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Summary. This paper formulates necessary and sufficient
conditions on the information required for enforcing causal
ordering in a distributed system with asynchronous com-
munication. The paper then presents an algorithm for en-
forcing causal message ordering. The algorithm allows a
process to multicast to arbitrary and dynamically changing
process groups. We show that the algorithm is optimal in
the space complexity of the overhead of control information
in both messages and message logs. The algorithm achieves
optimality by transmitting the bare minimum causal depen-
dency information specified by the necessity conditions, and
using an encoding scheme to represent and transmit this in-
formation. We show that, in general, the space complexity
of causal message ordering in an asynchronous system is
Ω(n2), wheren is the number of nodes in the system. Al-
though the upper bound on space complexity of the overhead
of control information in the algorithm isO(n2), the over-
head is likely to be much smaller on the average, and is
always the least possible.
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1 Background and previous work

A distributed system consists of a collection of geograph-
ically dispersed autonomous sites connected by a commu-
nication network. The sites do not share any memory and
communicate solely by message passing. Message propaga-
tion delay is finite but unpredictable, and between a pair of
sites, messages may be delivered out of order. There is no
common physical clock.

The execution of a process at a site is modeled by three
types of events, namely, message send, message delivery1,

? The results of this paper appear in [10] and a brief announcement of
the optimal implementation of the results appears in [11].
Correspondence to:A.D. Kshemkalyani

1 It is important to distinguish between the arrival of a message and
its delivery. The arrival of a message signifies that the communication

and internal events. An internal event represents a local com-
putation at the process, whereas message send and delivery
events establish cause and effect relationships among the
processes. The cause and effect relationship between the
events of a distributed execution is captured by thehap-
pened beforeor causalityrelation (−→) [14] which defines
a partial order on the events.

There exist several paradigms for ordered delivery of
messages in a distributed system (see Fig. 1). Synchronous
communication between processes, that tantamounts to in-
stantaneous message delivery, simplifies the design, verifi-
cation, and analysis of distributed applications. However, it
results in a loss in concurrency within the distributed ap-
plication because each message exchange requires a hand-
shake between the sender and the receiver. FIFO and non-
FIFO communication on each channel are asynchronous and
provide much more concurrency to the distributed appli-
cation, but the asynchronous execution of processes and
unpredictable communication delays create nondeterminism
in distributed systems that complicates the design, verifica-
tion, and analysis of distributed applications. To simplify the
design and development of distributed applications, while
retaining much of the concurrency provided by the asyn-
chronous communication, the idea ofcausal message order-
ing (CO) was introduced by Birman and Joseph [4]. Causal
message ordering guarantees that if the send events for two
messages are ordered by causality and the messages have a
common destination, then the messages are delivered to that
destination in the causal order of their send events. In Fig. 1,
messageM3 violates causal ordering but messageM4 does
not. Birman and Joseph defined several group communi-
cation primitives, of which ABCAST is relevant to causal
ordering [4]. ABCAST guarantees that for any two mul-
ticasts, all common destinations see the two multicasts in
some common order, and this order need not be CO even if
the multicast send events are related by causality. ABCAST
is weaker than synchronous communication, and does not of-
fer the full concurrency of FIFO communication. ABCAST
provides a total ordering of messages, and is not quite com-

network has placed the message in the buffer of the receiving process. The
delivery of a message means that the process has taken up the message for
processing.
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Fig. 1. Message ordering paradigms

parable to CO. The total ordering property of ABCAST is
useful for a different and smaller range of applications than
the causal ordering property.

Causal ordering provides a built-in message synchroniza-
tion and reduces the nondeterminism in a distributed compu-
tation. Causal ordering provides an equivalent of the FIFO
channel property at a global (communication network) level
where sequential send of messages along a communication
channel is replaced by causally related sends of messages go-
ing to the same destination over a communication network.
Note that the causal ordering property is strictly stronger than
the FIFO property. Also note that synchronous communica-
tion trivially guarantees CO without any overhead. A formal
study of the relation between synchronous communication,
causal ordering, and asynchronous communication – FIFO
and non-FIFO, is presented in [6]. The concept of causal or-
dering is of considerable interest to the design of distributed
systems and finds applications in several domains such as
updates of replicated data [8], global state collection [1],
distributed shared memory [3], teleconferencing [19], mul-
timedia systems [2], and fair resource allocation [14].

In a system with FIFO or non-FIFO communication, en-
forcing causal message ordering requires appending some
control information with each message to enforce the causal
order. The recipient process of a message uses this informa-
tion to determine if there are undelivered messages which
were sent causally before this message was sent, and delays
the delivery of this message until all such messages have
been delivered.

Previous work

In the first ISIS system implementation of CO [4], a message
carries a history of all the messages that causally precede it.
Due to redundant information, this scheme is resilient to pro-
cessor crashes; however, a complex mechanism is required
to prevent unbounded growth of the control information. In
any case, the volume of control information can be huge. The
CO algorithm in [18] is similar to [4] but carries message-
ids rather than entire messages in the control information.
Furthermore, unnecessary control information is not sent if
the sending host had sent it before.

The control information in the Schiper-Eggli-Sandoz
causal ordering algorithm [22] consists ofn vectors of length
up ton each, wheren is the number of processes in the sys-
tem. This information represents messages sent in the causal
past that are not known to be delivered. The receiving site

uses vector time [7, 15, 23] to determine whether messages
represented in the control vectors need to be delivered be-
fore the current message is delivered. The causal ordering
algorithm of Raynal-Schiper-Toueg [20] attaches a matrix
SENT of sizen × n with every message.SENT [i, j] in-
dicates the number of messages that are known to be sent by
i to j. Each process also uses an arrayDELIV of sizen,
whereDELIV [i] is the number of messages from nodei
that have been delivered to the process. Clearly, the overhead
of control information in messages and in storage for both
these algorithms [20, 22] is O(n2) integers. This overhead
can be reduced under restricted multicasting environments
or when some nice properties about the underlying commu-
nication medium are assumed. The implementation of these
nice properties results in the exchange of additional mes-
sages and typically incurs additional delays in the delivery
of messages. In the causal multicast in overlapping groups
implementation of ISIS [5], every process maintains a vec-
tor for every group whether it belongs to that group or not.
A vector for a group informs the process of the number of
messages multicast by the various members of the group.
When a process sends a message, it appends all of its vec-
tors to the message. Clearly, this method can get expensive
if there are several groups with large sizes. In particular, the
maximum number of groups is 2n − 1.

In the causal multicast in overlapping groups algorithm
of Mostefaoui and Raynal [17], a process keeps only one
scalar for every group and appends only one vector (with
the size equal to the number of groups) to every message;
however, the algorithm assumes synchronous model of dis-
tributed execution. That is, the execution proceeds in syn-
chronized phases and it requires additional resynchroniza-
tion messages. Moreover, unlike other causal ordering algo-
rithms, this algorithm is not optimal with respect to message
delivery time; a message may have to wait for resynchro-
nization messages. Nonetheless, this algorithm is desirable
in situations where additional message traffic and delays can
be tolerated for much reduced overhead of control informa-
tion in messages.

Rodrigues and Verissimo [21] exploit the topology of
the underlying communication network to reduce the size of
control information transferred in messages. Unlike [21], the
algorithm proposed here does not require the knowledge of
the topology of the underlying network; instead, it uses the
dynamic communication pattern and structure of the com-
putation to reduce the overhead of control information in
messages.

The algorithm in [9] tracks direct predecessors of a mes-
sageM , rather than all the predecessors ofM . This re-
sults in a savings in the control information overhead in
messages and makes it more efficient than previous ones.
However, this algorithm is designed for group communica-
tion (where groups are fixed a priori) and the reduction in
the overhead of control information in messages is partly
because all messages are sent to within the group. This im-
plementation [9] tracks direct predecessors inefficiently and
consequently tracks indirect predecessors also.

The above algorithms have higher overhead of control
information in messages and local storage than is required
for an optimal algorithm. Though some of the algorithms
attempt to save on the control information overhead in mes-
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sages and in storage by assuming certain topologies or com-
munication patterns, they still have control information over-
head that is not really needed to enforce causal ordering, and
that can have an avalanche effect.

Mattern and F̈unfrocken presented a CO algorithm in a
system that allows only unicasts, i.e., point-to-point mes-
sage delivery [16]. Their algorithm requires transport layer
acknowledgements between FIFO buffers at the sending
and receiving processes. Each process has a dedicated input
buffer and a dedicated output buffer. The output buffer of the
sender process blocks i.e., cannot send further messages, un-
til it receives an acknowledgement from the input buffer of
the destination process of the previously sent message. This
is a clever algorithm that does not force the sender applica-
tion process to wait – thus the application is nonblocking –
even though there may be blocking at the transport layer. In
this specialized framework, the algorithm does not require
any control information in messages, but has the follow-
ing limitations: (i) it does not work with message multicasts
and (ii) although the application is nonblocking, it may in-
volve blocking synchronization at the transport layer. The
algorithm essentially uses synchronous communication with
input/output buffers to yield causal order. The blocking pro-
vides built-in synchronization which simplifies the algorithm
design and eliminates the overhead of control information in
messages.

The overhead due to the control information in existing
causal ordering algorithms that make no simplifying assump-
tions about the system, O(n2) or higher, can be prohibitively
large if the number of processes is large and limits the scal-
ability of these algorithms.

In this paper, we discuss the optimality conditions for
causal ordering algorithms in terms of the size of control
information appended to messages and stored in local logs
for enforcing causal order among message multicasts in a
generalized framework,viz., the algorithm is nonblocking,
is completely decentralized, and does not use anya priori
knowledge about the topology or communication pattern. We
present an optimal causal ordering algorithm that appends to
each message and stores in local logs the least amount of
control information necessary to enforce CO, as per the op-
timality conditions. Instead of maintaining and transmitting
ann × n matrix, the algorithm stores and transmits the bare
minimum information required to enforce CO, and uses an
efficient encoding scheme to represent this information. Al-
though the upper bound on space complexity of the overhead
of control information in the algorithm isO(n2), the over-
head is likely to be much smaller on the average, and is
always the least possible.

This paper is organized as follows: Sect. 2 presents the
system model, notations, and definitions. Section 3 presents
constraints on the propagation of information to achieve op-
timality and presents the necessary and sufficient conditions
on the information for causal ordering. Section 4 presents
an optimal causal ordering algorithm. Section 5 proves the
correctness of the algorithm. Section 6 proves the optimality
of the algorithm. In Sect. 7, some results on the complexity
of the causal ordering problem are presented. Finally, Sect. 8
concludes.

2 Preliminaries

2.1 System model

A distributed system consists of a collection of geographi-
cally dispersed sites connected by a communication network.
There is a logical communication channel between each pair
of sites. The sites do not share any memory and communi-
cate solely byasynchronous message passing, i.e., the mes-
sage propagation delay is finite but unpredictable, and the
computation at a site that sends a message does not halt wait-
ing for an acknowledgement that the message is delivered.
We assume that for any pair of sites, messages are delivered
in order (FIFO delivery) because most known communica-
tion networks provide FIFO support. There is no common
physical clock. The underlying communication medium is
reliable and does not alter, generate, or consume messages.

Without loss of generality, we assume that a single pro-
cess runs on a single site. Henceforth, a process will also
be referred to as a node. A process that fails does so in
a fail-stop manner and Byzantine behavior is not allowed.
A process can be dynamically created and can dynamically
exit. Let N be the set of all the processes that existed in the
system and letn be the number of processes running in the
system at any time. The execution at a process is modeled
by three types of events, namely,message send, message
delivery, and internal events. An internal event represents
a local computation at the process, whereas message send
and delivery events establish cause and effect relationships
among the processes. At a send event, the message that is
sent is first placed in the output buffer of the process and
is subsequently sent to its destination by the underlying net-
working protocol. When a message arrives at a process along
a communication channel, it is placed in an input buffer. The
event at which a message arrives and is placed in the input
buffer of a process is a receive event that we treat as an
internal event because it does not establish any cause and
effect relationship among processes.

Let Ei denote the set of events at processi. The exe-
cution of events at processi is a linear order onEi. The
set of events in thedistributed computationE is the set of
events

⋃
∀i∈N Ei. Each processi maintains a scalar counter,

clocki, that is incremented on the occurrence of at least each
local send event.clocki need not be a dedicated counter of
the messages sent, which was used in [20]. Let (i, a) denote
the event at local timea at processi. A messageM sent
by i at local timea is denoted asMi,a. The subscripts of
Mi,a are dropped only if there is no ambiguity. The send
and the delivery events of a messageM are respectively
denoted bySend(M ) andDelivery(M ). Deliveryd(M ) is
the event at whichM is delivered to processd. A boolean
function Deliveredd(Mi,a) is true iff Mi,a has been deliv-
ered atd. The phrase “receive a message” means the arrival
and (eventual) delivery of a message.

The cause and effect relationship between the events of
a distributed execution is captured by Lamport’s “happened
before” or causality relation (−→) [14], which defines a par-
tial order (E,−→).

Definition 1 The “happens before” relation, also called the
“causality” relation and denoted by−→, is defined by the
following three conditions:
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1. (i, a) −→ (j, b) if i = j
∧

a < b.
2. (i, a) −→ (j, b) if (i, a) is the send of a message and(j, b)

is the delivery of that message.
3. (i, a) −→ (j, b) if ∃(k, c) | ((i, a)−→ (k, c)

∧
(k, c) −→

(j, b))

Definition 2 (Causal ordering (CO)). If messagesM and
M ′ have the same destinationd andSend(M )−→ Send(M ′),
then causal ordering ensures thatDeliveryd(M ) −→
Deliveryd(M ′).

Causal ordering simplifies the development of distributed
programs and applications by providing a built-in message
synchronization and reducing the nondeterminism in a dis-
tributed computation.
Causal multicast. Multicast is a communication paradigm
that enables a process to send a message to a group of pro-
cesses in a single send event. The set of destinations of a
multicast messageMi,a is denoted byMi,a.Dests. In causal
multicast, message delivery events satisfy causal ordering. In
our model, a process can be a member of multiple overlap-
ping groups. Successive multicasts by a process can be to
different overlapping groups. Also, a group of processes to
which a process can multicast messages can vary and such
groups need not be formeda priori. The ability of a process
to multicast to arbitrary and dynamically changing groups
is useful in many applications such as updating replicas of
different variables stored at different sets of sites.

Further notations and definitions

We define a directed graph, referred to as thecomputation
graph, of a distributed computation as follows: there is one-
to-one mapping between set of vertices in the graph and
the set of events in the computation,E, and there is a di-
rected edge between two vertices iff either these vertices
correspond to two consecutive events at a process or cor-
respond to message send and delivery events of the same
message, respectively. A vertex in the computation graph
will be referred to by the event to which it maps. An edge
in the computation graph is either (i) amessage dependency
edgeif it corresponds to acausal message dependencybe-
tween the send-delivery pair of events of a message, or (ii)
a local dependency edgeif it corresponds to acausal local
dependencybetween two consecutive events at a process. A
maximal chainin a distributed computation is a linearly or-
dered subset ofE such that any two adjacent events in this
linear order are either consecutive events at a process or the
send-delivery pair of events of a message. Henceforth, each
reference to a chain assumes it is a maximal chain. Apath
(also termed acausal path) in the computation graph is a
sequence of directed edges such that for two adjacent edges
in the sequence, the second edge is an out-edge at the event
(vertex) at which the first edge is an in-edge.

We define a functionS lend(Send(Mi,a),Send(Mj,b))
that returns the maximum number ofSend events among
the paths betweenSend(Mi,a) and Send(Mj,b), including
Send(Mj,b) but excludingSend(Mi,a), that haved as a
destination. Also define a functionlength(path,e), wheree
is an event on the pathpath, that returns the number of send
events precedinge on the path.

The relation
=−→ on two events is as follows: (i, a)

=−→
(j, b) iff ( i, a) = (j, b) or (i, a) −→ (j, b). Thecausal pastof
an event (i, a) is the set of all events (k, c) such that (k, c)
−→ (i, a). The causal futureof an event (i, a) is the set of
all events (k, c) such that (i, a) −→ (k, c).

Table 1 summarizes the important notations we have de-
fined in this section.

2.2 Objectives of the paper

It is a recognized fact that in an asynchronous system, certain
information about messages sent in the past must be stored
and propagated to enforce CO. The overhead due to the con-
trol information in existing causal ordering algorithms that
make no simplifying assumptions about the system, O(n2)
or higher, can be prohibitively large when the number of
processes is large. In this paper, we address the following
fundamental question:

Problem 1 What is the minimum amount of information re-
garding messages that were sent in the causal past that is
necessary to be propagated and stored by any protocol to
enforce causal ordering under the following framework in
our system model?

– The protocol must be anonblocking protocol, i.e., a pro-
tocol in which a process can send messages without wait-
ing for messages that it had sent earlier to be delivered
to their respective destinations or even to be copied out
of the output buffers.

– The protocol does not use any a priori knowledge about
the topology or communication.

– The protocol should be deterministic, completely decen-
tralized, and the role of each process should be com-
pletely symmetric. Thus, the use of a coordinator or even
a hierarchical organization of processes is ruled out.

Under the framework of Problem 1, the system cannot
make any assumptions such as “all messages are broadcast”,
or “all messages are unicast”, or “there is a synchronous
message exchange at the application layer or the transport
layer”.

We answer Problem 1 by formulating necessary and suf-
ficient conditions on this information. This is the first char-
acterization of the sufficient and the necessary conditions on
this information. We discuss the optimality conditions for
causal ordering algorithms in terms of the size of control
information that is appended to messages and stored in local
logs for enforcing CO in the above framework.

We present an optimal causal ordering algorithm that ap-
pends the least amount of control information to each mes-
sage and stores the least amount of control information in
logs, as per the optimality conditions we formulate. The al-
gorithm stores and transmits the bare minimum information
required to enforce CO, and uses an encoding scheme to
represent this information. The proposed algorithm does not
maintain and transmit ann × n matrix or n vectors of
lengthn to enforce causal ordering, unlike other algorithms.
Although the upper bound on space complexity of the over-
head of control information in the algorithm isO(n2), the
overhead is likely to be much smaller on the average, and
is always the least possible.
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Table 1. Explanation of the notations used

Notations Brief explanation or definition of the notations
clocki Scalar event counter or clock at processi.
(i, a) Event at local timea at processi.
Mi,a Message sent by processi at (i, a). The subscripts can be dropped only if there is no ambiguity.
Send(M ) Event at which messageM is sent.
Delivery(M ) Event at which messageM is delivered.
Deliveryd(M ) Event at which messageM is delivered to processd.
Deliveredd(Mi,a) Boolean function; true iffMi,a has been delivered tod.
Mi,a.Dests Set of destinations of multicast messageMi,a.
S lend(Send(Mi,a),Send(Mj,b)) Integer function; returns the max number ofSend events among the paths betweenSend(Mi,a)

andSend(Mj,b), includingSend(Mj,b) but excludingSend(Mi,a), that haved as a destination.
length(path,e) Integer function; given evente on the pathpath, returns the number of send events precedinge on the path.

3 Achieving optimality

We show in Sect. 7 that the overhead of control informa-
tion in messages and in local storage to enforce CO in the
framework of Problem 1 isΩ(n2). Enforcing CO by having
O(n2) overhead of control information in messages and in
local storage is well-understood – simply use ann × n ma-
trix to do explicit (source, destination, timestamp) tracking
of messages already delivered or sent, maintain this infor-
mation in local storage and transmit it in messages.

We achieve optimality by identifying constraints on the
propagation of control information, called thepropagation
constraints, to curtail the propagation of redundant informa-
tion at the earliest instant. The Propagation Constraints spec-
ify the earliest events along causal pathsonly up to which
control information needs to travel to ensure causal ordering.
A node stores and transfers only the bare minimum infor-
mation in accordance with the Propagation Constraints, and
uses an encoding to represent such information.

3.1 Delivery condition

In order to ensure the safety of a CO algorithm, no mes-
sage should be delivered to a node unless all messages sent
causally before it have been delivered to that node. Causal
ordering algorithms achieve this by having each message
M ′ carry a list of messagesM sent causally beforeM ′ was
sent.M ′ is delivered to the receiving node only after the
messagesM that were also destined for this receiving node
have been delivered. We state this condition as theDelivery
Condition.

Delivery condition. A messageM ′ that carries information
“d ∈ M.Dests” about a messageM sent tod in the causal
past, is not delivered tod until M has been delivered tod.

3.2 Fixed points of information propagation

We next identify events in causal paths, calledFixed Points,
up to which information about messages sent in their causal
past needs to be propagated to enforce causal ordering. For
optimality, information about messages sent in the causal
past needs to travel only up to these events. We present two
observations that lead to the definition of fixed points. These
fixed points form the basis for Propagation Constraints that
specify how information about messages sent in the causal
past must be stored and propagated to enforce CO optimally.

The information “d ∈ Mi,a.Dests” should not be stored
or propagated in the causal future ofDeliveryd(Mi,a) for
optimality, asMi,a has already been delivered tod in CO
with respect to any message sent tod in the causal future
of Deliveryd(Mi,a). This observation leads to the first fixed
point, FP1.

We also make the following observation. Letd ∈
Mi,a.Dests. Consider any event (j, b) such that (i, a) −→
(j, b), d ∈Mj,b.Dests, and there does not exist (k, c), where
(i, a) −→ (k, c) −→ (j, b), such thatd ∈ Mk,c.Dests. If it
is not known at (j, b) that Mi,a has been delivered tod, in-
formation “d ∈Mi,a.Dests” must be propagated up to (j, b)
to enforce CO delivery ofMi,a to d with respect to the de-
livery of Mj,b to d. Also, information “d ∈ Mi,a.Dests”
should not be stored or propagated in the causal future of
Send(Mj,b), except on the messageMj,b sent tod, for opti-
mality. This is becauseMi,a gets delivered tod in CO with
respect toMj,b due to the Delivery Condition whenMj,b

is delivered; for any messageM ′ sent tod in the causal
future of (j, b), if we ensure thatMj,b is delivered tod in
CO with respect toM ′, then it is ensured transitively that
Mi,a is delivered tod in CO with respect toM ′. Thus, we
say that in the causal future of (j, b), “Mi,a is guaranteed to
be deliveredto d in CO w.r.t. M ′ sent tod” and M ′ need
not carry any information about “d ∈ Mi,a.Dests”. (Note
that CO betweenMj,b and M ′ is enforced similarly.) This
observation leads to the second fixed point, FP2.

Definition 3 (“Fixed Points” of information propagation ):
A fixed point of propagation of information “d∈Mi,a.Dests”
is an event(j, b) such thateither

FP1: (i, a) −→ (j, b)
∧

Mi,a is delivered tod at (j, b) (=
eventDeliveryd(Mi,a)), or

FP2: (i, a) −→ (j, b)
∧

d ∈ Mj,b.Dests
∧

6 ∃ (k, c) | ( (i, a)−→ (k, c)−→ (j, b)
∧

(d ∈Mk,c.Dests∨
(k, c) is the eventDeliveryd(Mi,a)) ).

An event (j, b) which is the fixed point FP1 of informa-
tion “d ∈Mi,a.Dests” denotes that messageMi,a is known
to have been delivered at event (j, b) to destinationd (=j).
Mi,a is already delivered in causal order tod with respect
to any multicasts tod in the future of (j, b). Thus, any future
multicasts to destinationd do not have to carry information
“d ∈ Mi,a.Dests”.

An event (j, b) which is a fixed point FP2 of information
“d ∈ Mi,a.Dests” denotes that messageMi,a is guaranteed
to be delivered in causal order with respect to messageMj,b

to the common destinationd. The causal delivery ofMj,b
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to d with respect to any future multicasts tod automatically
ensures the causal delivery ofMi,a to d with respect to
any multicasts in the future of (j, b) to d. Thus, any future
multicasts to destinationd do not have to carry information
“d ∈ Mi,a.Dests”.

A significance of a fixed point of propagation of infor-
mation “d ∈ Mi,a.Dests” is that the information traverses
only up to the fixed point. Nowhere in the causal future of
the fixed point does this information need to exist! Multiple
fixed points of this information, if any, are concurrent. All
events in the past of a fixed point as well as all events that
are concurrent with all fixed points must have information
“d ∈ Mi,a.Dests”. (From Definition 3, note that if (j, b) is
a fixed point FP2, thenDeliveryd(Mi,a) (which is an FP1
event) 6−→ (j, b). If (j, b) is a fixed point FP1, then6 ∃ Mk,c

| (i, a) −→ (k, c) −→ (j, b) (which is the eventDeliv-
eryd(Mi,a))

∧
d ∈ Mk,c.Dests, because of the Delivery

Condition.)

3.3 Necessary and sufficient conditions

Based on the identification of fixed points, we formulate
necessary and sufficient conditions on the propagation of in-
formation about messages sent in the causal past. In a correct
CO algorithm, the information must propagate at least “up
to” its fixed points – this identifies the sufficiency conditions
on information propagation. In an optimal algorithm, the in-
formation must propagate “only up to” fixed points – this
identifies the necessity conditions on information propaga-
tion. It follows that in a nonoptimal algorithm, the informa-
tion may propagate beyond the fixed points.

Sufficient conditions. Information “d ∈Mi,a.Dests” must
propagate from event (j, b) on its outward edges in the com-
putation graph ifboth:

1. Deliveryd(Mi,a) 6=−→ (j, b), and
2. 6 ∃(k, c) | (i, a)−→ (k, c)−→ (j, b)

∧
d ∈Mk,c.Dests.

If such a (k, c) does not exist and (j, b) is a multicast send
event such thatd ∈ Mj,b.Dests, then the information
“d ∈Mi,a.Dests” is sentonly on the message tod.

If the first condition above were false, then there is no
need to carry the information “d ∈ Mi,a.Dests” because
Mi,a is guaranteed to be delivered in causal order with re-
spect to all messages sent in the causal future of the current
event (j, b). If the second condition above were false, then
the causal delivery of the present message with respect to
Mk,c would ensure the causal delivery of the present mes-
sage with respect toMi,a if Mk,c is causally delivered with
respect toMi,a. Information “d ∈ Mi,a.Dests” need not be
carried or stored beyond the current event.

However, when both the conditions above are true, it
is not known if Mi,a has been delivered or if it is guaran-
teed to be delivered without violating CO, and therefore, the
information must be carried futher to enforce CO.

Necessary conditions.Information about “d ∈Mi,a.Dests”
must not be propagated from (j, b) on any outgoing edge in
the computation graph ifeither:

1. Deliveryd(Mi,a)
=−→ (j, b), or

2. ∃(k, c) | (i, a)−→ (k, c)−→ (j, b)
∧

d ∈Mk,c.Dests.
If such a (k, c) does not exist and (j, b) is a multicast send
event such thatd ∈ Mj,b.Dests, then the information
“d ∈Mi,a.Dests” is sentonly on the message tod.

The absence of information “d ∈ Mi,a.Dests” when ei-
ther of the two conditions holds does not lead to a violation
of CO becauseMi,a is already delivered tod or is guaran-
teed to be delivered tod without violating CO. Necessary
conditions state that information must not be currently car-
ried in messages or stored at nodes if a fixed point of that
information belongs to the causal past. An optimal CO al-
gorithm must satisfy these conditions so that no redundant
information is propagated.

3.4 Propagation constraints

We now combine the necessary and sufficient conditions, on
information about messages sent in the past that must be
stored and propagated to enforce CO optimally, in the form
of propagation constraints.

Propagation constraints. The information “d ∈
Mi,a.Dests” about a messageMi,a sent tod must prop-
agate along all causal paths starting at event (i, a) up to and
only up to the earliest events (j, b) on any such path such
that either:

PC1: Deliveryd(Mi,a)
=−→ (j, b), i.e., it is known thatMi,a

has been delivered,or
PC2: ∃ (k, c) | ((i, a) −→ (k, c) −→ (j, b)

∧
d ∈

Mk,c.Dests), i.e., it is guaranteed that the message will
be delivered in CO.
If such a (k, c) does not exist and (j, b) is a multicast send
event such thatd ∈ Mj,b.Dests, then the information
“d ∈Mi,a.Dests” is sentonly on the message tod.

The “up to” part of the Propagation Constraints specifies
the sufficient condition on the information propagation and
must be satisfied for the correctness of a CO algorithm. The
“only up to” part of the Propagation Constraints specifies
the necessary condition on the information propagation and
must be satisfied for the optimality of a CO algorithm. A
proof of these properties is given in Sect. 3.6.

Figure 2 illustrates the Propagation Constraints for a
Send(Mi,a) event (shown by a shaded circle). The rect-
angle shows the delivery event of messageMi,a at process
d. Clearly, all send events in the future of this event (e.g.,
e3, e4, ande6) need not have access to information “d ∈
Mi,a.Dests”. Each unshaded circle denotes a message send
event at which a message is sent tod and there is no such
event on any causal path between (i, a) and this event. From
PC2, no message sent in the future of such a send event (e.g.,
e4, e5, e6, e7, ande8) needs to have access to information
“d ∈ Mi,a.Dests” to enforce CO. However, all send events
not in the future of events marked by either the rectangle or
the unshaded circles (e.g.,e1 ande2) must have access to
information “d ∈ Mi,a.Dests” to enforce CO, as per PC1
and PC2.

Thus, the Propagation Constraints specify two different
ways to identify events (j, b) which are the events “up to
and only up to” which information “d ∈ Mi,a.Dests” must
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demarkation of causal future of corresponding event

Fig. 2. Propagation Constraints

propagate, for anyd andMi,a. Such events (j, b) are identi-
fied for every path originating at (i, a) and are termedCon-
straint Propagation Endpoints (CPEs)of information “d ∈
Mi,a.Dests”.

Definition 4 (Constraint Propagation Endpoints (CPEs)):
A CPE of “d ∈ Mi,a.Dests” is either a fixed point of “d ∈
Mi,a.Dests” or the earliest event on each path originating
at (i, a) such that it is in the causal future of a fixed point of
“ d ∈ Mi,a.Dests”.

The CPEs are the earliest events on all causal paths from
(i, a) at which it is known thatMi,a is delivered tod or is
guaranteed to be delivered tod in CO. The information “d
∈Mi,a.Dests” must propagate into the future of (i, a) up to
and only up to the earliest events in the future of some fixed
point of “d ∈Mi,a.Dests”, on a per path basis. Note that all
CPEs of “d ∈Mi,a.Dests” need not be causally concurrent.
Two or more CPEs may be causally related and may occur
at the same process even if they lie in the causal future of
the same fixed point because they represent information that
has traversed along different paths from (i, a) into the future
of the fixed point. We now define “redundant information”
for an optimal CO algorithm.

Definition 5 If information is propagated as per the Propa-
gation Constraints, information “d ∈Mi,a.Dests” that tra-
verses beyond a CPE for “d ∈ Mi,a.Dests” is redundant
information.

Also note that although PC1 and PC2 specify that the
CPEs are the events up to and only up to which informa-
tion “d ∈ Mi,a.Dests” propagates, PC2 also requires that
if event (j, b) is a CPE by PC2, then (j, b) must also send
information “d ∈ Mi,a.Dests” only on Mj,b sent tod. This
requirement is implicit henceforth whenever it is stated that
this information propagates up to and only up to the CPEs.

3.5 Other constraints on information propagation

Besides the Propagation Constraints presented in the pre-
vious section, there are some general, commonsense con-
straints on information propagation. These constraints are

common to many distributed algorithms and we mention
them in this section for completeness.

No transmission of “spurious information”. In addition
to the Propagation Constraints, we require that an algorithm
that enforces CO optimally should not store or propagate any
other information. Specifically, it should not store and prop-
agate information about messages that have already been
delivered or that are guaranteed to be delivered in CO.

No transmission of “duplicate information”. The Propa-
gation Constraints require that information about a message
sent in the causal past should be stored and propagated as
long as and only as long as the knowledge that “the message
is delivered” or “the message is guaranteed to be delivered
in CO” is not locally available. As communication channels
are FIFO, this information need not be resent over the same
channel, nor locally stored if it has been sent once on all the
outgoing channels. This motivates the following principle of
“nonduplicate information transmission and storage of infor-
mation” to achieve optimality: “A node must not transmit the
same information more than once to the same node and not
store information that has been sent once on each outgoing
channel”. A similar notion has been previously used in [24]
to efficiently implement vector clocks [7, 15].

Enforcement of “no transmission of duplicate informa-
tion” is a generic constraint common to many distributed al-
gorithms that assume FIFO communication. Therefore, it is
of secondary concern to our problem. It also requires some
additional data structures at each process to keep track of
what information has been sent to what processes. More-
over, it may require additional computation at each process
to update the data structures and to process the control infor-
mation received in messages. Thus, there is a trade-off and
we will not be elaborating on this constraint in the paper.

3.6 Correctness of propagation constraints

Theorem 1 proves that if information propagates as defined
by the Propagation Constraints, and the Delivery Condition
is satisfied, then CO is never violated.
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Theorem 1 The Propagation Constraints and the Delivery
Condition together ensure CO.

Proof.Let d ∈Mi,a.Dests. Let there exist eventSend(Mj,b)
such thatd ∈Mj,b.Dests andSend(Mi,a) −→ Send(Mj,b).
There are two possibilities based on the relation between a
fixed point of “d ∈ Mi,a.Dests” and Send(Mj,b).

1. If event Send(Mj,b) is not in the causal future of a
fixed point of information “d ∈Mi,a.Dests” and is itself
not such a fixed point, then “d ∈ Mi,a.Dests” is sent
with Mj,b by the Propagation Constraints PC1 and PC2.
Along with the Delivery Condition, this guarantees that
Mi,a is delivered tod beforeMj,b is.

2. If event Send(Mj,b) is in the causal future of a fixed
point of “d ∈Mi,a.Dests” or is itself such a fixed point,
then we use induction on variableS lend(Send(Mi,a),
Send(Mj,b)) to show thatMi,a is delivered tod before
Mj,b is.
S lend(Send(Mi,a), Send(Mj,b)) = 1: In this base case,
if event Send(Mj,b) is in the causal future of a fixed
point FP1, thenMi,a is already delivered tod before
Mj,b is. Otherwise eventSend(Mj,b) is itself a fixed
point FP2 of information “d ∈Mi,a.Dests”. Along with
the Delivery Condition, PC2 guarantees thatMi,a is de-
livered tod in causal order with respect toMj,b.
S lend(Send(Mi,a), Send(Mj,b)) = x, x > 1: Assume
that the hypothesis “IfS lend(Send(Mi,a),Send(Mj,b))
= x, thenMi,a is delivered tod beforeMj,b is” holds.
S lend(Send(Mi,a), Send(Mj,b)) = x + 1, x > 1: There
must exist
Send(Mk,c) | Send(Mi,a) −→ Send(Mk,c) −→
Send(Mj,b)

∧
d ∈ Mk,c.Dests

∧
S lend(Send(Mi,a),

Send(Mk,c)) = x. By the induction assumption,Mi,a is
delivered tod or is guaranteed to be delivered tod be-
fore Mk,c is. Causality is transitive, hence the burden of
the proof is to show thatMk,c is delivered tod or is
guaranteed to be delivered tod beforeMj,b is.
Note thatS lend(Send(Mk,c),Send(Mj,b)) = 1. We have
already shown that when S lend(Send(Mi,a),
Send(Mj,b)) = 1, Mi,a is delivered tod before Mj,b.
Therefore,Mk,c is delivered tod beforeMj,b is. Hence,
the theorem. �
We now show that if information does not propagate

as per Propagation Constraints or if the Delivery Condition
does not hold, then causal ordering is violated.

Theorem 2 The Propagation Constraints and the Delivery
Condition are necessary to ensure CO.

Proof. Consider an event (j, b) such that:

– (Assumption 1:)6 ∃(k, c), (i, a)−→ (k, c)−→ (j, b) where
(k, c) is an FP1 or FP2 event of “d ∈ Mi,a.Dests”.
Moreover, event (j, b) is not the FP1 event of “d ∈
Mi,a.Dests”.

The assumption implies that (i) neither at (j, b) nor at any
event in the causal past of (j, b) is Mi,a delivered tod, and
(ii) no messageMk,c sent in the causal future ofSend(Mi,a)
and in the causal past of (j, b) has d as a destination. As
per Propagation Constraints, information “d ∈ Mi,a.Dests”
must reach (j, b).

We also make the following assumption about (j, b) in
order to show that if one of the Propagation Constraints is
violated, then CO is violated.

– (Assumption 2:) Let (j, b) be a send event andd ∈
Mj,b.Dests.

Based on the assumptions on (j, b), we make the follow-
ing assertions.

– (Assertion 1:) If the “up to” part of the propagation of
any one of the Propagation Constraints PC1 and PC2 is
violated, then information about “d ∈Mi,a.Dests” does
not reach (j, b), from Assumption (1).

– It follows from assumptions (1) and (2) on event (j, b)
that (j, b) is event FP2, and from the Propagation Con-
straints, “d ∈ Mi,a.Dests” must be sent withMj,b to
d.
(Assertion 2:) If the part of PC2 that specifies that the
information about “d ∈ Mi,a.Dests” must be sent on
Mj,b to d is violated, the information “d ∈ Mi,a.Dests”
is not carried byMj,b to d, from Assumption (2).

Assume thatMi,a has not arrived atd beforeMj,b arrives
at d. Proof of the theorem has two parts.

1. We show that if any part of the Propagation Constraints
does not hold, then despite the Delivery Condition, CO
is violated.
If any part of the Propagation Constraints does not hold,
from Assertions (1) and (2), we have that information “d
∈ Mi,a.Dests” does not propagate up to (j, b), or (j, b)
does not propagate this information tod. In either case,
Mj,b sent tod is not accompanied by this information “d
∈Mi,a.Dests”. Therefore,Mj,b is delivered tod before
Mi,a is.

2. We show that if the Delivery Condition does not hold,
then even if the Propagation Constraints hold, CO is
violated.
Mj,b sent tod is accompanied by control information
“d ∈ Mi,a.Dests”. Despite this information, delivery of
Mj,b to d on arrival atd is not prevented if the Delivery
Condition is violated. Therefore,Mj,b is delivered tod
beforeMi,a is.

In both cases, CO is violated. Therefore, the Propagation
Constraints and the Delivery Condition are necessary for
enforcing CO. �

4 An optimal CO algorithm

In this section, we describe an information encoding scheme
to realize the Propagation Constraints and present an opti-
mal CO algorithm, followed by an explanation of the vari-
ous steps of the algorithm. The algorithm is optimal in the
sense that it maintains and transfers bare minimum infor-
mation that is necessary to enforce causal ordering, as per
the Propagation Constraints. Although the upper bound on
the overhead of control information in messages and in local
storage in this algorithm isO(n2), the overheads are likely
to be much smaller on the average, and are always the least
possible.
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4.1 Notations

Information about a messageMi,a that is carried in a
later messageM ′ is denoted asoi,a = (i, a, Dests), where
oi,a.Dests ⊆ Mi,a.Dests; oi,a.Dests denotes the set of
destinations ofMi,a for which (i) it is not known thatMi,a

has been delivered, and (ii) it is not guaranteed thatMi,a

will be delivered in causal order, as far as the sender ofM ′
can discern. Multipleoi,a that are collectively carried in a
messageM are denoted by a setOM . Subscripts ofoi,a are
dropped only when they are not necessary or are clear from
the context.

Similarly, information about certain messages sent
causally before any local event at a nodej is stored in a
local log, denoted byLOGj , so that it can be sent on fu-
ture messages to enforce CO. Information aboutMi,a that is
stored at nodej in LOGj is denoted byli,a = (i, a, Dests),
whereli,a.Dests ⊆ Mi,a.Dests; li,a.Dests denotes the set
of destinations ofMi,a for which (i) it is not known that
Mi,a has been delivered, and (ii) it is not guaranteed that
Mi,a will be delivered in causal order, as far as nodej can
presently discern. Subscripts ofli,a are dropped only when
they are not necessary or are clear from the context.

4.2 Information encoding

Enforcing CO requires information about messages sent in
the past and the Propagation Constraints dictate how much
of this information needs to be carried in messages up to
an event in the computation. We now discuss how we en-
code this information efficiently using explicit and implicit
tracking of messages sent in the past.

Information about messages (i) not known to be deliv-
ered and (ii) not guaranteed to be delivered in CO, isex-
plicitly tracked by the algorithm using (source, destination,
timestamp) information. The information must be deleted
as soon as either (i) or (ii) becomes false. The key prob-
lem in designing an optimal CO algorithm is to identify the
events at which (i) or (ii) becomes false. Information about
messages already delivered and messages guaranteed to be
delivered in CO isimplicitly tracked without storing or prop-
agating it, and is derived from the explicit information. Such
implicit information is used for determining when (i) or (ii)
becomes false for the explicit information being stored or
carried in messages.

1. Explicit tracking.Tracking of (source, timestamp, des-
tination) information for messages (i) not known to be de-
livered and (ii) not guaranteed to be delivered in CO, is
done explicitly using thel.Dests field of entries in local
logs at nodes ando.Dests field of entries in messages. Sets
li,a.Dests and oi,a.Dests contain explicit information of
destinations to whichMi,a is not guaranteed to be delivered
in CO and is not known to be delivered. The information
about “d ∈ Mi,a.Dests” is propagated up to and only up to
its CPEs, viz., the earliest events on all causal paths from
(i, a) at which it is known thatMi,a is delivered tod or is
guaranteed to be delivered tod in CO. Thus, redundant in-
formation (Definition 5) is never stored in logs or propagated
in messages.

2. Implicit tracking.Tracking of messages that are either
(i) already delivered, or (ii) guaranteed to be delivered in
CO, is performed implicitly.

The information about messages (i) already delivered
or (ii) guaranteed to be delivered in CO, is deleted at the
CPEs of this information and not propagated because it is
redundant as far as enforcing CO is concerned. However,
the semantics of information is useful in determining what
information that is being carried in other messages and that
is being stored in logs at other nodes has become redundant
and thus can be purged. This semantics is implicitly stored
and propagated.

We track messages that are (i) already delivered or (ii)
guaranteed to be delivered in CO, without explicitly stor-
ing such information! Rather, we derive it from the existing
explicit information about messages (i) not known to be de-
livered and (ii) not guaranteed to be delivered in CO, by
examining onlyoi,a.Dests or li,a.Dests, which is a part of
the explicit information.

We use two types of implicit trackings: First, the ab-
sence of a node id from destination information – i.e.,∃d∈
Mi,a.Dests | d 6∈ li,a.Dests

∨
d 6∈ oi,a.Dests – implicitly

contains information that the message has been already de-
livered or is guaranteed to be delivered in CO tod. Clearly,
li,a.Dests = ∅ or oi,a.Dests = ∅ implies that messageMi,a

has been delivered or is guaranteed to be delivered in CO
to all destinations inMi,a.Dests.

An entry whose.Dests = ∅ is maintained because the
implicit information in it, viz., that of known delivery or
guaranteed CO delivery to all destinations of the multicast,
is useful to purge redundant information at CPEs as per the
Propagation Constraints. Note that ifli,a.Dests is ∅ at (k, c),
then∀d ∈ Mi,a.Dests, a fixed point of “d ∈ Mi,a.Dests”
must lie in the past of (k, c). However, this does not preclude
a CPE of the information being in the causal future of (k, c).
To identify such CPEs,li,a.Dests must be maintained and
propagated.

Note that as the distributed computation evolves, sev-
eral entriesli,a1, li,a2, ... such that∀p, li,ap

.Dests= ∅ may
exist in a node’s log and a message may be carrying sev-
eral entriesoi,a1, oi,a2, ... such that∀p, oi,ap

.Dests= ∅. The
second implicit tracking uses a mechanism to prevent the
proliferation of such entries. The mechanism is based on the
following observation:

“For any two multicastsMi,a1, Mi,a2 such thata1 <
a2, if li,a2 ∈ LOGj , then li,a1 ∈ LOGj . (Likewise for any
message.)”

Therefore, if li,a1.Dests becomes∅ at a nodej, then
it can be deleted fromLOGj provided ∃ li,a2 ∈ LOGj

such thata1 < a2. The presence of suchli,a1s in LOGj

is automatically implied by the presence of entryli,a2 in
LOGj . Thus, for a multicastMi,z, if li,z does not exist in
LOGj , thenli,z.Dests = ∅ implicitly exists in LOGj iff ∃
li,a ∈ LOGj | a > z.

As a result of the second implicit tracking mechanism, a
node does not keep (and a message does not carry) entries
of type li,a.Dests = ∅ in its log. However, note that a node
must always keep at least one entry of typeli,a (the one
with the highest timestamp) in its log for each sender node
i. The same holds for messages.
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The information tracked implicitly is “live” and propa-
gates wherever the explicit information inoi,a in someOM ′

propagates; it is useful in purging information explicitly car-
ried in otherOM ′′s and stored inLOG entries about “yet to
be delivered to” destinations for the same messageMi,a as
well as for messagesMi,a′ , wherea′ < a. Thus, whenever
oi,a in someOM ′ propagates to nodej, (i) the implicit in-
formation inoi,a.Dests is used to eliminate redundant infor-
mation in li,a.Dests ∈ LOGj ; (ii) the implicit information
in li,a.Dests ∈ LOGj is used to eliminate redundant infor-
mation inoi,a.Dests; (iii) the implicit information inoi,a is
used to eliminate redundant informationli,a′ ∈ LOGj if 6 ∃
oi,a′ ∈ OM ′ anda′ < a; (iv) the implicit information inli,a
is used to eliminate redundant informationoi,a′ ∈ OM ′ if
6 ∃ li,a′ ∈ LOGj anda′ < a; (v) only nonredundant infor-
mation remains inOM ′ andLOGj ; this is merged together
into an updatedLOGj .

4.3 The algorithm

The algorithm uses the symbol←− to denote an assignment.
Procedure SND is executed atomically. Procedure RCV is
executed atomically except for a possible interruption in step
RCV(1) where a nonblocking wait is required to meet the
Delivery Condition.
Data Structures:
clockj ←− 0; /* local counter clock at nodej */
SRj [1...n] ←− 0; /* SRj [i] is the timestamp of last msg.

from i delivered toj; */
LOGj = {(i, clocki, Dests)} ←− {∀i, (i, 0, ∅)};

/* Each entry denotes a message sent in the causal */
/* past, byi at clocki. Dests is the set of */

/* remaining destinations for which it is not */
/* known thatMi,clocki

(i) has been delivered, */
/* or (ii) is guaranteed to be delivered in CO. */

SND: j sends a message M to Dests:

1. clockj ←− clockj + 1;
2. for all d ∈ M.Dests do:

OM ←− LOGj ; /* OM denotesOMj,clockj
*/

for all o∈OM , modify o.Dests as follows:
if d 6∈ o.Dests then

o.Dests←− (o.Dests \Dests);
if d ∈ o.Dests then

o.Dests←− (o.Dests \Dests)
⋃{d};

/* Do not propagate information about */
/* indirect dependencies that are */

/* guaranteed to be transitively satisfied */
/* when dependencies ofM are satisfied. */

for all os,t ∈ OM do
if os,t.Dests = ∅ ∧

(∃o′
s,t′ ∈ OM | t < t′)

then OM ←− OM \ {os,t};
/* do not propagate older entries */

/* for which Dests field is ∅ */
send (j, clockj , M, Dests, OM ) to d;

3. for all l ∈ LOGj do l.Dests←− l.Dests \Dests;
/* Do not store information about indirect */

/* dependencies that are guaranteed */
/* to be transitively satisfied when */

/* dependencies ofM are satisfied. */

4. LOGj ←− LOGj

⋃ {(j, clockj , Dests)};
5. /* Purge older entriesl for which l.Dests = ∅ */

PURGE NULL ENTRIES(LOGj).

RCV: j receives a message(k, tk,M,Dests,OM ) from k:

1. for all om,tm
∈ OM do

if j ∈ om.tm
.Dests wait until tm ≤ SRj [m];

/* Delivery Condition; ensure that messages */
/* sent causally before M are delivered. */

2. Deliver M; SRj [k] ←− tk;
3. OM ←− {(k, tk, Dests)} ⋃

OM ;
for all om,tm

∈ OM do
om,tm

.Dests←− om,tm
.Dests \ {j};

/* delete the now redundant dependency */
/* of message represented byom,tm

sent toj */
4. /* MergeOM andLOGj by eliminating */

/* all redundant entries. */
/* Implicitly track “already delivered” & “guaranteed */
/* to be delivered in CO” messages.*/
for all om,t ∈ OM and ls,t′ ∈ LOGj such that s = m
do

if t < t′
∧

ls,t 6∈ LOGj then markom,t for deletion;
/* ls,t had been deleted or never inserted, */

/* as ls,t.Dests = ∅ in the causal past */
if t′ < t

∧
om,t′ 6∈ OM then mark ls,t′ for deletion;

/* om,t′ 6∈ OM becausels,t′ had become∅ */
/* at another process in the causal past */

Delete all elements marked for deletion inOM and
LOGj ;

/* delete entires that represent */
/* redundant information */

for all ls,t′ ∈ LOGj and om,t ∈ OM , such that s = m∧
t′ = t do
ls,t′ .Dests←− ls,t′ .Dests

⋂
om,t.Dests;

/* delete destinations for which */
/* Delivery Condition is satisfied or */

/* guaranteed to be satisfied as perom,t */
Deleteom,t from OM ;

/* information has been incorporated inls,t′ */
LOGj ←− LOGj

⋃
OM ;

/* merge nonredundant information */
/* of OM into LOGj */

5. /* Purge older entriesl for which l.Dests = ∅ */
PURGE NULL ENTRIES(LOGj).

PURGE NULL ENTRIES(L):
/* Purge older entriesl in L, for which l.Dests = ∅ */
/* and which can be implicitly inferred */
L: LOG of a process; /* local log of any process */
for all ls,t ∈ L do

if ls,t.Dests = ∅ ∧
(∃l′s,t′ ∈ L | t < t′) then

L←− L \ {ls,t}.

4.4 An explanation of the algorithm

This section explains the steps of the algorithm and illus-
trates the major steps using examples.
SEND Mj,b:
The SND procedure enforces propagation constraint PC2.
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Example Scenario: Let li,a.Dests = {2, 3, 4, 6, 8}, li,a ∈
LOGj . Consider eventSend(Mj,b), where Mj,b.Dests =
{3, 4, 7, 8, 11}.

1. SND(1): The local clock is incremented at a multicast
send event.

2. SND(2): The only new information available at event
Send(Mj,b) with respect toMi,a is that∀ x ∈ (li,a.Dests⋂

Mj,b.Dests), (j, b) is Fixed Point FP2 of information
“x∈Mi,a.Dests”. As per PC2, information that suchx
are destinations ofMi,a must be suppressed on all out-
going edges of the computation graph from (j, b), with
the exception that when sendingMj,b to any partic-
ular x ∈ (li,a.Dests

⋂
Mj,b.Dests), the information

“x∈Mi,a.Dests” must be sent. All other information in
li,a.Dests, namely, li,a.Dests \ Mj,b.Dests, must be
propagated.
Note that before propagatingOM , if ∃oi,a, oi,a′ ∈ OM

| oi,a.Dests = ∅, anda < a′, then deleteoi,a because
it represents redundant information. This prevents the
transmission of entries of the formoi,∗, whereoi,∗.Dests
= ∅, whenever there is another entry for a message sent
later byi. As discussed in Sect. 4.2, the use of informa-
tion encoding to meet the Propagation Constraints must
prevent the proliferation of such entries. See SND(5) and
RCV(5) for further explanation.
Example SND(2): li,a.Dests \ Mj,b.Dests = {2, 6};
information “{2, 6}∈Mi,a.Dests” must be propagated
on all outgoing edges of the computation graph from
(j, b).
li,a.Dests

⋂
Mj,b.Dests = {3, 4, 8}; As per PC2,∀ x

∈ (li,a.Dests
⋂

Mj,b.Dests), “x ∈ Mi,a.Dests” must
be suppressed on all outgoing edges of the computa-
tion graph from (j, b), with the exception of the mes-
sage dependency edge tox. Hence,oi,a.Dests, where
oi,a∈OMj,b

, is as follows:
– To Node 3:oi,a.Dests = {2, 3, 6}
– To Node 4:oi,a.Dests = {2, 4, 6}
– To Node 8:oi,a.Dests = {2, 6, 8}
– To Nodes 7 and 11:oi,a.Dests = {2, 6}

3. SND(3): Step SND(2) suppressed the propagation of
information “x ∈ Mi,a.Dests”, ∀ x ∈ (li,a.Dests

⋂

Mj,b.Dests), on the outgoing message edges of (j, b)
in the computation graph to enforce PC2. SND(3) sup-
presses the propagation of the above information on the
outgoing local edge, viz., deletes it from the local log.
Example SND(3): li,a.Dests is updated to{2, 6} by
deleting{ 3,4,8}.
The idea of deleting older dependencies that will get
transitively satisfied was used in [9] which tracked direct
dependencies in the context of system-wide broadcasts.
However, the contribution of the proposed step is that
it deduces and maintains implicit information from the
bare minimum information and does not usen× n arrays
to store and transfer information.

4. SND(4): At event Send(Mj,b), a new causal depen-
dency to each destination is created. As per the Propaga-
tion Constraints, this information must be propagated on
the outgoing edges of the computation graph, includ-
ing the local log. Therefore,lj,b, where lj,b.Dests =
Mj,b.Dests, is inserted inLOGj to help ensure that

Mj,b is guaranteed to be delivered in causal order with
respect to any message sent in the causal future of
Send(Mj,b). (The information was propagated to each
destination ofMj,b as a parameter in step SND(2)).
Example SND(4): lj,b, wherelj,b.Dests = { 3, 4, 7, 8,
11 }, is inserted inLOGj .

5. SND(5): The invocated procedure PURGENULL ENT-
RIES deletes redundant entries that can be inferred us-
ing implicit tracking. See explanation of PURGENULL-
ENTRIES and also of RCV(5) which invokes this pro-

cedure.

RECEIVE M at node j:
The RCV procedure infers and manipulates information
about messages that (i) are known to be delivered or (ii)
are guaranteed to be delivered in CO, in an implicit man-
ner from the information about messages neither (i) known
to be delivered nor (ii) guaranteed to be delivered in CO.
It then uses the inferred information to enforce propagation
constraints PC1 and PC2.
Example Scenario:Let M arrive atj. Entries of the form
oi,a in OM are:{ oi,7, oi,9, oi,12, oi,20 }. Entries of the form
li,a in LOGj just beforeM is received are:{li,9, li,10, li,14,
li,20, li,21}.
1. RCV(1): When messageM arrives atj, the processing

of M is delayed until the Delivery Condition is satisfied,
i.e., until those messages that have been sent toj as per
the information inOM have been delivered toj.

2. RCV(2): MessageM is delivered and the local data
structure is updated to reflect the timestamp of this latest
delivered message from its specific sender.

3. RCV(3): Information about messages identified inOM

as having been sent toj causally beforeM was sent
is deleted fromOM because it served its purpose of
enforcing the Delivery Condition in RCV(1).

4. RCV(4): This step deduces the implicit information in
LOGj and OM , uses this implicit information to de-
tect and delete redundant explicit information inLOGj

andOM , and combines the nonredundant explicit infor-
mation in LOGj and OM to updateLOGj . This step
enforces the information encoding described in Sect. 4.2
to satisfy the Propagation Constraints. The two loops in
this step achieve the following.
– Let M be delivered toj and letmax{x | oi,x ∈ OM}

= a. All messages in the set{Mi,a′ | a′ < a
∧

oi,a′ 6∈
OM} are known to be delivered or guaranteed to be
delivered in CO to all their respective destinations. At
the timeM is delivered toj, all li,a′ ∈ LOGj , where
a′ < a andoi,a′ 6∈ OM , can be deleted. The valuea
represents the greatest lower bound on timestamps of
messages sent byi, except fora′′| (a′′ < a

∧
oi,a′′

∈ OM ), that do not have to be tracked any further to
enforce CO by the sender of the messageM .
Similarly, at the timeM is delivered toj, let max{x
| li,x ∈ LOGj} = a. All messages in the set{Mi,a′ |
a′ < a

∧
li,a′ 6∈ LOGj} are known to be delivered

or guaranteed to be delivered in CO to all their re-
spective destinations. Alloi,a′ ∈ OM , wherea′ < a
and li,a′ 6∈ LOGj , can be deleted. The valuea rep-
resents the greatest lower bound on timestamps of
messages sent byi, except fora′′| (a′′ < a

∧
li,a′′
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∈ LOGj), that do not have to be tracked any further
to enforce CO, as known toj.
All the information identified above is deleted in the
first loop.
Example RCV(4.loop 1):The following implicit in-
formation inOM andLOGj is deduced. Of all mes-
sages sent by nodei before 20, only the dependencies
given inoi,7, oi,9, andoi,12 remain to be satisfied. Of
all messages sent by nodei before 21, only the de-
pendencies given inli,9, li,10, li,14, and li,20 remain
to be satisfied.
Therefore, delete the entriesoi,7, oi,12, li,10, andli,14.
(The absence ofli,7, li,12, oi,10, oi,14 indicates that
Mi,7, Mi,12, Mi,10, Mi,14 have all been delivered or
are guaranteed to be delivered in CO to all their re-
spective destinations.)

– For each pair of the formli,a andoi,a that exists in
LOGj andOM , respectively, it is inferred thatMi,a

has been delivered or is guaranteed to be delivered in
CO to destinations in (Mi,a.Dests \ li,a.Dests)

⋃

(Mi,a.Dests \ oi,a.Dests). Therefore, no constraint
remains to be satisfied by the delivery ofMi,a to the
above nodes, viz., nodes not inoi,a.Dests or not in
li,a.Dests. Thus, constraints on the delivery ofMi,a

need to be satisfied only for the delivery to nodes in
oi,a.Dests

⋂
li,a.Dests.

After the information from theoi,a entries identified
above is captured in the correspondingli,a entries by
doing the set intersection, theoi,a entries used in this
step are deleted.
Example RCV(4.loop 2):Both LOGj andOM con-
tain entries aboutMi,9 and Mi,20. Common entries
in LOGj andOM about the same message are pro-
cessed as follows:

– If oi,9.Dests = {7, 11} and li,9.Dests = {2, 7,
13}, then updateli,9.Dests←− {7}. (Fromoi,9,
node j infers thatMi,9 has been delivered or
is guaranteed to be delivered in CO to{2, 13}.
From li,9, nodej infers thatMi,9 has been de-
livered or is guaranteed to be delivered in CO
to {11}.)

– If oi,20.Dests = {15, 16} andli,20.Dests = {3},
then updateli,20.Dests←− ∅. (Fromoi,20, node
j infers thatMi,20 has been delivered or is guar-
anteed to be delivered in CO to{3}. From li,20,
nodej infers thatMi,20 has been delivered or is
guaranteed to be delivered in CO to{15, 16}.)

As the explicit and implicit information inoi,9 and
oi,20 is captured inli,9 andli,20, respectively,oi,9 and
oi,20 are deleted.

The remaining information inOM and LOGj is about
messages that are not known to be delivered and not
guaranteed to be delivered in CO to their respective re-
maining destinations. This information must be stored
and propagated. The information is merged and consoli-
dated inLOGj by doing a union of the current states of
LOGj andOM .

5. RCV(5): This step executes procedure PRUGENULL-
ENTRIES which prevents the proliferation of entries of

the form li,∗, whereli,∗.Dests = ∅. See explanation of
PURGENULL ENTRIES.
Example RCV(5): Deleteli,20 from LOGj . Its presence
is implied despite its subsequent absence, by the presence
of li,21 in LOGj .

PURGE NULL ENTRIES(LOG):
This procedure prevents the proliferation of entries of the
form li,∗, whereli,∗.Dests = ∅ and l ∈ LOG, whereLOG
is the log at some process. As discussed in Sect. 4.2, the use
of information encoding to meet the Propagation Constraints
must prevent the proliferation of such entries. If∃li,a, li,a′ ∈
LOG | li,a.Dests = ∅, anda < a′, then deleteli,a because
it represents redundant information. However, entryli,a′′ ,
wherea′′ = max{ a′| li,a′∈LOG}, is retained because it is
required in RCV(4) to represent the implicit greatest lower
bound on timestamps of messages sent byi that do not have
to be tracked.
Example PURGE NULL ENTRIES: See RCV(5) which
invokes this procedure and continues the running example
of procedure RCV.

4.5 Some notes on the algorithm

We now make some notes on the algorithm.

– The form in which the algorithm is presented requires
that during a multicast, the message sent to the various
destinations is different. This appears to preclude a hard-
ware multicast. However, the algorithm can be readily
modified to enable hardware multicast as follows.
When a nodej sends a messageM to Dests, in Step
SND(2), the nodej sends (j, clockj , M , Dests, OM )
to eachd ∈ Dests using hardware multicast. The logic
in step SND(2) can be performed at the start of step
RCV(3). This results in extra overhead only on the mul-
ticast message; at each destination of the multicast, the
logic of SND(2) is performed and hence there is no
avalanche effect of such overhead.

– When a messageM is received by processj but the
message cannot be delivered, processj can perform a
lookahead and execute RCV(4) and RCV(5) usingOM .
This lookahead eliminates redundant information from
LOGj , thus preventing its propagation on multicasts that
occur afterM arrives and beforeM gets delivered. Sub-
sequently, whenM is delivered, these steps are repeated.
Thus, the algorithm steps could be reordered so that steps
RCV(4) and RCV(5) also occur before RCV(1).

– Standard programming techniques can be used to im-
prove the computation overhead of SND and RCV. For
example, the log at a process can be kept sorted by
the sender identifier and the sender’s clock value. Each
li,a.Dests can be kept sorted on the destination identi-
fier. Similarly, within eachOM that is sent from node
k to nodej, the information about all earlier messages
sent toj, that is contained inOM , can be isolated so that
the search in RCV(1) and RCV(3) is simplified. It is ev-
ident that in SND(2), a separateOM is computed from
LOG for each destinationd ∈ M.Dests even though
these computations are almost identical, viz., deleting
M.Dests from o.Dests, ∀ o ∈ OM , and the same as
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in SND(3–5). Instead, a single common computation of
deletingM.Dests from each log entry can be done, con-
currently with which individualOM s to each noded can
be adjusted by identifying log entries for whichd is
a destination. The presentation of the algorithm avoids
such details of programming techniques and data struc-
tures so as to simplify the conceptual presentation and
minimize the complexity of the proof procedure.

– Processes can be dynamically added and deleted. A new
process starts with its local clock set to 0. A departed
process appears to other processes as though it never
sends messages, until it is removed from their view. The
issue of how a process (departed process) is included
in (excluded from) the view of other processes is a net-
work management issue and an application-specific issue
beyond the scope of the CO problem.

5 Correctness proof

In Sect. 5.1, we prove certain properties of the algorithm
that are used in its correctness proof and optimality proof.
Theorem 3 in Sect. 5.2 shows that the algorithm satisfies the
sufficient conditions on the information that must be stored
and transmitted for enforcing CO, as per the Propagation
Constraints. In Sect. 5.3, Theorem 3 in conjunction with the
Delivery Condition is used to show the safety and the live-
ness of the algorithm.

5.1 Algorithm properties

We identify properties of the algorithm that will be used in
the correctness proof and the optimality proof.

Lemma 1 states that for every sender nodei, a destination
noded belongs toli,∗.Dests for at most one entryli,∗ in
the log at any node. Moreover, for every sender nodei, a
destination noded belongs tooi,∗.Dests for at most one
entry oi,∗ in the control information sent in any message.

Lemma 1 ∀i∀j∀d∀a∀a′, d ∈ li,a.Dests and d ∈
li,a′ .Dests, where li,a, li,a′ ∈ LOGj , implies thata = a′.
(Likewise for entries inOMj,b

.)

Proof. We first prove the result for log entries. The proof
uses contradiction.
(Assumption 1:)∃i∃j∃d∃a∃a′ such thatd ∈ li,a.Dests, d ∈
li,a′ .Dests immediately following some event (j, b), where
li,a ∈ LOGj , li,a′ ∈ LOGj , and a′ < a. Without loss of
generality, also assume that no event that causally precedes
(j, b) satisfies this property.

There are two cases to consider: (j, b) is a send event or
a delivery event.
(j, b) is a SEND event:In SND, onlylj,b is added toLOGj ,
hencei = j. Also, we must haveb = a > a′. From SND(3),
if d ∈ lj,a.Dests for the current multicast at (j, a) and
∃d ∈ lj,a′ .Dests, wherea′ < a and lj,a′ ∈ LOGj , thend
is deleted fromlj,a′ .Dests. This contradicts Assumption(1)
and hence such an event (j, b) cannot exist.
(j, b) is a DELIVERY event forMj′,c: Just before event
(j′, c), the following did not hold from Assumption(1):

“d ∈ li,a.Dests and d ∈ li,a′ .Dests, whereli,a ∈ LOGj′

and li,a′ ∈ LOGj′ .” We then have from SND(2) that
“d ∈ oi,a.Dests andd ∈ oi,a′ .Dests, whereoi,a ∈ OMj′,c

andoi,a′ ∈ OMj′,c
” does not hold whenOMj′,c

is processed
by RCV at (j, b) . . . . . . (Claim 1).

(Note that ifj′ = i, d = j, c = a, d ∈Mj′,c.Dests, andd
∈ li,a′ .Dests, whereli,a′ ∈ LOGj′ , just before (j′, c), then
d ∈ oi,a′ .Dests, whereoi,a′ ∈ OMj′,c

. In RCV(3),OMj′,c
is

modified as follows:d is deleted fromoi,a′ .Dests andoi,a,
whered ∈ oi,a.Dests, is added toOMj′c

.)
From Assumption(1), we have that before (j, b), LOGj

does not contain bothli,a and li,a′ , whered ∈ li,a.Dests
andd ∈ li,a′ .Dests. . . . . . . (Claim 2).

From Claims(1 and 2), assume without loss of generality
that li,a ∈ LOGj , whered ∈ li,a.Dests, and thatoi,a′ ∈
OMj′,c

, whered ∈ oi,a′ .Dests. (The reasoning in the case
thatli,a′ ∈ LOGj , whered ∈ li,a′ .Dests, andoi,a ∈ OMj′,c

,
whered ∈ oi,a.Dests is similar). In RCV(4), we have the
following:

– If li,a′ ∈ LOGj , thend 6∈ li,a′ .Dests (Claim 2) andd
is deleted fromoi,a′ .Dests.

– If li,a′ 6∈ LOGj , thenoi,a′ is deleted fromOMj′,c
.

In either case, “d ∈ li,a.Dests, d ∈ li,a′ .Dests where
li,a ∈ LOGj , li,a′ ∈ LOGj” does not hold after the ex-
ecution of procedure RCV for the delivery event. Hence,
Assumption(1) is contradicted and such an event (j, b) can-
not exist.

As Assumption(1) is contradicted in all cases, the lemma
holds for log entries. Observe from SND(2) thatOMj,b

is
a subset ofLOGj just before the event (j, b). Hence, the
lemma holds for entries in the control information in mes-
sages. �

We now define a function on the timestamps of messages.

Definition 6 The functionTS is as follows:

– TS(i,LOGj) = max { x | li,x ∈ LOGj }.
– TS(i,OM ) = max { x | oi,x ∈ OM }.

TS(i,LOGj) is the highest value of the timestamp of mes-
sages multicast byi as known from the information in
LOGj . TS(i,OM ) is the highest value of the timestamp
of messages multicast byi as known from the information
in OM . TS(i,LOGj) in the duration between two consecu-
tive events at nodej is associated with the local dependency
edge between the events in the computation graph. Similarly,
TS(i,OM ) for a messageM is associated with the message
dependency edge between the send-delivery pair of events of
M in the computation graph. The timestampTS(i,LOGj)
or TS(i,OM ) is useful for detecting and deleting explicitly
stored redundant information about messages multicast byi
at or before the event represented by the timestamp.

The significance ofli,x, wherex = TS(i, LOGj), is as
follows. All dependencies originating at nodei before (i, x)
that are not explicitly included in someli,∗ are implicitly
included inli,x, with the semantics that these dependencies
have been satisfied. Termx represents implicitly the greatest
lower bound on timestamps of all dependencies originating
at i before (i, x) that have been satisfied or are guaranteed to
be satisfied. Only unsatisfied dependencies are explicitly ex-
pressed in someli,∗. By using a single valuex, this scheme
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allows the implicit representation of information about all
dependencies originated by a giveni that have been satis-
fied or are guaranteed to be satisfied. The significance of
TS(i, OM ) is the same.

Lemma 2 states that for each sender nodei, and any
other nodej, timestampTS(i, LOGj) is always defined
and never decreases as a function of time.

Lemma 2 ∀i∀j, TS(i,LOGj) is a monotonic continuous
nondecreasing function of time.

Proof. Initially, ∃ li,0 ∈ LOGj ; henceTS(i, LOGj) = 0.
Let the value ofTS(i, LOGj) presently bea. Only the
following scenarios atj could potentially trigger a change
to TS(i, LOGj) :

– Nodej sends a message atclockj . In SND(3), one or
more li,a′ .Dests may become∅. In addition, if i = j,
then in SND(4),TS(i, LOGj) gets incremented to a
higher value, namely,clockj . By SND(5), the value of
TS(i, LOGj) is unchanged.

– MessageM is delivered. In RCV(4), when OM and
LOGj entries are merged, it is seen thatTS(i, LOGj)
gets updated to the greater of its current value andTS(i,
OM ). RCV(5) does not change this value.

It follows that TS(i, LOGj) is monotonic nondecreasing
and is continuous. �

Lemma 3 is a counterpart of Lemma 2. It states that for
any path in the computation graph (corresponding to a chain
in the distributed computation), the timestampsTS(i, OM )
andTS(i, LOG) associated with the edges of the path never
decrease along the path.

Lemma 3 For any path in the computation graph, the times-
tampTS(i, OM ) or TS(i, LOG) associated with the edges
of the path is a monotonic continuous nondecreasing function
along the path.

Proof. Given any path in the computation graph, the result
holds for each of its subpaths that contain dependency edges
on the same process, by Lemma 2. It remains to show that if
Mj,b is sent tok and delivered at (k, c), “TS(i, LOGj) just
before (j, b)” ≤ TS(i, OMj,b

) ≤ “TS(i, LOGk) just after
(k, c)”.

Let a = TS(i, LOGj) just before (j, b) and let a′ =
TS(i, LOGk) just before (k, c). (If j = i, thenb > a, and at
the timeMj,b is being delivered in RCV(3),oj,b ∈ OMj,b

and
TS(i, OMj,b

) = b (> a)). From the above case and SND(2),
we have that whenMj,b is delivered,TS(i, OMj,b

) ≥ a.
Step RCV(4) setsTS(i, LOGk) to the maximum ofa′ and
TS(i, OMj,b

) (≥ a). In RCV(5), this value is unchanged.
The result follows. �

Definition 7 A set is monotonic nonincreasing if an element
is never added to the set after it is initialized.

Each setli,a.Dests in LOGj in the duration between
two consecutive events at nodej is associated with the lo-
cal dependency edge between the events in the computation
graph. Similarly, each setoi,a.Dests in OM for a message
M is associated with the message dependency edge between
the send-delivery pair of events ofM in the computation
graph.

Lemma 4 states that the contents of anyli,a.Dests are
monotonically nonincreasing as a function of time in the log
at any node after its first insertion in the local log.

Lemma 4 The setli,a.Dests, whereli,a ∈ LOGj , andj is
any node, is monotonic nonincreasing after initial insertion.

Proof. Node j never insertsli,a into LOGj at an internal
event. li,a at nodej changes, including being added and
deleted, only in the following situations:
Procedure SND at j: In SND(3), the destinations of the
current multicast are deleted fromli,a.Dests if li,a ∈ LOGj .
In SND(5), li,a is deleted fromLOGj if li,a.Dests = ∅ and
∃ li,a′ ∈ LOGj , wherea′ > a. Elements are never added to
li,a.Dests in procedure SND except that ifj = i, then li,a
is inserted inLOGi for the first time when step SND(4) is
executed for eventSend(Mi,a) (the initial insertion case).
Procedure RCV at j: Whenever a messageM arrives atj,
these scenarios exist:

1. ∃li,a ∈ LOGj . Three possibilities determine the actions
in RCV.
– oi,a ∈ OM . In Step RCV(4), li,a.Dests ←−

li,a.Dests
⋂

oi,a.Dests.
– oi,a 6∈ OM and∃oi,a′ ∈ OM , wherea′ > a. In Step

RCV(4), li,a is deleted fromLOGk

– oi,a 6∈ OM and 6 ∃oi,a′ ∈ OM , wherea′ > a. In Step
RCV(4), li,a is unmodified.

Subsequently, in procedure RCV, elements are never
added toli,a.Dests.

2. 6 ∃li,a ∈ LOGj . oi,a is inserted inLOGj only if ( 6 ∃li,a′ ∈
LOGj | a′ > a) in RCV(4). Therefore, ifoi,a is inserted
in LOGj (implying that 6 ∃li,a′ ∈ LOGj | a′ > a), it
remains to be shown that this is an initial insertion, i.e.,
li,a had not existed inLOGj before.
We prove by contradiction. Assume thatli,a had existed
in LOGj before and was deleted. This could have hap-
pened only in the following ways, all of which lead to
contradiction:
– in RCV(4), when a messageM ′′ was delivered,
6 ∃oi,a ∈ OM ′′

∧
(∃oi,a′′ ∈ OM ′′ | a′′ > a). When

OM ′′ and LOGj were merged in RCV(4),TS(i,
LOGj) is a′′ (> a). From Lemma 2, it follows that
currentlyTS(i,LOGj) > a. This contradicts the cur-
rent nonexistence ofli,a′ .

– in RCV(5), at an event whenli,a.Dests = ∅ and
(∃li,a′′ | a′′ > a). From Lemma 2, it follows that
currently TS(i,LOGj) ≥ a′′ > a. This contradicts
the current nonexistence ofli,a′ .

Hence,li,a had not existed inLOGj before.

In all cases, the lemma holds. �
Lemma 5 is the counterpart of Lemma 4 and states that

for any path in the computation graph (corresponding to a
chain in the distributed computation) originating at (i, a),
the contents ofoi,a.Dests or li,a.Dests associated with the
edges of the path are monotonically nonincreasing along the
path.

Lemma 5 For any path in the computation graph originat-
ing at (i, a), the setsoi,a.Dests or li,a.Dests associated with
the edges of the path are monotonically nonincreasing along
the path.
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Proof. From Lemma 4,li,a.Dests is monotonic nonincreas-
ing in LOGj , for any nodej. It remains to show that if
Mj,b is sent tok, wherek is any node, and delivered at
(k, c), then “li,a.Dests just before (j, b)” is a superset of
oi,a.Dests, whereoi,a ∈ OMj,b

, and thisoi,a.Dests is a
superset of “li,a.Dests just after (k, c)”.

In the base case wheni = j and a = b, oj,b is inserted
in OMj,b

on delivery in RCV(3). In all other cases, from
SND(2), Mj,b will contain li,a.Dests modified in a nonin-
creasing manner asoi,a in OMj,b

. WhenMj,b gets delivered,
oi,a may be reduced in RCV(3). In RCV(4), there are three
possibilities.

– li,a ∈ LOGk. In Step RCV(4),li,a.Dests←− li,a.Dests⋂
oi,a.Dests.

– li,a 6∈ LOGk and∃li,a′ ∈ LOGk, wherea′ > a. In Step
RCV(4), li,a is not added toLOGk, henceli,a 6∈ LOGk.

– li,a 6∈ LOGk and 6 ∃li,a′ ∈ LOGk, wherea′ > a. In Step
RCV(4),oi,a is inserted intoLOGk in unmodified form.

Subsequently, in procedure RCV, elements are never added
to li,a.Dests. The lemma follows. �

Lemma 6 deals with the existence of information “d ∈
Mi,a.Dests” in the local log at any event in the causal future
of (i, a), which is the earliest event that does not propagate
the information on some outgoing edge in the computation
graph.

Lemma 6 Consider any event(k, c), other than the event
Deliveryd(Mi,a), such that

– (i, a) −→ (k, c) and information “d ∈ Mi,a.Dests” is
not propagated from(k, c) on at least one outgoing edges
in the computation graph, and

– ∀ (k′, c′) | (i, a) −→ (k′, c′) −→ (k, c), information “d ∈
Mi,a.Dests” is propagated from(k′, c′) on all outgoing
edges in the computation graph.

Then information “d ∈ Mi,a.Dests” exists in LOGk just
before(k, c).

Proof. We first show that for the two cases:k = i andk /= i,
the information “d ∈Mi,a.Dests” exists in LOGk at some
event before (k, c).

– k = i. In SND(4) at (i, a), li,a, whered ∈ li,a.Dests, is
inserted inLOGk.

– k /= i. We prove using contradiction. As (i, a) −→ (k, c),
at least one message sent at or causally after (i, a) must
have been delivered tok before (k, c). From our defini-
tion of (k, c), each such messageM ′ must have contained
d ∈ oi,a.Dests, whereoi,a ∈ OM ′ . Without loss of gen-
erality, assumeM ′ is the first such message delivered to
k. It follows that li,a could not have existed inLOGk

before delivery ofM ′.
Let us assume thatd ∈ oi,a.Dests, where oi,a∈OM ′ ,
and thisoi,a was not inserted intoLOGk whenM ′ was
delivered. The only reason this could have happened is
that at the time of delivery ofM ′, TS(i,LOGk) = a′
(> a) (see RCV(4)). This implies thatli,a′ must have
already been inserted inLOGk when a messageM ′′
was delivered earlier. Clearly, (i, a) −→ Send(M ′′) −→
(k, c) and from the definition of (k, c), d ∈ oi,a.Dests,
whereoi,a ∈ OM ′′ . This contradicts the assumption that

M ′ was the first message delivered tok such thatd ∈
oi,a.Dests, whereoi,a ∈ OM ′ . Therefore, whenM ′ was
delivered before (k, c), li,a was inserted inLOGk, where
d ∈ li,a.Dests.

The only way the information “d ∈ Mi,a.Dests” can
be deleted after it is inserted inLOGk is on the deliv-
ery of some messageMl,f , such that information “d ∈
Mi,a.Dests” is not contained in OMl,f

, i.e., (i) d 6∈
oi,a.Dests, whereoi,a ∈ OMl,f

, or (ii) oi,a 6∈ OMl,f
and

∃ oi,a′ ∈ OMl,f
, wherea′ > a. But then event (l, f ) did

not propagate this information on its outgoing edge in the
computation graph, which contradicts the definition of (k, c).
Hence,Ml,f cannot exist, andli,a ∈ LOGk, where d ∈
li,a.Dests, just before (k, c). �

5.2 Sufficiency of information

Theorem 3 shows that the algorithm satisfies the sufficiency
portion of the Propagation Constraints. Observe that Theo-
rem 3 is a restatement of the sufficiency condition. In the
proof, we identify events with respect to information “d ∈
Mi,a.Dests” such that this information propagates on all
paths from (i, a) up to such events. Then we show that any
such event implies the existence of a fixed point of “d ∈
Mi,a.Dests” at the event or in its causal past. In Sect. 5.3,
we show the liveness and safety of the algorithm using The-
orem 3 and the Delivery Condition.

Theorem 3 If information “d ∈ Mi,a.Dests” is not prop-
agated from(j, b), where(i, a) −→ (j, b), on some outgoing
edge in the computation graph, theneither

– Deliveryd(Mi,a)
=−→ (j, b), or

– ∃ (k, c) | (i, a) −→ (k, c)
=−→ (j, b)

∧
d ∈

Mk,c.Dests
∧

information “d ∈ Mi,a.Dests” is prop-
agated from(k, c) to d.

Proof. Consider any event (k, c) that satisfies the following
constraints:

1. (i, a) −→ (k, c)
=−→ (j, b) and information “d ∈

Mi,a.Dests” is not propagated from (k, c) on at least
one outgoing edge in the computation graph, and

2. ∀ (p, f ) | (i, a) −→ (p, f ) −→ (k, c), information “d ∈
Mi,a.Dests” is propagated from (p, f ) on all outgoing
edges in the computation graph.

Such an event (k, c) must exist by Lemma 5 because ini-
tially d ∈ li,a.Dests, whereli,a ∈ LOGi right after (i, a),
and the information “d ∈ Mi,a.Dests” is propagated on
eachMi,a that was multicast. IfDeliveryd(Mi,a) satisfies
the constraints on (k, c) (this amounts to whetherDeliveryd-
(Mi,a) −→ (j, b)), then the theorem stands proved. Other-
wise, the proof proceeds as follows.

Observe that at eventsDeliveryk(Mi,a), k /= d, infor-
mation “d ∈ Mi,a.Dests” is received inOMi,a

and stored
in the local logs, i.e., propagated on all outgoing edges of
the computation graph from eventDeliveryk(Mi,a), k /= d.
Hence, such delivery events do not satisfy the first constraint.
(Observation A)

Observe from RCV(4) that no other event
Deliveryk(M ), whereM /= Mi,a, will satisfy the constraints
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on (k, c) because the only way a node does not propagate
information “d ∈ Mi,a.Dests” from event Deliveryk(M )
along the outgoing edges in the computation graph is if

– the information is not contained inLOGk and not in
OM , or

– the information is contained inLOGk but not in OM ,
and∃ oi,a′ ∈ OM , wherea′ > a, or

– the information is contained inOM but not in LOGk,
and∃ li,a′ ∈ LOGk, wherea′ > a.

For all three cases, the second constraint on (k, c) is not
satisfied by eventsDeliveryk(M ), whereM /= Mi,a. (Ob-
servation B)

From Observations (B) and (A), ifDeliveryd(Mi,a)
does not satisfy the constraints on (k, c), then (k, c) must
be an eventSend(Mk,c). It remains to show thatd ∈
Mk,c.Dests and “d ∈Mi,a.Dests” is propagated onOMk,c

to d.
From Lemma 6, information “d ∈ li,a.Dests” must have

existed inLOGk just before (k, c). We have the following:
If d 6∈Mk,c.Dests, then from SND(2) it follows that the in-
formation “d ∈ li,a.Dests” is sent on all outgoing edges in
the computation graph fromSend(Mk,c), thus violating our
assumption about (k, c). Therefore,d ∈ Mk,c.Dests. Ob-
serve from SND(2) thatMk,c that is sent tod ∈ (li,a.Dests⋂

Mk,c.Dests) does containd in oi,a.Dests, whereoi,a ∈
OMk,c

. The theorem follows. �

Corollary 1 The information “d ∈ Mi,a.Dests” travels to
the fixed points of the information.

Proof. The information implicitly reaches FP1, the event
Deliveryd(Mi,a), whenMi,a is delivered tod.

We prove that the information reaches each event FP2
using contradiction. Assume that the information does not
reach Send(Mj,b), an FP2 event. Let this event be the
eventSend(Mj,b) in Theorem 3. From the theorem, there
must existSend(Mk,c), where (i, a) −→ (k, c)

=−→ (j, b),
that sends the information tod. As (j, b) is an FP2 event,
(k, c) 6−→ (j, b). Also, (k, c) /= (j, b) because the information
does reach (k, c). Hence, the event (k, c) does not exist, a
contradiction. The result follows. �

5.3 Correctness of the algorithm

We prove the correctness of the algorithm by proving its
liveness and safety. Proving the safety entails showing that
information propagated as per Theorem 3 is used correctly
to regulate message delivery to ensure CO. Proving liveness
entails showing that each message is eventually delivered.

Theorem 4 (Safety): d ∈ Mi,a.Dests
∧

d ∈ Mj,b.Dests∧
Send(Mi,a) −→ Send(Mj,b)

∧
Deliveredd(Mj,b) =⇒

Deliveredd(Mi,a).

Proof. We prove the theorem by contradiction.
(Assumption A:) Let Mj,b be delivered tod without

Mi,a having been delivered.
(Assumption B:) Without loss of generality, assume

that Mi,a is the message such thatS lend(Send(Mi,a),Se-
nd(Mj,b)) ≤ S lend(Send(M ′′),Send(Mj,b)), ∀M ′′|

– Send(M ′′) −→ Send(Mj,b), and
– d ∈ M ′′.Dests and Deliveredd(M ′′) at the timeMj,b

is delivered.

This assumption states thatSend(Mi,a) is such that the
length of the longest path (defined by functionS lend) from
someSend(M ′′) to Send(Mj,b), whereM ′′ has not been de-
livered to d beforeMj,b is delivered, is least whenM ′′ is
Mi,a.

From Assumption A and the Delivery Condition, we
must have thatd 6∈ oi,a.Dests, where oi,a ∈ OMj,b

, or
oi,a 6∈ OMj,b

on Mj,b sent to d. By Theorem 3, then∃
(k, c), (i, a) −→ (k, c)

=−→ (j, b), such that (i) (k, c) =
Deliveryd(Mi,a), or (ii) d ∈Mk,c.Dests

∧
d ∈ oi,a.Dests,

whereoi,a ∈ OMk,c
sent tod. Case (i) contradicts Assump-

tion A. Therefore, we consider (ii) only. From Assumption
B on Mi,a, any suchMk,c must have been delivered tod
at the timeMj,b is delivered becauseS lend(Send(Mi,a),
Send(Mj,b)) > S lend(Send(Mk,c), Send(Mj,b)). But such
an Mk,c could have been delivered tod only after Mi,a is
delivered tod because of the Delivery Condition that is
enforced by RCV(1) which is executed whenMk,c is deliv-
ered. This contradicts Assumption A thatMi,a has not been
delivered at the timeMj,b is delivered. �
Theorem 5 (Liveness): Each message is eventually deliv-
ered to all its destinations.

Proof. The proof is by contradiction. Message delivery is re-
liable and message transmission time is arbitrary but finite.
Let there existMj,b and somed such thatd ∈ Mj,b.Dests
and every message sent causally before (j, b) to d is eventu-
ally delivered tod but Mj,b is never delivered tod. OMj,b

may contain information only about messages sent in the
causal past of (j, b). Eventual delivery ofMj,b is prevented
only by the permanent nondelivery of those messages iden-
tified in OMj,b

which haved as a destination; however, note
that Mj,b is such that all such messages are eventually de-
livered to d. Therefore,Mj,b is delivered. A contradiction.

�

6 Optimality of the algorithm

6.1 Proof of optimality - necessary conditions for CO

We now show that the algorithm is optimal in both the con-
trol information overhead in messages as well as in local logs
in the sense that redundant information (Definition 5) is not
carried in messages or stored at nodes. The proof entails
showing that the algorithm satisfies the necessary portion
of the Propagation Constraints that constitutes the condition
for optimality. The proof first identifies fixed points of infor-
mation “d ∈ Mi,a.Dests” and shows that (i) all messages
sent at or in the future of the fixed points do not carry this
information beyond the fixed points, and (ii) the local logs
at any events in the causal future of the fixed points do not
store this information. Thus, the “only up to” part of the
Propagation Constraints is satisfied.

Theorem 6 Information “d ∈ Mi,a.Dests” is not propa-
gated on any outgoing edge in the computation graph from
any event(j, b) if either
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– Deliveryd(Mi,a)
=−→ (j, b), or

– ∃ (k, c) | (i, a) −→ (k, c) −→ (j, b)
∧

d ∈Mk,c.Dests.
If such a(k, c) does not exist and(j, b) is a multicast send
event such thatd ∈ Mj,b.Dests, then the information
“ d ∈Mi,a.Dests” is sent only on the message tod.

Proof. From Corollary 1, information “d ∈ Mi,a.Dests”
traverses up to the fixed points. We prove the result by in-
duction on thelength of events (j, b) on any path (defined
by functionlength, see Sect. 2.1) from a fixed point FP1 or
FP2 of “d ∈ Mi,a.Dests”.
Induction hypothesis: An event (j, b) at length x on a
given path from a fixed point of information “d ∈
Mi,a.Dests” does not propagate “d ∈ Mi,a.Dests” on its
outgoing edges in the computation graph.
Event (j, b) is at length = 0: Two cases exist based on
whether the path begins at FP1 or FP2.
(Case I – Paths starting from FP1): Event (j, b) can be any
event from FP1, which is the eventDeliveryd(Mi,a), up to
the first send event following FP1. Thus,j = d.

When Mi,a is delivered tod (=j) at FP1,d is deleted
from oi,a.Dests, where oi,a ∈ OMi,a (RCV(3)) and thus
when li,a is inserted inLOGj , d 6∈ li,a.Dests (RCV(4)).
From Lemma 4,li,a.Dests is nonincreasing inLOGj . So
from SND(2), it follows that nodej never sends information
“d ∈ Mi,a.Dests” from event (j, b) on any outgoing edge
in the computation graph.
(Case II – Paths starting from FP2): Event (j, b) can only
be the FP2 event because (j, b) is at length 0 and the FP2
event is a send event. Thus, (j, b) is a fixed point FP2 of “d
∈ Mi,a.Dests”.

During the sending ofMj,b, in SND(2),d 6∈ oi,a.Dests,
whereoi,a ∈ OMj,b

sent to any node except noded. How-
ever, in this exception case, whenMj,b is delivered to node
d, in RCV(3) and subsequent processing,d 6∈ oi,a.Dests,
where oi,a ∈ OMj,b

because it has served its purpose of
enforcing the Delivery Condition; this is equivalent to the
FP2 event not sending “d ∈ Mi,a.Dests” to d, as far as
optimality is concerned. Moreover, in SND(3),d is deleted
from li,a.Dests, where li,a ∈ LOGj . It follows that node
event (j, b) does not send information “d ∈ Mi,a.Dests”
from (j, b) on its outgoing edges in the computation graph.
Event (j, b) is at length = x, x > 0: Assume that the induc-
tion hypothesis holds, i.e., an event (j, b) at length x on
the given path from a fixed point of information “d ∈
Mi,a.Dests” does not propagate this information on its out-
going edges in the computation graph.
Event (j, b) is at length = x + 1, x > 0 : Let (j, b) be the
send event atlength x + 1 on the path. If (j, b) does not
exist, there are no further send events on the path, implying
there are no events on the path atlength greater thanx + 1;
the proof is done.

If the send events atlength x andx + 1 on the path are
on the same node, then from the induction hypothesis and
Lemma 4, it follows that (i) a message sent at event (j, b) at
length x + 1 on the given path does not contain information
“d ∈ Mi,a.Dests” in OMj,b

, and (ii) this information does
not exist in LOGj after (j, b). For all delivery events at
length x + 1 on this path, this information does not exist in
LOGj after the delivery event.

If the send events atlength x andx+1 on the path are on
different nodes, we use the following reasoning. Let (h, f )
be the send event atlength x, and letMh,f be delivered at
(j, b′) along the path under consideration from a fixed point
to (j, b). Only the following possibilities exist assuming the
induction hypothesis forlength x.

1. d 6∈ oi,a.Dests, where oi,a ∈ OMh,f
. The following

scenarios exist atj just before (j, b′).
a) li,a ∈ LOGj . Step RCV(4) ensures thatd 6∈

li,a.Dests after the delivery ofMh,f at (j, b′). From
Lemma 4, it follows thatli,a.Dests, where li,a ∈
LOGj , is monotonic nonincreasing. Hence,d 6∈
li,a.Dests, where li,a ∈ LOGj , at any time after
(j, b′).

b) li,a 6∈ LOGj . Let TS(i,LOGj) = a′. We now have
the following:

– If a′ > a, then oi,a is not added intoLOGj .
From Lemma 2 and RCV(4), it follows thatoi,a

is not added intoLOGj at any time after (j, b′).
– Otherwise,a′ < a. oi,a is inserted inLOGj in

RCV(4). From Lemma 4,d will never belong
to li,a.Dests, whereli,a ∈ LOGj , at any time
after (j, b′).

2. oi,a 6∈ OMh,f
. It follows from the induction hypothesis,

Lemmas 3 and 5, RCV(4), and RCV(5) thatTS(i,LOGh)
> a at event (h, f ) and TS(i,OMh,f

) = TS(i,LOGh).
The following scenarios exist atj just before (j, b′).
a) li,a ∈ LOGj . At (j, b′), from RCV(4), it follows that

li,a is deleted becauseTS(i,OMh,f
) > a. The value

of TS(i,LOGj) gets updated to the maximum of
TS(i,LOGj) andTS(i,OMh,f

) in RCV(4). RCV(5)
does not alter this value which is greater thana. It
follows from Lemma 2 and RCV(4) thatoi,a is not
added intoLOGj after (j, b′).

b) li,a 6∈ LOGj . At (j, b′), the value ofTS(i,LOGj)
gets updated to the maximum ofTS(i,LOGj) and
TS(i,OMh,f

) in RCV(4). RCV(5) does not alter this
value which is greater thana. When delivery ofMh,f

at (j, b′) is complete,TS(i,LOGj) > a. It follows
from Lemma 2 and RCV(4) thatoi,a is not added
into LOGj after (j, b′).

In each of the above scenarios 1a, 1b, 2a, and 2b, once the
delivery of Mh,f at (j, b′) is completed, information “d ∈
Mi,a.Dests” is never added intoLOGj . In particular, for
all delivery events atlength x + 1 along the path at nodej
(such events lie between (j, b′) and (j, b)), information “d ∈
Mi,a.Dests” does not exist inLOGj after the event. From
procedure SND, event (j, b) will not send information “d ∈
Mi,a.Dests” on any of its outgoing edges in the computation
graph.

Thus, in all cases, an event in the causal future of a
fixed point of “d ∈ Mi,a.Dests” does not propagate infor-
mation “d ∈ Mi,a.Dests” on any of its outgoing edges in
the computation graph. The theorem follows. �

The proof also follows from Corollary 1, Lemma 5, and
the fact that redundant information is deleted at the fixed
points (from the argument in thelength = 0 case of the
proof of Theorem 6).

Lemma 7 states that for every other nodei, at most
one entryli,a in the local log has itsDests field as∅, and
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the timestamp of the message it represents is greater than
the timestamps of the messages sent byi as represented by
other entriesli,∗ in the local log.

Lemma 7 ∀i∀j, li,a.Dests = ∅, where li,a ∈ LOGj =⇒
∀li,a′ ∈ LOGj , a ≥ a′.
(Likewise foroi,a ∈ OM ).

Proof. From SND(5) and RCV(5), the lemma is seen to hold
for log entires after each send and delivery event. From
SND(2), the lemma is seen to hold for entries inOM . �

oi,a may be transmitted or stored even if∀ d ∈
Mi,a.Dests, Mi,a is known to be delivered or is guaran-
teed to be delivered in CO – however,oi,a.Dests must be
∅ and 6 ∃ oi,a′ | a′ > a. The sole purpose of transmitting or
storingoi,a is to maintain the implicit greatest lower bound
on timestamps of messages from nodei that have been de-
livered or are guaranteed to be delivered in CO to all their
destinations.

Theorem 7 The algorithm in Sect. 4.3 is optimal.

Proof. From Theorem 6, information “d ∈ Mi,a,.Dests” is
not stored in logs or sent in any messages sent in the causal
future of its fixed points, with the exception that a fixed
point FP2 propagates the information only tod. Hence, in-
formation is propagated as per the Propagation Constraints.
In addition, no spurious information other than what is spec-
ified by the Propagation Constraints is stored or transmitted.
Therefore, the algorithm is optimal. �

Thus, the proposed algorithm is optimal with respect
to the Propagation Constraints. Enforcement of “no trans-
mission of duplicate information” is a generic constraint
common to many distributed algorithms that assume FIFO
communication. Therefore, it is of secondary concern to our
problem. It requires some additional data structures at each
process to keep track of what information has been sent to
what processes. Moreover, it may require additional compu-
tation at each process to update the data structures and to
process the control information received in messages. Thus,
there is a trade-off which is another reason why we do not
elaborate on this constraint in the paper.

6.2 Performance

We consider the control information overhead and the pro-
cessing overhead. The control information overhead is im-
portant because although networks are becoming faster and
provide higher bandwidths, faster computers and parallel
processing technology are likely to make the network a bot-
tleneck. Moreover, the demand for computer networks is
rising at a faster rate than the communication bandwidth
of computer networks; therefore, the volume of information
pushed through computer networks will always be an im-
portant performance concern.

Control information overhead

We compute the size of the control information sent asOM

in a messageM and stored in local logs. For every mes-
sage sent in the past ofSend(M ) that is not yet known to

be delivered or is not guaranteed to be delivered in CO to
all its destinations, there is an entryoi,a in OM . Let oi,t1,
oi,t2, ..., oi,tni

be the entries inOM corresponding to such
messages sent by nodei. Let Φi=oi,t1.Dests

⋃
oi,t2.Dests⋃

....
⋃

oi,tni
.Dests. Φi denotes the destinations to which

the messages from nodei are not yet known to be delivered
or are not guaranteed to be delivered in CO. From Lemma 1
and procedure SND, the number of entries inΦi as well as
the number of corresponding entries in any log are bounded
by n; i.e., there is at most one entry for each other node.
(Observe that at any node, if someli,a.Dests = ∅, thenMi,a

is known to be delivered or guaranteed to be delivered in
CO to at least one destination, sayd. From Lemma 7 and
the correctness of the algorithm (Theorem 4),6 ∃ li,a′ | d ∈
li,a′ .Dests. Hence,|Φi| < n in this case.)

Let ndi = |Φi|. (ndj=0 if there is no entry for a message
from nodej.) Clearly, 0≤ndi≤n, 1≤i≤n.

The overhead in terms of size of control information in
messages is equal to

∑i=n
i=1 ndi

The above expression gives the number of independent units
of information of type “d ∈ Mi,a.Dests” that are required
by the algorithm. The data structures used in the algorithm
were selected for power of expression, not for efficiency,
and could be optimized in an implementation. For example,
instead of transmitting multipleoi,∗ entries, where the iden-
tifier i is replicated, an implementation could store a single
instance of identifieri, and then associate the various values
of ∗ and their associatedDests fields with it. Alternately, a
sparse representation of ann × n array of typetimestamp
could be used. The following encoding can further reduce
the overhead. In an entryoi,a∈OM carried in a message
M , field Dests can be substituted byPROC − Dests if
|PROC − Dests| < |Dests|. (PROC is the set of node
identifiers.) This optimization ensures the following bound:
0≤ndi≤n/2, 1≤i≤n. We do not discuss any such optimiza-
tions because they are orthogonal to the problem of deter-
mining the bare minimum pieces of information for enforc-
ing CO, which is the problem addressed in this paper.

The upper bound on the overhead of control information
in messages and in local logs isn2. However, in a real-life
computation, we expect that the size of these overheads will
be much smaller on the average, and in every case, it is
always the least possible.

Processing overhead

The processing overhead of procedure RCV isO(n2). The
processing overhead of procedure SND isO(n3) because
SND(2) hasO(n3) overhead, even though other steps in SND
haveO(n2) or better overhead. In Step SND(2), the inner
for all loop hasO(n2) overhead in the worst case because it
has to processn2 entries inOM in the worst case. The dis-
cussion on programming techniques in Sect. 4.5 shows how
to reduce the overhead. Note from Lemma 1 that the number
of entries inOM is likely to be much smaller on the average.
Furthermore, note that the outer loop in SND(2) can be exe-
cuted in parallel. Therefore, the processing time overhead of
the algorithm as presented in Sect. 4.3 is effectivelyO(n2).
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In practice, the algorithm is implemented using hard-
ware multicast, as noted in Sect. 4.5. To adapt the algorithm
to the use of hardware multicast as explained in Sect. 4.5,
the logic in step SND(2) is performed by the recipients of
the multicast and the outer loop of SND(2) gets distributed
among the recipients’ RCV code. Therefore, SND(2) has
O(n2) complexity, SND hasO(n2) complexity, and RCV
also hasO(n2) complexity, comparable to that of existing
algorithms.

7 The complexity of the CO problem

Theorem 8 For the system model and problem description
of Sect. 2, enforcing CO over causal dependency chains of
length greater than two hasΩ(n2) overhead of control infor-
mation in messages [2].

Proof. For each (source, destination) pair, there is a latest
message that has been sent. In general, there aren2 such
instances. We prove by contradiction that if all thesen2

instances are not included in the control information in mes-
sages and message logs, then CO over causal dependency
chains of length 3 is violated.

Let Mm,tm
.Dests={x, d}. Suppose afterMm,tm

has
been delivered tox, x unicasts a message to nodey at time
tx. Let “d ∈ Mm,tm

.Dests” be the information instance
that is not contained in the control information. Thend 6∈
om,tm

.Dests, whereom,tm
∈ OMx,tx

. After Mx,tx
has been

delivered toy, d 6∈ lm,tm .Dests, where lm,tm ∈ LOGy,
becaused 6∈ om,tm .Dests, where om,tm ∈ OMx,tx

. Now
if y unicastsMy,ty to noded, delivery of My,ty to node
d will not wait for the delivery of Mm,tm becaused 6∈
om,tm

.Dests, whereom,tm
∈ OMy,ty

. This results in a CO
violation for the dependency chain of length 3 (m to x, x
to y, y to d). As nodesd and m can be any nodes in the
system, in general, alln2 identifiers must be transmitted on
any message to enforce CO. �

Corollary 2 shows that enforcing CO over chains of
length 3 has at least as much overhead as enforcing CO
for chains of arbitrary length.

Corollary 2 For the system model and problem description
of Sect. 2, the space complexity of the overhead of control
information in messages and in local logs to enforce CO is
Ω(n2).

Proof. Follows from Theorem 8. �
Although, in general, the complexity of the overhead

of control information in messages and in local storage is
Ω(n2) under the framework of Problem 1 (Sect. 2.2), redun-
dant information is carried in messages and stored at nodes
by existing algorithms. Our algorithm employs techniques
to eliminate the flow of redundant information. The infor-
mation stored is only about “to be delivered” messages. The
key of the algorithm is to use a representation to store the
information such that the information on already delivered
messages and messages guaranteed to be delivered in CO is
derived from the “to be delivered” information !

7.1 Special cases

The complexity of the CO problem may be reduced by mak-
ing simplifying assumptions and considering special cases
that fall outside the scope of Problem 1. In this section, we
discuss some such special cases.

Broadcast case

When each message is broadcast to all other nodes, the
Dests field of the entries carried in messages and stored
in local logs always contains the ids of all nodes and thus,
can be eliminated. Thus, the control information overhead in
messages and in the logs needs to contain onlyO(n) entries
at any time – one entryclockj that uniquely identifies the
latest broadcast of each nodej that occurred atclockj .

Observe that at any nodei, the values ofclocki ordered
by ‘precedes locally’ and the values ofTi[i] ordered by
‘precedes locally’, whereTi is the vector timestamp of an
event [7,15], are isomorphic. Therefore, maintaining an en-
try clockj for the latest broadcast by each nodej as part of
the control information is equivalent to maintaining a vector
clock and vector timestamps as part of the control informa-
tion. This latter approach that uses vector clocks to enforce
CO was first suggested in [5].

Serialized broadcast case

If broadcasts are serialized (by using some mutual exclusion
algorithm), then it is sufficient to track (sender, timestamp)
for the most recent broadcast in the system. Thus the over-
head of control information in messages and in local logs is
one entry only.

Serialized multicasts to arbitrary process groups

If multicast Sendsto arbitrary and dynamically changing
process groups are serialized (by using some mutual exclu-
sion algorithm), then it is sufficient to track only the latest
multicast on a per destination basis. Thus, for each noded, it
suffices to store only one entry (sender, timestamp) that gives
the sender identifier and the timestamp of the most recent
Sendto that noded. The overhead of control information is
n entries. If the current multicast hass destinations, then af-
ter sending the multicast and on delivery, the corresponding
s old entries in the local logs are replaced bys entries for
thes new dependencies. Thus, at mostn (sender, timestamp)
pairs are required, resulting inO(n) space overhead.

Unicasts with synchronous communication

Unicasts with synchronous communication automatically
guarantee CO without any overhead of control informa-
tion [6]. Let Send(M ) and Send(M ′) be two consecutive
sends on any causal chain without any intervening sends.
Send(M ′) can occur only afterDelivery(M ) because of
synchronous communication. It follows that CO can never
be violated.
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Unicasts with synchronization at transport layer

The algorithm by Mattern and Fünfrocken [16], outlined in
Sect. 1, provides CO for unicasts by using a built-in syn-
chronization provided by transport layer acknowledgements
between the sender’s output buffer and the receiver’s input
buffer. Let Send(M ) and Send(M ′) be two consecutive
sends on any causal chain without any intervening sends.
M is placed in the receiver’s input FIFO buffer beforeM ′
is sent from the sender’s output FIFO buffer. It follows that
Delivery(M ) −→ Send(M ′) as the computation is equiv-
alent to a synchronous computation. Thus, CO is never vi-
olated and there is no overhead of control information in
messages in the algorithm.

Enforcing CO for dependency chains of length two

Lemma 8 For the system model and problem description of
Sect. 2, CO over causal dependency chains of length two can
be enforced withO(n) overhead of control information in
messages [2].

Proof. When sending a message from nodei to nodej,
i sends a message identifier for (1) the latest message it has
sent to each other node (n identifiers) and for (2) the latest
message from each other node toj that it is aware of (n
identifiers). When the message is delivered atj, j updates
its information with (1) and (2). Supposej now sends a
message to a randomly chosen nodek. j has the information
of the last message sent by every node, includingi, to k.
When j sends information about the latest message from
each other node to nodek (including i to k), k can enforce
CO for paths of length two. �

Enforcing CO for dependency chains of length>2

Theorem 8 showed that enforcing CO over chains of length
3 hasΩ(n2) overhead of control information in messages.

Asymmetric/hierarchical organization

If we allow asymmetric protocols to enforce CO, we get a
family of algorithms. At one extreme, we get a centralized al-
gorithm wherein a process sends its message to be multicast
to a centralized process, which serially multicasts all such
requests. At the other extreme, there is the completely hierar-
chical structure to address the scalability problem. Processes
are grouped together based on having a common process to
represent the processes at the higher level in the hierarchy.
A process that wishes to multicast a message sends it to its
designated representative at a higher level in the hierarchy.
The message gets broadcast/multicast between representative
processes at the higher level in the hierarchy. When such a
process receives a broadcast, it multicasts it to the set of
processes for which it is the representative process. This
logic can be extended to a multi-level hierarchy. Such pro-
tocols tend to cut down on the message complexity by using
smallern, at the cost of additional delay in the delivery of

messages. We do not consider such protocols because they
are asymmetric. However, to make a fair comparison, the
use of our proposed algorithm for multicasts at any higher
level in the hierarchy gives better efficiency than the use of
traditional protocols for multicasts at those higher levels in
the hierarchy.

Enforcing CO given non-FIFO channels

The algorithm was presented assuming FIFO channels be-
cause most known communication networks provide FIFO
support. The algorithm can be easily converted into one for
non-FIFO channels by requiring sequence numbers in mes-
sages on a per channel basis, and a vector at each node
to represent the sequence number of the latest in-sequence
message delivered to it from every other node.

8 Conclusions

Asynchronous execution of processes and unpredictable
communication delays create nondeterminism in distributed
systems that complicates the design, verification, and analy-
sis of distributed programs. The concept of “causal message
ordering” was introduced to simplify the design and develop-
ment of distributed applications while avoiding the long la-
tencies and loss of parallelism inherent in synchronous com-
munication and total ordering, and while retaining much of
the parallelism of asynchronous communication. Causal or-
dering provides a built-in message synchronization, reduces
the nondeterminism in a distributed computation, and is of
considerable interest to the design of distributed systems.

The concept of causal ordering is useful in several do-
mains such as updates of replicated data, global state col-
lection, distributed shared memory, teleconferencing, mul-
timedia systems, and fair resource allocation. Recently, the
problem of causal ordering has attracted much attention and
a number of algorithms have been proposed for causal order-
ing in distributed systems under a variety of assumptions re-
garding the underlying communication medium and process
communication patterns. The overheads of control informa-
tion in messages and in process logs for the algorithms in
the framework of Problem 1 is O(n2) or higher, which limits
their scalability, preventing them from meeting the growing
demands of future computing environments.

In this paper, we addressed the following fundamental
question regarding the efficiency of CO implementations in
asynchronous distributed systems under the system model
of Sect. 2.1: “What is the minimum amount of information
regarding messages sent in the causal past that is neces-
sary to be propagated and stored to enforce causal ordering
by an algorithm under the following framework: The proto-
col is nonblocking, completely decentralized, deterministic,
and does not usea priori knowledge about the topology or
communication pattern?” We answered the question by for-
mulating necessary and necessity conditions on the informa-
tion required for enforcing causal ordering. The necessity
conditions provide the optimality conditions for enforcing
causal ordering in terms of the size of control information
in messages and in local logs. The necessary and sufficient
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conditions were used to formulate two Propagation Con-
straints that govern the propagation of CO related informa-
tion through the network.

We used the developed characterization and framework
to design an algorithm for enforcing causal message order-
ing. The algorithm allows a process to multicast to arbitrary
and dynamically changing process groups. We proved the
correctness of the algorithm and showed that it satisfies the
necessity conditions proving that it is optimal in the size
of control information in a message and in the size of lo-
cal storage. The algorithm achieves optimality by using the
Propagation Constraints to curtail the propagation of redun-
dant information at the earliest instants and by employing
an encoding scheme to represent and pass in messages only
the necessary causal dependency information. The encod-
ing scheme allows deduction of implicit information about
already delivered messages from the explicit information
about messages yet to be delivered in order to satisfy causal
ordering. We showed that the space complexity of causal
message ordering for any algorithm under the framework of
Problem 1 isΩ(n2). Although the upper bound on space
complexity of the overhead of control information in our al-
gorithm isO(n2), we expect that the overhead is likely to be
much smaller on the average, and in every case, it is always
the least possible. We also discussed how the algorithm can
be adapted to various special situations outside the scope
of Problem 1. In the face of network failures, techniques
from [25] can be adapted for log management to maintain
causal consistency.

Modeling nonatomic events is useful for event abstrac-
tion in reasoning about related groups of events [12, 13].
A nonatomic event is a collection of more basic atomic
events. A future research problem is to optimally enforce
causal ordering only among messages that are sent in differ-
ent nonatomic events.
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