
networks, such as random type, hierarchical type, or scale-
free networks. Scale-free model has been widely proven to
be a better framework than others to capture the real-world
network topology. The reason is because the character of scale-
free networks reflects the social communication behaviors in
terms of the growth and preferential attachment characteristics
[15]. However, it has been a challenging issue to formulate
information diffusion for event-driven communication in a
network. Event-driven information diffusion may be highly
correlated with timing and ordering of events. The fine-grained
temporal framework has been proposed to effectively capture
the dynamic inter-communication in social networks [16]. It
utilizes the formula of Vector Clocks (VC) to realize the
temporal infrastructure. The notion of VC from distributed
systems was conceptually introduced by Mattern [17]. It can
track the most recent state in each node that happens before a
given event. Vector-clock-driven frameworks have been widely
used in modeling social networks to study many cases, such as
self-organization of communication topology [18], and group
formation and social navigation [19].

Kossinets et al. [20] applied VC to social networks and
proposed a framework of Social Vector Clocks (SVC) to cap-
ture how information is spread in social networks. However,
the conventional SVC has the drawback of poor scalability.
Lee et al. [21] proposed a modification to SVCs to formulate
the temporal features applicable to social interaction networks
with better scalability for link prediction. Hsu et al. [22][23]
further extended the modification of SVC to Variable Social
Vector Clocks (VSVC) to quantitatively model the influence of
information diffusion.

Contributions: In this paper, we propose a universal framework
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of dynamic variable weight evolution based on the influence of
information diffusion. We also implement a robotic social clo-
sure mechanism and probabilistic system introduced by triad
interactions for link creation. Combining with them, we apply
VSVCs to propose a Social Network Topology Construction
(SNTC) algorithm for a closed social group. SNTC is based on
a directed coupling weight network. Our goal is to explore the
spreading effect of dynamic evolution of weights for human
interaction within a closed social group. The degree and weight
strength distributions of simulation topologies demonstrate the
scale-free properties and effectiveness of weight diffusion in
the real world.

Section II introduces the concept of variable social vector
clocks. Section III presents the SNTC algorithm that simulates
the construction of network connections. Section IV analyses
the simulation results generated by our proposed SNTC algo-
rithm, and then compares with some real-world social network
topologies. Section V gives the conclusion.

II. MOTIVATION

In [21], the authors stress that the fine-grained temporal
view might provide valuable additional information over and
above a series of communication events. Vector clocks have
been widely applied to a variety of fields. Although several
works have studied vector-clock-driven social network models,
they used the traditional social vector clocks (e.g., [18][19]).
In our model, we propose a modification of VSVC to model
the social network topology.

A. Traditional Social Vector Clocks

Given a set of N vertices in a social network, each vertex
can be viewed as a process in a distributed system. Suppose
that there is no communication delay and there exists one
global synchronous time. Note that the above two constraints
are not applicable to the framework of asynchronous dis-
tributed systems. A sequence of communication events are
organized in terms of the global time ordering within a time
interval [0 ∼ T ]. Each event is composed of a multivariate
function on a 3-tuple (timestamp, sender, receiver).

The traditional SVC updating approach practically follows
the mechanism of the conventional vector clocks. With the
assumption of no propagation delay in social networks, when
receiving a message sent at timestamp t from sender j at an
incoming event (Et), the timestamp of the receiver i’s temporal
view of the jth and ith entries is set to the timestamp of Et.
Under the piggyback system of the traditional SVCs, however,
each vertex will soon get a large number of indirect updating
messages from others, most of whom the receiver does not
have any direct communication with ever, or has too far social-
connection steps in between them.

Therefore, a modification of the updating framework for
SVCs has been addressed in [21]. Here, a parameter µ gives the
upper bound on the minimum number of hops between a pair
of sending vertex and receiving target along time-respecting
paths. This parameter is included in the framework of the
traditional SVCs. The semantics of three major different values
assigned to µ are as follows:

µ = 1: This only involves direct friendship communication.
A receiver can update a component of the local social vector

clock based on the incoming message if and only if the corre-
sponding sender for that component ever directly interacts with
the receiver (an incoming communication event corresponds to
the vector clock piggybacked on a message).

µ = 2: This case further involves friendship-of-friendship
indirect communication. A receiver i can update the kth

component of the local SVC based on the kth component of
the piggybacked timestamp directly sent from a vertex j if and
only if the corresponding indirect sender k has ever directly
interacted with the sender j.

µ = ∞ ( practically it acts as µ being N −1 in a N -vertex
social group): it is equivalent to the conventional SVC updat-
ing approach, considering unlimited indirect communication
spread without self-looping updating.

B. Variable Social Vector Clocks and the Modification

Hence, it is without loss of generality to consider overall
different reachable distances of friendship. A universal frame-
work of the VSVCs has been presented by Hsu et al. [22][23].
Assume that when µ = c, vertex j sent a direct message to
vertex i. Vertex i can receive an indirect update on the kth

component of the local SVC based on the kth component of
the piggybacked timestamp via a direct update from vertex j,
if and only if the maximum number of hops from vertex k
to vertex j is c − 1. Note that the minimum number of hops
in a social network infers the shortest friendship distance. For
clarity, dab is defined as the minimum number of hops from
vertex a to vertex b along time-respecting paths. Initially, d
is set to ⊥ for each pair of vertices. If dab is larger than 1,
it means that vertex b has received indirectly the piggybacked
information sent from vertex a. If vertex a has sent vertex b a
targeted message, dab should be equal to 1.

In this paper, we propose a modification of VSVCs. It
includes four data elements about each entry j at vertex i.

1) V SV Ci[j].time captures the latest timestamp of
vertex j at vertex i.

2) V SV Ci[j].Plist is a list that holds the predecessors
of j and their corresponding timestamps.

3) V SV Ci[j].Slist is a list that holds the successors of
j and their corresponding timestamps.

4) V SV Ci[j].dist measures the shortest friendship-
respecting distance from vertex j to vertex i.

Whenever a vertex i receives new timestamps, it needs to
compute the shortest friendship distance, and the predecessor
and successor information with respect to all the other vertices.

III. METHODOLOGY

Our motivation seeks to investigate the characteristics and
scaling properties of random network topology in a closed
social group. We propose a social networking topology con-
struction (SNTC) algorithm to model a weighted, directed
random network generated by the probability distribution of
the vertex connectivity.

A. Weighted and Directed Social Networks

A vertex represents a human entity. If a directed edge
eij exists, it means that vertex i has sent vertex j a targeted
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message. The value of wij is the weight of directed edge eij

and corresponds to the frequency that targeted communication
has been issued from vertex i to vertex j. The weight of a
directed network can be described by its asymmetric adjacency
matrix (W )N×N . Assume that the size of network is N . For
clarity, we provide the following definitions.

• the out-degree of vertex i refers to the number of arcs
incident from i.

ODi =
∑

j

xij

{
xij = 1 if wij > 0
xij = 0 otherwise

(1)

• the in-degree of vertex i refers to the number of arcs incident
to i.

IDi =
∑

j

xji

{
xji = 1 if wji > 0
xji = 0 otherwise

(2)

• the out-strength of vertex i corresponds to the sum of
weights of edges whose outgoing vertex is i.

OSi =
∑

j

wij (3)

• the in-strength of vertex i corresponds to the sum of weights
of edges whose incoming vertex is i.

ISi =
∑

j

wji (4)

• the total strength of vertex i is defined by

Si = OSi + ISi (5)

B. SNTC Algorithm

SNTC is originally adapted from scale-free random net-
work ModelB proposed by Barabasi et al. [24]. The invariant
in ModelB makes the number of vertices constant to eliminate
the growth process during the network evolution. This way
of holding the size of network mimics some closed social
groups, such as The Telegraph. It is a list (group) of UK
athletes in Twitter. After being created, the size of list hardly
varies. However, ModelB explores undirected networks with
unweighted edges, which means that a pair of vertices with a
connectivity will not be reconnected again. In contrast, most
real world social networks are directed and weighted. The
SNTC model is defined in the following stages.

1) Initialization: We consider a directed and weighted
network with a fixed size of (N ) vertices. Initially all vertices
are set to be isolated, which means that the initial network
is without any connections. Moreover, the weight wij from
sender i to receiver j is zero. In the SNTC model, the dynamics
for each timestamp processing consists of the following stages
(2)–(4) .

2) Targeted Communication Creation: In our model, there
are two kinds of targeted communication. First, a vertex i sends
a stranger receiver j (i.e., wij is zero) a targeted message.
It creates a directed link between them. Second, a vertex
i transmits a targeted message to its neighbor j (i.e., wij

> 0). Although it does not change the topological link, it
increases the strength of wij . This is viewed as the neigh-
boring interaction (NI). As mentioned above, several studies

model the evolution of social networks with cyclic and focal
closure mechanisms, such as in [14][25]. The focal closure is
regarded as a global attachment (GA) process. It dominates
the connections between the random pairing of vertices. The
cyclic closure is regarded as a local attachment (LA) process.
It implements the connections between vertices having a com-
mon neighboring vertex. However, these two mechanisms (GA
and LA) are controlled by predefined, constant probabilities
(PGA and PLA) for undirected networks in most previous
works. Therefore, we utilize GA and LA to formulate a robotic
system. It forms the basic rules of directed topological link
creation of our model. Contrasted with other studies, PGA and
PLA are variable during the network evolution. The motivation
comes from the following observation. Initially, the weights of
all vertices are identical without any link connections. PGA

should be one and PLA should be zero. With the network
evolution, PGA should decrease and PLA will increase such
that PLA + PGA = 1. In our model, PGA depends on the
percentage of the number of isolated vertices in the whole
network. There are four cases of selecting a pair of sender
and receiver, as follows.

1) Randomly select a pair of vertices from the whole
network with probability PGA*PGA.

2) Randomly select a sender i from the whole network.
Choose a receiver j from non-isolated vertices with
probability Sj /

∑
s Ss. This case is with probability

PGA*PLA.
3) Choose a sender i from non-isolated vertices with

probability Si/
∑

s Ss. Randomly select a receiver j
from the whole network. This case is with probability
PLA*PGA.

4) The final case is with probability PLA*PLA. The way
of selecting a sender i is the same as the third case.
There are two subcases to select a receiver j.
• The first subcase is to choose a receiver j

from the same connected group G(i) of i based
on Sj /

∑
s∈G(i) Ss. This subcase is with probability

P 2
LA ∗Plg (where Plg (the local group probability) =

the number of vertices in G(i)/the number of vertices
from the whole non-isolated vertices).
• In the second subcase the way of choosing a

receiver j is the same approach as the second case.
This subcase is with probability P 2

LA ∗ (1− Plg).

Fig. 1: Schematic representation of triad interaction.

In the fourth case, we need to consider the triad interac-
tions. Whenever i sends a targeted message to j, as shown in
Fig 1, we check whether any vertex k exists satisfying that both
the edges eik (from i to k) and ekj (from k to j) have existed.
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The approach of selecting a k is based on the observation in
[14] that the triad interaction is introduced by a common vertex
k when a pair of i and j communicate at tij . This k needs
to satisfy |tik − tjk| = 1 and tij − tik + tij − tjk = 3. It
implies that after i and j communicate with k consecutively, i
and j will communicate with each other at the next timestamp.
We generalize the above conditions to propose a probabilistic
schema to choose k with the higher chance to introduce
the triad interaction between i and j. From all the common
vertices, we choose one vertex v preferably through the larger
sum

∑
: tiv + tvj and the smaller difference ∆ : |tiv − tvj |.

The triad interaction in [14] is a special case of our schema.
Then, the weights of wiv and wvj may be updated by the
following formula.

wiv ← wiv + δ(
1

ODi
), wvj ← wvj + δ(

1
IDj

) (6)

A parameter δ is specified by users to control the change of
weights. After selecting sender i and receiver j, the weight
wij is updated by

wij ← wij + w0 (7)

Intuitively, wij > 0 means that i has sent j a targeted message.
We assume that w0 is one in this paper.

3) Updating Variable Social Vector Clocks: Upon vertex j
received a targeted message from i, the VSVC of j should be
updated. Through VSVC, vertex j can track the latest status
and shortest information paths from other vertices. The data
structure for VSVCs is the same as presented in Section 2.

Algorithm 1 shows the updating process of VSVCs. Lines
1-4 capture the up-to-date timestamp, renew the successor
information on the entry i, update the predecessor information
on the entry j, and measure the shortest friendship distance
from i to j. Lines 5-17 deal with the updating procedure of
VSVC of j on the entries k 6= i & k 6= j. In lines 11-12,
Merge will merge two successor lists (Slist), and then, two
predecessor lists (Plist), respectively. When two Slists have
the same successor, Merge chooses the latest timestamp from
the two successors’ timestamps. When merging two Plists, it
follows the same way as merging two Slists.

4) Dynamic Variable Weight Evolution: The fundamental
concept of dynamic variable weight evolution originates from
the following observation. An individual preferentially uses
his social connections [26] as source for social intercourse.
This phenomenon feeds a transitivity effect in the network
because the friends of his friends are more likely to have a
connection from him. Newly added targeted communication
for sender i and receiver j might not only cause weight of
edge eij to increase, but also cause weights of edges epi and
ejs to increase (p ∈ the neighboring predecessors of i and s
∈ the neighboring successors of j). The corresponding update
rules of weights have been utilized and referred to as dynamic
evolution of weight in [27] as follows.

wpi ← wpi + δ(
wpi

ISi
) (8)

wjs ← wjs + δ(
wjs

OSj
) (9)

Algorithm 1: Variable Social Vector Clocks
Input: Sender i, V Ci[]; Receiver j, V Cj [];

Timestamp t

1 Vj [j].time←t; Vj [i].time←t;
2 Vj [i].Slist.add(j, t);
3 Vj [j].P list.add(i, t);
4 Vj [i].dist←1;
5 if Vi has been active then
6 for k ← 0 to N − 1 but k 6= j, i do
7 if Vi[k] 6= ⊥ and Vj [k] 6= ⊥ then
8 if Vi[k].dist < Vj [k].dist then
9 Vj [k].dist←Vi[k].dist+1;

10 Vj [k].time← max{Vi[k].time, Vj [k].time};
11 Merge(Vi[k].Slist, Vj [k].Slist);
12 Merge(Vi[k].P list, Vj [k].P list);
13 else if Vi[k] 6= ⊥ and Vj [k] is ⊥ then
14 Vj [k].time← Vi[k].time;
15 Vj [k].Slist.add(Vi[k].Slist);
16 Vj [k].Plist.add(Vi[k].P list);
17 Vj [k].dist← Vi[k].dist+1;

Here the definition of δ is the same as in equation (6). Without
loss of generality, we further propose a universal weighted up-
dating framework (dynamic variable weight evolution) adapted
to all predecessors p of i and successors s of j when a targeted
mention has been sent from i to j. The influence of the
weight update in eij could dynamically cause a transitivity
effect for all the direct or indirect predecessors/successors of
i/j. For example, when an individual receives a message, his
friends and friends of friends might be more likely to send or
receive in the future. Therefore, it will be reasonable to update
the weights on the time-respecting paths with the shortest
friendship distance from p to i and from j to s. For clarity,
the definitions of predecessors for vertex i and successors
for vertex j are as follows.

• Predecessor p of i: a vertex (dpi = V Ci[p].dist > 0).
• Successor s of j: a vertex (djs = V Cs[j].dist > 0).
• Pi: set of all predecessors of i.
• Sj : set of all successors of j.

Fig. 2: Illustrative example of dynamic variable weight evolu-
tion.

Consider the backward information pathways of sender i.
When an edge elm exists (l, m ∈ Pi) and dli is equal to
dmi plus one, the weight wlm of elm needs to be updated as
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follows.
wlm ← wlm + δ(

wlm

ISm
)dli (10)

On the other hand, consider the forward information paths of
receiver j. Similarly, when an edge eyx exists (y, x ∈ Sj) and
djx is equal to djy plus one, the weight wyx of eyx needs to
be updated as follows.

wyx ← wyx + δ(
wyx

OSy
)djx (11)

Note that the value dli and djx must be larger than or equal to 1
in (10) and (11). Obviously, dynamic evolution of weight in (8)
and (9) is a special case of dynamic variable weight evolution
in (10) and (11). Figure 2 illustrates an example of dynamic
variable weight evolution based on the above scenario.

The algorithm 2 represents the procedure of dynamic
variable weight evolution. The input µ is defined as the
upper bound of the shortest friendship distance d. Obviously,
the weight updating evolution would be manipulated by µ.
Based on the direction of information pathways, there are two
weight updating functions – BACKWARD and FORWARD,
respectively.

In BACKWARD, sender i is the pivot point. Lines 2-
4 will capture all predecessors of the sender i and classify
them into predecessor lists predecessor[d].lists based on
each predecessor’s shortest friendship distance d to i (i.e.,
V Ci[k].dist). Line 1 saves the pivot i in the list ancestor[0].
Line 6 is used to detect the termination condition. Note that
Vi[l].Slist maintains the successors of l from the local view
of i. Line 8 checks whether the shortest path distance from
each vertex in Vi[l].Slist to i is d− 1. Line 9 deals with the
dynamic weight updates based on equation (10).

Similarly, in FORWARD, receiver j is the pivot ver-
tex. Lines 11-13 get all successors of receiver j. Then,
classify them into successor lists successor[d].lists based
on each successor’s shortest friendship distance d from j
(i.e., V Ck[j].dist). Line 10 saves the pivot j in the list
successor[0]. Line 15 does termination detection. Line 17
checks whether y is on the shortest path from j to x with
distance d−1. Line 18 deals with the dynamic weight updates
based on equation (11).

IV. RESULTS

A. Scale-free Network Topology

In the simulation setting, we use N = 3,500 which is
the size of the network, time steps = 20N , and δ = 1.0
to generate a directed and weighted social network topology.
When µ = 0 (i.e., the influence of dynamic evolution of weight
does not exist), the in-degree and out-degree distributions
are both between Gaussian and a power law. This obeys
the observation in Model B. When µ is greater than zero,
they roughly show the power law property. The probabilities
of higher-degree vertices are exponentially suppressed. As
a result, the network topology structure could be roughly
viewed as being homogeneous (i.e., most vertices have similar
degrees, distributed approximately with the average degree).
As µ increases, the shapes of Prob(degree) change to tend
to that of Prob(degree) with µ being ∞. Interestingly, the

Algorithm 2: Dynamic Variable Weight Evolution
Input: Sender i; Receiver j; µ
BACKWARD(i):

1 predecessor[0].add(i);
2 for each index k do
3 if k 6= i

∧
(µ ≥ V Ci[k].dist > 0) then

4 predecessor[V Ci[k].dist].add(k);

5 for d ← 1 to µ do
6 if predecessor[d].list is ∅ then
7 break;
8 for ∀ m ∈ Vi[l].Slist

∧
m ∈ predecessor[d− 1].list |
l ∈ predecessor[d].list do

9 wlm ← wlm + δ( wlm

ISm
)d

FORWARD(j):
10 successor[0].add(j);
11 for each index k do
12 if k 6= j

∧
(µ ≥ V Ck[j].dist > 0) then

13 successor[V Ck[j].dist].add(k);

14 for d ← 1 to µ do
15 if successor[d].list is ∅ then
16 break;
17 for ∀ y ∈ Vx[x].P list

∧
y ∈ successor[d− 1].list

| x ∈ successor[d].list do
18 wyx ← wyx + δ( wyx

OSy
)d

distributions for µ = 4 and µ = ∞ are very close. It infers
that the influence of dynamic evolution of weight is bound in
4 friendship links. Note that the parameter δ is used to control
the strength of dynamic evolution of weight. As δ increases,
the shape of Prob(degree) obviously changes to the power
law distribution in small degrees.

We further explore the probability distribution of the in-
strength and out-strength, respectively. They show the power
law property for µ > 0. Likewise, the strength distributions for
µ = 4 and∞ are very close. The above results demonstrate that
a large number of vertices communicate with a few vertices,
while only a small number of vertices communicate with
plenty of vertices.

B. Real Network Topology Examples

We turn to investigate what value of µ may be reasonably
involved in some real closed social groups. We analyze four
Twitter lists. A Twitter list is a organized group of Twitter
users. Since most of the users in the four lists are subscribed
to the lists during a short interval of time, each of the four
lists can be regarded as an individual closed group.

• London 2012 UK Olympics: It covers Twitter communica-
tion events among 492 UK Olympic athletes over four years.
• MLB: It includes Twitter communication events among 563
Major League Baseball players in 2013.
• Mashable: There are 480 speakers and attendees to stay in
the know on the latest by mashable.com.
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• NY Times Journalist: It includes reporters, editors, photog-
raphers and producers curated by The New York Times.

To compare with the above social group topologies, we
simulate the topology distributions for different µ with cor-
responding N , δ, and the number of targeted messages in a
social group. Simulation results are figured out by different
values µ : 0 ∼ 3. Interestingly, the fitting lines obtained from
the corresponding real social groups are almost covered by the
simulation distribution results. In other words, the influence of
dynamic evolution is bound to be three friendship links for
the above four Twitter groups. It demonstrates that dynamic
evolution indeed exists in real-world social networks. Note that
the parameters δ are set to be 2.0 and 6.0 for Mashable
and NY times, respectively. It implies that the strength of
dynamic weight evolution in these two groups is stronger.
Indeed, highly connected people in Mashable groups have
sent and received more messages than those highly connected
members in other groups. The simulation result shows that
the connection strength plays an important role in a social
topology.

V. CONCLUSION

In this paper, we proposed an algorithm (SNTC) to con-
struct a complex network for simulating a closed social net-
work topology. We formulated an approach to dynamic vari-
able weight evolution and applied the framework of VSVCs in
a coupled-weight and directed network. In addition, we incor-
porated a robotic social closure mechanism and a probabilistic
system for triad interactions in realizing targeted mention
link generation. The simulation results show that the network
topological structures generated by SNTC have the charac-
teristics of scale-free properties and are effectively controlled
by weight diffusion extent (µ) and strength (δ). If µ = 4 and
∞, their topological characteristics are very close. Likewise,
the strength distributions for different µ satisfy the power law
properties. Besides, if µ < 4, the strength and degree distribu-
tions are obviously influenced and distinct. Finally, we clearly
see that the simulating topological distributions by SNTC with
corresponding N , δ, and the number of communication events
are consistent with real social topologies when µ < 4. It
seems to imply that the effectiveness of information diffusion
exists within friends, friends-of-friends, and friends-of-friends-
of-friends.
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