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Introduction

Motivation for Replication

Replication – makes copies of data/services on multiple sites.
Replication improves ...

Reliability (by redundancy)
If primary File Server crashes, standby File Server still works
Performance
Reduce communication delays
Scalability
Prevent overloading a single server (size scalability)
Avoid communication latencies (geographic scale)

However, concurrent updates become complex
Consistency models define which interleavings of operations are valid
(admissible)
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Introduction

Consistency Models

Spectrum of consistency models trade-off: cost vs. convenient semantics
Linearizability (Herlihy and Wing 1990)

non-overlapping ops seen in order of occurrence +
overlapping ops seen in common order

Sequential consistency (Lamport 1979)
all processes see the same interleaving of executions

Causal consistency (Ahamad et al. 1991)
all processes see the same order of causally related writes

PRAM consistency (Lipton and Sandberg 1988)
pipeline per pair of processes, for updates

Slow memory (Hutto et al. 1990)
pipeline per variable per pair of processes, for updates

Eventual consistency (Johnson et al. 1975)
updates are guaranteed to eventually propagate to all replicas
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Introduction

The Motivation of Causal Consistency

Figure: Causal consistency is good for users in social networks.
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Introduction

Related Works

Causal consistency in distributed shared memory systems (Ahamad et
al. [1])

Causal consistency has been studied (by Baldoni et al., Mahajan et al.,
Belaramani et al., Petersen et al.).
Since 2011,

ChainReaction (S. Almeida et al.)
Bolt-on causal consistency (P. Bailis et al.)
Orbe and GentleRain (J. Du et al.)
Wide-Area Replicated Storage (K. Lady et al.)
COPS, Eiger (W. Lloyd et al.)

The above works assume full replication.
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Introduction

Partial Replication

Figure: Case for Partial Replication.
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Introduction

Case for Partial Replication

Partial replication is more natural for some applications. See previous fig.

With p replicas at some p of the total of n DCs, each write operation that
would have triggered an update broadcast now becomes a multicast to just
p of the n DCs.

Savings in storage and infrastructure costs

For write-intensive workloads, partial replication gives a direct savings in
the number of messages.

Allowing flexibility in the number of DCs required in causally consistent
replication remains an interesting aspect of future work.

The supposedly higher cost of tracking dependency metadata is relatively
small for applications such as Instagram.
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Introduction

Causal Consistency

Causal consistency: writes that are potentially causally related must be
seen by all processors in that same order. Concurrent writes may be seen
in a different order on different machines.

causally related writes: the write comes after a read that returned the
value of the other write

Examples

Figure: Should enforce W(x)a < W(x)b ordering?
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System Model

System Model

n application processes - ap1, ap2,...,apn - interacting through a shared
memory Q composed of q variables x1,x2,...,xq

Each api can perform either a read or a write on any of the q variables.
ri (xj )v : a read operation by api on variable xj returns value v
wi (xj )v : a write operation by api on variable xj writes value v

local history hi : a series of read and write operations generated by
process api

global history H : the set of local histories hi from all n processes
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System Model

Causality Order

Program Order : a local operation o1 precedes another local operation
o2, denoted as o1 �po o2

Read-from Order : read operation o2 = r(x )v retrieves the value v
written by the write operation o1 = w(x )v from a distinct process,
denoted as o1 �ro o2

Causality Order : o1 �co o2 iff one of the following conditions holds:
9api s.t. o1 �po o2 (program order)
9api , apj s.t. o1 �ro o2 (read-from order)
9o3 2 OH s.t. o1 �co o3 and o3 �co o2 (transitive closure)
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System Model

Underlying Distributed Communication System

The shared memory abstraction and its causal consistency model is
implemented on top of the distributed message passing system.

With n sites (connected by FIFO channels), each site si hosts an
application process api and holds only a subset of variables xh 2 Q.
When api performs a write operation w(x1)v , it invokes the
Multicast(m) to deliver the message m containing w(x1)v to all sites
replicating x1.

send event, receive event, apply event in msg-passing layer

When api performs a read operation r(x2)v , it invokes the
RemoteFetch(m) to deliver the message m containing r(x2)v to a
pre-designated site replicating x2 to fetch its value.

fetch event, remote_return event, return event in msg-passing layer
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System Model

Activation Predicate

Baldoni et al. [2] defined relation !co on send events .
sendi (mw(x)a) !co sendj (mw(y)b) iff one of the following conditions
holds:

1 i = j and sendi (mw(x)a) locally precedes sendj (mw(y)b)
2 i 6= j and returnj (x ; a) locally precedes sendj (mw(y)b)
3 9sendk (mw(z)c), s.t. sendi (mw(x)a) !co sendk (mw(z)c) !co sendj (mw(y)b)

!co � ! (Lamport’s happened before relation)
A write can be applied when its activation predicate becomes true

there is no earlier message (under !co) which has not been locally applied
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System Model

Implementing the Activation Predicate

Figure: Can the write for M3 can be applied at s1? Only after the earlier write for
M is applied. The dependency "s1 is a destination of M" is needed as meta-data on
M3.

Meta-data grows as computation progresses

Objective: to reduce the size of meta-data
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Algorithms

Overview of Algorithms

Two algorithms [3, 4] implement causal consistency in a partially
replicated distributed shared memory system.

Full-Track
Opt-Track (a message and space optimal algorithm)

Implement the !co relation; adopt the activation predicate
A special case of Opt-Track – for full replication.

Opt-Track-CRP (optimal) : a lower message size, time, space complexity
than the Baldoni et al. algorithm [2]
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Algorithms Full-Track Algorithm: partially replicated memory

Algorithm 1: Full-Track

Algorithm 1 is for a non-fully replicated system.

Each application process performing write operation will only write to a
subset of all the sites.

Each site si needs to track the number of write operations performed by
every apj to every site sk , denoted as Writei [j ][k ].

the Write clock piggybacked with messages generated by the
Multicast(m) should not be merged with the local Write clock at the
message reception, but only at a later read operation reading the value
that comes with the message.
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Algorithms Full-Track Algorithm: partially replicated memory

Algorithm 1: Full-Track

Data structures
1 Writei - the Write clock

Writei [j ; k ] : the number of updates sent by apj to site sk that causally
happened before under the !co relation.

2 Applyi - an array of integers
Applyi [j ] : the number of updates written by apj that have been applied
at site si .

3 LastWriteOni hvariable id, Writei - a hash map of Write clocks
LastWriteOni hhi : the Write clock value associated with the last write
operation on variable xh locally replicated at site si .
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Algorithms Full-Track Algorithm: partially replicated memory

Algorithm 1: Full-Track

Figure:
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Algorithms Full-Track Algorithm: partially replicated memory

Algorithm 1: Full-Track

The activation predicate is implemented.
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Algorithms Opt-Track Algorithm: partially replicated memory

Algorithm 2: Opt-Track

Each message corresponding to a write operation piggybacks an O(n2)

matrix in Algorithm 1.
Algorithm 2 uses propagation constraints to further reduce the
message size and storage cost.

Exploits the transitive dependency of causal deliveries of messages (ideas
from the KS algorithm [5]).

Each site keeps a record of the most recently received message from each
other site (along with the list of its destinations).

optimal in terms of log space and message space overhead
achieve another optimality that no redundant destination information is
recorded.
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Algorithms Opt-Track Algorithm: partially replicated memory

Propagation Constraints: Two Situations for
Destination Information to be Redundant

Figure: Meta-data information � = "s2 is a destination of m". The causal future of
the relevant apply and return events are shown in dotted lines.

� must not exist in the causal future of
apply(w): (Propagation Constraint 1)
apply(w’): (Propagation Constraint 2)
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Algorithms Opt-Track Algorithm: partially replicated memory

Algorithm 2: Opt-Track

Data Structures
1 clocki

local counter at site si for write operations performed by api .
2 Applyi - an array of integers

Applyi [j ] : the number of updates written by apj that have been applied
at site si .

3 LOGi = fhj ; clockj ;Destsig - the local log
Each entry indicates a write operation in the causal past.

4 LastWriteOni hvariable id, LOGi - a hash map of LOGs
LastWriteOni hhi : the piggybacked LOG from the most recent update
applied at site si for locally replicated variable xh .
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Algorithms Opt-Track Algorithm: partially replicated memory

Algorithm 2: Opt-Track

Figure: Write process at site si
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Algorithms Opt-Track Algorithm: partially replicated memory

Algorithm 2: Opt-Track

Figure: Read, receiving processes at site si
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Algorithms Opt-Track Algorithm: partially replicated memory

Procedures used in Opt-Track

Figure: PURGE and MERGE functions at site si
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Algorithms Opt-Track Algorithm: partially replicated memory

The Propagation Constraints: An example
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Figure: Meta-data information � = "P6 is a destination of M5;1". The propagation
of explicit information and the inference of implicit information.
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Algorithms Opt-Track Algorithm: partially replicated memory

If the Destination List Becomes ;, then ...

Figure: Illustration of why it is important to keep a record even if its destination list
becomes empty.
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Algorithms Opt-Track-CRP: fully replicated memory

Algorithm 3: Opt-Track-CRP

Special case of Algorithm 2 for full replication; same optimizations.

Every write operation will be sent to exactly the same set of sites; there
is no need to keep a list of the destination information with each write.

Represent each write operation as hi ; clocki i at site si .

the cost of a write operation down from O(n) to O(1).
d entries in local log, where d = no. of write operations in local log

Local log always gets reset after each write
Each read will add at most one new entry into the local log
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Algorithms Opt-Track-CRP: fully replicated memory

Further Improved Scalability

In Algorithm 2, keeping entries with empty destination list is important.

In the fully replicated case, we can also decrease this cost.

s1

s2

s3

m(w(x1)v)

m(w0(x2)u)

LOG3 = {w}

LOG1 = {w}

LOG3 = {w0}
return3(x1, v)

send1(m(w))

receive3(m(w))

receive1(m(w0))

send3(m(w0))

LastWriteOn1h2i = {w0}

LastWriteOn3h1i = {w}

Figure: In fully replicated systems, the local log will be reset after each write.
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Algorithms Opt-Track-CRP: fully replicated memory

Algorithm 3: Opt-Track-CRP

Figure: There is no need to maintain the destination list for each write operation in
the local log.
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Complexity Measures and Performance

Parameters

n : number of sites in the system

q : number of variables in the system

p: replication factor, i.e., the number of sites where each variable is
replicated

w : number of write operations performed in the system

r : number of read operations performed in the system

d : number of write operations stored in local log (used only in
Opt-Track-CRP algorithm)

TaYuan Hsu, Ajay D. Kshemkalyani, Min Shen University of Illinois at ChicagoCausal Consistency Algorithms for Partially Replicated and Fully Replicated Systems31 / 72



Complexity Measures and Performance

Complexity

Table: Complexity measures of causal memory algorithms.

Metric Full-Track Opt-Track Opt-Track-CRP optP [2]

Message Count ((p � 1) + n�p
n )w + 2r

(n�p)
n ((p � 1) + n�p

n )w + 2r
(n�p)

n (n � 1)w (n � 1)w

Message O(n2pw + nr(n � p)) O(n2pw + nr(n � p)) O(nwd) O(n2w)
Size amortized O(npw + r(n � p))
Time write O(n2) write O(n2p) write O(d) write O(n)
Complexity read O(n2) read O(n2) read O(d) read O(n)
Space O(max(n2

; npq)) O(max(n2
; npq)) O(max(d; q)) O(nq)

Complexity amortized O(max(n; pq))
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Complexity Measures and Performance

Message Count as a Function of wrate

Define write rate as wrate = w
w+r

Partial replication gives a lower message count than full replication if

pw + 2r
(n � p)

n
< nw ) w > 2

r
n

(1)

) wrate >
2

1+ n
(2)
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Complexity Measures and Performance

Message count: Partial Replication vs. Full
Replication
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Figure: The graph illustrates message count for partial replication vs. full
replication, by plotting message count as a function of wrate .
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Complexity Measures and Performance

Message meta-data structures

Figure: Partial Replication

Figure: Full Replication (only SM)
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Complexity Measures and Performance

Simulation Methodology

Time interval Te between two consecutive events from 5ms � 2000ms .

Propagation time Tt from 100ms � 3000ms .

Number of processes n is varied from 5 up to 40.

wrate is set to be 0.2, 0.5, and 0.8, respectively.

Replica factor rate p
n for partial replication is defined as 0.3.

Message meta-data size (ms): The total size of all the meta-data
transmitted over all the processes.

Each simulation execution runs 600n operation events totally.
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Complexity Measures and Performance

Meta-Data Space Overhead in Partial Replication
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Complexity Measures and Performance

Meta-Data Space Overhead in Partial Replication
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Complexity Measures and Performance

Meta-Data Space Overhead in Partial Replication
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Complexity Measures and Performance

Ratio of Message Overhead of Opt-Track to Full-Track
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partial replication protocols.
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Complexity Measures and Performance

Meta-Data Size in Partial Replication

With increasing n , the ratio rapidly decreases. For 40 processes, the
Opt-Track overheads are only around 10 � 20 % of Full-Track overheads
on different write rates.

In Full-Track protocol, the average message space overheads of SM and
RM quadratically increases with n . However, the increasingly lower
overhead of SM and RM in Opt-Track are linear in n .
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Complexity Measures and Performance

Meta-Data Space Overhead in Full Replication
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Complexity Measures and Performance

Meta-Data Space Overhead in Full Replication
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Complexity Measures and Performance

Meta-Data Space Overhead in full Replication
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Complexity Measures and Performance

Ratio of Message Overhead of Opt-Track-CRP to optP
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replication protocols.

TaYuan Hsu, Ajay D. Kshemkalyani, Min Shen University of Illinois at ChicagoCausal Consistency Algorithms for Partially Replicated and Fully Replicated Systems45 / 72



Complexity Measures and Performance

Message Count: Partial Replication vs. Full
Replication

Total message size overhead
= Total message count � (meta-data size + replicated data size)

X meta-data size � replicated data size

Figure: Total message count for Full Replication (Opt-Track-CRP) VS. Partial
Replication (Opt-Track).
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Complexity Measures and Performance

Message Size: Partial Replication vs. Full Replication

(a) when n = 40, p = 12, wrate = 0.5, in the worst case.

(b) when n = 40, p = 12, wrate = 0.5, in the real case.

Figure: Total message size for Full Replication (Opt-Track-CRP) and Partial
Replication (Opt-Track).
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Approximate Causal Consistency

Approximate Causal Consistency

For some applications where the data size is small (e.g, wall posts in
Facebook), the size of the meta-data can be a problem.

Can further reduce meta-data overheads at the risk of some (rare)
violations of causal consistency.

As dependencies age, w.h.p. the messages they represent get delivered
and the dependencies need not be carried around and stored.

Amount of violations can be made arbitrarily small by controlling a
parameter called credits.
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Approximate Causal Consistency Approx-Opt-Track

Notion of Credits: Case 1

Figure: Reduce the meta-data at the cost of some possible violations of causal
consistency. The amount of violations can be made arbitrarily small by controlling a
tunable parameter (credits).
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Approximate Causal Consistency Approx-Opt-Track

Notion of Credits: Case 2

Figure: Illustration of meta-data reduction when credits are exhausted.
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Approximate Causal Consistency Approx-Opt-Track

Approx-Opt-Track

Integrate the notion of credits into the Opt-Track algorithm, to give an
algorithm – Approx-Opt-Track [6] – that can fine-tune the amount of
causal consistency by trading off the size of meta-data overhead.

Give three instantiations of credits (hop count, time-to-live, and metric
distance)
Violation Error Rate: Re = ne

mc

ne : number of messages applied by the remote replicated sites with
violation of causal consistency
mc : total number of transmitted messages

Meta-Data Saving Rate: Rs = 1- ms(cr 6=1)
ms(Opt�Track)

ms : message meta-data size, the total size of all the meta-data transmitted
over all the processes
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Approximate Causal Consistency Performance

Simulation Methodology in Approx-Opt-Track

Time interval Te between two consecutive events from 5ms � 2000ms .

Propagation time Tt 100ms � 3000ms .

Number of processes n is varied from 5 up to 40.

wrate is set to 0.2, 0.5, and 0.8, respectively.

Replica factor rate p
n for partial replication defined as 0.3.

Number of variables q used is 100.

(?) Hop Count Credit (cr): denotes the hop count available before the
entry meta-data ages out and is removed.

(?) Initial credit cr is specified from one to a critical value cr0, with
which there is no message transmission violating causal consistency.

Each simulation execution runs 600n operation events totally.
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Approximate Causal Consistency Performance

Violation Error Rates
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Approximate Causal Consistency Performance

Violation Error Rates
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Approximate Causal Consistency Performance

Violation Error Rates

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1  2  3  4  5  6  7  8  9

V
io

la
ti

o
n

 E
r
r
o

r
 R

a
te

Initial Credits

5 Peers

10 Peers

20 Peers

30 Peers

40 Peers

Figure: wrate = 0.8.

TaYuan Hsu, Ajay D. Kshemkalyani, Min Shen University of Illinois at ChicagoCausal Consistency Algorithms for Partially Replicated and Fully Replicated Systems55 / 72



Approximate Causal Consistency Performance

Critical Initial Credits

Figure: Summary of the critical values of cr0 and cr
�0:5%.
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Approximate Causal Consistency Performance

Impact of initial cr on Re

cr0 : major critical initial credit (Re = 0)

cr�0:5% : minor critical initial credit (Re � 0.5%).

cr�0:5% seems not to highly increase as n .

By setting the initial cr to a small finite value but enough, most of the
dependencies will become aged and can be removed without violating
causal consistency after the associated meta-data is transmitted across a
few hops (even for a large number of processes.)

The correlation coefficients of cr0 and n are around 0.94 � 0.95. The
major critical credit values increase as n to avoid causal violations.
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Approximate Causal Consistency Performance

Average Meta-Data Size (KB)
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Approximate Causal Consistency Performance

Average Meta-Data Size (KB)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 6 7 8

A
ve

ra
g

e 
M

et
a

-D
a

ta
 S

iz
e 

(K
B

)

Initial Credits

5Peers

10Peers

20Peers

30Peers

40Peers

Figure: wrate = 0.5.

TaYuan Hsu, Ajay D. Kshemkalyani, Min Shen University of Illinois at ChicagoCausal Consistency Algorithms for Partially Replicated and Fully Replicated Systems59 / 72



Approximate Causal Consistency Performance

Average Meta-Data Size (KB)
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Approximate Causal Consistency Performance

Critical Average Message Meta-Data Size mave (KB)

Figure: Summary of the critical average message meta-data sizes.
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Approximate Causal Consistency Performance

Critical Average Message Meta-Data Size

With increasing number of processes, mave linearly increases.
mave becomes smaller with a higher wrate for more processes.

A read operation will invoke a MERGE function to merge the piggybacked
log list. So, a higher read rate may increase the likelihood to make the log
size enlarged.
Furthermore, although a write operation results in the increase of explicit
information, it comes with a PURGE function to delete the redundant
information.
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Approximate Causal Consistency Performance

Message Meta-Data Saving Rate
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Approximate Causal Consistency Performance

Message Meta-Data Saving Rate
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Approximate Causal Consistency Performance

Message Meta-Data Saving Rate
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Approximate Causal Consistency Performance

Critical Message Meta-Data Size Saving Rates Rs

Figure: Summary of the critical message meta-data size saving rates.
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Approximate Causal Consistency Performance

Critical Message Meta-Data Size Saving Rate

Focus on the case of 40 processes:
Rs is around 40% � 60% at a very slight cost of violating causal
consistency.
Rs reaches around 5% � 20% without violating causality order in different
write rates.

This evidence proves that if the initial credit allocation is just a small
digit, when the corresponding meta-data is removed, the associated
message would already (very likely) have reached its destination.
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Conclusions and Future Work

Conclusions

Opt-Track has a better network capacity utilization and better
scalability than Full-Track for causal consistency in partial replication.

The meta-data overhead of Opt-Track is linear in n .
These improvements increase in higher write-intensive workloads.
For the case of 40 processes, the overheads of Opt-Track are only around
10 � 20 % of those of Full-Track for different write rates.

Opt-Track-CRP can perform better than optP (Baldoni et. al 2006) in
full replication.

For 40 processes, the overheads of Opt-Track-CRP are only around 50 �
55 % of those of optP for different write rates.

Showed the advantages of partial replication and provided the conditions
under which partial replication can provide less overhead than full
replication.
Modification of Opt-Track, called Approx-Opt-Track, to provide
approximate causal consistency by reducing the size of the meta-data.

By controlling a parameter cr , we can trade-off the level of potential
inaccuracy by the size of meta-data.
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Conclusions and Future Work

Future Work

Reduce the size of the meta-data for maintaining causal consistency in
partially replicated systems.

Dynamic and Data-driven Replication Mechanism (Optimize the
replication mechanism).

Which file?
How many replicas?
Where?
When?
(i.e., the replica factor rate p

n is a variable.)
Hierarchical Causal Consistency Protocol in Partial Replication.

A client-cluster model (two-level architecture) for causal consistency under
partial replication.
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Conclusions and Future Work

Questions

Thank You!
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