Distrib. Comput. (1998) 11: 91-111 @[@FRU@TE@
COMRUTING

© Springer-Verlag 1998

Necessary and sufficient conditions on information for causal
message ordering and their optimal implementation*

Ajay D. Kshemkalyani®, Mukesh SinghaP

1 ECECS Department, P.O. Box 210030, University of Cincinnati, Cincinnati, OH 45221-0030, USA

(e-mail: ajayk@ececs.uc.edu)

2 Department of Computer and Information Science, The Ohio State University, 2015 Neil Avenue, Columbus, OH 43210, USA
(e-mail: singhal@cis.ohio-state.edu)

Received: January 1996 / Accepted: February 1998

Summary. This paper formulates necessary and sufficientand internal events. An internal event represents a local com-
conditions on the information required for enforcing causalputation at the process, whereas message send and delivery
ordering in a distributed system with asynchronous com-events establish cause and effect relationships among the
munication. The paper then presents an algorithm for enprocesses. The cause and effect relationship between the
forcing causal message ordering. The algorithm allows events of a distributed execution is captured by Iizg-
process to multicast to arbitrary and dynamically changingpened beforer causalityrelation (—) [14] which defines
process groups. We show that the algorithm is optimal ina partial order on the events.
the space complexity of the overhead of control information There exist several paradigms for ordered delivery of
in both messages and message logs. The algorithm achievesessages in a distributed system (see Fig. 1). Synchronous
optimality by transmitting the bare minimum causal depen-communication between processes, that tantamounts to in-
dency information specified by the necessity conditions, andtantaneous message delivery, simplifies the design, verifi-
using an encoding scheme to represent and transmit this ireation, and analysis of distributed applications. However, it
formation. We show that, in general, the space complexityresults in a loss in concurrency within the distributed ap-
of causal message ordering in an asynchronous system ication because each message exchange requires a hand-
2(n?), wheren is the number of nodes in the system. Al- shake between the sender and the receiver. FIFO and non-
though the upper bound on space complexity of the overheaBIFO communication on each channel are asynchronous and
of control information in the algorithm i§(n?), the over- provide much more concurrency to the distributed appli-
head is likely to be much smaller on the average, and ication, but the asynchronous execution of processes and
always the least possible. unpredictable communication delays create hondeterminism
in distributed systems that complicates the design, verifica-
tion, and analysis of distributed applications. To simplify the
Key words: Causal message ordering — Distributed systemslesign and development of distributed applications, while
— Synchronization — Concurrency retaining much of the concurrency provided by the asyn-
chronous communication, the ideaa#usal message order-
ing (CO) was introduced by Birman and Joseph [4]. Causal
message ordering guarantees that if the send events for two
) messages are ordered by causality and the messages have a
1 Background and previous work common destination, then the messages are delivered to that
destination in the causal order of their send events. In Fig. 1,
A distributed system consists of a collection of geograph-messageMg violates causal ordering but messdgd@ does
ically dispersed autonomous sites connected by a commuhot, Birman and Joseph defined several group communi-
nication network. The sites do not share any memory an@ation primitives, of which ABCAST s relevant to causal
communicate solely by message passing. Message propaggrdering [4]. ABCAST guarantees that for any two mul-
tion delay is finite but unpredictable, and between a pair ofticasts, all common destinations see the two multicasts in
sites, messages may be delivered out of order. There is nfome common order, and this order need not be CO even if
common physical clock. o the multicast send events are related by causality. ABCAST
The execution of a process at a site is modeled by thregs weaker than synchronous communication, and does not of-
types of events, namely, message send, message déliveryer the full concurrency of FIFO communication. ABCAST

* The results of this paper appear in [10] and a brief announcement oprowdes a total ordering of messages, and is not quite com-

the optimal implementation of the results appears in [11].

Correspondence toA.D. Kshemkalyani network has placed the message in the buffer of the receiving process. The
11t is important to distinguish between the arrival of a message anddelivery of a message means that the process has taken up the message for

its delivery. The arrival of a message signifies that the communicationprocessing.

92

synchronous FIFo uses vector time [7,15,23] to determine whether messages

1
P represented in the control vectors need to be delivered be-
fore the current message is delivered. The causal ordering
4 " algorithm of Raynal-Schiper-Toueg [20] attaches a matrix

p2
SENT of sizen x n with every messages ENTTi, j] in-

. Mg/ Ma dicates the number of messages that are known to be sent by
p3 : 1 1o j. Each process also uses an arfay LIV of sizen,
/ / where DELIV[i] is the number of messages from noile
" My 2 that have been delivered to the process. Clearly, the overhead
Causal ordering non-FIFO of control information in messages and in storage for both

these algorithms [20, 22] is @f) integers. This overhead
can be reduced under restricted multicasting environments
or when some nice properties about the underlying commu-

parable to CO. The total ordering property of ABCAST is n!cation medium are assumed. The implementation of these
useful for a different and smaller range of applications thannice properties results in the exchange of additional mes-
the causal ordering property. sages and typically incurs additional delays in the delivery
Causal ordering provides a built-in message synchroniza®f messages. In the causal multicast in overlapping groups
tion and reduces the nondeterminism in a distributed compulMplementation of ISIS [5], every process maintains a vec-
tation. Causal ordering provides an equivalent of the FIFOtor for every group whether it belongs to that group or not.
channel property at a global (communication network) levelA vector for a group informs the process of the number of
where sequential send of messages along a communicatidR€ssages multicast by the various members of the group.
channel is replaced by causally related sends of messages g8hen a process sends a message, it appends all of its vec-
ing to the same destination over a communication network!ors to the message. Clearly, this method can get expensive
Note that the causal ordering property is strictly stronger tharif there are several groups with large sizes. In particular, the
the FIFO property. Also note that synchronous communicaimaximum number of groups is*2- 1.
tion trivially guarantees CO without any overhead. A formal In the causal multicast in overlapping groups algorithm
study of the relation between synchronous communication®f Mostefaoui and Raynal [17], a process keeps only one
causal ordering, and asynchronous communication — FIFG@calar for every group and appends only one vector (with
and non-FIFO, is presented in [6]. The concept of causal orthe size equal to the number of groups) to every message;
dering is of considerable interest to the design of distributedhowever, the algorithm assumes synchronous model of dis-
systems and finds applications in several domains such débuted execution. That is, the execution proceeds in syn-
updates of replicated data [8], global state collection [1],(:_hron|zed phases and it reqqires additional resynchroniza-
distributed shared memory [3], teleconferencing [19], mul-tion messages. Moreover, unlike other causal ordering algo-
timedia systems [2], and fair resource allocation [14]. rithms, this algorithm is not optimal with respect to message
In a system with FIFO or non-FIFO communication, en- delivery time; a message may have to wait for resynchro-
forcing causal message ordering requires appending sonféiZation messages. Nqn_etheless, this algorithm is desirable
control information with each message to enforce the causdn situations where additional message traffic and delays can
order. The recipient process of a message uses this informg_).e tqlerated for much reduced overhead of control informa-
tion to determine if there are undelivered messages whic#lon In messages. o _
were sent causally before this message was sent, and delays Rodrigues and Verissimo [21] exploit the topology of

the delivery of this message until all such messages havée underlying communication network to reduce the size of
been delivered. control information transferred in messages. Unlike [21], the

algorithm proposed here does not require the knowledge of

the topology of the underlying network; instead, it uses the
Previous work dynamic communication pattern and structure of the com-

putation to reduce the overhead of control information in
In the first ISIS system implementation of CO [4], a messagemessages.
carries a history of all the messages that causally precede it. The algorithm in [9] tracks direct predecessors of a mes-
Due to redundant information, this scheme is resilient to pro-sage M, rather than all the predecessors f. This re-
cessor crashes; however, a complex mechanism is requiresillts in a savings in the control information overhead in
to prevent unbounded growth of the control information. In messages and makes it more efficient than previous ones.
any case, the volume of control information can be huge. Thadowever, this algorithm is designed for group communica-
CO algorithm in [18] is similar to [4] but carries message- tion (where groups are fixed a priori) and the reduction in
ids rather than entire messages in the control informationthe overhead of control information in messages is partly
Furthermore, unnecessary control information is not sent ifbecause all messages are sent to within the group. This im-

Fig. 1. Message ordering paradigms

the sending host had sent it before. plementation [9] tracks direct predecessors inefficiently and
The control information in the Schiper-Eggli-Sandoz consequently tracks indirect predecessors also.
causal ordering algorithm [22] consistsiofrectors of length The above algorithms have higher overhead of control

up ton each, where: is the number of processes in the sys- information in messages and local storage than is required
tem. This information represents messages sent in the caustalr an optimal algorithm. Though some of the algorithms
past that are not known to be delivered. The receiving siteattempt to save on the control information overhead in mes-

93

sages and in storage by assuming certain topologies or con?- Preliminaries
munication patterns, they still have control information over-
head that is not really needed to enforce causal ordering, ang1 System model
that can have an avalanche effect.

Mattern and Enfrocken presented a CO algorithm in a
system that allows only unicasts, i.e., point-to-point mes-
sage delivery [16]. Their algorithm requires transport layer

A distributed system consists of a collection of geographi-
cally dispersed sites connected by a communication network.
There is a logical communication channel between each pair

acknowledgements between FIFO buffers at the sendin f sites. The sites do not share any memory and communi-

and receiving processes. Each process has a dedicated inptﬂte solely bya:'synchronogs message passing., the mes-
buffer and a dedicated output buffer. The output buffer of the>23¢_Propagation _delﬁy IS f|r(1j|te but unpre(gctable, ﬁn? the
sender process blocks i.e., cannot send further messages, _mfputauon it aS||tedt at sertl tiiThessage oes.nodt If"‘th't'
til it receives an acknowledgement from the input buffer of ;,r:/g or an a(ihn?\;ve gemen ‘ a‘t € message IS 3|\|/_ere |
the destination process of the previously sent message. Thigc assume that for any pair of sites, messages are delivere

is a clever algorithm that does not force the sender applica'-r1 order (FIFO deh_very) because most knovx{n communica-
tion networks provide FIFO support. There is no common

tion process to wait — thus the application is nonblocking —

even though there may be blocking at the transport layer. “physmal clock. The underlying communication medium is
reliable and does not alter, generate, or consume messages.

this specialized framework, the algorithm does not require Without loss of aenerality. we assume that a sinale pro-
any control information in messages, but has the follow- I generaity, gie p
cess runs on a single site. Henceforth, a process will also

ing limitations: (i) it does not work with message multicasts be referred to as a node. A process that fails does so in

and (ii) although the application is nonblocking, it may in- ; . N
volve blocking synchronization at the transport layer. The? fail-stop manner and Byzantine behavior is not allowed.

: : C o : rocess can be dynamically created and can dynamically
algorithm essentially uses synchronous communication W|tHA‘ P X .
input/output buffers to yield causal order. The blocking pro- exit. Let N be the set of all the processes that existed in the

vides built-in synchronization which simplifies the algorithm system and leh _be the number O.f Processes running in the
system at any time. The execution at a process is modeled

design and eliminates the overhead of control information in

by three types of events, namelyessage sendnessage
messages. : - .

delivery andinternal events. An internal event represents

The overhead due to the control information in existinga local computation at the brocess. whereas message send
causal ordering algorithms that make no simplifying assump- P P ' 9

tions about the system, @) or higher, can be prohibitively and delivery events establish cause and effect relationships

large if the number of processes is large and limits the scal2mong t_he Processes. At a send event, the message that is

ability of these algorithms. sent is first placed in the output buffer of the process and
In this paper, we discuss the optimality conditions for is subsequently sent to its destination by the underlying net-

causal ordering algorithms in terms of the size of controlWorklng protocol. When a message arrives at a process along

information appended to messages and stored in local Iog§ communication channel, it |s_placed In an input l:_)uffer. The
vent at which a message arrives and is placed in the input

for enforcing causal order among message multicasts in % ; .
uffer of a process is a receive event that we treat as an

generalized frameworkyiz, the algorithm is nonblocking, internal event because it does not establish any cause and
is completely decentralized, and does not use ampyiori . . y
effect relationship among processes.

knowledge about the topology or communication pattern. We ,
present an optimal causal ordering algorithm that appends tg titﬁt c? e?/ir:]?;eatthergggise\éeﬁfe;t grrggre f)gr;g? '?')I’(lg
each message and stores in local logs the least amount &t P v

control information necessary to enforce CO, as per the op-Set of events in thelistributed computatiort” is the set of

timality conditions. Instead of maintaining and transmitting eventsU\ﬁgN EZ Each process maintains a scalar counter,
ann x n matrix, the algorithm stores and transmits the bareCZOCki’ that is incremented on the occurrence of at least each

minimum information required to enforce CO, and uses ar|Iocal send eventclock; need not be a dedicated counter of

efficient encoding scheme to represent this information. AI-the messages sent, which was used in [20]. Lef)(denote

. e event at local time at process. A messageM sent
though the upper bound on space complexity of the overheag1 P ; . .
of control information in the algorithm i§(n?), the over- y i at local imea is denoted asVf; .. The subscripts of

head is likely to be much smaller on the average, and ig o 3¢ dropped only if there is no ambiguity. The send
always the least possible. and the delivery events of a messale are respectively

; . ') enoted bySend(M) and Delivery(M). Deliveryq(M) is
This paper is organized as follows: Sect. 2 presents th A . .
system model, notations, and definitions. Section 3 presen uﬁcfi\éinga}.wmcgv{]\'j’ d)eil'svfrrjg i}'(f) ﬂocﬁi Q\eggotlj?jc-
constraints on the propagation of information to achieve op- everedal\ia ha

timality and presents the necessary and sufficient conditiongred atd. The phra_se receive a message” means the arrival
and (eventual) delivery of a message.

on the information for causal ordering. Section 4 presents The cause and effect relationship between the events of

an optimal causal ordering algori'ghm. Section 5 proves th%\ distributed execution is captured by Lamport’s “happened
correctness of the algorithm. Section 6 proves the optimalit efore” or causality relation{) [14], which defines a par-

of the algorithm. In Sect. 7, some results on the complexit)}). l ord

of the causal ordering problem are presented. Finally, Sect. ga order (¢, —).

concludes. Definition 1 The “happens before” relation, also called the
“causality” relation and denoted by—, is defined by the
following three conditions:

94

1. (i,a) — (,b)ifi=jANa<bd. The relation— on two events is as followsi,(a) —

2. (i,a) — (4, b) if (¢, a) is the send of a message afjdb) (7, 0) iff (4,a) = (4,0) or (i,a) — (4, b). Thecausal pasof
is the delivery of that message. an event {, a) is the set of all eventsk(c) such that £, ¢)

3. (i,a) — (4,b) if (k, <) | ((G,a)— (k,e) A\ (k,c) — — (i, a). The causal futureof an event {, a) is the set of
(j,0) all events k, ¢) such that{,a) — (k, ¢).

Table 1 summarizes the important notations we have de-

Definition 2 (Causal ordering (CO)). If messages\/ and fined in this section.

M’ have the same destinatidrand Send(M) — Send(M’),
then causal ordering ensures thabeliverys(M) —

Deliveryqg(M'). 2.2 Objectives of the paper

Causal orgermgl_sw?phflez the de_\(/flopmle;nt_lf{)f dISt”bmecjlt is a recognized fact that in an asynchronous system, certain
programs and applications by providing a bulit-in messagqn, ¢, mation about messages sent in the past must be stored
synchronlzanon apd reducing the nondeterminism in a d|s—and propagated to enforce CO. The overhead due to the con-
tributed computation. . L : trol information in existing causal ordering algorithms that
Causal multicast. Multicast is a communication paradigm make no simplifying assumptions about the system;2D(

' higher, can be prohibitively large when the number of
&ocesses is large. In this paper, we address the following
Bundamental guestion:

cesses in a single send event. The set of destinations of

multicast messagg/; , is denoted byV/; ,.Dests. In causal

multicast, message delivery events satisfy causal ordering. |
our model, a process can be a member of multiple overlapProblem 1 What is the minimum amount of information re-
ping groups. Successive multicasts by a process can be @arding messages that were sent in the causal past that is
different overlapping groups. Also, a group of processes tohecessary to be propagated and stored by any protocol to
which a process can multicast messages can vary and suétforce causal ordering under the following framework in
groups need not be formedpriori. The ability of a process our system model?

to multicast to arbitrary and dynamically changing groups _ the protocol must be monblocking protocoli.e., a pro-

is useful in many applications such as updating replicas of 4¢0] in which a process can send messages without wait-

different variables stored at different sets of sites. ing for messages that it had sent earlier to be delivered
to their respective destinations or even to be copied out
of the output buffers.

— The protocol does not use any a priori knowledge about
the topology or communication.

— The protocol should be deterministic, completely decen-
tralized, and the role of each process should be com-
pletely symmetric. Thus, the use of a coordinator or even
a hierarchical organization of processes is ruled out.

Further notations and definitions

We define a directed graph, referred to as ¢benputation
graph, of a distributed computation as follows: there is one-
to-one mapping between set of vertices in the graph and
the set of events in the computatioR, and there is a di-
rected edge between two vertices iff either these vertices
correspond to two consecutive events at a process or cor- Under the framework of Problem 1, the system cannot
respond to message send and delivery events of the sanmake any assumptions such as “all messages are broadcast”,
message, respectively. A vertex in the computation graplor “all messages are unicast”, or “there is a synchronous
will be referred to by the event to which it maps. An edge message exchange at the application layer or the transport
in the computation graph is either (i)raessage dependency layer”.
edgeif it corresponds to a&ausal message dependerimr We answer Problem 1 by formulating necessary and suf-
tween the send-delivery pair of events of a message, or (iificient conditions on this information. This is the first char-
a local dependency edgéit corresponds to a&ausal local acterization of the sufficient and the necessary conditions on
dependencpetween two consecutive events at a process. Ahis information. We discuss the optimality conditions for
maximal chainin a distributed computation is a linearly or- causal ordering algorithms in terms of the size of control
dered subset of such that any two adjacent events in this information that is appended to messages and stored in local
linear order are either consecutive events at a process or tHegs for enforcing CO in the above framework.
send-delivery pair of events of a message. Henceforth, each We present an optimal causal ordering algorithm that ap-
reference to a chain assumes it is a maximal chaipath pends the least amount of control information to each mes-
(also termed aausal path in the computation graph is a sage and stores the least amount of control information in
sequence of directed edges such that for two adjacent edgésgs, as per the optimality conditions we formulate. The al-
in the sequence, the second edge is an out-edge at the evagudrithm stores and transmits the bare minimum information
(vertex) at which the first edge is an in-edge. required to enforce CO, and uses an encoding scheme to
We define a functionS_leng(Send(M; q),Send(M; p)) represent this information. The proposed algorithm does not
that returns the maximum number 6knd events among maintain and transmit am x n matrix or n vectors of
the paths betweefend(1; ,) and Send(M;), including lengthn to enforce causal ordering, unlike other algorithms.
Send(M,) but excluding Send(MM;), that haved as a Although the upper bound on space complexity of the over-
destination. Also define a functidangth(path,e), wheree head of control information in the algorithm &(n?), the
is an event on the pathuth, that returns the number of send overhead is likely to be much smaller on the average, and
events preceding on the path. is always the least possible.

95

Table 1. Explanation of the notations used

Notations Brief explanation or definition of the notations

clock; Scalar event counter or clock at procéss

(%,a) Event at local timez at process.

M; o Message sent by processt (i, a). The subscripts can be dropped only if there is no ambiguity.
Send(M) Event at which messagk/ is sent.

Delivery(M) Event at which messagk/ is delivered.

Deliveryg(M) Event at which messagk/ is delivered to process.

Deliveredq(M; o) Boolean function; true ifiM/; , has been delivered t@.

M; o.Dests Set of destinations of multicast messag .

Sleng(Send(M; q),Send(M;)) Integer function; returns the max number$énd events among the paths betwegend(M;)
and Send(Mj p), including Send(M; ;) but excludingSend(M;), that haved as a destination.
length(path,e) Integer function; given everd on the pathpath, returns the number of send events precediran the path.

3 Achieving optimality The information 4 € M, ,.Dests” should not be stored
or propagated in the causal future Dleliveryq(M; ,) for
We show in Sect.7 that the overhead of control informa-optimality, asM, , has already been delivered doin CO
tion in messages and in local storage to enforce CO in theyith respect to any message sentdtin the causal future
framework of Problem 1 ig2(n?). Enforcing CO by having of Deliveryq(M;.,). This observation leads to the first fixed
O(n?) overhead of control information in messages and iNpoint, FP1.
local storage is well-understood — simply userax n ma- We also make the following observation. Let
trix to do explicit (source, destination, timestamp) tracking Az, ,. Dests. Consider any eventj(b) such that {,a) —
of messages already delivered or sent, maintain this infor; b), d € M, ;,.Dests, and there does not exist, (), where
mation in local storage and transmit it in messages. (i,a) — (k,¢) — (j,b), such thatd € My, ..Dests. If it
We achieve optimality by identifying constraints on the js not known at £, b) that M;,, has been delivered g, in-
propagation of control information, called thpgopagation formation “d M; ,.Dests” must be propagated up tg, ()
constraints to curtail the propagation of redundant informa- to enforce CO delivery of; , to d with respect to the de-
tion at the earliest instant. The Propagation Constraints spegivery of M, to d. Also, information @ € M; ,.Dests”
ify the earliest events along causal padmy up to which should not be stored or propagated in the causal future of
control information needs to travel to ensure causal orderinggend(Mj‘b), except on the messagé; , sent tod, for opti-
A node stores and transfers only the bare minimum infor-mality. This is becausa/; , gets delivered tal in CO with
mation in accordance with the Propagation Constraints, angespect toM; , due to the Delivery Condition whedZ;
uses an encoding to represent such information. is delivered; for any messagkl’ sent tod in the causal
future of (j,b), if we ensure that\/;; is delivered tod in
) . CO with respect taM’, then it is ensured transitively that
3.1 Delivery condition M,; , is delivered tod in CO with respect taV/’. Thus, we

In order to ensure the safety of a CO algorithm, no mes—saydtgli}éregg ga}ﬁsggu\fvuﬁ %?)éeé\{ i{é('ﬁ gﬁzrﬁ}er? : e:;)

sage should be delivered to a node unless all messages s b carry any information aboutde M; ,.Dests". (Note
causally before it have been delivered to that node. Causngat CO between/; , and M’ is enforcggl. similariy) This
J» .

ordering algorithms achieve this by having each messag . : .

M’ carry a list of message®l sent causally beforé/’ was Gbservation leads to the second fixed point, FP2.
sent. M’ is delivered to the receiving node only after the Definition 3 (“Fixed Points” of information propagation):
messaged/ that were also destined for this receiving node A fixed point of propagation of informationi“c M; ,.Dests”
have been delivered. We state this condition asibivery is an even(j, b) such thateither

Condition FPL: (i,a) — (j,b) \ M. is delivered tod at (j,b) (=

Delivery condition. A messagéel/’ that carries information eventDeliveryq(M; .)), or

“d € M.Dests" about a message/ sent tod in the causal FP2: (i,a) — (j,b) A\ d € M;.Dests \

past, is not delivered td until A/ has been delivered td. Ak, o) | (@ a) — (k,c) — (4,b) \ (d € My, ..Dests
V (k, ¢) is the evenDelivery (M; ,))).

3.2 Fixed points of information propagation An event (j, b) which is the fixed point FP1 of informa-

tion “d € M, ,.Dests” denotes that messag¥, , is known
We next identify events in causal paths, calliged Points to have been delivered at eventH) to destinationd (=j).
up to which information about messages sent in their causad; ,, is already delivered in causal order dowith respect
past needs to be propagated to enforce causal ordering. Fy any multicasts t@ in the future of §, b). Thus, any future
optimality, information about messages sent in the causamulticasts to destinatiod do not have to carry information
past needs to travel only up to these events. We present twal € M; ,.Dests”.
observations that lead to the definition of fixed points. These An event (, b) which is a fixed point FP2 of information
fixed points form the basis for Propagation Constraints that'd € M, ,.Dests” denotes that messag¥; , is guaranteed
specify how information about messages sent in the causdb be delivered in causal order with respect to messdgg
past must be stored and propagated to enforce CO optimallyo the common destinatiod. The causal delivery ot} ;,

96

to d with respect to any future multicasts d#oautomatically
ensures the causal delivery éff; , to d with respect to
any multicasts in the future ofj(b) to d. Thus, any future
multicasts to destinatiod do not have to carry information
“d € M; q.Dests”.

A significance of a fixed point of propagation of infor-
mation ‘d € M, ,.Dests” is that the information traverses

only up to the fixed point. Nowhere in the causal future of
the fixed point does this information need to exist! Multiple
fixed points of this information, if any, are concurrent. All

events in the past of a fixed point as well as all events tha
are concurrent with all fixed points must have information

“d € M;q.Dests”. (From Definition 3, note that if {, b) is
a fixed point FP2, theDeliveryq (M,) (which is an FP1
event)—4 (4, b). If (4,b) is a fixed point FP1, therd M, .

| (i,a) — (k,¢) — (4,b) (which is the eventDeliv-
erya(M; o)) N\ d € My.Dests, because of the Delivery
Condition.)

3.3 Necessary and sufficient conditions

Based on the identification of fixed points, we formulate Propagation constraints.

2. 3(k, o) | (1,a)— (k,0)— (4,b) \ d € My, ..Dests.
If such a &, ¢) does not exist andj(b) is a multicast send
event such thatl € M;;.Dests, then the information
“d € M; q.Dests” is sentonly on the message t@.

The absence of informationi“c M; ,.Dests” when ei-
ther of the two conditions holds does not lead to a violation
of CO becauseV/; , is already delivered td or is guaran-
teed to be delivered td without violating CO. Necessary
conditions state that information must not be currently car-
{ied in messages or stored at nodes if a fixed point of that
information belongs to the causal past. An optimal CO al-
gorithm must satisfy these conditions so that no redundant
information is propagated.

3.4 Propagation constraints

We now combine the necessary and sufficient conditions, on
information about messages sent in the past that must be
stored and propagated to enforce CO optimally, in the form

of propagation constraints

The information ¢ €

necessary and sufficient conditions on the propagation of ind/; ,. Dests” about a messagé/; , sent tod must prop-
formation about messages sent in the causal past. In a correagate along all causal paths starting at evént)(up to and
CO algorithm, the information must propagate at least “uponly up to the earliest eventg, 6) on any such path such
to” its fixed points — this identifies the sufficiency conditions that either:

on information propagation. In an optimal algorithm, the in-
formation must propagate “only up to” fixed points — this
identifies the necessity conditions on information propaga

tion. It follows that in a nonoptimal algorithm, the informa-
tion may propagate beyond the fixed points.

Sufficient conditions. Information ‘d € M, ,.Dests” must
propagate from eventj(b) on its outward edges in the com-
putation graph itboth:

1. Deliveryqs(M; o) —~ (4,b), and

2. Ak,o) | (@,a)— (k,c)— (4,b) \ d € My, ..Dests.
If such a &, ¢) does not exist andj(b) is a multicast send
event such thatl € M;;.Dests, then the information
“d € M, q.Dests” is sentonly on the message té.

PC1: Deliveryqs(M;) — (4,b), i.e., itis known that\/; ,
has been delivereayr

PC2: 3 (ko) | (Gha) — (k) — (b)) A d €
My, ..Dests), i.e., it is guaranteed that the message will
be delivered in CO.
If such a &, ¢) does not exist andj(b) is a multicast send
event such thatl € M;;.Dests, then the information
“d € M; q.Dests” is sentonly on the message t@.

The “up to” part of the Propagation Constraints specifies
the sufficient condition on the information propagation and
must be satisfied for the correctness of a CO algorithm. The
“only up to” part of the Propagation Constraints specifies
the necessary condition on the information propagation and
must be satisfied for the optimality of a CO algorithm. A

If the first condition above were false, then there is nNoproof of these properties is given in Sect. 3.6.

need to carry the informationd“e M, ,.Dests” because

Figure 2 illustrates the Propagation Constraints for a

M; . is guaranteed to be delivered in causal order with ré-Send(M; ,) event (shown by a shaded circle). The rect-
spect to all messages sent in the causal future of the curreringle shows the delivery event of messddg, at process
event @, b). If the second condition above were false, then . Clearly, all send events in the future of this event (e.g.,
the causal delivery of the present message with respect tg3 ¢4, ande6) need not have access to informatiah ¢

M. would ensure the causal delivery of the present mesyy; | Dests”. Each unshaded circle denotes a message send

sage with respect td/; ,, if M}, . is causally delivered with
respect taV; ,. Information ‘d € M, ,.Dests” need not be
carried or stored beyond the current event.

event at which a message is sentdtand there is no such
event on any causal path betweeruj and this event. From
PC2, no message sent in the future of such a send event (e.g.,

~ However, when both the conditions above are true, ite4, ¢5, ¢6, ¢7, ande8) needs to have access to information
is not known if M; , has been delivered or if it is guaran- «; ¢ 7, ,. Dests” to enforce CO. However, all send events
teed to be delivered without violating CO, and therefore, thenot in the future of events marked by either the rectangle or

information must be carried futher to enforce CO.

Necessary conditionsInformation about & € M, ,.Dests”
must not be propagated fromj, {) on any outgoing edge in
the computation graph #ither:

1. Deliverys(M; .) — (4,b), or

the unshaded circles (e.@1 ande2) must have access to
information ‘d € M; ,.Dests” to enforce CO, as per PC1
and PC2.

Thus, the Propagation Constraints specify two different
ways to identify eventsj(b) which are the events “up to
and only up to” which informationd € M, ,.Dests” must

97

@ ewent (ia) [event at which message sent at (i,a) is delivered to d = message sent to node d
O event in future of (i,a) at which message is sent to d, and there is no such event on any causal path between
(i,a) and this event / demarkation of causal future of corresponding event
sample event at which information about "d is a destination of multicast at (i,a)" must not exist for optimality
sample event at which information about "d is a destination of multicast at (i,a)" must exist for correctness

Fig. 2. Propagation Constraints

propagate, for any and M, ,. Such eventsj(b) are identi- common to many distributed algorithms and we mention
fied for every path originating at,(a) and are terme€on- them in this section for completeness.
straint Propagation Endpoints (CPE®Y information ‘d €

M; q.Dests”. No transmission of “spurious information”. In addition

to the Propagation Constraints, we require that an algorithm
Definition 4 (Constraint Propagation Endpoints (CPES): that enforces CO optimally should not store or propagate any
A CPE of “d € M; ,.Dests” is either a fixed point of d € other information. Specifically, it should not store and prop-
M;.q.Dests” or the earliest event on each path originating agate information about messages that have already been
at (i, a) such that it is in the causal future of a fixed point of delivered or that are guaranteed to be delivered in CO.

“d e M, q.Dests”. o . . .
No transmission of “duplicate information”. The Propa-

The CPEs are the earliest events on all causal paths fromjation Constraints require that information about a message
(i,a) at which it is known that)/; , is delivered tod oris sent in the causal past should be stored and propagated as
guaranteed to be delivered #bin CO. The information & |ong as and only as long as the knowledge that “the message
€ M; q.Dests” must propagate into the future of @) upto s delivered” or “the message is guaranteed to be delivered
and only up to the earliest events in the future of some fixedn CO” is not locally available. As communication channels
point of “d € M; ,.Dests", on a per path basis. Note that all are FIFO, this information need not be resent over the same
CPEs of d € M; ,.Dests” need not be causally concurrent. channel, nor locally stored if it has been sent once on all the
Two or more CPEs may be causally related and may occuputgoing channels. This motivates the following principle of
at the same process even if they lie in the causal future ofnonduplicate information transmission and storage of infor-
the same fixed point because they represent information thahation” to achieve optimality: “A node must not transmit the
has traversed along different paths froinaj into the future same information more than once to the same node and not
of the fixed point. We now define “redundant information” store information that has been sent once on each outgoing
for an optimal CO algorithm. channel”. A similar notion has been previously used in [24]
to efficiently implement vector clocks [7,15].

Enforcement of “no transmission of duplicate informa-
tion” is a generic constraint common to many distributed al-
gorithms that assume FIFO communication. Therefore, it is
of secondary concern to our problem. It also requires some

Also note that although PC1 and PC2 specify that theadditional data structures at each process to keep track of
CPEs are the events up to and only up to which informa-what information has been sent to what processes. More-
tion “d € M, ,.Dests” propagates, PC2 also requires that over, it may require additional computation at each process
if event (j,b) is a CPE by PC2, thenyj(b) must also send to update the data structures and to process the control infor-
information “d € M, ,.Dests” onlyon M, ; sent tod. This ~ mation received in messages. Thus, there is a trade-off and
requirement is implicit henceforth whenever it is stated thatwe will not be elaborating on this constraint in the paper.
this information propagates up to and only up to the CPEs.

Definition 5 If information is propagated as per the Propa-
gation Constraints, informationd € M; ,.Dests” that tra-
verses beyond a CPE ford“c M, ,.Dests” is redundant
information.

3.5 Other constraints on information propagation 3.6 Correctness of propagation constraints

Besides the Propagation Constraints presented in the pr&heorem 1 proves that if information propagates as defined
vious section, there are some general, commonsense cohy the Propagation Constraints, and the Delivery Condition
straints on information propagation. These constraints arés satisfied, then CO is never violated.

98

Theorem 1 The Propagation Constraints and the Delivery

Condition together ensure CO.

Proof.Letd € M, ,.Dests. Let there exist everend(M; 5)
such thatl € M;;.Dests andSend(M; o) — Send(M;).

We also make the following assumption abogtb] in
order to show that if one of the Propagation Constraints is
violated, then CO is violated.

— (Assumption 2:) Let {,b) be a send event and €

There are two possibilities based on the relation between a M y.Dests.

fixed point of ‘d € M; 4.Dests” and Send(M;).

Based on the assumptions gih#), we make the follow-

1. If event Send(M;,) is not in the causal future of a jng assertions.

fixed point of information & € M, ,.Dests” and is itself
not such a fixed point, thend“e M, ,.Dests” is sent

with M, by the Propagation Constraints PC1 and PC2.
Along with the Delivery Condition, this guarantees that

M; o is delivered tod beforeM; , is.

2. If event Send(M; ;) is in the causal future of a fixed
point of “d € M, ,.Dests” or is itself such a fixed point,
then we use induction on variableleny(Send(M; o),
Send(M;)) to show that; , is delivered tod before
M%b is.

S_leng(Send(M;), Send(M;) = 1: In this base case,
if event Send(Mj, ;) is in the causal future of a fixed
point FP1, then); , is already delivered tel before
M;, is. Otherwise evenSend(M; ;) is itself a fixed
point FP2 of information & € M; ,.Dests”. Along with
the Delivery Condition, PC2 guarantees tidf, is de-
livered tod in causal order with respect /) ;.
S_leng(Send(M; o), Send(M;p)) =z, > 1. Assume
that the hypothesis “IE_leng(Send(M; o),Send(M; 1))

= z, thenM, , is delivered tod beforeM; ; is” holds.
S_leng(Send(M; o), Send(M;p)) =« + 1,z > 1. There
must exist
Send(My,.) | Send(M;,) — Send(My.) —
Send(M;p) N\ d € My c.Dests \ S_leng(Send(M; ,),
Send(My, .)) = x. By the induction assumptiod/; , is
delivered tod or is guaranteed to be delivered dabe-

fore M, . is. Causality is transitive, hence the burden of 2.

the proof is to show thafl/,, . is delivered tod or is

guaranteed to be delivered dobefore M ;, is.

Note thatS_leng(Send(My,.),Send(M;) = 1. We have
already shown that when S_leng(Send(M;q),

Send(M;p)) = 1, M, , is delivered tod before M ;.

Therefore, M}, . is delivered tad before M, is. Hence,
the theorem. O

— (Assertion 1:) If the “up to” part of the propagation of
any one of the Propagation Constraints PC1 and PC2 is
violated, then information abouti“c M; ,.Dests” does
not reach {, b), from Assumption (1).

— It follows from assumptions (1) and (2) on everitH)
that (j, b) is event FP2, and from the Propagation Con-
straints, @ € M; ,.Dests” must be sent withM/;; to
d.

(Assertion 2:) If the part of PC2 that specifies that the
information about & € M, ,.Dests” must be sent on
M;, to d is violated, the informationd € M; q.Dests”

is not carried byM; ; to d, from Assumption (2).

Assume thail/; ., has not arrived af before)M; , arrives
at d. Proof of the theorem has two parts.

1. We show that if any part of the Propagation Constraints
does not hold, then despite the Delivery Condition, CO
is violated.

If any part of the Propagation Constraints does not hold,
from Assertions (1) and (2), we have that informatiah “

€ M, ,.Dests” does not propagate up tg,p), or (j, b)
does not propagate this informationdoin either case,
M, sent tod is not accompanied by this informatiod “

€ M; o.Dests”. Therefore,M; ; is delivered tad before
Mi,a is.

We show that if the Delivery Condition does not hold,
then even if the Propagation Constraints hold, CO is
violated.

M, sent tod is accompanied by control information
“d € M, ,.Dests”. Despite this information, delivery of
M;, to d on arrival atd is not prevented if the Delivery
Condition is violated. Thereforel/; ; is delivered tod
before M, , is.

We now show that if information does not propagate In both cases, CO is violated. Therefore, the Propagation
as per Propagation Constraints or if the Delivery ConditionConstraints and the Delivery Condition are necessary for

does not hold, then causal ordering is violated.

Theorem 2 The Propagation Constraints and the Delivery

Condition are necessary to ensure CO.

Proof. Consider an event;j(b) such that:

— (Assumption 1)) A(k, ¢), (¢, a)— (k, ¢)— (4, b) where
(k,c) is an FP1 or FP2 event ofd“e M, ,.Dests”.
Moreover, event { b) is not the FP1 event ofd' €
M; o.Dests”.

The assumption implies that (i) neither gt &) nor at any
event in the causal past of, () is M; , delivered tod, and
(i) no messagé}, . sent in the causal future dfend(M; ,)
and in the causal past of,p) hasd as a destination. As
per Propagation Constraints, informatiah & M, ,.Dests”
must reach {, b).

enforcing CO. O

4 An optimal CO algorithm

In this section, we describe an information encoding scheme
to realize the Propagation Constraints and present an opti-
mal CO algorithm, followed by an explanation of the vari-
ous steps of the algorithm. The algorithm is optimal in the
sense that it maintains and transfers bare minimum infor-
mation that is necessary to enforce causal ordering, as per
the Propagation Constraints. Although the upper bound on
the overhead of control information in messages and in local
storage in this algorithm i€(n?), the overheads are likely

to be much smaller on the average, and are always the least
possible.

99

4.1 Notations 2. Implicit tracking.Tracking of messages that are either
(i) already delivered, or (ii) guaranteed to be delivered in

Information about a messaga/;, that is carried in a CO; iS performed implicitly. . .
later message/’ is denoted a®; , = (i, a, Dests), where The information about messages (i) already delivered

0i a.Dests C M, ,.Dests: o; ,.Dests denotes the set of ©F (i) guaranteed to be delivered in CO, is deleted at the
destinations of\/; , for which (i) it is not known that\/; , CPEs of this information and not propagated because it is
has been delivered, and (ii) it is not guaranteed tha, redundant as far as enforcing CO is concerned. However,
will be delivered in causal order, as far as the senderf6f the semantics of information is useful in determining what
can discern. Multipleo; , that are collectively carried in a information that is being carried in other messages and that
message\/ are denoted by a s€l,,. Subscripts ob; , are S Peing stored in logs at other nodes has become redundant
dropped only when they are not necessary or are clear fror@nd thus can be purged. This semantics is implicitly stored
the context. and propagated. _ _ .
Similarly, information about certain messages sent e track messages that are (i) already delivered or (i
causally before any local event at a noglés stored in a guaranteed to be delivered in CO, without explicitly stor-
local log, denoted byLOG;, so that it can be sent on fu- "9 such information! Rather, we derive it from the existing
ture messages to enforce CO. Information ablalyy, thatis ~ €XPlicit information about messages (i) not known to be de-
stored at nodg in LOG, is denoted by, , = (i, a, Dests), livered and (i) not guaranteed to be delivered in CO, by
wherel; ,.Dests C M;.q.Dests; l; o.Dests denotes the set €xamining onlyo; .. Dests or ;.o Dests, which is a part of
of destinations ofM; , for which (i) it is not known that ~the explicit information. _ ,
M; , has been delivered, and (ii) it is not guaranteed that Ve use two types of implicit trackings: First, the ab-
M;., will be delivered in causal order, as far as ngoean ~ S€nce of a node id from destination information — i®i¢

presently discern. Subscripts bf, are dropped only when Mia-Dests | d¢ li .o Dests \| d¢ o0;4.Dests — implicitly
they are not necessary or are clear from the context. contains information that the message has been already de-

livered or is guaranteed to be delivered in CQitcClearly,
l;.o-Dests = 0 or o; ,.Dests = () implies that messag&/; ,
)) has been delivered or is guaranteed to be delivered in CO
4.2 Information encoding to all destinations inV/; ,.Dests.
An entry whose.Dests = () is maintained because the
Enforcing CO requires information about messages sent ifmplicit information in it, viz., that of known delivery or
the past and the Propagation Constraints dictate how mucpuaranteed CO delivery to all destinations of the multicast,
of this information needs to be carried in messages up tds useful to purge redundant information at CPEs as per the
an event in the computation. We now discuss how we enPropagation Constraints. Note that;if,. Dests is () at (k, ¢),
code this information efficiently using explicit and implicit thenVd € M; ,.Dests, a fixed point of 4 € M; ,.Dests”
tracking of messages sent in the past. must lie in the past ofk(, c¢). However, this does not preclude

Information about messages (i) not known to be deliv-a CPE of the information being in the causal future fafdj.
ered and (ii) not guaranteed to be delivered in COexs To identify such CPES; ,.Dests must be maintained and
plicitly tracked by the algorithm using (source, destination,propagated.
timestamp) information. The information must be deleted Note that as the distributed computation evolves, sev-
as soon as either (i) or (ii) becomes false. The key proberal entries; .., l; a,, ... SUCh that'p, I; o,.Dests= () may
lem in designing an optimal CO algorithm is to identify the exist in a node’s log and a message may be carrying sev-
events at which (i) or (ii) becomes false. Information abouteral entries; 4,, 0; 4, ... Such that'p, o; ,,.Dests= (). The
messages already delivered and messages guaranteed togseond implicit tracking uses a mechanism to prevent the
delivered in CO ismplicitly tracked without storing or prop- proliferation of such entries. The mechanism is based on the
agating it, and is derived from the explicit information. Such following observation:
implicit information is used for determining when (i) or (ii) “For any two multicastsM; 4,, M, 4, such thata; <
becomes false for the explicit information being stored oray, if l; ., € LOG;, thenl; ,, € LOG;. (Likewise for any
carried in messages. message.)”

1. Explicit tracking. Tracking of (source, timestamp, des- Therefore, ifl; o,.Dests becomes) at a nodej, then
tination) information for messages (i) not known to be de-it can be deleted fromLOG; provided 3 l; ,, € LOG;
livered and (ii) not guaranteed to be delivered in CO, issuch thata; < a. The presence of such,,s in LOG;
done explicitly using thd.Dests field of entries in local is automatically implied by the presence of entry, in
logs at nodes and.Dests field of entries in messages. Sets LOG;. Thus, for a multicasiV; ., if [; , does not exist in
lio.Dests and o; ,.Dests contain explicit information of LOG), thenl; .. Dests = () implicitly exists in LOG; iff 3
destinations to whict/; , is not guaranteed to be delivered I;,. € LOGj | a > z.
in CO and is not known to be delivered. The information As a result of the second implicit tracking mechanism, a
about ‘d € M, ,.Dests" is propagated up to and only up to node does not keep (and a message does not carry) entries
its CPEs, viz., the earliest events on all causal paths fronof typel; ,.Dests =) in its log. However, note that a node
(¢,a) at which it is known that/; , is delivered tod or is must always keep at least one entry of tylpg (the one
guaranteed to be delivered #oin CO. Thus, redundant in- with the highest timestamp) in its log for each sender node
formation (Definition 5) is never stored in logs or propagated:. The same holds for messages.
in messages.

100

The information tracked implicitly is “live” and propa-
gates wherever the explicit information g, in someO s
propagates; it is useful in purging information explicitly car-
ried in otherO,,~s and stored i OG entries about “yet to
be delivered to” destinations for the same messifg as
well as for messaged/; ,-, wherea’ < a. Thus, whenever
0i,q IN someO0,, propagates to nodg (i) the implicit in-
formation ino; ,.Dests is used to eliminate redundant infor-
mation inl; ,.Dests € LOG}; (ii) the implicit information
in l; o.Dests € LOG; is used to eliminate redundant infor-
mation ino; ,.Dests; (iii) the implicit information ino, , is
used to eliminate redundant informatign, € LOG; if A
0.0 € Oppr anda’ < a; (iv) the implicit information ini; ,
is used to eliminate redundant information, € Oy, if
Aliw € LOG,; anda’ < a; (v) only nonredundant infor-
mation remains ir0,, and LOG}; this is merged together
into an updated.OG .

4.3 The algorithm

The algorithm uses the symbel— to denote an assignment.

Procedure SND is executed atomically. Procedure RCV is
executed atomically except for a possible interruption in step

RCV(1) where a nonblocking wait is required to meet the

Delivery Condition.

Data Structures:

clock; <— O; * local counter clock at nodg */

SR;[1..n] +— 0; /* SR;[i] is the timestamp of last msg.
from ¢ delivered toj; */

LOG; ={(i, clock;, Dests)} «— {Vi,(i,0,0)};

/* Each entry denotes a message sent in the causal */

[* past, byi at clock;. Dests is the set of */
/* remaining destinations for which it is not */
I* known that M; ..., (i) has been delivered, */
[* or (ii) is guaranteed to be delivered in CO. */

SND: j sends a message M to Dests

1. clock; «— clock; +1;
2. for all d € M.Dests do:
Om +— LOGY; I* Onr denotesOyy, .,
for all 0o€Oy,, modify 0. Dests as follows:
if d & o.Dests then
0.Dests «— (0.Dests \ Dests);
if d € o.Dests then
o.Dests <— (0.Dests \ Dests) | J{d};

*

4. LOG; «— LOG; \J {(j, clockj, Dests)};
5. /* Purge older entries for which [.Dests = () */
PURGE_NULL_ENTRIES(LOG,).

RCV: j receives a messagg, ti,M,Dests,Oyr) from k:

1. for all oy,,,, € Op do
if j € om.t,,-Dests wait until ¢, < SR;[m];
/* Delivery Condition; ensure that messages */
[* sent causally before M are delivered. */
2. Deliver M; SR;[k] «— t;
3. Oy +— {(k,tk,Dests)} U OM;
for all oy, € Op do
Omt,, -Dests «— o 1, .Dests\ {j};
/* delete the now redundant dependency */
I* of message represented by, ;,, sent toj */
/* Merge Oy; and LOG; by eliminating */
/* all redundant entries. */
/* Implicitly track “already delivered” & “guaranteed */
/* to be delivered in CO” messages.*/
for all 0, € Oy and I, » € LOG; such that s = m
do
if t <t' A\ ls; & LOG; then marko,, ; for deletion;
I* 15+ had been deleted or never inserted, */
I* asl,.Dests = () in the causal past */
if ' <t A omv & Op then markl, . for deletion;
I* om & O becausds , had becomd) */
[* at another process in the causal past */
Delete all elements marked for deletion), and

4,

/* delete entires that represent */
/* redundant information */
for all I, € LOG; and oy, + € Oy, such thats =m
At =tdo
ls.vr.Dests «— ls p.Dests() om . Dests;
/* delete destinations for which */
/* Delivery Condition is satisfied or */
[* guaranteed to be satisfied as gy, */
Deleteo,, ; from Oy;
* information has been incorporated in; */
/* merge nonredundant information */
r* of Oy into LOG; */
. I* Purge older entries for which [. Dests = () */
PURGE_NULL_ENTRIES(LOG,).

PURGE_NULL _ENTRIES(L):

/* Do not propagate information about */ /* Purge older entries in L, for whichl.Dests = () */
/* indirect dependencies that are */ /* and Wh|Ch can be ImplICItly inferred */
/* guaranteed to be transitively satisfied */ L: LOG of a process; /* local log of any process */
/* when dependencies df are satisfied. * forall I, € L do
for a” Os,t c OM do |f ls,t.DeStS = @ /\ (Hl;,t' S L | t < t/) then
if 0g¢.Dests =0 A\ (30, , € Op |t <) L+— L\ {ls:}.
then Oy — O \ {Os,t};
/* do not propagate older entries */
[* for which Dests field is () */
send(j, clock;, M, Dests,Oxr) t0 d;
3. for all | € LOG; do l.Dests «<— l.Dests \ Dests;
/* Do not store information about indirect */ This section explains the steps of the algorithm and illus-
/* dependencies that are guaranteed */ trates the major steps using examples.
* to be transitively satisfied when */ SEND M ;:
/* dependencies off are satisfied. */ The SND procedure enforces propagation constraint PC2.

4.4 An explanation of the algorithm

Example Scenario: Let I; ,.Dests = {2,3,4,6,8}, ;, €
LOG;. Consider eventSend(M;), where M ,.Dests =
{3,4,7,8,11}.

1. SND(1): The local clock is incremented at a multicast
send event.

SND(2): The only new information available at event
Send(M;) with respect taVl; ,, is thatV = € (I; . Dests

() M, .Dests), (j,b) is Fixed Point FP2 of information
“xeM; q.Dests”. As per PC2, information that such
are destinations of/; , must be suppressed on all out-
going edges of the computation graph frognbj, with
the exception that when sendiny/;, to any partic-
ular € (I .Dests (| M,p.Dests), the information
“xeM,; o.Dests” must be sent. All other information in
l;.q-Dests, namely,l; ,.Dests \ M;j.Dests, must be
propagated.

Note that before propagatinG,;, if Jo;.4,0:.a0 € On

| 0;.0-Dests = (), anda < o, then delete; , because

2.

101

M;, is guaranteed to be delivered in causal order with
respect to any message sent in the causal future of
Send(M;). (The information was propagated to each
destination of)M; , as a parameter in step SND(2)).
Example SND(4):1,, wherel; ;. Dests = { 3, 4, 7, 8,
11}, is inserted inLOG .

SND(5): The invocated procedure PURGHJLL _ENT-
RIES deletes redundant entries that can be inferred us-
ing implicit tracking. See explanation of PURGYUJLL-
_ENTRIES and also of RCV(5) which invokes this pro-
cedure.

RECEIVE M at node j:

The RCV procedure infers and manipulates information
about messages that (i) are known to be delivered or (ii)
are guaranteed to be delivered in CO, in an implicit man-
ner from the information about messages neither (i) known
to be delivered nor (ii) guaranteed to be delivered in CO.
It then uses the inferred information to enforce propagation

5.

it represents redundant information. This prevents th
transmission of entries of the forem .., whereo; ... Dests 4
= (), whenever there is another entry for a message seq%
later by:. As discussed in Sect. 4.2, the use of informa- ;"
tion encoding to meet the Propagation Constraints mus
prevent the proliferation of such entries. See SND(5) and 1.
RCV(5) for further explanation.

Example SND(2): ; ,.Dests \ M;j.Dests = {2,6};
information “{2,6}€M; ,.Dests” must be propagated

on all outgoing edges of the computation graph from 2.
(, b).

li,a.Dests (| M;y.Dests = {3,4,8}; As per PC2V¥ z

€ (li,q-Dests (| M, p.Dests), “z € M, ,.Dests” must 3.
be suppressed on all outgoing edges of the computa-
tion graph from f,), with the exception of the mes-
sage dependency edge to Hence,o; ,.Dests, where
0i,a€0u; ,, IS as follows:

— To Node 3:0; ,.Dests = {2,3,6}

— To Node 4:0; ,.Dests = {2, 4,6}

— To Node 8:0; ,.Dests = {2,6,8}

— To Nodes 7 and 11o; .Dests = {2, 6}

. SND(3): Step SND(2) suppressed the propagation of
information “z € M, ,.Dests”, V x € (l;4.Dests
M;.Dests), on the outgoing message edges @fb)
in the computation graph to enforce PC2. SND(3) sup-
presses the propagation of the above information on the
outgoing local edge, viz., deletes it from the local log.
Example SND(3): [; ,.Dests is updated to{2, 6} by
deleting{ 3,4,8}.

The idea of deleting older dependencies that will get
transitively satisfied was used in [9] which tracked direct
dependencies in the context of system-wide broadcasts.
However, the contribution of the proposed step is that
it deduces and maintains implicit information from the
bare minimum information and does not use n arrays

to store and transfer information.

. SND(4): At event Send(M;;), a new causal depen-
dency to each destination is created. As per the Propaga-
tion Constraints, this information must be propagated on
the outgoing edges of the computation graph, includ-
ing the local log. Thereforel;,, wherel;;,.Dests =
M;y.Dests, is inserted inLOG; to help ensure that

L, Q

constraints PC1 and PC2.
eExample Scenario:Let M arrive atj. Entries of the form
. in Oy arex{ 0;7, 059, 05,12, 0; 20 }. Entries of the form

in LOG; just beforeM is received are{l; o, l; 10, li 14,

{i,201 lio1}.

RCV(1): When messag@é/ arrives atj, the processing
of M is delayed until the Delivery Condition is satisfied,
i.e., until those messages that have been septa® per
the information inO,; have been delivered th

RCV(2): MessageM is delivered and the local data
structure is updated to reflect the timestamp of this latest
delivered message from its specific sender.

RCV(3): Information about messages identified@n,

as having been sent tp causally beforeM was sent
is deleted fromO,; because it served its purpose of
enforcing the Delivery Condition in RCV(1).

. RCV(4): This step deduces the implicit information in

LOG; and Oy, uses this implicit information to de-
tect and delete redundant explicit informationZi®G ;
andO,,, and combines the nonredundant explicit infor-
mation in LOG; and Oy, to updateLOG;. This step
enforces the information encoding described in Sect. 4.2
to satisfy the Propagation Constraints. The two loops in
this step achieve the following.
— Let M be delivered tg and letmax{z | 0, € O}
=a. Allmessagesinthe s¢f\; ., | ¢’ <a \ 0,0 &
Oy} are known to be delivered or guaranteed to be
delivered in CO to all their respective destinations. At
the time/ is delivered toj, all [; ,» € LOG;, where
a’ < aando; . & On, can be deleted. The value
represents the greatest lower bound on timestamps of
messages sent by except fora”| (¢” < a A 0,4~
€ Oyy), that do not have to be tracked any further to
enforce CO by the sender of the messade
Similarly, at the timeM is delivered toj, let maz{x
| li.z € LOG;} = a. All messages in the sgt\/; . |
a <a Al ¢ LOG,} are known to be delivered
or guaranteed to be delivered in CO to all their re-
spective destinations. All; ,» € Oy, wherea’ < a
andl; oo ¢ LOG;, can be deleted. The valuerep-
resents the greatest lower bound on timestamps of
messages sent by except fora”| (¢ < a A li o~

102

€ LOGj;), that do not have to be tracked any further
to enforce CO, as known tp

All the information identified above is deleted in the
first loop.

Example RCV(4.loop 1): The following implicit in-
formation inO»; and LOG is deduced. Of all mes-

the form/; ., wherel; ..Dests = (). See explanation of
PURGENULL _ENTRIES.

Example RCV(5): Deletel; o from LOG;. Its presence

is implied despite its subsequent absence, by the presence
of 12‘721 in LOGJ

sages sent by nodéefore 20, only the dependencies PURGE.NULL ENTRIES(LOG):

given ino; 7, 0;.9, ando; 1, remain to be satisfied. Of This procedure prevents the proliferation of entries of the

all messages sent by nodédefore 21, only the de-
pendencies given i g, ; 10, l;,14, andl; oo remain
to be satisfied.

Therefore, delete the entriegs, 0, 12, I; 10, andi; 14.
(The absence of; 7, l; 12, 0510, 0;14 indicates that
M; 7, M; 12, M; 10, M; 14 have all been delivered or

form [; ., wherel, ,.Dests = () andl € LOG, whereLOG

is the log at some process. As discussed in Sect. 4.2, the use
of information encoding to meet the Propagation Constraints
must prevent the proliferation of such entries3if ,, l; o €

LOG | l; 4.Dests = 0, anda < o/, then deletd; , because

it represents redundant information. However, erifry.,

are guaranteed to be delivered in CO to all their re-Wherea” = maz{ d’| l; . € LOG}, is retained because it is

spective destinations.)
For each pair of the fornh, , ando; , that exists in
LOG; andOyy, respectively, it is inferred that/; ,

required in RCV(4) to represent the implicit greatest lower
bound on timestamps of messages sent that do not have
to be tracked.

has been delivered or is guaranteed to be delivered if-X@mple PURGENULL ENTRIES: See RCV(5) which

CO to destinations inX/; ,.Dests \ l; 4.Dests) |J

invokes this procedure and continues the running example

(M; 4.Dests \ 0; .Dests). Therefore, no constraint of procedure RCV.

remains to be satisfied by the delivery &, , to the
above nodes, viz., nodes notdf,.Dests or not in

l; o .Dests. Thus, constraints on the delivery 8f; ,
need to be satisfied only for the delivery to nodes in
0;,a-Dests(\1; o.Dests.

After the information from the; , entries identified
above is captured in the corresponding entries by
doing the set intersection, tlg, entries used in this
step are deleted.

Example RCV(4.loop 2):Both LOG; andO,, con-
tain entries aboutl/; 9 and M; 20. Common entries
in LOG; and O,; about the same message are pro-
cessed as follows:

— If 0;9.Dests = {7,11} andl; g.Dests = {2,7,
13}, then updaté; 9. Dests «— {7}. (Fromo; o,
node j infers thatM; ¢ has been delivered or
is guaranteed to be delivered in CO {8, 13}.
From!; 9, nodej infers that/; o has been de-
livered or is guaranteed to be delivered in CO
to {11}.)

If 0;20.Dests = {15,16} andl; 2. Dests = {3},
then updaté; 0. Dests <— 0. (Fromo; 20, node

Jj infers that)M; ,o has been delivered or is guar-
anteed to be delivered in CO {8}. FromI; 2o,
nodej infers thatl/; »o has been delivered or is
guaranteed to be delivered in CO {&5, 16}.)

As the explicit and implicit information irv; g and

0;.20 IS captured in; g andl; o, respectivelyp; 9 and

0;,20 are deleted.
The remaining information irD,; and LOG; is about
messages that are not known to be delivered and not
guaranteed to be delivered in CO to their respective re-
maining destinations. This information must be stored
and propagated. The information is merged and consoli-
dated inLOG; by doing a union of the current states of
LOG] and O

. RCV(5): This step executes procedure PRUGHLL-

_ENTRIES which prevents the proliferation of entries of

4.5 Some notes on the algorithm

We now make some notes on the algorithm.

— The form in which the algorithm is presented requires

that during a multicast, the message sent to the various
destinations is different. This appears to preclude a hard-
ware multicast. However, the algorithm can be readily
modified to enable hardware multicast as follows.

When a nodej sends a messagdl to Dests, in Step
SND(2), the nodej sends {, clock;, M, Dests, Opr)

to eachd € Dests using hardware multicast. The logic

in step SND(2) can be performed at the start of step
RCV(3). This results in extra overhead only on the mul-
ticast message; at each destination of the multicast, the
logic of SND(2) is performed and hence there is no
avalanche effect of such overhead.

— When a messagé/ is received by procesg but the

message cannot be delivered, procgs=san perform a
lookahead and execute RCV(4) and RCV(5) usihg.
This lookahead eliminates redundant information from
LOG,, thus preventing its propagation on multicasts that
occur afterM arrives and beforéd/ gets delivered. Sub-
sequently, whet/ is delivered, these steps are repeated.
Thus, the algorithm steps could be reordered so that steps
RCV(4) and RCV(5) also occur before RCV(1).
Standard programming techniques can be used to im-
prove the computation overhead of SND and RCV. For
example, the log at a process can be kept sorted by
the sender identifier and the sender’s clock value. Each
l;.o.Dests can be kept sorted on the destination identi-
fier. Similarly, within eachO,, that is sent from node

k to nodej, the information about all earlier messages
sent toj, that is contained ii®,,, can be isolated so that
the search in RCV(1) and RCV(3) is simplified. It is ev-
ident that in SND(2), a separate,, is computed from
LOG for each destinationl € M.Dests even though
these computations are almost identical, viz., deleting
M .Dests from o.Dests, ¥V o € Oy, and the same as

103

in SND(3-5). Instead, a single common computation of“d € I; ,.Dests andd € [; ,».Dests, wherel; , € LOG
deleting M. Dests from each log entry can be done, con- and I; - € LOG;.” We then have from SND(2) that
currently with which individualO,,s to each nodd can “d € 0;4.Dests andd € o, ,-.Dests, whereo; , € OMj/,c
be adjusted by identifying log entries for which is ando; o € OMJ,/ _” does not hold Whert[)Mj, . is processed
a destination. The presentation of the algorithm avoidsby RCV at (j,b) (Claim 1). .
such details of programming techniques and data struc- (Note that ifj’ =i, d = j, c = a, d € M ..Dests, andd
tures so as to simplify the conceptual presentation ande J; ... Dests, wherel; ,» € LOG/, just before {’, ¢), then
minimize the complexity of the proof procedure. d € 0,4 Dests, whereo; oo € Oy, . INRCV(3),0n, IS
— Processes can be dynamically added and deleted. A neyodified as followsi is deleted fromo; ,/. Dests ando; 4,
process starts with its local clock set to 0. A departedwhered e 0i.q.Dests, is added tCOMj,C-) '

process appears to other processes as though it never prom Assumption(l), we have that beforet), LOG,
sends messages, until it is removed from their view. Theyoes not contain both , and/; ./, whered € I, .. Dests
issue of how a process (departed process) is includedngy ¢ J; /. Dests. (Claim 2). ’

in (excluded from) the view of other processes is a net- From Claims(1 and 2), assume without loss of generality
work management issue and an application-specific issughat 7, | e LOG,, whered € I; ,.Dests, and thato, . €
beyond the scope of the CO problem. Oy, ., whered € o; .. Dests. (The reasoning in the case
thatl; ., € LOG;, whered € [; .. Dests, ando; , € OMJ,,C,
whered € o, ,.Dests is similar). In RCV(4), we have the
following:

In Sect.5.1, we prove certain properties of the algorithm — If lior € LOGy, thend ¢ I; .. Dests (Claim 2) andd
that are used in its correctness proof and optimality proof. is deleted fromo; ... Dests.

Theorem 3 in Sect. 5.2 shows that the algorithm satisfies the— If li,r € LOGj, theno; o is deleted fromOy,, .
sufficient conditions on the information that must be storedIn either case. d € 1. Dests. d € 1. ..Dests where
and transmitted for enforcing CO, as per the Propagatior) = "'/ o~ L c LZOQG does not ZH?JI'd after the ex-
Constraints. In Sect. 5.3, Theorem 3 in conjunction with theelgution of [J)}oé’gdure RC\; for the delivery event. Hence,

Delivery Conditio.n is used to show the safety and the Iive'Assumption(l) is contradicted and such an even)(can-
ness of the algorithm. not exist.
As Assumption(1) is contradicted in all cases, the lemma
holds for log entries. Observe from SND(2) th@t,;, , is
a subset ofLOG; just before the eventj(b). Hence, the
)) . . . ~lemma holds for entries in the control information in mes-
We identify properties of the algorithm that will be used in sages. 0
the correctness proof and the optimality proof. We now define a function on the timestamps of messages.
Lemma 1 states that for every sender ngdedestination
noded belongs tol; .. Dests for at most one entry; ., in Definition 6 The functionl’S is as follows:
the log at any node. Moreover, for every sender ngda — TS(i,LOG;) = maz { = | l;» € LOG, }.
destination node! belongs too; .. Dests for at most one _ 715(;'0,,) L max (2] 050 € Om . !
entry o; . in the control information sent in any message. ’

5 Correctness proof

5.1 Algorithm properties

TS(:,LOG;) is the highest value of the timestamp of mes-

Lemma 1 ViVjVdVava', d € [;,.Dests and d € sages multicast by as known from the information in
liar-Dests, wherel; o,1; o € LOGj, implies thata = o’. LOG;. TS(3,0y) is the highest value of the timestamp
(Likewise for entries irOyy;, ,.) of messages multicast byas known from the information

. . in Oy. TS(1,LOG;) in the duration between two consecu-
Proof. We first prove the result for log entries. The proof e events at nodg is associated with the local dependency
uses contradiction.) edge between the events in the computation graph. Similarly,
(Assumption 1:Hi3;j3d3a3a’ such thad € l; o Dests, d € 7g(; 0,,) for a messagé/ is associated with the message
li.ar-Dests immediately following some evenyi(b), where gependency edge between the send-delivery pair of events of
lia € LOGj, liar € LOGj, anda’ < a. Without loss of 3/'in the computation graph. The timestarjs (i, LOG,)
generality, also assume that no event that causally precedegg TS(i,0.) is useful for detecting and deleting explicitly

(J, b) satisfies this property. o stored redundant information about messages multicast by
There are two cases to considef;t] is a send event or 4; or pefore the event represented by the timestamp.
a delivery event. The significance of; .., wherez = T'S(i, LOG;), is as

() is a SEND eventtn SND, onlyl;; is added taLOG;, follows. All dependencies originating at nodéefore ¢, z)
hencei = j. Also, we must havé = a > a’. From SND(3), that are not explicitly included in somk. are implicitly

if d € ljq.Dests for the current multicast atj(a) and included in/; ,, with the semantics that these dependencies
3d € lj,-Dests, wherea’ < a andl; . € LOGj, thend have been satisfied. Termrepresents implicitly the greatest
is deleted fronY; .,. Dests. This contradicts Assumption(1) |ower bound on timestamps of all dependencies originating
and hence such an event) cannot exist. ati before ¢,) that have been satisfied or are guaranteed to
(J, b) is a DELIVERY event forM; .: Just before event pe satisfied. Only unsatisfied dependencies are explicitly ex-
(', ¢), the following did not hold from Assumption(1): pressed in somg .. By using a single value, this scheme

104

allows the implicit representation of information about all
dependencies originated by a givéthat have been satis-

Lemma 4 states that the contents of dny.Dests are
monotonically nonincreasing as a function of time in the log

fied or are guaranteed to be satisfied. The significance c@t any node after its first insertion in the local log.

TS(i, Oy) is the same.

Lemma 2 states that for each sender nedand any
other nodej, timestampT'S(i, LOG;) is always defined
and never decreases as a function of time.

Lemma 2 ViVj, T'S(i,LOG;) is a monotonic continuous
nondecreasing function of time.

Proof. Initially, 3 I;0 € LOG;; henceT'S(i, LOG;) = 0.
Let the value of7'S(i, LOG;) presently bea. Only the
following scenarios afi could potentially trigger a change
to T'S(i, LOG,) :

— Nodej sends a message dvck;. In SND(3), one or
more l; ,~.Dests may become). In addition, ifi = j,
then in SND(4),75(i¢, LOG;) gets incremented to a
higher value, namelyglock;. By SND(5), the value of
TS(i, LOG;) is unchanged.

— MessageM is delivered. In RCV(4), when O,; and
LOG; entries are merged, it is seen thas(i, LOG;)
gets updated to the greater of its current value BS¢;,
Onr). RCV(5) does not change this value.

It follows that T°S(¢, LOG};) is monotonic nondecreasing
and is continuous. O
Lemma 3 is a counterpart of Lemma 2. It states that for

any path in the computation graph (corresponding to a chain

in the distributed computation), the timestamipS(z, O)

andT'S(i, LOG) associated with the edges of the path never

decrease along the path.

Lemma 3 For any path in the computation graph, the times-
tamp7'S(i, Oar) or TS(i, LOG) associated with the edges

of the path is a monotonic continuous nondecreasing function

along the path.

Proof. Given any path in the computation graph, the result

holds for each of its subpaths that contain dependency edges

on the same process, by Lemma 2. It remains to show that i
M; is sent tok and delivered atk(, c¢), “T'S(i, LOG}) just
before ,b)"” < T'S(i,0n;,) < “TS(i, LOGY) just after
(k,c)".

Let a« = T'S(i, LOG,) just before §,b) and letad’ =
TS(i, LOGYy) just before E, ¢). (If 7 =4, thenb > a, and at
the timeM; ; is being delivered in RCV(3};, € Oy, , and
TS(i,0pn;,) = b (> a)). From the above case and SND(2),
we have that whenl;; is delivered,TS(i, Oy,) > a.
Step RCV(4) setd'S(i, LOG}) to the maximum ofz’ and
TS(i,Own,,) (= a). In RCV(5), this value is unchanged.
The result follows. O

Definition 7 A set is monotonic nonincreasing if an element
is never added to the set after it is initialized.

Each setl; ,.Dests in LOG; in the duration between
two consecutive events at nogdes associated with the lo-

Lemma 4 The set; ,.Dests, wherel; , € LOG;, andj is
any node, is monotonic nonincreasing after initial insertion.

Proof. Node j never insertd; , into LOG; at an internal
event.l; , at node;j changes, including being added and
deleted, only in the following situations:

Procedure SND atj: In SND(3), the destinations of the
current multicast are deleted fraim,. Dests if ; , € LOG;.

In SND(5),1; o is deleted fromLOG; if I; ,.Dests = () and
31;. € LOGj, wherea’ > a. Elements are never added to
l; o-Dests in procedure SND except that jf= 4, theni; ,

is inserted inLOG; for the first time when step SND(4) is
executed for evenfend(M; ;) (the initial insertion case).
Procedure RCV at j: Whenever a messagd arrives atj,
these scenarios exist:

1. 3l; ., € LOG,. Three possibilities determine the actions
in RCV.
— 0iq € Op. In Step RCV(4), ;. Dests +—
li,q-Dests () 0;,q.Dests.
— 0,0 € Op and3o; o € Oy, Wherea' > a. In Step
RCV(4), ;o is deleted fromLOG}
— 0,4 & Op and Ao; o € Opr, Wherea' > a. In Step
RCV(4), l; o is unmodified.
Subsequently, in procedure RCV, elements are never
added tol; ,.Dests.
2. Al; o € LOG;j. 0; 4 is inserted inLOG; only if (Al; o €
LOG, | &’ > a) in RCV(4). Therefore, ib; , is inserted
in LOG, (implying that Al; ,» € LOG, | ¢’ > a), it
remains to be shown that this is an initial insertion, i.e.,
l;,« had not existed iLOG; before.
We prove by contradiction. Assume thiaf, had existed
in LOG; before and was deleted. This could have hap-
pened only in the following ways, all of which lead to
contradiction:

— in RCV(4), when a messag@/” was delivered,
/902‘7(1 € Opgnr /\ (301‘7,1// € Opgnr | a’ > a). When
On» and LOG; were merged in RCV(4)1'S(q,
LOG,) is a" (> a). From Lemma 2, it follows that
currently?'S(:,LOG;) > a. This contradicts the cur-
rent nonexistence df ..

— in RCV(5), at an event whem; ,.Dests = () and
(3o | & > a). From Lemma 2, it follows that
currently 7S(:,LOG;) > a” > a. This contradicts
the current nonexistence &f,-.

Hence,l; , had not existed i.OG; before.

f

In all cases, the lemma holds. O
Lemma 5 is the counterpart of Lemma 4 and states that

for any path in the computation graph (corresponding to a

chain in the distributed computation) originating ataf,

the contents ob; ,.Dests or l; ,.Dests associated with the

edges of the path are monotonically nonincreasing along the

path.

cal dependency edge between the events in the computation

graph. Similarly, each set; ,.Dests in Oy, for a message
M is associated with the message dependency edge betwe
the send-delivery pair of events @ff in the computation
graph.

Lemma 5 For any path in the computation graph originat-
&1y at(i, a), the set®); ,.Dests or l; . Dests associated with
the edges of the path are monotonically nonincreasing along
the path.

105

Proof. From Lemma 4/; ,.Dests is monotonic nonincreas- M’ was the first message delivered iosuch thatd e
ing in LOG;, for any nodej. It remains to show that if 0;,q-Dests, whereo; , € Oy Therefore, whed!’ was
M;, is sent tok, wherek is any node, and delivered at delivered beforek, c), I; , was inserted ilLOG},, where
(k,c), then 1, ,.Dests just before §,b)" is a superset of d € l; q.Dests.

0i,q-Dests, whereo; , € Oy, ,, and thiso; ,.Dests is a
superset of [; ,. Dests just after &, c)".

In the base case when= j anda = b, o0, is inserted
in Oyp,, on delivery in RCV(3). In all other cases, from
SND(2) M; , will contain l; ,.Dests modified in a nonin-
creasing manner as , in OM - When; , gets delivered,
0;,o May be reduced in RCV(3) In RCV(4), there are three
pOSSIbIlItIeS

The only way the information & € M, ,.Dests” can
be deleted after it is inserted IhROG, is on the deliv-
ery of some message/, s, such that information ¢ €
M; q.Dests” is not contained inOyy, ,, ie., () d &
0i,q-Dests, whereo; , € Oy, ,, OF (ii) 04 & OMZ and
3 0iw € Omy s wherea’ > a. But then event(f) did
not propagate thls information on its outgoing edge in the
computation graph, which contradicts the definition/afd).
— liw € LOGy. In Step RCV(4)]; ,.Dests «— l; ,.Dests ~ Hence, M, ; cannot exist, and;, € LOGx, whered €

N 0i.a-Dests. l; o-Dests, just before g, c). O
- l; o € LOGy, and3l; ,» € LOGy, wherea’ > a. In Step

RCV(4),l; , is not added td.OG},, hencel; , ¢ LOG,. o))
— liw & LOGy, and 7l; . € LOG),, wherea’ > a. In Step ~ 5:2 Sufficiency of information

RCV(4), 05,0 is inserted intaLOG, in unmodified form. Theorem 3 shows that the algorithm satisfies the sufficiency

Subsequently, in procedure RCV, elements are never addqabrtion of the Propagation Constraints. Observe that Theo-
to l; o.Dests. The lemma follows. O rem 3 is a restatement of the sufficiency condition. In the
Lemma 6 deals with the existence of informatiah ¢ proof, we identify events with respect to informatiod &

M; .Dests” in the local log at any event in the causal future M, ,.Dests” such that this information propagates on all
of (i, a), which is the earliest event that does not propagatepaths from {, a) up to such events. Then we show that any
the information on some outgoing edge in the computationsuch event implies the existence of a fixed point df&
graph. M, ,.Dests” at the event or in its causal past. In Sect.5.3,
we show the liveness and safety of the algorithm using The-

Lemma 6 Consider any eventk, c), other than the event orem 3 and the Delivery Condition.

Deliveryq(M;), such that
Theorem 3 If information “d € M, ,.Dests” is not prop-
agated from(j, b), where(i,a) — (4, b), on some outgoing
edge in the computation graph, theither

— (i,a) — (k,c) and information ‘d € M, ,.Dests” is
not propagated fronfk, ¢) on at least one outgoing edges
in the computation graph, and

-V,)| (@,a) — (K,) — (k, c), information “d € — Deliveryy(M;..) — (4,b), or
M, o.Dests” is propagated from(k’, ¢’) on all outgoing -3 (ko) | (,a) — (k) — (G,b) N d €
edges in the computation graph. My, ..Dests)\ information “d € M; ,.Dests” is prop-
Then information ¢ € M; ,.Dests” exists in LOG), just agated from(k, c) to d.

before(k;, c). Proof. Consider any eventi(¢) that satisfies the following

Proof. We first show that for the two casels=i andk #4, constraints:

the information ¢ € M; ,.Dests” exists in LOGj, at some 1. (i,a) — (k,©) — (j,b) and information § €

event before X, c). M, o.Dests” is not propagated fromk(c) on at least

— k =1.In SND(4) at ¢, a), l; ., Whered € [; ,.Dests, is one outgm_ng edge in the computation graph, a?d
k=L n inLO(Gi. ta). L : 2. (. f) | Gya) —> (v, f) —> (k. c), information *d e

— k # i. We prove using contradiction. As, @) — (k,), ‘]\ﬂiv“'D.eSt’; is propagated fronr]];(, f) on all outgoing
at least one message sent at or causally afte) (must edges in the computation graph.
have been delivered tb before &, ¢). From our defini- Such an eventk(c¢) must exist by Lemma 5 because ini-
tion of (k, ¢), each such messagé’ must have contained tially d € [; ,.Dests, wherel; , € LOG; right after ¢, a),
d € 0; 4.Dests, whereo; , € Oy Without loss of gen- and the information & € M; ,.Dests” is propagated on
erality, assumé!’ is the first such message delivered to each/; , that was multicast. IDelivery,(M; ,) satisfies
k. It follows that!; , could not have existed iLOG} the constraints ork{ ¢) (this amounts to whethdpelivery,-

before delivery ofM’. (M;,q) — (4,0)), then the theorem stands proved. Other-
Let us assume thal € o; .Dests, whereo; ,€Oy, wise, the proof proceeds as follows.
and thiso, , was not inserted intd OG;, when M’ was Observe that at eventBeliveryy(M;), k # d, infor-

delivered. The only reason this could have happened isnation “d € M; ,.Dests” is received inOy,, , and stored
that at the time of delivery ofM’, TS(i,LOGy) = da’ in the local logs, i.e., propagated on all outgoing edges of
(> a) (see RCV(4)). This implies thdt ,, must have the computation graph from evefleliveryy(M;), k 7 d.
already been inserted ihOG) when a messaga/” Hence, such delivery events do not satisfy the first constraint.
was delivered earlier. Clearlyi, @) — Send(M") — (Observation A)

(k,c) and from the definition ofK, c), d € 0; 4.Dests, Observe from RCV(4) that no other event
whereo; , € O This contradicts the assumption that Delivery (M), whereM # M, ., will satisfy the constraints

106

on (k,c) because the only way a node does not propagate— Send(M") — Send(M;), and

information ‘d € M; ,.Dests” from event Delivery (M)
along the outgoing edges in the computation graph is if

— the information is not contained iROG), and not in
O, Or

— the information is contained iLOG), but not in Oy,
and3 o; .+ € Oy, Wherea’ > a, or

— the information is contained i®,, but not in LOG},
and3l; ,» € LOGy, wherea' > a.

For all three cases, the second constraint byr)(is not
satisfied by event®elivery, (M), whereM # M, ,. (Ob-
servation B)

From Observations (B) and (A), iDeliveryq(M;,q)
does not satisfy the constraints oh,), then §,c) must
be an eventSend(My). It remains to show thatl €
My ..Dests and “d € M; ,.Dests” is propagated orDyy, .
to d.

From Lemma 6, informationd € [; ,. Dests” must have
existed inLOG}, just before g, c). We have the following:
If d & My, ..Dests, then from SND(2) it follows that the in-
formation ‘d € [; ,.Dests” is sent on all outgoing edges in
the computation graph frorfiend(Mj), thus violating our
assumption aboutk(c). Therefore,d € M, ..Dests. Ob-
serve from SND(2) thab/;, . that is sent tal € (I; . Dests
() My, ..Dests) does containd in o; ,.Dests, whereo; , €
O, .. The theorem follows. O

Corollary 1 The information ‘@ € M, ,.Dests” travels to
the fixed points of the information.

Proof. The information implicitly reaches FP1, the event

Deliveryq(M; o), whenM; , is delivered tod.

We prove that the information reaches each event FP
using contradiction. Assume that the information does no
reach Send(M;;), an FP2 event. Let this event be the
eventSend(M;;) in Theorem 3. From the theorem, there

must existSend(My,), where ¢, a) — (k,c) — (4, b),
that sends the information t@. As (j,b) is an FP2 event,
(k,c)—~ (4, b). Also, (&, c) # (j,b) because the information
does reachk(c). Hence, the eventk(c) does not exist, a
contradiction. The result follows. O

5.3 Correctness of the algorithm

t

— d € M".Dests and Delivered (M) at the timeM;
is delivered.

This assumption states tha&tend()M; ,) is such that the
length of the longest path (defined by functi§den,) from
someSend(M") to Send(M; ;), whereM' has not been de-
livered tod before M ;, is delivered, is least when!” is
Mzﬂa-

‘From Assumption A and the Delivery Condition, we
must have thatl ¢ o, ,.Dests, whereo; , € Oy, ,, OF

J,b?

0i.a & Onm,, ON Mj, sent tod. By Theorem 3, therd
(k,¢), (i,a) — (k,¢) — (j,b), such that (i) &,¢) =
Deliveryq(M; o), or (i) d € My, ..Dests A\ d € 0; q.Dests,
whereo; , € Oy, . sent tod. Case (i) contradicts Assump-
tion A. Therefore, we consider (ii) only. From Assumption
B on M, ,, any suchM} . must have been delivered tb
at the timel/;; is delivered becaus§_leng(Send(M; q),
Send(M;p)) > S_leng(Send(My,.), Send(M; p)). But such
an M, . could have been delivered tbonly after M; , is
delivered tod because of the Delivery Condition that is
enforced by RCV(1) which is executed whé#, . is deliv-
ered. This contradicts Assumption A thaf; , has not been
delivered at the timé\/; ;, is delivered. O

Theorem 5 (Liveness) Each message is eventually deliv-
ered to all its destinations.

Proof. The proof is by contradiction. Message delivery is re-
liable and message transmission time is arbitrary but finite.
Let there exist)M;;, and somed such thatd € M ;. Dests

and every message sent causally befgré)(to d is eventu-
ally delivered tod but M ; is never delivered tal. Oy, ,

snay contain information only about messages sent in the

causal past ofj(b). Eventual delivery ofM/; ; is prevented
only by the permanent nondelivery of those messages iden-
tified in Oy, , which haved as a destination; however, note
that M; ;, is such that all such messages are eventually de-
livered tod. Therefore,M;; is delivered. A contradiction.

]

6 Optimality of the algorithm
6.1 Proof of optimality - necessary conditions for CO

We now show that the algorithm is optimal in both the con-

We prove the correctness of the algorithm by proving itstrol information overhead in messages as well as in local logs
liveness and safety. Proving the safety entails showing thaif? the sense that redundant information (Definition 5) is not

information propagated as per Theorem 3 is used correctigarried in messages or stored at nodes. The proof entails
to regulate message delivery to ensure CO. Proving livenesshowing that the algorithm satisfies the necessary portion

entails showing that each message is eventually delivered.of the Propagation Constraints that constitutes the condition
for optimality. The proof first identifies fixed points of infor-

mation ‘d € M, ,.Dests” and shows that (i) all messages
sent at or in the future of the fixed points do not carry this
information beyond the fixed points, and (ii) the local logs
at any events in the causal future of the fixed points do not
store this information. Thus, the “only up to” part of the

Theorem 4 (Safety) d € M; ,.Dests \ d € Mjp.Dests
N Send(M;) — Send(M,;) A\ Deliveredqs(M;,) =
Deliveredq(M; 4).

Proof. We prove the theorem by contradiction.

(Assumption A:) Let M;;, be delivered tod without
M, ., having been delivered.

(Assumption B:) Without loss of generality, assume
that M; , is the message such thétleny(Send(M; ,),Se-
nd(M;) < S-lenqg(Send(M"),Send(M;;)), VM"|

Propagation Constraints is satisfied.

Theorem 6 Information “d € M, o.Dests” is not propa-
gated on any outgoing edge in the computation graph from
any even(jy, b) if either

107

— Deliveryq(M;) — (4,0), or

-3k, o) | (G,a) — (k,e) — (4, b) \ d € My, .. Dests.
If such a(k, ¢) does not exist anf}j, b) is a multicast send
event such thatl € M;;.Dests, then the information
“d e M, q.Dests” is sent only on the message i@

If the send events dtngth x andz+1 on the path are on
different nodes, we use the following reasoning. Lietf{)
be the send event &ngth «, and letM;, ; be delivered at
(j,’) along the path under consideration from a fixed point
to (4, b). Only the following possibilities exist assuming the
induction hypothesis folength x.

1. d ¢ 0;4.Dests, whereo; , € Oy,
scenarios exist at just before (,).

. The followin
Proof. From Corollary 1, information d € M, ,.Dests” s g

traverses up to the fixed points. We prove the result by in-

duction on thelength of events §,b) on any path (defined
by functioniength, see Sect. 2.1) from a fixed point FP1 or
FP2 of ‘d € M, ,.Dests”.

Induction hypothesis: An event (,b) at length = on a
given path from a fixed point of informationd" €
M; o.Dests” does not propagated' e M, ,.Dests” on its
outgoing edges in the computation graph.

Event (j,0) is at length =0: Two cases exist based on
whether the path begins at FP1 or FP2.

(Ca= | — Paths starting from FP1): Event §) can be any
event from FP1, which is the evehteliveryq(M; ,), up to
the first send event following FP1. Thuss= d.

When M, ,, is delivered tod (=j) at FP1,d is deleted
from o; 4. Dests whereo; , € Oy, (RCV(3)) and thus
when/; , is inserted mLOG], d g{ 17 a-Dests (RCV(4)).
From Lemma 4]; o.Dests is nonincreasing inLOG;. So
from SND(2), it follows that nodg never sends information
“d € M, ,.Dests” from event (j,b) on any outgoing edge
in the computation graph.

(Case Il — Paths starting from FP2): Everit#) can only
be the FP2 event becausg) is atlength 0 and the FP2
event is a send event. Thug, §) is a fixed point FP2 of d

€ M; q.Dests”.

During the sending of\/; ;, in SND(2),d ¢ 0, ,.Dests,
whereo; , € Oy, , sent to any node except node How-
ever, in this exception case, whét, ; is delivered to node
d, in RCV(3) and subsequent processiigg¢ o; ,.Dests,

whereo; , € Oy, , because it has served its purpose of

enforcing the Delivery Condition; this is equivalent to the
FP2 event not sendingd“e M, ,.Dests” to d, as far as
optimality is concerned. Moreover, in SND(3),is deleted
from l; o.Dests, wherel; , € LOG;. It follows that node
event @, b) does not send informationd“c M; ,.Dests”

. Oi,a ¢ O]\,{h

a) l;os € LOG,. Step RCV(4) ensures thad ¢
l;.a-Dests after the delivery oM}, ; at (j,b'). From
Lemma 4, it follows that/; ,.Dests, wherel; , €
LOG,, is monotonic nonincreasing. Hence, ¢
l; o.Dests, wherel; , € LOG;, at any time after
(J, v).

b) l;.o & LOG;. Let TS(i,LOG,) = a’. We now have
the following:

—If ' > a, theno,;, is not added intaLOG;.
From Lemma 2 and RCV(4), it follows that ,
is not added intd.OG, at any time after {, v').

— Otherwise,a’ < a. 0;, is inserted iINLOG; in
RCV(4). From Lemma 4¢ will never belong
to l; 4. Dests, wherel; , € LOG;, at any time
after (j,).

;- It follows from the induction hypothesis,

Lemmas 3 and 5, RCV(4), and RCV(5) thas(:,LOG},)

> a at event f, f) and T'S(i,0, ;) = T'S(i,LOG).

The following scenarios exist agtjust before (, t).

a) l;,o € LOG;. At (j,b'), from RCV(4), it follows that
li.o is deleted becausgéS(i,Oyy, ;) > a. The value
of T'S(i,LOG;) gets updated to the maximum of
TS(i,LOG;) andT'S(i,0xr, ,) in RCV(4). RCV(5)
does not alter this value which is greater thanit
follows from Lemma 2 and RCV(4) that; , is not
added intoLOG; after (j,0').

b) ;e ¢ LOG;. At (5,b), the value ofT'S(i,LOG,)
gets updated to the maximum @fS(i,LOG;) and
TS(i,0u, ;) In RCV(4). RCV(5) does not alter this
value which is greater than When delivery of\}, ¢
at (j,b') is complete,7'S(i,LOG;) > a. It follows
from Lemma 2 and RCV(4) that; , is not added
into LOG, after (j, V).

from (j, b) on its outgoing edges in the computation graph. In each of the above scenarios 1a, 1b, 2a, and 2b, once the
Event (j,0) is at length = x,x > 0: Assume that the induc- delivery of M, ; at (j,0') is completed, informationd' €
tion hypothesis holds, i.e., an event) at length x on M; o.Dests” is never added intd.OG;. In particular, for
the given path from a fixed point of informationd “e all delivery events atength x + 1 along the path at nodg
M, ..Dests” does not propagate this information on its out- (such events lie betweern, ¢') and (j, b)), information ‘d €
going edges in the computation graph. M; o.Dests” does not exist inLOG; after the event. From
Event (j,b) is at length =z + 1,2 > 0 : Let (j,b) be the procedure SND, event(b) will not send information & €
send event atength = + 1 on the path. If {,b) does not M, ,.Dests” on any of its outgoing edges in the computation
exist, there are no further send events on the path, implyingraph.
there are no events on the path@tgth greater than: +1; Thus, in all cases, an event in the causal future of a
the proof is done. fixed point of ‘d € M, ,.Dests” does not propagate infor-

If the send events dength andx + 1 on the path are mation ‘d € M; ,.Dests” on any of its outgoing edges in
on the same node, then from the induction hypothesis anthe computation graph. The theorem follows. O
Lemma 4, it follows that (i) a message sent at evgni)(at The proof also follows from Corollary 1, Lemma 5, and
length =+ 1 on the given path does not contain information the fact that redundant information is deleted at the fixed
“d € M;4.Dests” in Oy, and (ii) this information does points (from the argument in theength = 0 case of the
not exist in LOG; after (j,b). For all delivery events at proof of Theorem 6).
length x + 1 on this path, this information does not exist in Lemma 7 states that for every other nofeat most
LOG; after the delivery event. one entryl; , in the local log has itdests field asf, and

108

the timestamp of the message it represents is greater thare delivered or is not guaranteed to be delivered in CO to
the timestamps of the messages sent bg represented by all its destinations, there is an entoy, in Os. Let 0 4,,
other entrieg; .. in the local log. Oiytyy +o Oit,, be the entries ir0,,; corresponding to such
Ny _ _ messages sent by nodelet $,=o; ;,.Dests | 0;1,.Dests
;?m,n]eaZO%YJ;Ll;“&?QStS =0, wherel;, € LOG; = U ... U i, -Dests. &; denotes the destinations to which
(Lﬁ(tlewise forg) ' c On) the messages from nodere not yet kn_own to be delivered
Ha ' or are not guaranteed to be delivered in CO. From Lemma 1
Proof. From SND(5) and RCV(5), the lemma is seen to hold and procedure SND, the number of entriesbinas well as
for log entires after each send and delivery event. Fronthe number of corresponding entries in any log are bounded
SND(2), the lemma is seen to hold for entriesQn;. O by n; i.e., there is at most one entry for each other node.
0io May be transmitted or stored even ¥ d ¢ (Observe that at any node, if sorhg.Dests = (), thenM; ,
M; o.Dests, M;, is known to be delivered or is guaran- is known to be delivered or guaranteed to be delivered in
teed to be delivered in CO — however,,. Dests must be CO to at least one destination, sdy From Lemma 7 and
§ and A 0; . | @’ > a. The sole purpose of transmitting or the correctness of the algorithm (Theorem A)/; .- | d €
storingo; , is to maintain the implicit greatest lower bound li,«-Dests. Hence,|®;| < n in this case.)

on timestamps of messages from nadéat have been de- Letnd; = [@;]. (nd;=0 if there is no entry for a message
livered or are guaranteed to be delivered in CO to all theirffrom nodej.) Clearly, O<nd;<n, 1<i<n.
destinations. The overhead in terms of size of control information in

. . : , messages is equal to
Theorem 7 The algorithm in Sect. 4.3 is optimal.

Proof. From Theorem 6, informationd'c M; , .Dests” is _ lel i . _
not stored in logs or sent in any messages sent in the causa'® above expression gives the number of independent units
future of its fixed points, with the exception that a fixed Of information of type @ € M; ,.Dests” that are required
point FP2 propagates the information onlydoHence, in- by the algorithm. The data structures used in the a_Ig_orlthm
formation is propagated as per the Propagation Constraintdvere selected for power of expression, not for efficiency,
In addition, no spurious information other than what is spec-2nd could be optimized in an implementation. For example,

ified by the Propagation Constraints is stored or transmittedinstéad of transmitting multiple; .. entries, where the iden-
Therefore, the algorithm is optimal. o tifier ¢ is replicated, an implementation could store a single

Thus, the proposed algorithm is optimal with respectinstance of identifiei, and then associate the various values

to the Propagation Constraints_ Enforcement Of “no trans_of * and theil’ aSSO?iateDeStS fle|dS W|th |t Alte-rnately, a
mission of duplicate information” is a generic constraint SParse representation of anx n array of typetimestamp
common to many distributed algorithms that assume FIFQFould be used. The following encoding can further reduce
communication. Therefore, it is of secondary concern to outhe overhead. In an entry; ,€0O), carried in a message
problem. It requires some additional data structures at eacf!. field Dests can be substituted by’ ROC' — Dests if
process to keep track of what information has been sent t¢”ROC — Dests| < |Dests|. (PROC'is the set of node
what processes. Moreover, it may require additional Compuldentlflers.) ThIS' optimization ensures the following l_)Ol_Jnd:
tation at each process to update the data structures and §=ndi<n/2, 1<i<n.We do not discuss any such optimiza-
process the control information received in messages. Thudions because they are orthogonal to the problem of deter-

there is a trade-off which is another reason why we do nofMining the bare minimum pieces of information for enforc-
elaborate on this constraint in the paper. ing CO, which is the problem addressed in this paper.

The upper bound on the overhead of control information
in messages and in local logsid. However, in a real-life
6.2 Performance computation, we expect that the size of these overheads will
be much smaller on the average, and in every case, it is
We consider the control information overhead and the pro-always the least possible.
cessing overhead. The control information overhead is im-
portant because although networks are becoming faster and
provide higher bandwidths, faster computers and paralleProcessing overhead
processing technology are likely to make the network a bot-) .
tleneck. Moreover, the demand for computer networks isThe processing overhead of procedure RC\Oig%). The
rising at a faster rate than the communication bandwidthProcessing overhead of procedure SND($n°) because
of computer networks; therefore, the volume of information SND(2) hasO(r®) overhead, even though other steps in SND

pushed through computer networks will always be an im-have O(n?) or better overhead. In Step SND(2), the inner
portant performance concern. for all loop hasO(n?) overhead in the worst case because it

has to process? entries inO,; in the worst case. The dis-

cussion on programming techniques in Sect. 4.5 shows how
Control information overhead to reduce the overhead. Note from Lemma 1 that the number

of entries inO,, is likely to be much smaller on the average.
We compute the size of the control information sentag Furthermore, note that the outer loop in SND(2) can be exe-
in a message\/ and stored in local logs. For every mes- cuted in parallel. Therefore, the processing time overhead of
sage sent in the past &fend(M) that is not yet known to the algorithm as presented in Sect. 4.3 is effectiv@(y.?).

109

In practice, the algorithm is implemented using hard- 7.1 Special cases
ware multicast, as noted in Sect. 4.5. To adapt the algorithm
to the use of hardware multicast as explained in Sect. 4.5The complexity of the CO problem may be reduced by mak-
the logic in step SND(2) is performed by the recipients ofing simplifying assumptions and considering special cases
the multicast and the outer loop of SND(2) gets distributedthat fall outside the scope of Problem 1. In this section, we
among the recipients’ RCV code. Therefore, SND(2) hasdiscuss some such special cases.
O(n?) complexity, SND hasO(n?) complexity, and RCV

also hasO(n?) complexity, comparable to that of existing
algorithms. Broadcast case

When each message is broadcast to all other nodes, the

Dests field of the entries carried in messages and stored
7 The complexity of the CO problem in local logs always contains the ids of all nodes and thus,
can be eliminated. Thus, the control information overhead in
messages and in the logs needs to contain Oxfhy) entries
t any time — one entrylock; that uniquely identifies the
test broadcast of each noglehat occurred atlock;.

Observe that at any nodethe values otlock; ordered

by ‘precedes locally’ and the values @f[i] ordered by
‘precedes locally’, wherd; is the vector timestamp of an
Proof. For each fource, destination) pair, there is a latest event [7,15], are isomorphic. Therefore, maintaining an en-
message that has been sent. In general, there’agich try clock; for the latest broadcast by each nodes part of
instances. We prove by contradiction that if all these the control information is equivalent to maintaining a vector
instances are not included in the control information in mes-—lock and vector timestamps as part of the control informa-
sages and message logs, then CO over causal dependengh. This latter approach that uses vector clocks to enforce

chains of Iength 3 is violated. CO was first Suggested in [5]
Let M,,+,, .Dests={z,d}. Suppose aftetM,,,, has

been delivered ta;, x unicasts a message to nogeat time
ty. Let “d € M,,,, .Dests” be the information instance Serialized broadcast case

that is not contained in the control information. ThérZ

Om.t,,-Dests, whereop, ;€ Oy, , . After M, ;. has been If broadcasts are serialized (by using some mutual exclusion
delivered toy, d & l,,,,.Dests, wherel,,; € LOG,, algorithm), then it is sufficient to track (sender, timestamp)

becaused ¢ op, ,,.Dests, whereo,, ;, € Oy, , . Now for the most recent broadcast in the system. Thus the over-
if y unicasts)M, ;, to noded, delivery of M, , to node head of control information in messages and in local logs is
d will not wait for the delivery of M,, ., becaused ¢ one entry only.

Om t,,-Dests, whereoy, ;. € OM%W. This results in a CO

violation for the dependency chain of length @ to z, « o))

to y, y to d). As nodesd andm can be any nodes in the Serialized multicasts to arbitrary process groups

system, in general, alt? identifiers must be transmitted on
any message to enforce CO.

Theorem 8 For the system model and problem description
of Sect. 2, enforcing CO over causal dependency chains q
length greater than two ha€(n?) overhead of control infor-
mation in messages [2].

[If multicast Sendsto arbitrary and dynamically changing
Corollary 2 shows that enforcing CO over chains of Process groups are serialized (by using some mutual exclu-

length 3 has at least as much overhead as enforcing célon algorithm), then it is sufficient to track only the latest
for chains of arbitrary length. multicast on a per destination basis. Thus, for each ode

suffices to store only one entry (sender, timestamp) that gives

Corollary 2 For th " del and oroblem d i the sender identifier and the timestamp of the most recent
orollary or (ne system model and probiém GESCrIPUON ga 4, that noded. The overhead of control information is
of Sect. 2, the space complexity of the overhead of contro

inf ton i din local | N ; CO i entries. If the current multicast hagdestinations, then af-
'B(%g)na lon In messages and In focal logs to enforce Ster sending the multicast and on delivery, the corresponding

s old entries in the local logs are replaced bntries for
the s new dependencies. Thus, at magsender, timestamp)

Proof. Follows from Theorem 8. _ U pairs are required, resulting if(n) space overhead.
Although, in general, the complexity of the overhead

of control information in messages and in local storage is

£2(n?) under the framework of Problem 1 (Sect. 2.2), redun-Unicasts with synchronous communication

dant information is carried in messages and stored at nodes

by existing algorithms. Our algorithm employs techniquesUnicasts with synchronous communication automatically
to eliminate the flow of redundant information. The infor- guarantee CO without any overhead of control informa-
mation stored is only about “to be delivered” messages. Theion [6]. Let Send(M) and Send(M') be two consecutive
key of the algorithm is to use a representation to store thesends on any causal chain without any intervening sends.
information such that the information on already delivered Send(M’) can occur only aftetDelivery(M) because of
messages and messages guaranteed to be delivered in CGsigichronous communication. It follows that CO can never
derived from the “to be delivered” information ! be violated.

110

Unicasts with synchronization at transport layer messages. We do not consider such protocols because they
are asymmetric. However, to make a fair comparison, the

The algorithm by Mattern andifafrocken [16], outlined in use of our proposed algorithm for multicasts at any higher

Sect. 1, provides CO for unicasts by using a built-in syn-level in the hierarchy gives better efficiency than the use of

chronization provided by transport layer acknowledgementgraditional protocols for multicasts at those higher levels in

between the sender’s output buffer and the receiver’s inputhe hierarchy.

buffer. Let Send(M) and Send(M’) be two consecutive

sends on any causal chain without any intervening sends.

M is placed in the receiver’s input FIFO buffer befaké Enforcing CO given non-FIFO channels

is sent from the sender’s output FIFO buffer. It follows that

Delivery(M) — Send(M') as the computation is equiv- The algorithm was presented assuming FIFO channels be-

alent to a synchronous computation. Thus, CO is never vicause most known communication networks provide FIFO

olated and there is no overhead of control information insupport. The algorithm can be easily converted into one for

messages in the algorithm. non-FIFO channels by requiring sequence numbers in mes-
sages on a per channel basis, and a vector at each node
to represent the sequence number of the latest in-sequence

Enforcing CO for dependency chains of length two message delivered to it from every other node.

Lemma 8 For the system model and problem description of
Sect. 2, CO over causal dependency chains of length two cad Conclusions
be enforced withO(n) overhead of control information in
messages [2]. Asynchronous execution of processes and unpredictable
communication delays create nondeterminism in distributed
Proof. When sending a message from nad®e nodej, systems that complicates the design, verification, and analy-
i sends a message identifier for (1) the latest message it hags of distributed programs. The concept of “causal message
sent to each other node (dentifiers) and for (2) the latest ordering” was introduced to simplify the design and develop-
message from each other nodejtdhat it is aware of ¢ ment of distributed applications while avoiding the long la-
identifiers). When the message is delivered aj updates tencies and loss of parallelism inherent in synchronous com-
its information with (1) and (2). Supposg now sends a munication and total ordering, and while retaining much of
message to a randomly chosen nédg has the information the parallelism of asynchronous communication. Causal or-
of the last message sent by every node, includint k. dering provides a built-in message synchronization, reduces
When j sends information about the latest message fromhe nondeterminism in a distributed computation, and is of
each other node to node(includingi to k), k can enforce considerable interest to the design of distributed systems.
CO for paths of length two. O The concept of causal ordering is useful in several do-
mains such as updates of replicated data, global state col-
lection, distributed shared memory, teleconferencing, mul-
Enforcing CO for dependency chains of lengt timedia systems, and fair resource allocation. Recently, the
problem of causal ordering has attracted much attention and
Theorem 8 showed that enforcing CO over chains of lengtha number of algorithms have been proposed for causal order-
3 hasf2(n?) overhead of control information in messages. ing in distributed systems under a variety of assumptions re-
garding the underlying communication medium and process
communication patterns. The overheads of control informa-
Asymmetric/hierarchical organization tion in messages and in process logs for the algorithms in
the framework of Problem 1 is @f) or higher, which limits
If we allow asymmetric protocols to enforce CO, we get atheir scalability, preventing them from meeting the growing
family of algorithms. At one extreme, we get a centralized al-demands of future computing environments.
gorithm wherein a process sends its message to be multicast In this paper, we addressed the following fundamental
to a centralized process, which serially multicasts all suchquestion regarding the efficiency of CO implementations in
requests. At the other extreme, there is the completely hierarasynchronous distributed systems under the system model
chical structure to address the scalability problem. Processesf Sect. 2.1: “What is the minimum amount of information
are grouped together based on having a common process tegarding messages sent in the causal past that is neces-
represent the processes at the higher level in the hierarchgary to be propagated and stored to enforce causal ordering
A process that wishes to multicast a message sends it to itsy an algorithm under the following framework: The proto-
designated representative at a higher level in the hierarchycol is nonblocking, completely decentralized, deterministic,
The message gets broadcast/multicast between representatianed does not usa priori knowledge about the topology or
processes at the higher level in the hierarchy. When such eommunication pattern?” We answered the question by for-
process receives a broadcast, it multicasts it to the set afulating necessary and necessity conditions on the informa-
processes for which it is the representative process. Thision required for enforcing causal ordering. The necessity
logic can be extended to a multi-level hierarchy. Such pro-conditions provide the optimality conditions for enforcing
tocols tend to cut down on the message complexity by usingausal ordering in terms of the size of control information
smallern, at the cost of additional delay in the delivery of in messages and in local logs. The necessary and sufficient

conditions were used to formulate two Propagation Con- 6.
straints that govern the propagation of CO related informa-
tion through the network.

We used the developed characterization and framework””
to design an algorithm for enforcing causal message order-g
ing. The algorithm allows a process to multicast to arbitrary
and dynamically changing process groups. We proved theg.
correctness of the algorithm and showed that it satisfies the
necessity conditions proving that it is optimal in the size
of control information in a message and in the size of lo- 10.
cal storage. The algorithm achieves optimality by using the
Propagation Constraints to curtail the propagation of redun-
dant information at the earliest instants and by employing
an encoding scheme to represent and pass in messages ofly
the necessary causal dependency information. The encod-
ing scheme allows deduction of implicit information about
already delivered messages from the explicit information
about messages yet to be delivered in order to satisfy causas,
ordering. We showed that the space complexity of causal
message ordering for any algorithm under the framework of
Problem 1 isf2(n?). Although the upper bound on space
complexity of the overhead of control information in our al-
gorithm isO(n?), we expect that the overhead is likely to be
much smaller on the average, and in every case, it is alwayss,
the least possible. We also discussed how the algorithm can
be adapted to various special situations outside the scope
of Problem 1. In the face of network failures, techniques!6:
from [25] can be adapted for log management to maintain
causal consistency.

Modeling nonatomic events is useful for event abstrac-17.
tion in reasoning about related groups of events [12, 13].
A nonatomic event is a collection of more basic atomic
events. A future research problem is to optimally enforcel®:
causal ordering only among messages that are sent in differ-
ent nonatomic events. 10.

. 2
AcknowledgmentsThe authors thank the anonymous referees for their very
useful comments on an earlier version of the paper. 21

References 22.

. Alagar A, Venkatesan S: An Optimal Algorithm for Distributed Snap-
shots with Causal Message Ordering, Inf Process Lett 50: 311-316
(1994)

. Adelstein F, Singhal M: Real-Time Causal Message Ordering in Mul-
timedia Systems, 15th IEEE Intl. Conf. on Distributed Computing Sys-
tems, pp 36-43, May 1995

. Ahamad M, Hutto P, John R: Implementing and Programming Causal
Distributed Memory, 11th IEEE Intl. Conf. on Distributed Computing
Systems, pp 274-281, 1991

. Birman K, Joseph T: Reliable Communication in Presence of Failures,
ACM TOCS 5(1): 47-76 (1987)

. Birman K, Schiper A, Stephenson P: Lightweight Causal and Atomic
Group Multicast, ACM TOCS 9(3): 272-314 (1991)

24.

111

Charron-Bost B, Tel G, Mattern F: Synchronous, Asynchronous, and
Causally Ordered Communication, Distrib Comput 9(4): 173-191
(1996)

Fidge CA: Timestamps in Message-Passing Systems That Preserve Par-
tial Ordering, Aust Comput Sci Commun 10(1): 56—66 (1988)

Joseph T, Birman K: Low Cost Management of Replicated Data in
Fault-Tolerant Distributed Systems, ACM TOCS 4(1): 54-70 (1986)
Kim J, Kim C: An Efficient Causal Ordering Protocol in Group Com-
munications, 10th Int. Conf. on Information Networking, pp 121-128,
January 1996

Kshemkalyani A, Singhal M: Necessary and Sufficient Conditions on
the Information for Causal Message Ordering and Their Optimal Imple-
mentation, TR29.2040, IBM, July 1995 (Also available as Tech. Report
CISRC-7/95-TR33, July 1995, The Ohio State University, ftp.cis.ohio-
state.edu/pub/tech-report/1995/TR33.ps.gz.)

Kshemkalyani A, Singhal M: An Optimal Algorithm for Generalized
Causal Message Ordering, 15th ACM Symp. on Principles of Dis-
tributed Computing, pp 87, May 1996

12. Kshemkalyani A: Temporal Interactions of Intervals in Distributed Sys-

tems, J Comput Syst Sci 52(2): 287-298 (1996)

Kshemkalyani A: Framework for Viewing Atomic Events in Dis-
tributed Computations, Theor Comput Sci 196(1-2): 45-70 (1998)
(Abstract appears in Proc. EuroPar'96, L. Bouge, P. Fraigniaud, A.
Mignotte, Y. Robert (eds.) LNCS 1123, pp 495-505, Berlin Heidel-
berg New York: Springer 1996)

14. Lamport L: Time, Clocks, and the Ordering of Events in a Distributed

System, Communications of the ACRIL(7) 558-565 (1978)

Mattern F: Virtual Time and Global States of Distributed Systems,
Parallel and Distributed Algorithms, pp 215-226, Amsterdam: North-
Holland 1989

Mattern F, Enfrocken S: A Nonblocking Lightweight Implementa-
tion of Causal Order Message Delivery, In: KP Birman, F Mattern, A
Schiper (eds) Theory and Practice in Distributed Systems, LNCS 938,
pp 197-213, Berlin Heidelberg New York: Springer 1995

Mostefaoui A, Raynal, M: Causal Multicasts in Overlapping Groups:
Towards a Low Cost Approach, IEEE Workshop on Future Trends of
Distributed Computer Systems, pp 136-142, September 1993
Peterson LL, Buchholz NC, Schlichting RD: Preserving and Using
Context Information in Interprocess Communication, ACM TOCS 7:
217-246 (1989)

Ravindran K, Prasad B: Communication Structures and Paradigms for
Distributed Conferencing Applications, 12th IEEE Int. Conf. on Dis-
tributed Computing Systems, May 1992

0. Raynal M, Schiper A, Toueg S: The Causal Ordering Abstraction and

a Simple Way to Implement It, Inf Process Lett 39(6): 343—-350 (1991)
Rodrigues L, Verissimo P: Causal Separators for Large-Scale Multi-
cast Communication, 15th IEEE Int. Conf. on Distributed Computing

Systems, pp 83-91, May 1995

Schiper A, Eggli J, Sandoz A: A New Algorithm to Implement Causal

Ordering, In: J-C Bermond, M Raynal (eds) Proc. 3rd Int. Workshop

on Distributed Algorithms, LNCS 392, pp 219-232, Berlin Heidelberg

New York: Springer 1989

23. Schwarz R, Mattern F: Detecting Causal Relations in Distributed Com-

puting: in Search of the Holy Grail, Distrib Comput 7(3): 149-174
(1994)

Singhal M, Kshemkalyani AD: An Efficient Implementation of Vector
Clocks, Inf Process Lett 43: 47-53 (1992)

25. Wuu G, Bernstein A: Efficient Solutions to the Replicated Log and

Dictionary Problems, 3rd ACM SIGACT-SIGOPS Symp. on Principles
of Distributed Computing, pp 233-242, Vancouver, Canada, August
1984

