
Journal of Parallel and Distributed Computing 62, 1104–1119 (2002)
doi:10.1006/jpdc.2001.1818
Communication Patterns in
Distributed Computations1

Ajay D. Kshemkalyani2,3

Computer Science Department (mc 152), 851 South Morgan Street, University of Illinois at Chicago,

Chicago, Illinois 60607-7053

E-mail: ajayk@cs.uic.edu

and

Mukesh Singhal

Department of Computer Science, University of Kentucky, 301 Rose Street, Lexington, Kentucky 40506

E-mail: singhal@cs.uky.edu

Received April 11, 2001; accepted January 9, 2002

This paper identifies two classes of communication patterns that occur in

distributed computations and explores their properties. It first examines local

patterns, primarily IO and OI intervals, that occur at nodes in distributed

computations. These local patterns form building blocks that are then used to

define the global patterns, termed segments and paths, that occur across nodes

in distributed computations. By controlling the predicates on the local patterns

used to define segments and paths, various types of segments and paths can be

defined. While a causal chain captures only the causality relation, it turns out

that some of the other message sequences that do not capture causality also

play a significant role in the analysis of a distributed computation. The paper

presents a framework and shows that a number of key concepts and structures

characterizing distributed computations are specific instantiations of the

communication patterns identified in the framework. # 2002 Elsevier Science (USA)

Key Words: causality; communication; crown; distributed computation;

path; segment; zigzag path.
1An earlier version of this paper appeared as: A. Kshemkalyani and M. Singhal, Universal constructs in

distributed computations, in ‘‘Proceedings of Euro-Par ’99 Parallel Processing, 5th International Euro-Par

Conference,’’ Toulouse, France, Lecture Notes in Computer Science 1685, pp. 795–805, Springer, August

1999. (Also appears as Technical Report TR 29.2136, IBM Corporation, March 1996.)
2To whom correspondence should be addressed.
3This author’s work was supported in part by the National Science Foundation under Grant No. CCR-

9875617.
11040743-7315/02 $35.00

2002 Elsevier Science (USA)
All rights reserved.

PATTERNS IN COMPUTATIONS 1105
1. INTRODUCTION

In a distributed computation, processes exchange information via messages. As

process execution is typically asynchronous and message delays are unpredictable, it

is difficult to predict and control the evolution of a distributed computation.

Analyzing the structure of a distributed computation helps to understand the

concurrency and leads to a better design of distributed applications, algorithms, and

systems. To this end, this paper identifies two classes of communication patterns that

occur in every distributed computation and examines their properties. The first class

of patterns consists of local patterns or intervals, primarily IO and OI intervals, that

occur at processes [14]. These local patterns are specified in terms of message send and

message receive events at a process, and are distinguished by the order in which a pair

of messages is sent and/or received by a process. Domain-specific predicates can be

defined on how the interval at one process is related to the interval at another process.

The use of such predicates on intervals at different processes allows intervals to be

used as building blocks to formulate the second class of patterns, which is comprised

of two global patterns, termed segments and paths [14]. These global patterns occur

across processes in a distributed computation and signify the flow of information and

coupling among the events at different processes. By controlling the predicates on the

intervals used to define segments and paths, different types of segments and paths can

be defined. Segments and paths generalize causal chains to other message sequences

that also play a significant role in the analysis of a distributed computation.

This paper gives a framework in which key concepts and structures characterizing

distributed computations in different contexts can be uniformly viewed and

understood. The communication patterns identified in this framework are shown to

be generalizations of those used in areas or problems such as: formulating the

temporal interactions of intervals [13], synchronous and causally ordered commu-

nication [9], determining size of logical clocks [8, 20], designing distributed

implementations for multilevel secure replicated databases and hierarchically

decomposed databases [1, 2], ordering of concurrent events without synchronization

[1], transfer of knowledge [7], concurrency measures [10], determining necessary and

sufficient conditions for a consistent global state [6, 19] which is useful in

checkpointing and recovery [3–5], and defining distributed deadlocks [14]. Thus,

the paper shows that key concepts and structures in areas such as the above are

instantiations of the communication patterns identified in the presented framework.

Section 2 gives the system model. Section 3 defines the local patterns and examines

their properties. Section 4 gives examples of predicates that are used to couple local

patterns to form global patterns. Section 5 defines the global patterns that occur

across nodes and shows that they are generalizations of key concepts and structures

used in the applications listed above. Section 6 concludes.

2. SYSTEM MODEL

The system is a network of N nodes (sites) with a logical channel between each pair

of nodes. The nodes communicate by passing messages over the logical channels and

KSHEMKALYANI AND SINGHAL1106
do not share memory. We assume, without loss of generality, that each node in the

system has one process running on it. Hence, nodes are synonymous to processes.

Process executions and message transfers are asynchronous. Messages are delivered

reliably but not necessarily in the order sent.

The system execution or computation consists of a sequence of events at each node.

There are three types of events at a node: message send events, message receive

events, and internal events. Let sxi and rxj denote the send and the receive events at

which the message with label x is sent at node i and received at node j, respectively.
The superscript and/or subscript will be omitted when it is not important. Let destðsxi Þ
denote the destination of the message sent at sxi . A distributed computation

associates with each node i a totally ordered set Ci of events. Let C ¼
S
Ci be the

possibly infinite set of all events. The state of a node is defined by the values of the

variables associated with its computation, which are a function of the history of

events executed by it at any time. A distributed computation is represented by the

poset ðC;�Þ, where � is the causality relation on C [15].

Definition 1. For any event a and b in C, a happens causally before b, denoted as

a � b, if (i) a; b 2 Ci and a occurs before b, or (ii) a is the sending of a message and b
is the receipt of the same message, or (iii) there exists some event c 2 C such that

a � c and c � b.

It is observed that all real computations are acyclic and ðC;�Þ is a strict partial

order. The global state of the system is the collection of the states of each node after

the execution of a left-closed subset of C. (A set C0 is left-closed iff for any a; b 2 C;
we have b 2 C0 ^ a � b) a 2 C0:Þ

3. LOCAL COMMUNICATION PATTERNS: INTERVALS AT A NODE

This section formalizes the local communication patterns that occur at nodes

as a result of message sends and receives. The following sections show how these

patterns are used as building blocks to formulate two global patterns that occur

across nodes.

At the time a node i sends a message at si, an ‘‘outward dependency’’ gets

established at i. At the time a node i receives a message at ri, an ‘‘inward

dependency’’ gets established at i. An interval at a node is the period between the

times that two such dependencies get established. There are two main types of

intervals, shown in Figs. 1a and 1b, based on whether the inward dependency is

established before the outward dependency or vice versa. The former interval which

is the duration between a receive event and a later send event is an IO interval. The

latter interval which is the duration between a send event and a later receive event is

an OI interval. Analogously, II intervals and OO intervals can also be defined.

The formation of an interval at a node signifies the potential participation of the

node in global communication patterns that span across nodes. Note that intervals at

a node can overlap. For example, in Fig. 3, the following pairs of intervals overlap at

node 3: (i) the OI interval between s33 and r23, the OI interval between s33 and r53; (ii) the

Node j

Node i

Node k

(a) (b)

r

r

r

j
s sj

i

i
s s

i

i

k
r
k

FIG. 1. IO and OI intervals. (a) IO interval at node i. (b) OI interval at node i.

node i

d i,x-1 d i,x d i,x+1

(x)th distinguished distinguished
event event

(x+1)th

timedistinguished event

FIG. 2. Distinguished events and durations di;x.

PATTERNS IN COMPUTATIONS 1107
IO interval between r23 and s63, the IO interval between r53 and s63; and (iii) the OI

interval between s33 and r53, the IO interval between r23 and s63. If there are k send and

receive events at a node, there are ðkðk 	 1ÞÞ=2 intervals at that node.

Each node has a set of application-specific semantically defined ‘‘distinguished’’

events that are identified by monotonically increasing functions such as the sequence

number of the events at the node. A distinguished event may be forced to occur by

a receive event which is in response to a remote send event, and hence may not

be locally deterministic. An example of a distinguished event is an event that takes a

checkpoint of the local state of a node. The time span from the xth to the ðxþ 1Þth
distinguished event at node i is called the xth duration at i and is denoted di; x.
Also define function DðeiÞ ¼ x, where ei occurs in duration di; x. Note that the

endpoints of an interval are identified by communication events, whereas

the endpoints of a duration di; x are identified by distinguished events which may

or may not be communication events. Figure 2 illustrates this relationship. Intervals

of interest to an application are those that satisfy a certain application-specific

relationship on the durations in which the send and receive events identifying the

interval occur. Each duration di; x is associated with a predicate Fi; x which is true

from the start of that duration until some instant within that duration. The predicate

can be made false by a receive event in response to a remote send event, and hence

may not be under full local control. An example of such a predicate would be ‘‘node i
has made its xth request and is waiting for a reply’’. The predicate becomes false

when a reply is received. A send event si and a receive event ri can be related at a

node i in one of the following ways (and an analogous classification using a pair of

KSHEMKALYANI AND SINGHAL1108
send events or a pair of receive events can be done for OO and II intervals,

respectively).

1. DðsiÞ 	 DðriÞ ¼ 0: Events si and ri belong to the same duration and identify an

IO or an OI interval, based on whether ri � si, or vice versa, resp.

2. DðsiÞ 	 DðriÞ > 0: In this case, events si and ri identify an IO interval.

3. DðsiÞ 	 DðriÞ50: In this case, events si and ri identify an OI interval.

The notion of a duration as being demarcated by distinguished events is useful to

selectively identify (by specifying application-dependent conditions) IO and OI

intervals at various nodes, that can potentially be combined to form different types

of segments and paths (global patterns).

Section 4 identifies ways in which IO and OI intervals at different nodes can be

coupled together. Section 5 defines the global communication patterns using various

ways to couple the IO and OI intervals, and shows their applications. Analogously,

applications that use II and OO intervals can also be identified. In the remainder of

this section, we examine some of the ways in which the send and receive events that

identify intervals have been used in related contexts.

In the study of the temporal interactions of intervals in distributed systems, a set

of 29 possible orthogonal ways (i.e., exhaustive set of mutually exclusive

possibilities) in which two time spans at two different nodes in a distributed

computation may be related to each other in terms of causality using the dense time

assumption was identified in [13]. Analogously, a set of 40 possible orthogonal

ways was identified for the nondense model of time [13]. The analyses leading to

these results relied on the existence (or nonexistence) of IO and OI intervals during

the two given time spans, and how these IO and OI intervals were related to one

another.

The send and receive events, which in pairs identify intervals at a node, have been

used as the building blocks of the input/output automata model of asynchronous

distributed systems [17]. In this model, each node or system component is viewed as

an automaton with a set of states, a set of initial states, a transition relation, and an

action signature which contains disjoint sets of input actions, output actions, and

internal actions. Automaton A communicates to automaton B when an output action

of A is the input action of B; automatas can be composed hierarchically to build

a complex system. This input/output automata model has been used widely in

the modular design, specification, and verification of distributed algorithms and

systems [16].

4. COUPLING LOCAL PATTERNS

Domain-specific predicates can be defined on how an IO or OI interval at one

node is related to an IO or OI interval at another node. The use of such predicates on

IO and OI intervals at different nodes allows IO and OI intervals to be used as

building blocks to formulate the global patterns: segments and paths. These global

patterns occur across different nodes and signify a sequence of message exchanges

such that any two adjacent messages in the sequence are related at a node by an IO

PATTERNS IN COMPUTATIONS 1109
or an OI interval. By controlling the predicates on the IO and OI intervals used to

define segments and paths, different types of segments and paths can be defined.

We introduce some example predicates using which the various global

communication patterns in Section 5 are defined. In a computation, let there exist

a sequence hsi1 ; si2 ; . . . ; sini of send events on nodes ij 2 fi1; i2; . . . ; ing satisfying a

combination of the following conditions (henceforth, ij 2 fi1; i2; . . . ; ingÞ.

(C1) Convey predicate to successor: DðsijÞ ¼ xij and destðsij Þ ¼ ijþ1, for

14j4n	 1. The predicate Fij; xij
has been conveyed to the (successor) node

having the next event in the sequence of send events.

(C2) Predicate conveyed from predecessor: A node ij (except for j ¼ 1Þ has

received the message sent by ij	1 at sij	1
before sij .

A message (potentially containing Fij	1; xij	1
Þ has been received from the

(predecessor) node having the previous event in the sequence of send events.

(C3) No local action that violates predecessor’s predicate: Each node ij (except for
j ¼ 1Þ has not invalidated the predicate Fij	1; xij	1

at node ij	1.

No local action has occurred to invalidate the predicate Fij	1; xij	1
that was

true of the predecessor when it sent a message conveying the predicate (as

per condition (C1)). Recall from the discussion of predicates that a predicate

at ij	1 can be made false by events nonlocal to it (e.g., message send event

from ij to ij	1 that makes the predicate false when the message is received).

(C4) No knowledge of violation of predecessor’s predicate: A node ij (except for
j ¼ 1Þ has not received any message, in the causal past of which ij	1’s

predicate Fij	1; xij	1
got invalidated.

No message has been received from any node that indicates the predecessor’s

predicate Fij	1; xij	1
is no longer valid. Refer to the discussion under (C3)

which discusses how Fij	1; xij	1
can get falsified due to events nonlocal to it.

(C5) Remote predicates observed to be valid in duration: Each node ij is in its xijth
duration and Fij; xij

is currently true, as observed nonlocally.

While Fij; xij
is defined to be true from the start of the xijth duration at ij until

some instant in that duration, this condition is useful for making assertions

about Fij; xij
and ij at a different node, or for making assertions about the

global state, when the state at ij is not directly observable by other nodes.

(C6) Duration containing send event does not occur before duration containing

receive event: DðsijÞ5Dðrij Þ.
This signifies that at node ij, there is either an IO interval, or an OI interval

in which the send and receive events are in the same duration.

The above six examples of predicates are used to define segments and paths of various

types in Section 5. It should be emphasized that other predicates can also be defined,

based on the application and context, to define other variants of segments and paths.

5. GLOBAL COMMUNICATION PATTERNS: PATHS AND SEGMENTS

This section defines global patterns that span nodes in a computation. It

then shows that several key concepts and structures characterizing distributed

KSHEMKALYANI AND SINGHAL1110
computations are instantiations of and can be expressed using these patterns.

Specifically, the following three versions of segments and paths are presented based

on the semantics attached to the events identifying IO and OI intervals.

* The first version (Section 5.1) is for a general computation where no

restrictions are imposed and any si and any ri events at a node i can be used

to identify OI and IO intervals. We show its usage in characterizing

distributed computations by identifying structures like a crown which are

used in a wide range of results, deriving concurrency measures, and analyzing

knowledge transfer.
* In the second version (Section 5.2), distinguished events are assigned values

of a monotonically nondecreasing function. We show its usage in

characterizing global checkpoints.
* In the third version (Section 5.3), the distinguished events signify participa-

tion in a stable property. We show its usage in characterizing stable

properties like distributed deadlocks.

Each of the three versions of segment and path defined will be subscripted by g, m,
and s, respectively.

5.1. Segments and Paths for General Computations

In a general computation, no semantics is attached to the events identifying an

interval and no constraints are imposed on the relation between DðsiÞ and DðriÞ.
Thus, all si and ri events at a node i are considered in identifying intervals.

Definition 2. A ‘‘segment’’ for a general computation, denoted Sgðsi1 ; rinþ1
Þ, is a

sequence of events hsi1 ; si2 ; . . . ; sini satisfying ðC1Þ ^ ðC2Þ.

Every event in a segment occurs at a node that has sent a message to the node at

which the successor event in the segment occurs. (Henceforth, a reference to ‘‘a node

on a segment/path’’ will mean ‘‘a node with an event on a segment/path’’.)

Moreover, when a node ij sends the message at sij (as per (C1)), the message sent at

the previous event sij	1
in the sequence has been received (as per (C2)). Therefore, a

segment denotes a sequence of nodes such that the dependencies on their successor

nodes in the segment are created sequentially. That is, ð8ij: 14j5nÞ; sij � sijþ1
. A

segment Sg thus represents the widely used concept of the causal chain of messages,

in which the events signify completed IO intervals. Other variants of segments

defined in later sections are causal chains satisfying additional properties.

For a sequence of events hsi1 ; si2 ; . . . ; sini such that destðsij Þ ¼ ijþ1 for 14j4n	 1,

it may happen that 9j: sijEsijþ1
, that is, node ijþ1 has an OI interval. A path is defined

next to capture such a sequence of events.

Definition 3. A ‘‘path’’ for a general computation, denoted Pgðsi1 ; rinþ1
Þ, is a

sequence of events hsi1 ; si2 ; . . . ; sini satisfying (C1).

The formation of an interval at a node signifies the participation of the node in a

path or a segment. In a segment and in a path, the send events in the sequence

PATTERNS IN COMPUTATIONS 1111
identify a sequence of messages. Thus, a segment or a path implicitly identifies the

alternating send and receive events associated with these messages, from the send of

the first message to the receive of the last message. In both, adjacent messages must

have events at a common node in order to be related by an IO or an OI interval.

When following the sequence of events in a path, one can move forward or backward

along the timeline at that node. When following the sequence of events in a segment,

one must only move forward. Thus, in a path, successive messages are related by

either an IO or an OI interval but in a segment, successive messages are related only

by IO intervals. Thus, the successive events in a sequence at which outward

dependencies are established satisfy a weaker causal relationship in a path than in a

segment. Note that a path may contain several segments; a segment is always a path.

Figure 3 gives examples of paths and segments. Some segments are: hs11; s
4
2; s

5
4; s

6
3i,

hs22; s
6
3i, hs

3
3; s

5
4; s

6
3i, and all subsequences of the above. By definition, each segment is

a path. The following are some paths with at least one OI interval: hs11; s
2
2; s

3
3i,

hs11; s
2
2; s

6
3i, hs

2
2; s

3
3; s

5
4; s

6
3i. Subsequences of these are also paths.

Concatenation, prefix, suffix, and other standard string/sequence operations can

be formally defined on paths and segments. For example, two paths Pgðsi1 ; rimþ1
Þ and

Pgðsj1 ; rjnþ1
Þ of length m and n, respectively, can be concatenated if ðimþ1 ¼ j1Þ or

ðjnþ1 ¼ i1Þ.
A maximal path is an acyclic path which cannot be extended by the addition of a

send event at either end. For example, in Fig. 3, hs11; s
2
2; s

3
3; s

5
4; s

6
3i is a maximal path

consisting of messages m1; m2; m3; m5, and m6. The longest maximal path in the

computation is hs22; s
3
3; s

5
4; s

6
3; s

1
1; s

4
2i which happens to consist of all the messages in the

computation. A maximal segment is defined likewise. In Fig. 3, hs11; s
4
2; s

5
4; s

6
3i is a

maximal segment consisting of messages m1; m4; m5, and m6.
Maximal segments and maximal paths are useful concepts in analyzing properties

of a distributed computation. A maximal segment is a causal chain that signifies the

maximum length of the serial execution of ‘‘thread of control’’ represented by the

segment. On the other hand, a maximal path whose events are related by OI intervals

at nodes provides a measure of the concurrency in a computation. The higher the

number of OI intervals, the higher the concurrency. The ratio of the average of the

sizes of maximal paths to the average of the sizes of maximal segments

in a distributed computation is a good indicator of the concurrency in the

computation [10].
Node 1

Node 2

Node 3

Node 4

1

1
23

3

r

s

s

6

s2
2

6
3

4
3

m1

m3

m4

m5

m6

2
4

r
s 3

5r

s1

r

1

r4
4 s5

4

m2
r2

3

FIG. 3. An example computation.

Message

2

5

24

s s

r

r
rr

s1

s3 s0

s

0

1r3

5

4

m5

m0

m1

m2
m3

m4

r

time

Causal chain

FIG. 4. A crown of size 6.

KSHEMKALYANI AND SINGHAL1112
We next show how segments and paths can be used to express some

communication patterns that are important in analyzing distributed computations.

5.1.1. The crown criterion. A crown in a partial order is a specific suborder [23]

that has many applications. We first give a definition of a crown tailored to a

distributed computation, then describe some of the application areas and results that

illustrate the importance of the crown, and then show that the crown is an

instantiation of the communication patterns}segments and paths}within the

framework of this paper.

Definition 4. Let C be a computation. A crown of size k in C is a sequence

hðsi; riÞ; i 2 f0; . . . ; k 	 1gi of pairs of corresponding send and receive events such

that: s0 � r1; s1 � r2; . . . ; sk	2 � rk	1; sk	1 � r0.

Figure 4 shows a crown having six pairs of corresponding send and receive events

ðsi; riÞ; i 2 ½0; 5�. There is also a causal chain (segment SgÞ from si to rðiþ1Þ mod 6, for

i 2 ½0; 5�.
In a classification of a hierarchy of communication patterns, Charron-Bost et al.

observed that a distributed algorithm designed to run correctly on asynchronous

systems (called A-computations) may not run correctly on synchronous systems}an

algorithm that runs on an asynchronous system may deadlock on a synchronous

system [9]. A-computations that can be realized under synchronous communication

are called realizable with synchronous communication (RSC) computations. Formally,

a computation C is RSC if there exists a nonseparated linear extension of the poset

ðC;�Þ.4 Charron-Bost et al. [9] showed that RSC computations are a proper subset

of causally ordered computations, which are a proper subset of FIFO computations.

Charron-Bost et al. [9] developed a criterion (called the crown criterion) and showed

that an A-computation is RSC, i.e., it can be realized on a system with synchronous

communication, iff it contains no crown.
4A nonseparated linear extension of ðC;�Þ is a linear extension of ðC;�Þ such that for each pair of send

event s and corresponding receive event r, the interval fx 2 C j s � x � rg is empty.

PATTERNS IN COMPUTATIONS 1113
The ordering of events in a distributed computation is a very fundamental

problem [15]. For concurrent events, some ordering decisions (such as tie-breaking

using the node id or using a central arbiter node) are inherently artificial and no

algorithm suits all applications. For several applications, allowing event ordering (of

concurrent events) upon receipt of a message at a given node is desirable [1]. For

example, in a transaction processing application, when a node receives a message

about a transaction that a timestamping algorithm determines to have been sent in

the far past at the receiving node, then the node may be obliged to undo all later

transactions. It would have been more efficient for the ordering of that transaction to

be determined, at least in part, by the recipient’s clock. However, allowing ordering

of events upon the receipt of the corresponding message can obviously lead to

inconsistent orderings by multiple nodes. Ammann et al. addressed the problem

‘‘What is the largest class of communication structures that guarantee that local

ordering decisions are globally consistent without any further global

synchronization?’’ They answered by identifying crown-freedom in the computation

as the necessary and sufficient condition [1]. They then showed that for multilevel,

secure replicated databases and for hierarchically decomposed databases, if the

communication structure is crown-free, then and only then is a distributed

implementation that guarantees globally serializable transaction histories possible

(without additional synchronization information) [1, 2].

It was shown by Charron-Bost [8] based on a result by Ore [20] that to capture

causality in a distributed computation ðC;�Þ, i.e., to test e � f iff T ðeÞ5T ðf Þ, a
vector clock of size equal to the dimension of that partial order is necessary and

sufficient. The dimension of the partial order can be as large as its width (i.e., number

of nodes) as demonstrated by the standard crown S0n [23]. This result based on the

crown S0n has wide implications because clocks of size jN j are necessary to capture

causality as required for a large range of distributed applications [18].

Definition 4 of a crown specifies the constraints between si and rðiþ1Þ mod k for

i 2 ½0; k 	 1�. Each such constraint simply represents a segment Sgðsi; rðiþ1Þ mod kÞ.
Towards our objective, we first show that crowns are equivalently defined in terms of

segments, and then recast that definition using a fewer number of segments and

paths. This shows that the crown is an instantiation of the communication patterns

in our framework.

Definition 5. In terms of segments, a crown of size k in a computation is a

sequence hðsi; riÞ; i 2 f0; . . . ; k 	 1gi of pairs of corresponding send and receive

events such that 8i 2 ½0; k 	 1�; Sgðsi; rðiþ1Þ mod kÞ.

To simplify notation, the crown will also be expressed as

fSgðsi; rðiþ1Þ mod kÞ: i 2 ½0; k 	 1�g.

Example 1. The crown in Fig. 4 is expressed using segments as:

CROWN ¼ fSgðsi; rðiþ1Þ mod kÞ : i 2 ½0; 5�g.

Refinement of Definition 5: Definition 5 expresses a crown of size k in terms of k
segments. A crown of size k can generally be expressed in terms of fewer than k
segments and paths.

KSHEMKALYANI AND SINGHAL1114
A segment Sgðsi; rjÞ such that events si and rj lie on the same node is called a local

segment. Note that in Fig. 4, (i) segments Sgðs2; r3Þ and Sgðs3; r4Þ are local segments

and (ii) these two segments are connected by message ðs3; r3Þ. In this situation,

segments Sgðs2; r3Þ and Sgðs3; r4Þ can be represented by path hs4; s3; s2i. Conse-

quently, the conditions represented by segments Sgðs2; r3Þ and Sgðs3; r4Þ in the

expression of the crown can be equivalently stated in terms of path hs4; s3; s2i, which
happens to contain only OI intervals. Given a crown, we present an algorithm that

replaces clusters of local segments connected by messages, by equivalent paths. This

algorithm compacts consecutive segments into paths wherever possible}such paths

consist of OI intervals only. (Note that a cyclic path with OI intervals only is always

a crown.)

A Crown-Compaction Algorithm

1. CR ALT ¼ CROWN .

2. Identify each maximal sequence of consecutive integers, modulo k, from x to
y satisfying 8j 2 ½x; ðyÞmod k�, sj and rðjþ1Þ mod k occur on the same node. For

each such sequence, do the following.

(a) CR ALT ¼ CR ALTWfSgðsi; rðiþ1Þ mod kÞ: i 2 ½x; ðyÞmod k�g.
(b) CR ALT ¼ CR ALT [fhsðyþ1Þ mod k ; sy ; sðy	1Þ mod k ; . . . ; sðxþ1Þ mod k ; sxig.

Example 1 (Contd.). In the crown in Fig. 4, s2 and r3 lie on the same node, and

s3 and r4 lie on the same node. As there is a range of consecutive integers ½x; y� ¼
½2; 3� such that 8i 2 ½2; 3�; si and rðiþ1Þ mod k lie on the same node, segments Sgðs2; r3Þ
and Sgðs3; r4Þ can be replaced by path hs4; s3; s2i, Hence, CR ALT ¼
fSgðsi; rðiþ1Þ mod kÞ: i 2 f0; 1; 4; 5gg [fhs4; s3; s2ig.

Thus, a crown which is an example of various structures in distributed

computations is an instantiation of the paths and segments of the proposed

framework.

5.1.2. Knowledge transfer. Knowledge in distributed systems is about local and

global facts defined on the states of the nodes. These facts are defined as temporal

and spatial predicates over the variables of the nodes. Knowledge plays a significant

role in the evaluation of global predicates, debugging, monitoring, establishing

breakpoints, evaluating triggers, industrial process control, and controlling a

distributed execution [22].

Knowledge is transferred among nodes through send and receive events [7]; the

extent of knowledge dissemination is determined by the message communication

pattern among nodes, which is defined by the causality relation between events. A

segment from event ei at a node i to event ej at a node j signifies the flow of

knowledge of node i’s state preceding event ei to all the local states at node j,
following event ej. For example, in Fig. 3, messages m1;m4; and m5 constitute a

segment hs11; s
4
2; s

5
4i, and these messages transfer the knowledge about the local state

of node 1 just before event s11 to event r53. A path that has an OI interval denotes a

disrupted transfer of knowledge among the nodes along the path. In Fig. 3,

knowledge about the local state of node 1 just before event s11 is not transferred to

PATTERNS IN COMPUTATIONS 1115
event r23. The knowledge transfer is disrupted at node 2 due to the OI interval formed

by s22 and r12. Thus, the paths and segments of the framework are useful tools that

have been used to identify the extent of knowledge transfer.

5.2. Segments and Paths for Monotonically Nondecreasing Functions

In distributed computations with monotonically nondecreasing functions at

nodes, the distinguished events at a node are associated with monotonically

nondecreasing values. An example of such nondecreasing values is the local clock

time at the occurrence of an event at a node [15].

The definition of a segment for a monotonically nondecreasing function

(Definition 6) is the same as for a general function (Definition 2). The definition

of a path for a monotonically nondecreasing function (Definition 7) differs from the

corresponding Definition 3 in that the events of an OI interval must belong to the

same duration.

Definition 6. A ‘‘segment’’ for a monotonically nondecreasing function, denoted

Smðsi1 ; rinþ1
Þ, is a sequence of events hsi1 ; si2 ; . . . ; sini satisfying ðC1Þ ^ ðC2Þ.

Definition 7. A ‘‘path’’ for a monotonically nondecreasing function, denoted

Pmðsi1 ; rinþ1
Þ, is a sequence of events hsi1 ; si2 ; . . . ; sini satisfying ðC1Þ ^ ðC6Þ.

A closed path for a monotonically nondecreasing function is a path Pmðsi1 ; rinþ1
Þ,

such that events si1 and rinþ1
occur at the same node (i.e., i1 ¼ inþ1Þ.

We now show an application (checkpointing) that uses instantiations of segments

and paths in computations with monotonically nondecreasing functions.

5.2.1. Necessary and sufficient conditions for a global snapshot: zigzag

paths. Checkpointing is used in fault-tolerant computing [4, 5], and parallel and

distributed debugging [22]. Each node can take local checkpoints asynchronously; a

consistent global checkpoint is constructed by choosing a local checkpoint from each

node. Checkpoints are the ‘‘distinguished events’’ which demarcate consecutive

durations at nodes. The xth duration (or xth checkpoint interval) at a node denotes

the computation from its xth to its ðxþ 1Þth checkpoint.

An important problem is to determine if an arbitrary set of local checkpoints

belongs to a consistent global checkpoint [6]. Netzer and Xu used the zigzag path, a

generalization of Lamport’s causality relation [15], and showed that two local

checkpoints cannot lie on a consistent global checkpoint iff a zigzag path exists

between the checkpoints [19]. A zigzag path is defined next. Let Ci; x denote the xth
local checkpoint at node i and let ei; x denote the event of taking Ci; x.

Definition 8. A zigzag path exists from Ci; x to Cj; y iff there are messages m1;

m2; . . . ;mn ðn > 1Þ such that

1. m1 is sent by node i after Ci; x;

2. if mk ð14k5nÞ is received at node r, then mkþ1 is sent by r in the same or a later

checkpoint interval;

3. mn is received by process j before Cj; y .

KSHEMKALYANI AND SINGHAL1116
In Fig. 5, messages m1;m2, and m3 form a zigzag path from checkpoint C11 at node

1 to checkpoint C32 at node 3. Likewise, messages m4; m5, and m6 form a zigzag

path from checkpoint C12 at node 1 to checkpoint C42 at node 4. Note from

Definition 8 that a zigzag path is a chain of messages that are connected by OI or IO

intervals at nodes. Thus, a zigzag path is nothing but a ‘‘path’’ (Definition 7) and can

be expressed using paths as follows:

Definition 9. A zigzag path exists from Ci; x to Cj; y iff there exists a path Pm ¼
hsi1 ; si2 ; . . . ; sini such that (i) ei; x � si1 , and (ii) a message sent at sin to j is received
before ej; y .

A checkpoint is defined to be on a Z-cycle iff there is a zigzag path from the

checkpoint to itself [19]. In Fig. 5, checkpoint C32 lies on a Z-cycle consisting of

messages m6 and m3. Observe that a Z-cycle is nothing but the closed path of

Definition 7 and hence an instantiation of paths in the presented framework.

It was shown in [19] that a checkpoint can be part of a consistent snapshot iff it is

not involved in a Z-cycle. Based on this result, researchers further optimized the

number of checkpoints taken asynchronously so that each checkpoint was

guaranteed to be part of some consistent snapshot (thus it was guaranteed not to

be a part of a Z-cycle or a closed path), and was thus not wasted [3, 11].

5.3. Segments and Paths for Stable Properties

A stable property is a property of the system state such that once it becomes true,

it continues to hold unless there is external intervention [21]. Examples of such

properties are deadlocks, termination of a computation, etc. In this section, segments

and paths are defined for the stable property of deadlocks [12, 14]. We believe that a

similar approach with appropriate modifications can be used for other stable

properties.

5.3.1. Conditions for deadlocks. We consider deadlocks in the request–reply

model. In this model, a process sends a request and blocks until it receives a reply to

its request. ‘‘Distinguished’’ events at a node are the events at which a node sends a

request and blocks waiting for a reply. The predicate Fi; x stands for ‘‘node i is
blocked on the request it sent at its xth distinguished event’’. This predicate becomes

true at the start of the duration between two distinguished events and becomes false
Node

Node

Node

Node

2

4

3
m2

m3

m1 m4

m5

1

C

C

C

C C

C C

C C

C

11 12

21 22 23

31 32 33

13

41 C
42

m6

FIG. 5. Zigzag paths.

PATTERNS IN COMPUTATIONS 1117
on the receipt of the reply at some time before the next distinguished event. In this

context, a segment and a path are defined next [14].

Definition 10. A ‘‘segment’’ in the request–reply model, denoted Ssðsi1 ; rinþ1
Þ, is a

sequence of events hsi1 ; si2 ; . . . ; sini satisfying the following conditions:

(I) ðC1Þ ^ ðC2Þ ^ ðC3Þ ^ ðC4Þ. /* conditions on distinguished events. */

(II) (C5). /* conditions when the system is observed. */

Definition 11. A ‘‘path’’ in the request–reply model, denoted Psðsi1 ; rinþ1
Þ, is a

sequence of events hsi1 ; si2 ; . . . ; sini satisfying the following conditions:

(I) ðC1Þ ^ ððC2Þ) ððC3Þ ^ ðC4ÞÞÞ. /* conditions on distinguished events. */

(II) (C5). /* conditions when the system is observed. */

Condition (C2) indicates that the request sent at sij	1
has been received before sij .

Condition (C3) indicates that ij has not sent back a reply to ij	1 and thus has not

invalidated Fij	1; xij	1
. By condition (C4), ij has not received a message indicating that

ij	1 got unblocked, i.e., Fij	1; xij	1
got invalidated. In Definition 10, condition ðC1Þ ^

ðC2Þ ^ ðC3Þ ^ ðC4Þ implies that at sij , (i) ij has already received a request sent at sij	1

and (ii) based on its complete causal past, ij knows that ij	1 is blocked at sij	1
on ij.

Thus, in a segment, all events preceding sij have sent requests that are directly or

transitively blocked on ij and at each node with an event on the segment, there is an

IO interval. In Definition 11, conditions (C1) and ððC2Þ) ððC3Þ ^ ðC4ÞÞÞ state that
(i) each sij has sent a request ((Cl) holds), and (ii) at sij , if ij has already received a

request sent at sij	1
(condition (C2)), then based on its causal past, ij knows that ij	1

is blocked at sij	1
on ij (from (C3) and (C4)). If condition (C2) is false at node ij, then

the incoming request from node ij	1 arrives at node ij after ij has sent its request,

resulting in an OI interval at ij. Due to the request–reply model, all nodes on the

path will remain blocked forever unless (a) either the last node on the path receives a

reply from its successor or (b) some node on the path becomes active by aborting or

rolling back or withdrawing its request. As no node in a distributed system has

instantaneous knowledge of the entire system, while declaring a segment/path, it

must be ensured that the nodes that are believed to be blocked (e.g., expressed in

‘‘(Cl) and ððC2Þ) ððC3Þ ^ ðC4ÞÞÞ’’ for a path) are still blocked as per the knowledge

of the causal past. Condition (C5) asserts that all nodes on the path are still blocked.

A detailed explanation of Definitions 10 and 11 is given in [14].

Paths in which each node is blocked waiting for a reply from its successor and the

last node never receives a reply denote deadlocks.

Definition 12. A closed path is a path Psðsi1 ; rinþ1
Þ such that events si1 and rinþ1

occur at the same node (i.e., i1 ¼ inþ1Þ.

A closed path denotes a deadlock because no node with an event on the closed

path will ever receive a reply and get unblocked. A closed path has at least one OI

interval. Condition (C5) helps to ensure that false deadlocks are not detected. Thus,

a cycle in a Wait-For Graph, which is the condition for deadlock, is a specific

instantiation of the paths presented in the framework.

KSHEMKALYANI AND SINGHAL1118
6. CONCLUSION

The paper identified two classes of communication patterns in distributed

computations. IO, OI, II, and OO intervals are local patterns that occur at nodes,

whereas paths and segments are global patterns which occur across nodes in a

distributed computation and are defined in terms of the local patterns. These global

patterns signify the flow of information and the type of coupling among the events

on nodes. Traditionally, causal chains in a distributed computation have been

emphasized in the analysis of a distributed computation. However, as argued in this

paper, certain other message sequences that do not capture causality or do so with

added semantics play a significant role in the analysis and characterization of

distributed computations. We showed that a number of key concepts and structures

characterizing distributed computations are instantiations of the proposed patterns

and can be expressed using these patterns. By controlling the predicates on the local

patterns used to define segments and paths, different types of segments and paths can

be defined to address the needs of various applications. As a result, various

communication patterns that are relevant in different contexts and for various

applications can be represented in a unifying framework. Properties of specific

communication patterns studied in the context of one application area can

potentially be used for other application areas.

REFERENCES

1. P. Ammann, S. Jajodia, and P. Frankl, Globally consistent event ordering in one-directional

distributed environments, IEEE Trans. Parallel Distrib. Systems 7(6) (June 1996), 665–670.

2. P. Ammann and S. Jajodia, Planar lattice security structures for multi-level replicated databases, in

‘‘Database Security VII: Status and Prospects’’ (T. Keefe and C. Landwehr, Eds.), pp. 125–134,

North-Holland, Amsterdam, 1994.

3. R. Baldoni, J.-M. Helary, and M. Raynal, Rollback-dependency trackability: visible characteriza-

tions, in ‘‘Proceedings of the 18th ACM Symposium on Principles of Distributed Computing, Atlanta,

GA,’’ pp. 33–42, 1999.

4. B. Bhargava and P. Leu, Concurrent robust checkpointing and recovery in distributed systems, in

‘‘Proceedings of the 4th IEEE Conference on Data Engineering, Los Angeles, CA,’’ pp. 154–163,

February 1988.

5. B. Bhargava and S. R. Lian, Independent checkpointing and concurrent rollback for recovery in

distributed systems}An optimistic approach, in ‘‘Proceedings of the 7th IEEE Symposium on

Reliable Distributed Systems, Columbus, OH,’’ pp. 3–12, October 1988.

6. K. M. Chandy and L. Lamport, Distributed snapshots: determining global states of distributed

systems, ACM Trans. Comput. Systems 3(1) (1985), 63–75.

7. K. M. Chandy and J. Misra, How processes learn, Distrib. Comput. 1 (1986), 40–52.

8. B. Charron-Bost, Concerning the size of logical clocks in distributed systems, Inform. Process. Lett.

39(1) (1991), 11–16.

9. B. Charron-Bost, F. Mattern, and G. Tel, Synchronous, asynchronous, and causally ordered

communication, Distrib. Comput. 9(4) (1996), 173–191.

10. C. J. Fidge, A simple run-time concurrency measure, in ‘‘The Transputer in Australasia (ATOUG-3)’’

(T. Bossomaier, T. Hintz, and J. Hulskamp, Eds.), pp. 92–41, IOS Press, Amsterdam, 1990.

11. J.-M. Helary, R. Netzer, and M. Raynal, Consistency issues in distributed checkpoints, IEEE Trans.

Software Eng. 25(2) (1999), 274–281.

PATTERNS IN COMPUTATIONS 1119
12. A. D. Kshemkalyani and M. Singhal, Correct two-phase and one-phase deadlock detection algorithms

for distributed systems, in ‘‘Proceedings of the 2nd IEEE Symposium on Parallel and Distributed

Processing, Dallas, Texas,’’ pp. 126–129, December, 1990.

13. A. D. Kshemkalyani, Temporal interactions of intervals in distributed systems, J. Comput. System Sci.

52(2) (April 1996), 287–298.

14. A. D. Kshemkalyani and M. Singhal, On characterization and correctness of distributed deadlock

detection, J. Parallel Distrib. Comput. 22(1) (July 1994), 44–59. (Also appears as Technical Report

TR-06/90-TR15, Ohio State University, 1990.)

15. L. Lamport, Time, clocks, and the ordering of events in a distributed system, Comm. ACM 21(7) (July

1978), 558–565.

16. N. Lynch, ‘‘Distributed Algorithms,’’ Morgan-Kaufmann, Los Altos, CA, 1996.

17. N. Lynch and M. Tuttle, Hierarchical correctness proofs for distributed algorithms, in ‘‘Proceedings

of the 6th ACM Symposium on Principles of Distributed Computing, Vancouver, Canada,’’

pp. 137–151, August, 1987.

18. F. Mattern, Virtual time and global states of distributed systems, in ‘‘Parallel and Distributed

Algorithms,’’ (M. Cosnard and P. Quinton Eds.), North-Holland, Amsterdam, pp. 215–226, 1989.

19. R. Netzer and J. Xu, Necessary and sufficient conditions for consistent global snapshots, IEEE Trans.

Parallel Distrib. Systems 6(2) (1995), 165–169.

20. O. Ore, ‘‘Theory of Graphs’’, Vol. 38, American Mathematical Society Colloq. Publications,

Providence, RI, 1962.

21. A. Schiper and A. Sandoz, Strong stable properties in distributed systems, Distrib. Comput. 8 (1994),

93–103.

22. M. Spezialetti and R. Gupta, Debugging distributed programs through the detection of simultaneous

events, in ‘‘Proceedings of the 14th IEEE International Conference on Distributed Computing

Systems, Poznan, Poland,’’ pp. 634–641, June 1994.

23. W. Trotter, ‘‘Combinatorics and Partially Ordered Sets,’’ The Johns Hopkins University Press,

Baltimore, 1992.

AJAY KSHEMKALYANI is an associate professor of computer science at the University of Illinois at

Chicago since 2000. He previously spent several years at IBM Research Triangle Park working on various

aspects of computer networks. Ajay Kshemkalyani received the Ph.D. and the M.S. in computer and

information science from The Ohio State University in 1991 and 1988, respectively, and a B.Tech. in

computer science and engineering from the Indian Institute of Technology, Bombay, in 1987. His current

research interests include computer networks, distributed computing, algorithms, and concurrent systems.

He is a recipient of the National Science Foundation’s CAREER award. He is a member of the ACM and

a senior member of the IEEE.

MUKESH SINGHAL is a full professor and Gartener Group Endowed Chair in network engineering

in the Department of Computer Science at The University of Kentucky, Lexington. He received a

Bachelor of Engineering degree in electronics and communication engineering with high distinction from

Indian Institute of Technology, Roorkee, India, in 1980 and a Ph.D. in Computer Science from University

of Maryland, College Park, in May 1986. His current research interests include distributed systems, mobile

computing, computer networks, and computer security. He has published over 145 refereed articles in

these areas. He has coauthored three books titled ‘‘Data and Computer Communications: Networking

and Inter-networking,’’ CRC Press, 2001, ‘‘Advanced Concepts in Operating Systems,’’ McGraw–Hill,

New York, 1994, and ‘‘Readings in Distributed Computing Systems,’’ IEEE Computer Society Press,

1993. He is a fellow of IEEE. He is currently serving on the editorial board of ‘‘IEEE Trans. on Knowledge

and Data Engineering’’ and ‘‘Computer Networks.’’ From 1998 to 2001, he served as the program director

of the Operating Systems and Compilers program at National Science Foundation.

	1. INTRODUCTION
	2. SYSTEM MODEL
	3. LOCAL COMMUNICATION PATTERNS: INTERVALS AT A NODE
	FIGURE 1
	FIGURE 2

	4. COUPLING LOCAL PATTERN
	FIGURE 3
	FIGURE 4
	FIGURE 5

	5. GLOBAL COMMUNICATION PATTERNS: PATHS AND SEGMENTS
	6. CONCLUSION
	REFERENCES

