Transactional Memory for
Multithreaded Environments

Fall 2012
Parallel Computing
Jamar Drue
Brian Mykietka

Overview

e Jamar
o What is Transactional Memory?
o TM Basics
o Hardware TM
o Software TM

e Brian
o Hardware Implementation
o Software Implementation

o Code examples
o Conclusion

e (Questions

WHAT IS TRANSACTIONAL MEMORY?

Introduction

Shared-memory multicore microprocessors offers immense
potential to exploit thread-level parallelism (TLP).

TM was created to ease the transition from sequential
algorithms to parallel algorithms for programmers.

o Difficulties of synchronization tradeoffs, deadlock
avoidance, etc.

Simplifies concurrency programming by allowing a group of
load and store instructions to execute atomically.

Previous Methods

® Parallel thread execution requires synchronization or
ordering mechanisms for multiple accesses to shared data.

® Previous Multithreaded programming models
O Use a set of low-level primitives (i.e. locks) on critical sections.
B Guarantees mutual exclusion.

B Ownership of one or more locks protects access to shared data.

o Locks are complex to use and error prone.

o With mutual exclusion locks, only one thread can hold a lock at a
time.

Functionality

® Transactions replace locking with atomic execution units.

o The programmer can focus on determining where atomicity is
needed, rather than how to implement it.

o Example atomic region in a simple kernel that computes the
histogram of an array:

atomic {
hist[array[i][]j]]++;

o The TM implementation determines how to run that critical
section in isolation from other threads.

Functionality

e Most TM implementations assume that the transactions do not conflict, so the
transactions are run in parallel.

o If two transactions access the same memory item and at least one of them
writes, then the conflict.

o RAW dependencies are most typical.

o If the transactions don’t conflict...

The transactions did not have to compete lock to update the shared
data.

o If the transactions do conflict...

The TM must abandon (roll back) the work of one of the conflicting
transactions.
Any attempted work must not be visible to other threads.

The abandoned transactions are then re-executed after the conflicts
are handled.

Advantages

TM uses mechanisms for simplifying this problem by abstracting some of
these difficulties associated with concurrent access .

o The programmer can concentrate on the algorithm instead of complex
mechanisms such as locks

With TM, multiple threads access memory simultaneously in an atomic way.

o So either all the accesses within an atomic transaction succeed or none
of the accesses succeed.

o Shared data structures are guaranteed to be kept in consistency even in
the event of a failure.

Because actual conflicts are rare in many programs, TM takes an optimistic
approach to assume that a conflict will not happen.

o Compared to TM, locks are pessimistic.

Advantages

Like database transaction, TM has atomicity, consistency, and isolation
(ACI) properties:

o Atomicity to guarantee transactions either commit or abort.

o Consistency to guarantee transactions use the same total order
during the whole process.

o Isolation to guarantee that each transaction's operations are isolated
to other transactions.

TM provides a better trade-off between scaling and implementation
ifelg

o Fine-grained locking scales well, but are difficult to design.

TM is inherently deadlock free.

Disadvantages

® Disadvantages Important to Note

o Livelock can be a problem, but it is easier to deal with
than deadlock.

o Like many high-level programming abstractions, a
carefully designed algorithm using lower-level primitives

can outperform an algorithm using TM.

o Difficulty with what kind of abstractions to provide and
what kind of performance tuning and debugging tools to

develop for programmers.

TM BAsICS

Transactions

® Transaction —a sequence of instructions that either executes completely (commits) or has
no effect (aborts).

© On asuccessful commit, the global state is updated and all writes become visible
where other transactions can use those values .

o On an abort, the system discards all its speculative writes.

e A TM system needs a data-versioning mechanism to record the speculative writes.

o With an Undo Log, a transaction applies updates directly to memory locations, while
logging the necessary information to undo the updates in case of an abort.

o Buffered Updates keep the speculative state in a private transaction buffer until
commit time.

m If the commit succeeds, the buffer drops the original values before the store
instructions and commits the transaction’s speculative stores to memory.

Transactions

® A transaction’s instruction sequence can be explicitly or implicitly delimited.

o Explicit
m Some high-level programming languages include constructs that
explicitly define the extent of transactions like the “atomic’’ statement
shown earlier.
m Others provide lower-level operations to explicitly start and end
transactions.
m A TM system can abort transactions explicitly by executing an abort
instruction.
o Implicit
m In other cases, transactions start implicitly after execution of a
transactional read or write operation or immediately after the commit
of another transaction in the instruction stream.
m A TM system can abort transactions implicitly because of data conflicts

with concurrent transactions.

Conflict Handling

® Two issues are related to conflicts: detection and resolution.

O Each running transaction is associated with a read set and a write set.

B For transactional load instruction

® memory address — read set.

B For transactional store instruction

® memory address + value — write set.

O Conflict detection can be either eager or lazy.

B Eager conflict detection checks every individual read and write for a conflict with
another transaction.

B Inlazy conflict detection, a transaction checks its read and write sets for a
conflict only on a commit.

Conflict Handling

T1 T T 12
StartT StartT

EndT (commit) |:|

EndT (commit)

EndT (commit) EndT (commit)

(a)

Conflict Handling

e Conflict Resolution

o Usually, a system resolves a conflict
by aborting one of the transactions

o The resolution policy has three

choices
m Committer Wins
m Requester Wins
m Requester stall with

conservative deadlock
avoidance.

T1
StartT

|

EndT (commit)

EndT (commit)

WriteY

EndT (commit)

TM Implementations

e Software Transactional Memory (STM)
o Easy to implement and require no changes to existing hardware.

o But for most STMs, poor performance and weak atomicity are two serious
disadvantages.

e Hardware Transactional Memory (HTM)
o Has the advantages of high performance and strong atomicity.
o System architecture must support HTM.

e Combined Approach
o Hybrid transactional memory (HyTM)
m Supports HTM execution, but when HW resources are exceeded, falls back on
STM.
o Hardware-assisted STM (HaSTM)
m Combines STM with new architectural support to provide STM speedup.

o HyTM provides near-HTM performance for short transactions, while HaSTM provides
performance somewhere between HTM and STM.

HARDWARE TRANSACTIONAL MEMORY

Hardware TM

® The first HTM designs were minimalist
o Modifying the cache consistency protocols
o Complementing the ISA with new instructions.
o Speculative state stored in extended or partitioned cache a commit or abort.

® Process
o As atransaction starts, it checkpoints registers to save old values.
o In order to detect read-write or write-write conflicts, memory references are tracked.
o If atransaction completes without conflicts, its results are committed to shared
memory.

o If a conflict appears between two transactions, one of them rolls back according to
register checkpoint.

® Benefits
o HTM systems cut down the overhead of fine-grained locks.

o They can automatically check every memory references of all the active transactions
under the help of the cache coherence protocols.

HTM - Conflict Detection

e HTM systems keep a transaction’s speculative state in the data
cache or in a hardware buffer area.
o STM systems have conflict detection at object level.
o HTM systems work at the word or cache line level.

e The systems keep transactional loads and stores in a separate
transactional cache or in conventional data caches augmented

with transactional support.

® Transactional support relies on extending existing cache
coherence protocols (i.e. MESI - modified, exclusive, shared,

invalid), to detect conflicts and enforce atomicity.

HTM ISA Support

® [SA level transaction instructions
o Transaction delimiters
m start transaction (STR).
m end transaction (ETR).

o Transactional Read and Writes
m load (TLD)
m store (TST)

o Implicit transactions

m When a transaction executes its first TLD or TST operation, a flag is set at the
core indicating that the core is engaged in a transaction.

e Adding special instructions for abort (ABR) and validation (VLD) of a transaction makes
several optimizations possible.

o VLD allows for early conflict detection so the transaction can roll back without wasting
energy.

HTM - Version Management

The transaction’s read set and write set are stored in the data cache and keeps an
extra version of the transaction’s tentative updates.

o Two extra bits per cache line indicate whether the line is to be discarded on
commit (for lines holding unmodified data) or on abort (for speculatively
modified lines).

A conflict means that a load has read invalid data and the transaction must abort.
o The write set of the aborting transaction is dropped.

When there is no conflict
o The version of the original values before the store instructions are dropped.
o The transaction’s speculative stores are committed to memory.

SOFTWARE TRANSACTIONAL MEMORY

Software TM — API Design

Software Transactional Memory (STM) has the advantages of flexibility
and easy implementation.

An STM implementation must create its own mechanism for concurrent
transactions to maintain their own views of heap memory.

o This mechanism allows a transaction to see its own writes as it runs
and allows memory updates to be discarded if the transaction

ultimately aborts.

Two distinctions between how different STM systems are implemented
include:

o Transaction granularity
o Data Organization in memory.

STM — Transaction Granularity

Transaction granularity - the data store unit, through which a TM system detects
conflicts.

o word, block, object and hybrid.

Word Granularity

o A shared word is possessed by no more than one transaction at any time.

o In order to guarantee a shared memory word to update atomically, a
dedicated record is used to store the exclusive ownership of this word.

Block Granularity

o A multiword structure is used to store transactional variables, which include
a pointer to shared data, a mutual-exclusion lock number and a wait queue

used for conditional synchronization inside transactions.

o Map shared memory addresses into a hash table, each item of which stores
an ownership record for tracking whether transactions conflict.

STM — Transaction Granularity

e Object granularity,

o With object granularity, it is unnecessary to change original object
structure for translating non-transactional program to transactional

program.

o An object can execute inside and outside transactions without any
change.

e Hybrid Granularity
o In these systems, transaction granularity may change between word
and object.

o Word is used when the workload has more high-level concurrent
data structures (e.g., multi-dimensional arrays)

o Obiject is used when the workload has more dynamical data
structures.

STM — Transaction Granularity

® Comparisons
o Word/Block Granularity
m Supports fine-grained sharing and fine-grained parallelism.

m Can get more concurrently access to data structures such as array,
matrix etc.

m Provides higher conflict detection accuracy.
Leads to much more additional communication overhead.
m Injures performance by making unnecessary transaction aborts.

o Object Granularity

m Object transactions are more helpful for supporting practical and
dynamic object-based structures.

m Hard to support object transactions for non-object.

m High parallel data structures such as arrays, using objects for conflict
detection can cause unnecessary conflicts, inhibiting concurrency.

STM - Data Manhagement

® A high-level distinction between STM implementations is how they
organize data in memory.

o One approach separates transactional data and ordinary data,
introducing a distinct memory format for transactional

objects. (Indirect)

o An alternative approach allows data to retain its ordinary
structure in memory, and the STM uses separate structures to

maintain its own metadata. (Direct)

® There are advantages and disadvantages to each approach.

Indirect Data Management

® Since, transactional and ordinary data are stored in different memory
structure, these systems cannot access transactional data directly.

o If a transaction wants to access a shared object, it must take actions to
open a TM object first.

o The open operations are different according to whether the access
mode is READ or WRITE.

m READ mode - the same object body can be shared by multiple
transactions at the same time.

m WRITE mode - a new version copy of the object is prepared for
update and is only visible to the transaction until the transaction

commits.

o Makes transactional data semantics clear

Direct Data Management

Transactional and ordinary data are stored in the same low-
level memory structure in the system

They refer transactional data by ordinary pointer directly.

They are convenient for spatial access locality and hence
improve performance and transaction throughput.

STM - Version Management

® STM APl implementation has two ways of managing tentative
updates: Buffered updates or Undo log.

O Buffered updates/Lazy Version Management (LVM)

A transaction keeps a private shadow copy of all the memory words it
updates.

STMRead accesses the shadow copies so that they will see earlier writes by
the same transaction.

Hashing maps an address to a slot in the current transaction’s shadow table.

Benefits

® LVM is more efficient for transactions aborting.
® VM allows concurrent transactional read and write for the same logical data.

® Keeping a private version of the object in store buffer and no one committing at the
time.

STM - Version Management

e Undo-log/Eager Version Management (EVM).

o STMWrite directly updates the heap so that calls to STMRead will see earlier
updates without needing to search a table.

o STMWrite maintains an undo log of all values that it overwrites referred to
as checkpoints

m On commit, discard the old version in its checkpoint.

m Onanabort, the old version in its checkpoint is restored to its original
place and the new version is discarded.

o Benefits
m VM is more efficient for transactions committing.

o Disadvantages

m Prevents other transactions to read a modified uncommitted object,
limiting possible concurrency.

Conflict Detection

Generally, there are three type of conflict detection: Eager Conflict Detection
(ECD), Lazy Conflict Detection (LCD) and Hybrid Conflict Detection (HCD).

ECD
o Detects conflicts when a transaction wants to access memory.
o ECD always works with EVM, since it is necessary to make sure that only one
transaction can write a new version to a logical data.
LCD
o Detects conflicts when a transaction is about to commit updates
o Similarly, LCD commonly works with LVM.

HCD, combines ECD and LCD.
o Manage transactional version with EVM mechanism.
O Uses ECD before a transaction read or write.

o Allow multiple transactions to read a shared data concurrently and to delay
detecting conflicts until committing with LCD.

Synchronization

® Synchronization is the mechanism to guarantee that a transaction attempting to
access a logical data will finish its work.
o Blocking Synchronization (BS)
o Non-blocking Synchronization (NS).

e The BS blocks concurrent access

o In order to keep consistency, BS forces multiple threads to access critical sections
exclusively, maintaining a queue in the order of request(wait-state).

o A compiler can automate this approach, by using locks as a transaction executes
until it commits.

o Disadvantages

m This wait-state easily leads to severe problems such as deadlock, priority
inversion, contention, etc.

Synchronization

® NS prevents concurrent threads from entering wait-state.
o In NS, a concurrent thread may either abort its transaction, or abort the
transaction of conflicting thread.

o The NS has been classified into three main categories based on their
assurances for forward progress:

m Wait-freedom
® Assures all threads avoid deadlocks and starvation.

m Lock-freedom
® Assures all threads avoid deadlocks, but not starvation.

m Obstruction-freedom
® Assures all threads avoid deadlocks, but not livelocks .

® Livelock can be effectively minimized with simple methods like
exponential backoff.

o Disadvantages
m NS may cause more memory traffic than BS.

Existing Implementations

Existing Implementations

e Hardware implementations
o Sun - Rock microprocessor
o IBM Blue Gene/Q
o IBM zEnterprise EC12
o Transactional Synchronization Extensions (TSX)

e Software implementations
o Code examples

m C/C++ Boost.STM
m CH#SXM

Hardware Implementations

e Sun - Rock microprocessor (2006 - 2009)

First production processor to support
transactional memory

Added two new instructions chkpt and

commit and one new status register cps
chkpt <fail pc> used to begin transaction

commit to commit transaction
If transaction aborts then we jump to

<fail pc> and cps is used to determine
reason

Hardware Implementations

® Sun - Rock microprocessor

o Transactional memory support is best-effort based
m Does not guarantee support of transactions of

any size

m Committed in in-cache and aborted if don't fit
o Transactions can be aborted for other reasons

TLB misses
Interrupts

Certain commonly used function call sequences
"Difficult" instructions (division)

Hardware Implementations

e Blue Gene/Q processor (2012) (Ranked #2 - top500.0rg)

o L2 multi-versioned, transactional memory and
speculative execution, hardware support for atomic

operations

o Implemented in hardware, can access all memory up
to 16GB boundary

o Transactions implemented through regions of code
that are designated as single operations

o These regions are called transactional atomic regions

Hardware Implementations

e Blue Gene/Q processor - Transactional memory
o When transactional memory is activated,
transactions run in one of two modes

m Speculation mode

® Allows for coarse grain multi-threading

e |oad/store conflicts detected and resolved
according to sequential semantics

® Long running speculation mode (default)
® Short running speculation mode
m Irrevocable mode

o Each mode applies to an entire transactional
atomic region

Hardware Implementations

e Blue Gene/Q processor - Execution modes
o Speculation mode

m Kernel address space, devices I/0, memory-mapped I/O are
protected from irrevocable actions

m Transaction goes into irrevocable mode if such an action occurs
to guarantee correct results

O lrrevocable mode

m System calls, irrevocable operations such as I/O operations, and
OpenMP constructs trigger transactions to go into speculation

mode which serializes the transactions

m Transactions run in this mode when max number of transaction
rollbacks has been reached

m Each memory update of thread is committed instantaneously
instead of at end of transaction — memory updates immediately

visible to other threads

Hardware Implementations

e Blue Gene/Q processor - Built-in transactional memory functions
o Can create struct to fill out fields:
m Hardware thread ID
m Total number of transactions
m Total number of rollbacks for transactional memory
threads
m Various other serialization counts
o This struct can be passed into functions to be populated:
m tm get stats (TmReport t *stats)
n tm_get_all stats (TmReEort t *stats)
o Can also call write statistics for transactional memory of
particular hardware thread to a log file using:
m tm print stats()
m tm print all stats()
O #pragma tm atomic specifies atomic region

Hardware Implementations

e Transactional Synchronization Extensions (TSX)

o Extension to the x86 ISA that adds HTM support

o Documented by Intel in February 2012 scheduled
for implementation in microprocessors based on

Haswell architecture

o Hardware monitors multiple threads for
conflicting memory accesses and aborts/rolls

back transactions that cannot complete
successfully

Hardware Implementations

e Transactional Synchronization Extensions (TSX)

o Programmer has ability to specify code regions to be executed
transactionally
o Provides two software interfaces to specify regions:
m Hardware Lock Elision (HLE)

Legacy XACQUIRE/XRELEASE instructions

Allows optimistic execution by suppressing the write to lock
so lock appears to be free to other threads

Failed transaction restarts from XACQUIRE

m Restricted Transactional Memory (RTM)

New instruction set interface
XBEGIN, XEND, XABORT instructions

Allows programmers to define transactional regions in more
flexible manner than with HLE

Gives programmer ability to specify fallback code path

Software Implementations

Software Implementations
Proposed Language Support

® Simplest form "atomic block"

:// Insert a node into a doubly linked list atomically
|atomic

.

newNode->prev = node;

newNode->next = node->next;

node->next->prev = newNode;

|
|
|
|
|
| node->next = newNode;
|

|

® \When end of block reached,
o Transaction committed if possible
o Or else aborted and retried

Software Implementations
Proposed Language Support

e Conditional critical region (CCR) permit guard condition

:atomic (queueSize > 0)
p {

|

|

)) I

| // remove item from queue and use it |
|

|

® Enables transaction to wait until it has to do work

e |f condition is not satisfied, transaction manager will
wait until another transaction has made a commit that

affects the condition before retrying

Software Implementations
Proposed Language Support

e Composable Memory Transactions, adds retry command

e Can abort transaction at any time and wait until some
value previously read by the transaction is modified before

retrying

if (queueSize > 0)
{

// remove item from queue and use it

Software Implementations

® Currently a hot area of research

e Many implementations are still considered
experimental

e Numerous implementations in various languages:

o C/C++ o JavaScript
o C# o OCaml

o Clojure o Per

o Common Lisp O Python
o Haskell o Scala

o Java o Smalltalk

Source: http://en.wikipedia.org/wiki/Software_transactional_memory

Software Implementations

Various C/C++ Implementations

TinySTM - time-based STM, integrates STM with C/C++ with
LLVM

LibCMT - open-source implementation based on

"Composable Memory Transactions"

Intel STM Compiler Prototype Edition

o Implements STM for C/C++ directly in compiler producing
32 or 64 bit code for Intel or AMD processors
Implements atomic keyword

Provides ways of decorating (declspec) function
definitions to control/authorize use in atomic sections

o This is a substantial implementation with the stated
purpose to enable large scale experimentation in any

C/C++ program

Software Implementations

C/C++ Implementation

® Boost.STM - Library under construction

O

Optimistic concurrency

o ACI transactions

O O O O O O O

m Atomic - all operations execute or none do

m Consistent - only legal memory states

m [solated - other transactions cannot see until committed
Language-like atomic transaction macro blocks - like above

Closed, flattened composable transactions
Direct and deferred updating run-time policies
Validation/invalidation conflict detection policies
Lock-aware transactions

Programmable contention management

Isolated/irrevocable transactions for transactions that must
commit

Software Implementations

C/C++ Implementation

® Boost.STM "Hello World" example
O Both read and write on countexr variable function atomically
or neither operations are performed
O Transaction begins and ends in legal memory states

O Intermediate state of incremented counter is isolated until
the transaction is complete

#1nclude <boost/stm.hpp>

IBoost :stm: :tx: :object< > counter (0) ;

increment () {

BOOST STM TRANSACTION {
counter++;

} BOOST_STM TRANSACTION;

Software Implementations

C/C++ Implementation

® Boost.STM - Simple Transaction Example - Linked List Insert
O tx_ptr smart pointer
o 100 atomic insertions

o No additional code needed to perform transactional
linked list

|

|

|

| (i=0; i< 100; ++i) {
| BOOST_STM_TRANSACTION {

: linkedList->insert (i) ;
| } BOOST_STM_TRANSACTION;

|

|

|

Software Implementations

C/C++ Implementation

® Boost.STM - Insert Retry Transaction Example

o Code performs two key operations
i. Retries the transaction until it succeeds (commits)

ii. Catches aborted transaction exceptions

o aborted_transaction_exception - exception neutral while gaining
performance benefits from early notification of doomed
transactions

insert (T &val)

|

|

|

: BOOST STM TRANSACTION

[{

: // our code to insert

. } BOOST STM END TRANSACTION;
|

|

|

Software Implementations

Various C# Implementations

SXM - Implemented by Microsoft Research

NSTM - .NET STM, truly nested transactions and integrating
with System.Transactions

MikroKosmos

o Verification-oriented model implementation of STM
(Bartok STM)

o Implementation meant for benchmarking, not practical
use

STM.NET
o Microsoft DevLabs project

o Delineate sections of code as running with an atomic
block using a delegate or try/catch

Software Implementations

C# Implementation

e SXM Overview
o Facilitate experimentation with new algorithms

and techniques for implementing STM
o Users encouraged to implement/experiment
with new components

m Benchmarks

m Contention managers
e Greedy - Maximal independent set running
e Aggressive - Always aborts conflicting transactions
e Priority - Prior transaction has later timestamp, abort it

m Object factories

Software Implementations
C# Implementation - SXM

Node next;

Node ()
{
}
Value
{
{ ;)
{ = }
}
Node Next
{
{ next; }

{ .next = ;)

Software Implementations
C# Implementation - SXM

® Factory creates transactional proxies that intercept property
calls:

Software Implementations
C# Implementation - SXM

Insert (\')
v = (int)_v;
Node newNode = (Node) factory.Create(v) ;
Node prevNode = .root;

Node currNode = prevNode.Next;
(currNode.Value < v)

{

prevNode currNode;
currNode = prevNode.Next;

(currNode.Value == v)

newNode.Next = prevNode.Next;
prevNode.Next = newNode;

Software Implementations
C# Implementation - SXM

® To prepare method to be executed by transaction, turn it
into an XStart delegate

Software Implementations
C# Implementation - SXM

e Conditional Waiting

o XAction.Retry()
o Aborts current transaction, restarts it when some object
accessed by that transaction has been modified

e OrElse Combinator
o Provides way to specify alternative execution paths

o Example
m Remove item from buffer b1, but buffer is empty
m Instead of blocking you would prefer to remove an item
from buffer b2
m Getl() - remove item from b1, Get2() - remove from b2

I getXStart = XAction.OrElse (new XStart(Cetl), new XStart(Get2));
:int x = (int)XAction.Run (getXStart) ;

Conclusion

Great alternative to lock-based synchronization

Simplifies conceptual understanding of multi-
threaded programs, makes programs more

maintainable by working in harmony with high-level
abstractions such as objects and modules

Many implementations, each with own strengths
and weaknesses

Beginning to see more mainstream interest in TM
with multi-threaded applications being much more

prevalent

References

1. Harris, T.; Cristal, A.; Unsal, O.S.; Ayguade, E.;
Gagliardi, F.; Smith, B.; Valero, M.; , "Transactional
Memory: An Overview," Micro, IEEE , vol.27, no.3, pp.8-
29, May-June 2007

2. Wang, X, Z. Ji, C. Fu and M. Hu, 2010. A review of
software transactional memory in multicore processors.
Inform. Technol. J., 9: 192-200

3. Wang, X,, Z. Ji, C. Fu and M. Hu, 2009. A review of
hardware transactional memory in multicore processors.
Inform. Technol. J., 8: 965-970.

References

http://en.wikipedia.org/wiki/Transactional_memory
http://en.wikipedia.org/wiki/Software_transactional_memory
http://en.wikipedia.org/wiki/IBM_zEC12_(microprocessor)
http://www.eetimes.com/electronics-news/4218914/IBM-plants-transactional-memory-in-CPU
http://pic.dhe.ibm.com/infocenter/compbg/v121v141/index.jsp?topic=%2Fcom.ibm.xlcpp121.bg.doc%
2Fproguide%2Fbg tm_concept.html

http://en.wikipedia.org/wiki/Rock_processor
http://www.dolcera.com/wiki/index.php?title=Transactional_memory
https://svn.boost.org/trac/boost/wiki/LibrariesUnderConstruction

http://svn.boost.
org/svn/boost/sandbox/stm/branches/vbe/libs/stm/doc/html/toward_boost_stm/users_guide/getting_

started.html

http://svn.boost.

org/svn/boost/sandbox/stm/branches/vbe/libs/stm/doc/html/toward _boost_stm/users_guide/tutorial.
html

http://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
http://software.intel.com/sites/default/files/m/3/2/1/0/b/41417-319433-012.pdf
http://research.microsoft.com/en-us/downloads/c282dbde-01b1-4daa-8856-98876e513462/
http://www.cs.brown.edu/~mph/SXM/README.doc
ftp://ftp.research.microsoft.com/downloads/fbelcf9a-c6ac-4bbb-b5e9-d1fdad9ecad9/SXM1.1.zip
http://blogs.msdn.com/b/stmteam/archive/2009/07/28/stm-net-released.aspx
http://www.disco.ethz.ch/lectures/fs11/seminar/paper/johannes-2-2.pdf
http://en.wikipedia.org/wiki/Simultaneous_multithreading
ftp://public.dhe.ibm.com/common/ssi/ecm/en/dcw03006usen/DCWO03006USEN.PDF

