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Summary. In a distributed system, high-level actions can be Specifically, nonatomic events are modeled in distributed
modeled by nonatomic events. This paper proposes causaligpplications such as distributed multimedia, distributed de-
relations between distributed nonatomic events and providebugging, coordination in mobile systems, industrial process
efficient testing conditions for the relations. The relationscontrol, planning, navigation, and virtual reality, and in
provide a fine-grained granularity to specify causality rela-distributed agent-based programs. These applications deal
tions between distributed nonatomic events. The set of rewith nonatomic nonlinear events, also known as nonatomic
lations between nonatomic events is complete in first-ordeposet events, where at least some of the component atomic
predicate logic, using only the causality relation betweenevents of each nonatomic nonlinear event occur concur-
atomic events. For a pair of distributed nonatomic events rently [21,27]. The event abstraction inherent in nonatomic
andY, the evaluation of any of the causality relations re- events, however, results in a loss of power to express and
quires|Nx| x |Ny| integer comparisons, whet& x| and  reason with various degrees of causality, i.e., the traditional
|Ny|, respectively, are the number of nodes on which thecausality relation [6, 8, 11, 14-16, 18, 26, 29-31, 36, 37, 39]
two nonatomic events{ and Y occur. In this paper, we defined between individual points in space-time cannot be
show that this polynomial complexity of evaluation can by used to capture or specify the synchronization conditions
simplified to a linear complexity using properties of par- between two nonatomic events at a fine level of granular-
tial orders. Specifically, we show that most relations can bdty using various degrees of causality, as required for ac-
evaluated in min(Vx|, | Ny|) integer comparisons, some in curately modeling the interactions between the nonatomic
|Nx| integer comparisons, and the others|My | integer  events. A broad spectrum of causality relations is needed to
comparisons. During the derivation of the efficient testingallow the expression of various degrees of synchronization
conditions, we also define special system execution prefixebetween nonatomic events. Applications can choose rela-
associated with distributed nonatomic events and examinéons from this fine-grained spectrum of relations, while still
their knowledge-theoretic significance. retaining and using the benefits of event abstraction. We pro-
pose causality relations between nonatomic poset events in a
Key words: Distributed computation — Distributed system distributed system without assuming a global time axis, and
— Atomicity — Time — Causality — Synchronization — Global examine their uses.
predicates — Concurrency Clearly, there is a need to evaluate the causality rela-
tions between nonatomic poset events efficiently. We devise
simplified evaluation conditions for the causality relations
between nonatomic poset events. The proposed evaluation
conditions provide the following savings. Let a nonatomic

1 Introduction event be a set consisting of atomic events. For a pair of
o o nonatomic events¥ andY, there are|X| x |Y| pairs of
Motivation and objectives causality relations between the atomic elements in terms of

) ) ) “which the two nonatomic events are defined. A naive defini-
The causality relation represents the partial order of events ifion of causality would requiréX| x |Y'| checks for causal-
a system execution [6,8,11,14-16, 18, 26,29-31, 36,37, 39%ty. However, for the causality relations that we define, we
Thus far, the causality relation has been studied primarilyfirst show that the evaluation of the causality relations can
between single events in space-time. The n.otlon.of grouppe reduced tdNy | x | Ny | integer comparisons, whef&/ |
ing elementary events in a system execution into higher levelnd | Ny |, respectively, are the number of nodes on which
nonatomic events is useful for event abstraction [9,19,22,27ﬁhe two nonatomic event¥ andY occur. Then we show
28,34]; it provides simplicity to the programmer and systemthat the evaluation can by further simplified using properties

designer in reasoning at the appropriate level of complexof partial orders. Specifically, we show that most relations
ity by reducing the amount of information to be handled.
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Table 1. Relations in [21] are given in the first two columns. The third

can be evaluated in mIWX |’ |NYD integer comparisons, column gives the evaluation conditions derived in this paper

some in|Nx| integer comparisons, and the others| ¥y |
integer comparisons. Thus, the simplified evaluation condi- Relationr  Expression for(X,Y)  Evaluation condition using
tions we derive have only a linear computational complexity relation < between cuts
of testing, whereas evaluation of the relations as per their (see Theorem 4)

» . ; . 1 X Y, Y
definitions has a polynomial computational complexity of gl, zzgyx\;gngziz [\/z\ex[“ﬁy ;fj@q
. i - yey T
testing. : : . R2 VreXFyeVie<y N olUY £ ot

This paper directly addresses the concluding thesis of R e YVEe Xa < g I}§>§< U X
Schwarz-Mattern [37], namely that .“. None of the pre- R3 az € XWeY.a <3 mﬁy & WEX
sented schemes is sufficiently mature to serve gereeral- RY VyeYize X,z <y A, o by & NyX]
purpose mecha_ni_srfm the analysis of causal_ity... The _ R4 TeXyeY,z<y Ulf‘ﬁ & Np X
problem of anticipating the relevant behavior, assigning r4’ JyeYIreX,x<y

meaningful semantics to general global predicates, and find-
ing correct and efficient algorithms for their detection-
mains to be a challenge.. Anyhow, the holy grail of the study of causality to relations between such time dura-
causality analysis has not been found yet.” tions or linear intervals. The literature above also assumed
that the linear nonatomic events occurred at a single point
in space, implying the existence of a global time axis. But
Model in a distributed system, there is no global time axis as ar-
gued in [26,29, 37]. [8] includes a comprehensive review of
A distributed system execution is modeled by the spacetiterature in this area.
time model. This model is a poset event structure model In addition to dealing only with linear intervals, [2,14,18]
as in [11,15, 21, 22,26-31, 34, 37]. Consider a po&&t<) defined their relations using combinations of tkeand =
where< is an irreflexive partial ordering. Lef” denote the relations between the start and finish instants, and such re-
power set ofE and let. 2 (# () C (¢ — 0). There is an lations were further studied in [5, 8, 16, 35]. However, the =
implicit one-many mapping from-¢ to E. Each elementd relation between atomic events has not been accorded an im-
of . is a non-empty subset d@f, and is termed amterval  portant role in the recent literature on causality in distributed
or anonatomic eveni(E, <) represents points in space-time computing [6,11, 15,26-30, 37]. A possible explanation for
which are the most primitive atomic events related by thethis is that in a linear system, as two atomic events slide
causality relation. Elements af are partitioned into local with respect to each other, the = relation is critical in the
executions at a coordinate in the space dimensions. Eacdfiansition from the< to its inverse> relation between the
local executionE; is a linearly ordered set of events in points. However, this is not the case in a distributed system
partition <. An evente in partition ¢ is denoted;. where issues of concurrency are of greater research interest,
For a distributed computer system, points in the spaceand results based only oA and = can be extended in a
dimensions correspond to the set of processes (also termegraightforward manner to include the = relation.
node$, and E; is the set of events executed by process Linear intervals or durations in distributed systems have
Causality between events at different nodes is imposed byeen used explicitly in specifying and detecting global pred-
asynchronous message passing. In such a distributed coricates, an area which was initiated by [13,38]. The follow-
puter system[ represents the set of events and is discreteing literature deals with causality between nonatomic poset
Moreover, we assume there are a finite number of nedes events in a distributed system execution and does not assume
and eachl); has a dummy initial eventl(;) and a dummy  a global time axis. Lamport defined system executions using
final event {T;). It follows that if A (" E; # 0, then A |  two relations—; and —— — between nonatomic elements
E;) has a least and a greatest event. EétandE'" denote  and provided axioms Al - A5 on these relations [27,28]. In-
the sets of initial events and final events, respectively. Weformally, these relations are as follows. For two nonatomic
assume thaf?- and E" are antichains and that L; VT;  eventsX andY in.¢, X — Y iff every atomic event in
Ve € (E\ E+ \ ET), L;<e < T;. We restrict any event X causally precedes every atomic eventinX —— — Y
A'in 4 that is of interest to the application to not contain iff some atomic event inX causally precedes some atomic
any dummy events. event inY. The model and axioms in [27] were further ex-
amined in [1,4,5].
Action refinement of posets is studied [17,19,33,34] and
Previous work surveyed [34] along with a survey of related work in Petri
nets [32]. In the literature on action refinement of posets,
There is no well-understood notion of causality between twothere is no definition of causality between nonatomic poset
nonatomic poset events in a distributed system executiorgvents other than the generic definition in [34] that it is
wherein some events in one nonatomic event causally préeithe composition of the causality relation between individual
cede some events in the other nonatomic event [37]. Reatomic events in unspecified subsets of the two nonatomic
lations between time durations and between instants havposet events”.
been extensively studied in the literature on time and in- A study of the temporal interactions of intervals has
terval algebras. Most previous work assumed that the nonshown that the two causality relations defined by Lamport
atomic events were linearly ordered and had unique starare not sufficient to capture the essential temporal proper-
and finish instants, e.g., [2,5,8,14,16,18,35] — and confinedies of system executions and specify synchronization and
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Table 2. Inclusion relationships between relations [21] as betweert’ and X. As we propose a suite of causality re-

relation of row header R1 R2 R3 R4 lations between nonatomic poset events, there should be ef-
to column header ficient ways to test whether such relations hold between any
Rl = &t E E pair of such events. We derive efficient linear-time evalua-

gg % F l % tion conditions for the proposed reIajions between nonatomic
RA 3 3 9 = poset events. Thus, this paper provides a framework not only

for specifying causality and global predicates between non-
atomic poset events, but also for analyzing and detecting
causality relations between nonatomic events in distributeguch causality at a low linear-time cost. The results con-
systems [21]. The derivation of the 29 (respectively, 40)tribute to the fundamental area of causality and atomicity in
possible temporal interactions between two nonatomic lineaflistributed computing [27,28, 37].

intervals in a distributed system based on the dense (respegyrganization.Section 2 derives the fine-grained hierarchy of
tively, nondense) model of time in [21] used a set of newcaysality relations to fill in the existing partial hierarchy of
causality relations between nonatomic events [21]. This segaysality relations. Section 3 derives simplified evaluation
of causality relations did not assume a global time axis. Rexonditions for the relations in Sect. 2. The simplified evalu-
lations R1-14 and R1'-R4" which form a part of this set of  ation conditions we derive have only a linear computational
relations [21] are expressed in terms of the quantifiers ovegomplexity of testing, whereas evaluation of the relations as
X andY in the first two columns of Table 1. Table 2 gives per the definitions of the relations has a polynomial com-

the hierarchy and inclusion relationship of the causality re-pytational complexity. Section 4 gives concluding remarks.

the relationship of the row header to the column header.

The notation for the inclusion relationship between causal-

ity relations on nonatomic events is as follows. The inclusion?2 Relations between poset events

relation “is a subrelation of” is denoted_' and ‘J’ is the

inverse ofC. ‘=" stands for equality between relations in ad- Recall that each membet of . 4 represents a higher level
dition to its standard usage as the equality in other contextsgrouping of the events df and is an interval or a nonatomic
For two causality relations; andr,, we definer; || 7, to be  event.

(r1 Z o A2 £ r1). The relations{ R1, R2, R3, R4} form
a lattice hierarchy ordered by. RelationsR2’ and R3' are
different from R2 and R3, respectively, when applied to yVy Sz

posets but are the same B2 and R3, respectively, when Definition 2 N4, the node set of interval, is{i | E;( A
applied to linear intervalsk1’ and R4 are the same aB1 {1, T,}}.

and R4, respectively. The complete hierarchy among the re- . ) )
lations of Table 1 is shown in Table 3; the motivation for __ The abovg definition is preferred over the simpler defi-
also using alternate names for the relations in Table 3 willhition N = {i | E;(1A# 0} to make it applicable not only
be given later. The causality relations between nonatomid® nonatomic events of interest to the application but also

poset events will be derived using the relations in Table 10 auxiliary nonatomic events containidg and T;, defined
and the hierarchy among them. later. Causality relations specific to linear intervals are given

in [20]. These are used to derive the fine-grained causality

relations between nonatomic poset events, whose node set
Significance and relation to previous work has a size larger than one [23,24].

Previous work on linear intervals and time durations,

The set of relations proposed in [21] formed a comprehen£€.9., [2,5,6,8,14-16,18], identified an interval by the instants
sive set of causality relations to derive and express all pos©f its beginning and end. The beginning and end instants of
sible temporal interactions between a pair of linear intervals? linear interval are points in space-time which are atomic
using on|y the< relation between atomic events, and ex- events inE. For a nonatomic poset interval, it is natural
tended the partial hierarchy of relations of [27, 28]. How- to identify counterparts for the beginning and end instants.
ever, when the relations of [21] are applied to a pair of These counterparts serve as “proxy” events for the poset
poset intervals, the hierarchy they form is incomplete. Theinterval just as the events at the beginning and end of linear
fine-grained causality relations between a pair of nonatomidntervals such as time durations serve as proxies for the linear
poset intervals proposed here extend the results [21] to norinterval. The proxies identify the durations on each node, in
atomic poset events [23,24]. They form a “comprehensivewhich the nonatomic event occurs. For a nonatomic interval
set of causality relations between nonatomic poset events(, let Lx andUx correspond to the beginning &f and the
using first-order predicate logic and only therelation be- ~ end of X, respectively.L x andUx can act as groxy for
tween atomic events, and fill in the existing partial hierar- PosetX. Two possible definitions of proxies are as follows
chy of causality relations between nonatomic poset eventd20].
formed l_)y rel_ations in [_21,_27,28]. A relation_al algebra for Definition 3 o Ly = {e; € X | Vel € X, e; < ¢/}
the relations in [23,24] is given in [20,25]. Given any rela- | Uy = {ei € X | Vel € X, e = e;} i
tion(s) betweenX andY, the relational algebra allows the ! ' =
derivation of conjunctions, disjunctions, and negations of allDefinition 4 e Ly ={e € X |Ve' € X, e €'}
other relations that are also valid betweErandY, aswell e Ux ={e€ X |Ve' € X,e £ ¢'}

Definition 1 An interval A is linear iff Vz,y € A,z =<
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Table 3. Full hierarchy of relations of Table 1 [21]. Relations are defined betw€eand Y. RelationsR1, R1’, R2, R2', R3, R3', R4, R4 of Table 1

are also referred to as, o/, b, V', ¢, ¢/, d, d’, respectively

Relation names: Rl,a (=RY,a’): R2,b: R2,b: R3,c¢c R3,c: R4 d(=RY,d):
its quantifiers forr < y VaVy (= VyVz) VzIy JyVz JaVy Vy3x Jx3Jy (= Jy3Ix)
R1,a (=RY, d’) : VaVy (= VyVz) = [ C C C C
R2, b: Vzly | = | Il Il C
R2',V': yva | C = Il Il C
R3, ¢ 3avy = I I = C C
R3, : Vy3x 3 I I | = C
R4, d (=R4 d'): 323y (= Jy3z) 2 | 3 3 - =
[ S Table 4. Causality relations(X,Y") € .2 for interactions between non-
r oL U PRI atomic poset events. The third column gives the evaluation conditions
X X 7
Relation Relation definition specified Evaluation condition using
r(X,Y) by quantifiers forz < y,  relation< between cuts
wherez € X,y €Y (see Theorem 4)
Rla Ve € Ux Vy € Ly /\IEUX [NyLy € z1]
Rla’ (= Rla) Vy € Ly Vz € Ux /\yeLy[‘Ly £ UaUx]
R1b Ve e Ux Jy € Ly /\IGUX [UyLy & z1]
R1Y Jy € Ly Vx € Ux UJLY KUTTUX
Rlc Jr e Ux Yy € Ly ﬂuLyKﬂﬂUX
I . /
< ) proxy formed by grouping local min. or max. events I atomic event Rle Vy €Ly Jz € Ux /\yeLyN’y K mﬂUX]
- ' space R1d dreUx Jy € Ly UuLyKr‘lﬂUX
“ proxy formed by grouping of anti-chain of min. or max. events ) RAd' (: Rld) Hy €Ly I3z eUx
time
""" R2a Vo € Ux Yy € Uy /\erX [NyUy & z1]
Fig. 1. Two definitions of proxies of a poset event R2a’ (= R2a) Vy € Uy Vo € Uy /\yeUY [Ly &€ UaUx]
R2b Ve e Ux Jy € Uy /\zeUX[UUUY £ z1]
L R2Y Jy e Uy Yz € Ux UquﬁUﬂUX
By Definition 3,Lx andUx are the sets of the least and R2c Jz € Ux Yy € Uy NyUy & NyUx
greatest events at each nodeNRr, respectively. By Defini-  R2¢ Vy € Uy 3z € Ux /\yeUY [y € NyUx]

tion 4, Lx andUx are the largest antichains containing the R2d
minimal and maximal events of, respectively. We assume R2d' (= R2d)
that any one definition is consistently used, depending onf3¢
context and application. We will denote any proxy Xfas R3a’ (= R3a)
X. From the system model, it follows that for a distributed 730
computer system, each nonatomic event has a well-defined3’
maximal and minimal event at each node in its node set,ggz,
and the node set is finite. Hence, the proxies of all non- .
atomic events are finite and well-defined. Figure 1 depicts (= R3d)
the proxies ofX. Ria

There are two aspects of a relation that can be specified,, (= Rda)
between poset intervals. One aspect deals with the determi;
nation of an appropriate proxy for each interval, and a goodR4b,
choice of a proxy is the beginning or end of an interval. A g,
proxy for X andY can be chosen in:22 ways, correspond-  Rrac/
ing to the relations in{R1, R2, R3, R4}. From Table 2, it  Raq
follows that these four relations form a lattice ordered by R4d’ (= R4d)

Jr € Ux Jy € Uy
JyeUy Jz € Ux
V$6vay€Ly
Yy € Ly Vx € Lx
Ve € Lx dy € Ly
dye Ly Vz € Lx
dreLx Vy € Ly
Vy € Ly dJx € Lx
EImELXEIyELy
ElyGLyEL’EELX
Vz € Lx Vy € Uy
Vy € Uy Vx € Lx
Ve € Lx Jy € Uy
Jy e Uy Yz € Lx
dr € Lx Yy € Uy
Vy € Uy 3z € Lx
dr € Lx dy € Uy
dJye Uy dx € Lx

UJUY & ﬂﬁUX

/\IGLX[ﬁuLY K zt]
Nyer, By & UpLx]
/\:ceLX [UyLy & z1]
UyLy L UpLx
ﬂ{LLy & ﬂﬂLx
/\yeLY[iy L NypLx]
UyLy & NgLx

/\IeLX[fMUY K x1]
/\yeUYNy &K UpLx]
/\IGLX[UuUY &K z1]
UUUY & UﬂLX
mUUY & ﬂﬂLX
/\yEUy Ly & NyLx]
Uqu & ﬂﬂLX

C. The second aspect deals with how the atomic elements
of the chosen proxies ok andY are related by causality.
The chosen proxies can be related by the eight relatitihs

resulting set of poset relations is denotetiand given in the

RY, R2, R2', R3, R3', R4, R4 of Table 1, which are also second column of Table 4; the efficient evaluation conditions
referred to as, o/, b, V', ¢, ¢, d, d’, respectively, in Table 3 that we derive for these relations in Sect. 3 are given in the
to avoid confusion with their original names used for the third column. The relations itv2 form a lattice of 24 unique
first aspect of specifying the relations between poset interelements as shown in Fig. 2; the strongest relatioRls
vals. The inclusion hierarchy among the six distinct relationsand the weakest if4d. Relation R?#(X,Y) means that
forms a lattice ordered by, as shown in Table 3. the proxies ofX andY are chosen as per ?, and events in
The causality relations are formed by combining the twothe proxies are related as per.# is comprehensive using
aspects of deriving the relations, described above. The latticérst-order predicate logic and only the relation between
of relations{ R1*, R2* R3* R4* } between proxies foX atomic events. Specifically#2 defined between nonatomic
andY’, and the lattice of relation§ a, o/, b, V', ¢, ¢/, d, d' } poset events is richer than the specific causality relations in
between the elements of the proxies, when multiplied give ahe literature. The suite of two relations in [27], viz—
lattice of 32 relations over# x . 4 to express(X,Y). The  and—— —, correspond taR1a and R4d, respectively. The
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relations in.#2 whenever needed — each synchronization

performed causes a (global) predicate on some relation(s)
to become true. As the synchronization is achieved by

message-passing, it enables the detection of global func-
tions over the states of the nodes participating in the

synchronization.

— One needs taetectthe occurrence of a specific or any
or all relations that hold among nonatomic events in a
computation. Achieving this efficiently is the topic of
Sect. 3.

rRad A specific meaning and expression for each relation and a
brief discussion of how the relation can be used is given in
Appendix A. Some broad classes of uses of the relations in-
clude modeling various forms of synchronization for group
mutual exclusion, initiation of nested computations, termi-
nation of nested computations, and monitoring the start or
end of a computation.

R3c R3¢

. : . 3 Efficient evaluation of causality relations
Fig. 2. Hierarchy of relations between poset events

Obijectives

suite of relations in [21] and listed in Table 1 correspond to
the new relations as follows?1 = R1’, R2, R2', R3, R3,
R4 = R4’ correspond taRla, R2b, R2V', R3c, R3¢, R4d,
respectively.

Note that by construction, £, C) is a lattice as illus-

The proposed relations are useful to distributed applications
that need a fine level of discrimination in specifying syn-
chronization and causality conditions, and for subsequent
reasoning. Complex conditions can be expressed as a predi-
trated in Fig. 2. For a given pair of pose¥sandY’, it may cate over these_ relations. G.i\./en a trace of a distrib_uted exe-
be the case that a combination of the relations’%m may cution, the application |dent|f|_es pertinent nonatomic events
hold. Specifically, if R(X,Y) holds, thenvR' | R C R’ and needs to know \{vhgt relations are satlsﬂed.between pairs
R'(X,Y) holds. T’hus iff’%(X Y) hélds then for e—aciR; of §uch events. Implicit in the use of these reIatlonslby app'h—
in the upward-closed’subsef of, R’(X’, Y) holds. In the cations is the need to detect whether some specific relation

partial order (2, C), all upward-closed subsets .&® corre- ?gli?r:ritgﬁe;s F;g:lrc?v\?sf nonatomic events. We formalize this
spond exactly to the combinations of relations4@ithat can q '

hold concurrently for a given pair of nonatomic poset evenis.proplem 1 Given a recorded trace of a distributed computa-
1-1 correspondence between the set of all upward-closefajr of nonatomic poset event§ andY’, whereX,Y €. 4,

subsets of a partial order and the set of antichains in thgetermine if a specific relation(X, ) holds, forr € .72.
partial order. Therefore, an enumeration of the antichains in

(-22,C) gives an enumeration of the upward-closed subsets An extension of this problem is the problem that requires
of (72, C), which corresponds to all the combinations of the the detection of all possible relations that hold between pairs
relations in.72 that can hold for a pair of nonatomic poset of nonatomic events.

events. . _
The proposed hierarchy of causality relations in first- Problem 2 Given a recorded trace of a distributed computa-

order predicate logic is useful for applications that use nondion (£, <) and a set of nonatomic eventg, then for every
atomic poset events for event abstraction and also need BAIr 0f nonatomic poset eveni§ andY’, whereX,Y €. 7,
fine level of granularity of causality relations to specify syn- determine all the relations(X, Y') that hold, forr < .72.

. L . nonatomic eventsy andY can be evaluatédwith |Nx| x

good properties and clear intuitions, depending on the ap[Ny| checks for causality. This is significantly better than
plication. There are two broad ways in which the proposed v, 1y'| checks for causality that would be needed without
relations will be used. the use of proxies in the definitions of causality. However,

_ The relations and their composite (global) predicates pro_thls evaluation has a polynomial computational complexity

vide a precise handle texpressa naturally occurring (“.VX‘ x |Ny| checks for causality). Our objective is to sim-
or enforcea desired fine-grained level of causality or plify the tests for the relations, which we achieve by using

synchronization ir} the computation_. Processes in a dis- 1 we use the termgVy | and | Ny | which are upper bounds oV |
tributed computation can synchronize as per one of thend|N5 |, respectively.
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properties of partial orders. Specifically, we show using The-

orem 5 that relation®*a, R*a’, R*b', R*c, R*d, and R*d’
can be evaluated in mip{x|,|Ny|) integer comparisons,
relations R*b in |Nx| integer comparisons, and relations
R*¢ in |Ny| integer comparisons. The simplified evalua-

tion conditions we derive have only a linear computational
complexity, whereas evaluation as per the definitions of the

relations has a polynomial computational complexity.
Observe that each of the 32 relationsX,Y), for r

72, was derived by choosing a proxy of the two possible

proxies of X and a proxyY of the two possible proxies of

Y, thus making one of four choices, and applying one of the

eight relationsR in Table 1 to the chosen proxies. Thus, for
nonatomic poset evenfs andY’, there is a 1-1 equivalence
between any-(X,Y), for r € .22, and R(X,Y), for some
R in Table 1 and some& and someY". But X andY are
themselves nonatomic poset events likeandY — the only

tamps and properties of partial orders. (See Sect. 3.4
and specifically Theorem 3.) These simplified evalua-
tion conditions are possible because the cuts identified
by X andY are structured based on the membership of
X andY and are not arbitrary cuts. This key Idea

2 that enables the efficient evaluation of the relations
in Table 1. The computational complexity of evaluating
each relation is min{Vx|, | Ny |).

. Show that each of the causality relations between non-

atomic posetsX andY in Table 1 holds iff thex rela-

tion holds between specific cuts identified By Y, and

the causality relation being considered. (See Sect. 3.5
and specifically Theorem 4.)

Using step 4, it follows that the computational complex-
ity of evaluating the causality relations is the same as the
computational complexity of the evaluation of the rela-
tion <« between the appropriately chosen cuts identified

by X, Y, and the causality relation being considered.
(See Theorem 5).

6. Examine the overall cost of using the proposed method.
The cost includes a one-time cost of setting up the time-
stamp structure, and the cost of evaluating the relation
< between appropriately identified cuts baseddny’,
and the relation being evaluated.

difference is that for any nodg |X,;| < 1 and|Y;] < 1,
whereas/ X;| and|Y;| are bounded only byE;|. However,
we show that the evaluation methodology and complexity for
R(X,Y) is independent of the size ¢K;| and|Y;|. Hence,
we derive the evaluation methodology f&(X,Y), where

R belongs to Table 1. Then, using a suitable quantification
of X andY in these results to represent the various proxies
X andY, we obtain the evaluation methodology for each
relation in.72 (Table 4).

Notation.We use the notatioX when we specifically need
to distinguish a subset df that acts as a proxy for another
subsetX of E. Otherwise, when the distinction is not im-
portant, the notatioX refers to any subset df, which can
also be a proxy of another set.

3.1 Cuts of an execution

Let P be the set of all process/node partitions. An execution
prefix or acutis the union of downward-closed nonempty
subsets of eacl;, one for every nodé € P.

Definition 5 A cut C is the union of a downward-closed
nonempty subset of eadh in (£, <), whereE = J,,cp Ei.

c=CcENE-CCN

el <e = e, € )

[ 20

Strategy

We derive efficient linear-time tests for the relations in the e; € O == (Ve
second column of Table 1 by proceeding by the following A cut is a nonatomic event and hence it has a well-
steps to evaluate causality between two nonatomic events defined upper bound and lower bound at each node in its
andY. node set. We defin€(C) to be the set of latest events at

1. Define prefixes of an execution, termed cuts, and a rela(-aaCh node in cut’. S(C) denotes the “surface” of cut

tion < on these cuts. (See Sect. 3.1.) and is the same as the proki if Ue is defined by Defi-

2. Define certain cuts identified by nonatomic poset eventsnltlon 3. _Hoyvever, we c_hoose to use notatif{t’) to allow
(See Sect. 3.2.) These cuts represent useful causality | the application the choice of definition of the proxy as per

formation about the poset event, i.e., information abou:beflnltlon 3or4.

the past and the future of the execution associated wittDefinition 6 e S(C) = {e; € C | Ve, € C,e; = €}}

the poset event, in a compact form; moreover, each cut . .

has a different significance. Once identified, the CUtsthathI\(;ﬁ?a?nguge’rgérg?sr Ef (ngéiila'sna subset o’ (or 5(C))

which represent the causality information in a compact P

form can be reused in evaluating causality relations with

other nonatomic poset events. ThiKigy Idea lthat en-

ables the efficient evaluation of the relations in Table 1.
3. Define timestamps for individual atomic events, for cuts, It is a known result from lattice theory that the set of all cuts,

and for nonatomic events. (See Sect. 3.3.) Timestampsdenoted?’, forms a lattice ordered by the subset relation

are introduced because they provide a practical handlécC”.

to test for causality. The timestamps of the cuts that rep- We introduce a new relatior over the set of cuts.

resent causality information of the nonatomic events inLoosely stated< (C, C’) signifies that cutC' is a proper

a compact form, also capture such causality informationsubset of cutC’ and moreover(; is a proper subset of

in a compact form. C!. This relation is useful to derive simplified evaluation
4. Derive simplified evaluation conditions for the relation conditions for the relations between nonatomic poset events

< between cuts identified byX and Y, using times-  given in Table 1.

3.1.1 Comparison of cuts
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Definition 7 We express the relatio (C, C”) in different  Lemma 1 The sets defined in Definition 10 are cuts.

forms, each of which will be used subsequently. i ) .
a y Proof. The sets defined in Definition 10 are formed by the

1. < (C,C") iff (V2 € (S(C)\ E*),z € S(C'YAz €  union and intersection of cuts of the forjn: and z 1, and
CYNC' # E*. the set of all cuts off is a lattice ¢, C) that is closed

2. Z§(C7g[’) igL(ﬂz € (S(C)\ EY),z € S(C)V=z ¢  under and). 0

3. <<)(\é7 C'y iff (V2 € (S(C)\ EY),z ¢ C)NC' # Figure 3 illustrates the cuts C1-C4 defined in Table 5 for
E+\N¢ C Neo. a posetX containing 11 atomic events which are represented

4. £ (C,C") iff 3z € (S(C)\ EY),z € O)\VC' = by large circles. For each maximal or minimal eventoft

EL\/N¢ & Neo. a node, the corresponding dotted (dashed) line indicates the
surface of the past (future) of that event. Each such event,
All the four forms of the definition are equivalent. The and events on the surfaces of both its past and its future, are
termsC’ # E+ andC’ = E* are required to make the defi- marked using a unique marker (such as small shaded circle,
nitions robust for certain cases whefé = E+. The forms  small circle, small shaded rectangle, and small rectangle) for
in Definition 7.2 and Definition 7.4 express the condition further clarity. The surface of each cut C1-C4 is marked by
for «(C,C") which we will use subsequently as follows. a thick line and labeled.
The significance of« is that if «(C,C’), then some ev- The cutsny X andUy X which are determined by the set
ent in S(C) (equals or) happens causally after some event{| z | + ¢ X} condense the causality information in each
in S(C"). If we can choose&”’ and C' to correspond to ap- cut in the set, i.e., information about the past of the execu-
propriate cuts ofX andY’, respectively, for any2(X,Y),  tion associated with events iK. The cutsn, X and U, X
where R € Table 1, then we have a reexpression for thewhich are determined by the st | z € X} condense the
relation R. Then the evaluation oR2(X,Y) reduces to the causality information in each cut in the set, i.e., information
evaluation of (C, C”) which takes|P| evaluations in the about the future of the execution associated with events in
general case. But”’ and C are not arbitrary cuts; rather, X.
they are the cuts identified by andY” and are structured Observe thaty X anduUy X are downward-closed sub-
based on the membership of and Y. We will show in  sets of ¢, <) whereasn; X and U, X are not. We will
Sect. 3.4 that because of their structure, the evaluation ofise this observation aboat, X and Uy X in the proof of
#£(C, C") can be simplified. Lemma 6.

Lemma 2 The members of a poset are related to the cuts

3.2 Past and future cuts of a poset event associated with the poset, defined in Definition 10, as follows.

. ) 21Ve e S(MyX)Vee X, e/ <z
For_ atomic event, there are two special cutse andet. 2.2V € S(UyX)r e X, ¢ <x
e is the maximal set of events that happen before or equa 3 v/ S(NyX)z € X,z < ¢
e. Le denotes theausal st (CP) ofe. e is the union of 5 4 v/ S(Ua X)Wz € X, 2

0 y T2

downward-closed sets of events at each node, such that the
set of events at anyis the downward-closed set of events
at ¢ upto and including the earliest eventidafor which ¢
happens before or equals the event.is the @mplement
of the cusal_titure (CCF) ofe and denotes the execution 2.1 For anye’ in S(NyX), e is min({[S(}2)]; | € X}).
prefix upto and including the beginning of the causal future  ThereforeVz € X, ¢/ € | .

Proof. From Definitions 8,9, and 10, and the definition of
\J and () operations, we observe the following.

of e at each node. 2.2 Foranye in S(UyX), ¢; is max{[S(l z)]; | z € X}).
Definition 8 [CP:] Le = {¢' | ¢/ < ¢} Therefore dz € X, ¢; & S(L.2).
o 2.3 Foranye’ in S(Ny X), e is min({[S(z1)]; | = € X}).
Definition 9 [CCF:] et = {e" | ¢’ Z e} U{eii € Pl ei = Therefore, 3z € X, ¢} € 5(z1).
e N(Vei, e; < e; == ¢; £ €)} 2.4 Foranye) in S(uﬂ){), ¢ /i/s max([S(z )], | = € X}).
The cuts|e and et have the property that cute has Therefore vz € X, e} = ej € S(z1).
a unique maximal event and cuf has a unique minimal  The lemma follows from the above observations and by not-
event. Also,|e is downward-closed inH, <) whereaset ing that [S({z)]; < = andz < [S(z1)];. O
is not. B B

Given a poset event, we define certain cuts that represent The cuts of a nonatomic poset event defined in Defini-
the past and the future of the execution associated with th&ion 10 represent various execution prefixes associated with
poset event; each cut has a different significance. Each dhe nonatomic event. The cuts C1-C4 will be used in de-
the causality relations between nonatomic posétandY riving simplified evaluation conditions for the causality rela-
in Table 1 will be shown to be equivalent to tke relation  tions defined in Table 1. Cuts C1(X) and C2(X) are about the
between specific cuts identified by, Y and the causality —past of the nonatomic event and cuts C3(X) and C4(X) are
relation being considered. about the future of the nonatomic event. The significance of

these cuts is discussed and expressed in knowledge-theoretic
Definition 10 The second column of Table 5 defines certainterminology next [10,12]. We will use notatiahy and®.,,

sets associated with pos&t. to represent knowledge about nonatomic ev&nheind cut
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Table 5. Definitions of special sets of poséf. These sets are shown to be cuts. Timestamps of the cuts are given in the third column

Label Definition Timestamp, derived from Defn. 14 and Lemma 3

CL(X) orny X ﬂvzex{iz b T(NyX) =Vie P,T(NyX)[4] = ming,ex (T x)[4])
C2(X)oruyX Uwex{im b T(UyX) =Vie P,T(UyX)[i] = maxyge x (T x)[4])
C3(X) or Ny X meEX{xT o TNy X) =Vie P, T(Ng X)[i] = miny,e x (T (zP)[])
CA(X) or Uy X UWEX{xT b T(UpX) =Vi € P, T(Uyp X)[4] = maxy,e x (T(z1)[])

© Atomic event within X ~ Time Fig. 3. Cuts C1, C2, C3, and C4 of pos#t

cut, respectively K, (®) is a predicate that is true if evemt  Notation.We use| X and X 1, respectively, to denote cuts
has knowledge ob. ¥* represents the knowledge available about the past and future associated with any nonempty sub-
at eventr. setX of E.

1. Ny X is the maximum set of events that causally precedePefinition 11 For any nonatomic poset eveit,
everyz € X. Itrepresents the maximum execution prefix ® | X denotes eithe€'1(X) or C2(X).
about which all events ik have knowledge. e X1 denotes eitheC'3(X) or C'4(X).

In knowledge-theoretic termsjz € X, K"’@WX) - We now informally show the relation®(X,Y), for R

true. Also,Vr € X, &n x C ¥, in Table 1, are implied by the relatiog on appropriately

2. Uy X is the maximum set of events such that each eventdentified cutsC1, C2, C3, andC4 associated witlX and
causally precedes somec X. It represents the maxi- Y using Lemma 2 and the knowledge-theoretic analysis of
mum execution prefix about which only all the events in the cutsC1, C2, C3, andC4. Formal proofs of the equiv-
X collectively have knowledge, but no one eventin  alence betwee®(X,Y), for R in Table 1, and the relation

may have complete knowledge. % on appropriately identified cuts associated wihandY
In knowledge-theoretic termd,J,, . (¥*) = Q’U&X- are given subsequently in Theorem 4, Sect. 3.5. Note that
Also, Ve; € S(UyX)3z € X, W% D Wi, if £(C,C"), then some event ii5(C”") happens before (or

3. Ny X is a cut such thats(N,X) is the set of earliest €quals) some event ifi(C’). However, in the following dis-
events on each node that are causally preceded by sonféission, we assume that # (C, C’), then some event in
z € X. It represents the minimum execution prefix such S(C’) happens before some eventd(C); subsequently, in
that all the maximum events of this prefix are precededSect. 3.5, we justify this assumption.

by at least one event iX. R . .

. R*a(X,Y): This relation holds ifvz € X, «(n,Y,x71),
n knowltidge-theorenc termsfe; € S(NgX)Jw EIX’ i.e., Vx € X, some event inS(N,Y) happenlsl causally
Ke (P2) = true. Also, Ve; € S(MyX)Jz € X, ¥* C after some event irS(x 1), implying by the use of a

&pei. ..
. : . transitive argument and Lemma 2.1 that for all events
4. Uy X is a cut such thath(U,X) is the set of earliest in X, all events inY’ happen causally after.

events on each node that are causally pr.eceded.by ever])é*a,(X Y): This relation holds iffvy € Y, £(ly, UsX),
x € X. It represents the minimum execution prefix such ie., Vy € Y, some event inS(|y) happens causally
that all the maximum events of this prefix are causally after some event i5(U; X), implying by the use of a

preceded by all the events . transitive argument and Lemma 2.4 that for all evants
In knowledge-theoretic term§&e; € S(U4X), K, (Px) inY, y happ?ens causally after all évents)ch on

= true. Also, Ve; € S(UpX)Va € X, 0% C 0. R*b(X,Y): This relation holds iffvz € X, £ (UyY, 1),
i.e, Vo € X, some event inS(UyY) happens causally
Key Idea 1The cutsny X, Uy X, Ny X, anduy, X aggregate after some event ir5(x1), implying by the use of a
the causality information about atlin a nonatomic evenk transitive argument and Lemma 2.2 that for all events

in a condensed form, as described above. Once identified ata in X, some event irt” happens causally after.

one-time cost, these cuts can be reused at a low cost to evak*b'(X,Y): This relation holds iff « (UyY, Uy X), ie.,
uate causality relations with respect to all other nonatomic  some event irt(UyY') happens causally after some event
events. We will use these condensed forms of causality in- in S(U4X), implying by the use of a transitive argument
formation to derive efficient tests for the causality relations and Lemmas 2.2 and 2.4 that some evenYimappens

in Table 1. causally after all the events iN.
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R*c(X,Y): This relation holds iff & (NyY,N4X), ie, Given two distinct atomic events ande;, the causality
some event irb (N, Y") happens causally after some event between them can be tested as follows;j ¥ k, thene; <
in S(N4X), implying by the use of a transitive argument e}, iff T(e;)[j] < T(e)[j]. If j = k, thene; < ¢ iff
and Lemmas 2.1 and 2.3 that all the event¥ihappen  T'(e;)[4] < T'(e})[7]-
causally after the same event .

R*¢(X,Y): This relation holds iffvy € Y, «(ly,NyX),
ie., Vy € Y, some event inS(ly) happens causally 3.3.2 Timestamps of cuts and nonatomic events
after some event it(NyX), implying by the use of a
transitive argument and Lemma 2.3 that for all evants For a cutC, we define its timestamf@'(C) such that the
in Y, y happens causally after some eventiin ith component of the timestamp is the maximum of itre

R*d(X,Y), R*d'(X,Y): This relation holds iff&« (U,Y, components of the timestamps of all the eventZLirthat
Ny X), i.e., some event it¥(UyY) happens causally af- occur at node.
ter some event inS(Ny,X), implying by the use of a _— s _— .
transitive argument and Lemmas 2.2 and 2.3 that som&efinition 14 T(C) = ¥i € P, T(C)[i] = Jmax (T'(z:)[i])

event inY happens causally after some eventXin ) )
Lemma 3 The timestamp of a cut composed by the union or

intersection of other cuts is as follows.

3.3 Timestamps -If C = (1,5,C° thenT(C) = Vi € P, T(O)i] =
Min=1,(T'(C*)[i])
3.3.1 Timestamps of atomic events —If C = Uy, C° thenT(C) = Vi € P, T(O)i] =

max=1,, (T'(C*)[i])

Conceptually, the causality relation between two events Capygqt Follows from Definitions 5 and 14, and the lattice

be determined by examining their space-time coordinates,
: . S structure €, C). O

In practice, logical clocks are used to maintain time at each

process/node and track causality. Each atomic event is a€orollary 1 The timestamps of the cuts of a poset defined in

signed a timestamp which is the clock value when the eventhe second column of Table 5 are given in the third column

occurs. Dummy events are treated like regular events whebf the table.

assigning or computing timestamps. We assume a clock sys-

tem such that the timestamps assigned to events have tH&oof. Follows from Lemma 3. O

following property [15, 29] which is essential to determine

causality between any two events, Causality between nonatomic poset evektandY is

_ ) determined as follows. Compare the timestamp of an appro-
Property of timestamps: e < ¢ iff T(e) <* T(¢’) priately chosen cut associated withwith the timestamp of
We assume the following canonical vector clocks [15,29]an appropriately chosen cut associated Witto test for the
that have this property. Each primitive atomic events < relation between the two cuts (Sect. 3.4). Then formally
assigned a timestamp'(e) that is a vectdr of size [P|,  show that this test (possibly multiple such tests) is equivalent
where P is the set of all process/node partitions. This is to the test for causality (Sect. 3.5).
the minimum size of a clock/timestamp that is required to  From Definitions 8 and 12, observe thag| ), the time-
capture the above property of timestamps [11]. Assumingstamp of cut, = associated with any eventis simply 7'(z).
that the identifier of a process/nodeis i itself, T'(e) is From Definitions 9 and 13, observe th&{z 1), the time-
defined as follows. stamp of cutz 1 associated with any eventis as follows:
o . _ T(z N4 = |E;| — TE(z)[i] — 1. (This calculation accounts
Definition 12 T(e) = vi € P, T(e)li] = [{ei | ei = e}l for the 2 dummy events if;.) Using timestamps of cutise
i.e., T(e)[z] is the number of events on nodénat causally  5nq .4, the overhead of computing timestamps of the cuts
precede or equat. given in Table 5 for eaclX is as follows. The'” component
of the timestamp of each @f1(X) andC2(X) is a min and
max function, respectively, of T([S{x)]:))[7] | = € X}.
Similarly, the i** component of the timestamp of each of
C3(X) andC4(X) is a min and max function, respectively,
T%(e) of an event indicates the number of events in thegsg(g[s i(tx;)J]f?i)}:gs‘ foecg?;, i d(:t)soer:};e ttr?:tki%gtl(glfe)n? gr?t in

future that are causally affected by the current event [7]. _ : -
Observe that once the timestamp structure is established fo)r(nE“ foreachi € Nx. Similarly, observe that fo€'2(X)

the entire computation, the “reverse” timestaffifi(c) can andC4(X), it suffices to consider only the latest element in
’ X ; sth -
also be established. XN E;, for eachi € Nx. Consequently, thé"* compo

nent of the timestamp of each 6f1(X), C2(X), C3(X),
Definition 13 TF(e) = Vi € P, TR(e)[i] = |{e: | e; = e} and C4(X) is a min or max function over thé¢" compo-
i.e., T (e)[i] is the number of events on nodlthat causally ~ "ents of| Nx| timestamps, which has|&y | computational
happen after or equad. complexity. For| P| components of the timestamp, the com-
putational complexity iSNx| x |P|. Fortunately, we will
2 We will use the< relation as the “less than” relation between integers Show that all tthl Components_ of the t|me§tamp5 of the
and between vectors of integers. The usage should be clear from contextcuts are not required for computing tke relation between

Let.7 be the se{T(e) | e € E'}. Observe that there is
an isomorphism between the event structute{) and the
timestamp structure® , <) [30].

Analogous to the timestamifi(e), the reverse timestamp
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the cuts. Rather, for eved, only the| Nx| components for

per Assertion 1 requiresP| integer comparisons which is

the nodes inNy are relevant, and hence, only these needthe same computational complexity as that for the evaluation
to be computed. Therefore, the computational complexity ofas per Definition 7. However, we now show that this test can

computing the timestamp of a catl(X), C2(X), C3(X),
or C4(X) is |Nx|2. Observe that this computation of the

be reduced to miniVx|, |Ny|) integer comparisons.
Lemma 5 is an intermediate result. Lemma 5.1 shows

timestamps of the above cuts has a one-time cost. Oncthe causality relation between each membeS6X 1) and

computed, the timestamp of a cut associated Witlsan be
reused in the evaluation of the relatienn between this cut

a member(s) ofS(X 1) that occur at a node(s) iNx.
Lemma 5.2 shows the causality relation between each mem-

and cuts associated with multiple other nonatomic eventsber of S(}Y) and a member(s) of(]Y) that occur at a
This cost of computing the timestamps will be considerednode(s) inNVy-.

further in Sect. 3.6.1 when evaluating the efficacy of the
proposed method of testing for the relations in Table 1.

3.4 Efficient evaluation ok between past and future cuts
of posets

This section derives an efficient test (Theorem 3) for<the
relation betweerl Y, a past cut of a poset eveyit and X 7,

a future cut of poset everdf. Observe from Definition 7 that
<(C, ") can be tested byP| integer comparisons: whether
T(e;)[i] < T(e))[i], wheree; € S(C) ande] € S(C”), for
everyi € P. The objective is to minimize the number of

Lemma 5 The members (X 1) and.S(] Y) are related to
their events that lie inVy and Ny, respectively, as follows:

5.1Ve' € S(X1) 3z, € S(X1),i€ Nx Na; X ¢€
52Ve € S(Y)Jy; € SUY), i € Ny ANy; = €

Proof. The proof of (5.1) follows from Lemma 2.3 and
Lemma 2.4. The proof of (5.2) follows from Lemma 2.1
and Lemma 2.2. O

The discussion following Assertion 1 showed that the
R.H.S. of Assertion 1 requiredP| integer comparisons.
Lemma 6 gives a more efficient test for the R.H.S. of Asser-

comparisons needed for this test, given the added informalion 1, requiring only| Nx | integer comparisons correspond-

tion thatC' and C’ are structured cuts of the forfny” and
X1, respectively. (The cutY and X 1 are determined by
the sets of cut{ly | y € Y} and {z1 | = € X}, re-
spectively, which have the property that each fythas a
unique maximal event and each cut has a unique mini-
mal event.) The efficient test we formulate will be used in
Sect. 3.5, where it is shown that this test for relatianbe-
tween appropriately chosen cuts¥fand X is equivalent to
a test for the causality relations betwe&nandY proposed
in Table 1.

Lemma 4 states thag (| e;,e; 1) iff e; causally pre-
cedese;.

Lemma4 | e; K €; 1T iff €; = e;.

Proof. Observe that; t # E+ and thatN,., C N;1.

(=): By applying Definition 7.2 to the L.H.S., we infer
that3k | [S( e:)]x = [S(e; Dk It follows from the defini-
tion of €j Tand| e; thatej = [S(ej T)]k = [S(\L 61‘)]}{; = e,
hencee; < e;.

(«<=): From the R.H.S., we infer thatS[e; N]; =< e;.
Also, we havee; = [S(] e;)]; from the definition of| e;.
Therefore, p(e; Ns = [SW ei)]i, and by Definition 7.4,
Lei Kejt. O

As per Lemma 4, the test fafe; & e; T is exactly a

ing to the timestamps’ components for nodesNr.. The
simplification is possible because we are not evaluating the
< relation between two arbitrary cuts but rather between the
cuts Y and X 1 which are determined by the sets of cuts
{lylyeY}and{z?t|x € X}, respectively, which have
the property that each cyty has a unique maximal event
and each cut:1 has a unique minimal event. This property
suggests that sufficient causal information ab&uts con-
densed into théVyx components, and leads to the following
idea.

Key Idea 2.If «(JY,X 1) is violated (as in the L.H.S. of
Assertion 1), then some event (] Y) equals or happens
causally after some event i8(X 7). This violation must
occur at a node inVx because the event§(X 1))y, are

the earliest possible events among eventS(ii 1), in terms

of causality (see Lemma 6). Using analogous reasoning, this
violation must occur at a node iVy because the events
[SUY)]n, are the latest possible events among events in
S(Y), in terms of causality (see Lemma 7). Therefore, the
violation of < (1Y, X 1) can be detected byNx| checks

for causality between atomic events, by comparing for each
1IN Nx, T([S(XM])[] and T[S Y)]:)[i]. Analogously,

the violation of<(] Y, X 1) can be detected by | checks

for causality between atomic events, by comparing for each
iin Ny, T([S(X M) and T[S Y)1:)IE]. Therefore, the

check for causality between the two atomic events. Fromviolation of <(|Y", X 1) can be detected in mifi{x|, | Ny |)
the discussion in Sect. 3.3.1, this check requires one integénteger comparisons. Whenevg¥x| or [Ny | is less than
comparison. We would like to generalize Lemma 4 to a tes{P|, we have a more efficient test for the causality relation

for Y <« X1 and we use Definition 7.2 ok (C,C’) as
this form is more convenient to derive the simplified test.

Assertion 1 Y « X1iff 32 € S(Y),z € S(X)Vz ¢
X 1. (From Definition 7.2 and noting thaX 1 # E+)

The R.H.S. of Assertion 1 is true ifiz; € S(JY) such
that T'(z;)[:] > T([S(X 1)]:)[i]. Observe that there are”|
elements inS(lY). Therefore, to determingY <« X 1 as

betweenS(lY) and S(X 1).

Lemma 6 (3z € S(Y),z € S(XDV =z & X1) iff (3] €

SLY),i € Nx AIS(X D] = 2)
Proof. See Appendix B. O

Theorem 1Y « X 1iff (32} € S(UY),i € Nx ALS(X D]
= 2))
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Proof. Follows from Assertion 1 and Lemma 6. a show the equivalence of the relation definitiaREX, Y) in
o ) the second column of Table 1 to the validity of the rela-

The significance of Theorem 1 is that the testfof & {jon hetween one (in some casgSiy | or | Ny |) pairs of cuts
X1 can be performed by onlyVx| integer comparisons, of the form X+ and | Y, as specified in the third column
corresponding to theVx components of the timestamps of of Taple 1. This equivalence was informally introduced in
1Y and X 1. Specifically, | V' & X1 iff 32; € SIY),  gect. 3.2. By Theorem 3, the evaluation df < X7 re-
wherei € Nx, such thatl'(z;)[1] > T([S(X 1)]:)[1]. quires min{Nx|, | Ny|) integer comparisons. In Theorem 5,

We now also show that the test fof” & X1 can be  \ye yse Theorems 3 and 4 to derive the exact number of in-
performed by only Ny | integer comparisons, corresponding teger comparisons needed to evaluate each of the causality
to the Ny components of the timestamps p¥” and X'T.  yejations of Table 1. Relation®1, R1’, R2', k3, R4, and
Analogous to_ Assertion 1, Lemma 6, and Theorem_l whichp4’ can be evaluated in mif¥x |, | Ny|) integer compar-
were stated in terms of ¢ S(1Y), we have Assertion 2, jsons; relationR2 in |Nx| integer comparisons, and relation
Lemma 7, and Theorem 2, respectively, in termsz0€  p3' in |Ny| integer comparisons. These simplified evalu-
SX1. ation conditions also give a physical interpretation to the
Assertion 2 | Y & X1 iff 32 € S(X1),z € LY. (From relations in terms of the cuts defined in Table 5 and which

Definition 7.4 and noting thak + # £+ and Ny C N. can be visualized using Fig. 3. .
9 T7 1 € Nxy) The causality relations between nonatomic poset events

Lemma 7 (3z € S(X1),z € [Y)iff (32 € S(X1),i € in the second column of Table 1 are defined using the

Ny Azl < [SUY)]L) “causes” K) relation between the atomic events. However,
. the evaluation conditions in the third column of Table 1 are
Proof. See Appendix B. o based on Theorems 1 and 2, and are therefore true for the

. , . , “causes or equals’™x) relation between atomic events. The
Erg(i%f)a]m) 21Y K XTiff (32 € S(X1), 1 € Ny Az = < relation between events of andY evaluates to the same

’ as the< relation iff no two events, one frol{ and one from
Proof. Follows from Assertion 2 and Lemma 7. 0 Y, in the evaluation have an identical timestamp. Hence, we

use the following assertion.
The significance of Theorem 2 is that the test fof « i ) )

X7 can be performed by onlyNy | integer comparisons, Assertion 3.When evaluatmgQ(_X, Y_), VR in Table 1, no
corresponding to théVy: components of the timestamps of WO €vents inX andY” have an identical timestamp.

1Y and X 1. Specifically, | ¥ &« X7 iff 3 2, € S(X1), Assertion 3 can be satisfied even if there are common
wherei € Ny, such thatl'(z;)[i] < T([S(Y)])[4]- events inX and Y by using the following trick. Letz?
. L and z! denote the event; that is common toX andY,
mi?)r?nr?egeir};ofpa)r(igoﬁ:h be determined imin(| Vx|, respectively. Solely for the purpose of satisfying Assertion 3,
when computing the timestamp &f as per Definition 10,
Proof. From Theorems 1 and 2Y <« X 1 can be evaluated assign tol'(z})[i], a valueT'(z{)[i] — 0, whered is smaller
in |[Nx| and |Ny| integer comparisons, respectively. The than the smallest increment to the timestamp component on
result follows. 0 the occurrence of an event. Thefi < 2/ iff T(z¥) <
T(z}). Thus, by evaluating'(z7) < T'(z}) for 27 < z/, we
Theorem 3 states that the test fpb” « X1 can be effectively evaluate:? < 2. Observe that.¢, <) remains
performed by only min(Vx|,|Ny|) integer comparisons. isomorphic to §, <) even if this trick is used.
(What is required is either th&'x or Ny components of _ i )
the timestamps of.Y and X 1. From the discussion in Theorem 4 The relations defined in the second column of
Sect. 3.3.2, it follows that the one-time overhead of creat-Table 1 are true iff the corresponding evaluation conditions
ing these timestamps is as follows. To create eitherre ~ 9iven in the third column of Table 1 are true.
components of the timestamp ot” or the Ny cOmponents  pyaaf | the proof, we assume that an evenbccurs at
of the timestamp o takes'a computational complexity of nodei and eventy occurs at nods.
O(|Nx | > |Ny|). To create either thé/x components of the  par 1 (=.): We show that if any relation fronmfR1, R2,
timestamp ofX 1 or the Ny components of the timestamp R?', R3, R3, R4} in the second column of Table 1 holds,

of |V takes a computationql complexityIOf(]].VX| x |Nx|) then the corresponding evaluation condition in the third col-
andO(|Ny| x [Ny |), respectively.) The significance of The- | is true.

orem 3 is that it will be used in Sect. 3.5 to provide the upper
bound on the number of comparisons required to evaluat¢l) Relation R1(X,Y), i.e.,VaVy,z <y:Vy € Y, [SUy)]i
the causality relations between nonatomic poset events de- > x. Thus, min{[S(y)]; | y € Y}) = 2. We also have
fined in Table 1. min{[SUy)]: |y € Y = [S(NyY)]:. So [S(NyY)]; =
x = [S(z1)];. Hence,nyY &« z1. But this is true for
all z € X. The evaluation conditiof\ , [Ny Y & z1]
3.5 Evaluation conditions for causality relations follows.
The other evaluation condition corresponding®’ can
In this section, we formalize the evaluation conditions for  be similarly shown.
the causality relations in Table 1 and show that they have dll) Relation R2(X,Y), i.e.,Vz3y,z < y: For anyy € Y,
linear computational complexity. In Theorem 4, we formally [S(UyY)]: = [S{y)]: because of construction of,Y
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(see Definition 10). Also, becausg2 holds, for each
z € X, forsomey € V, y = [S(Ly)li = = = [S(zD)]:.
Thus, S(UY)]; = [S(z1)]; and this holds for each
z € X. The evaluation condition follows.

(IN) Relation R2'(X,Y), i.e., JyVx, z < y: From the rela-
tion, we can infer thaty € YVx € X, [S(z1)]; =
y. Thus, max{[S(z1)]; | = € X}) < y. We also
have max{[S(z1)]; | = € X}) = [S(U4X)];. So
[S(UX)]; = y. We also havey < [S(UyY)];. The
evaluation condition follows becauseS(U,Y)]; >
[S(Us XD,

(IV) Relation R3(X,Y), i.e., 3zVy,z < y: From the rela-
tion, we can infer thatlz € XVy € Y, [S(y)]: = =.
Thus, min{[SUy)]: | v € Y}) = z. We also have
min({[S(Ly)]: | v € Y}) = [S(0yY)]i. So [S(yY)]: =
2. We also haver > [S(N4X)];. The evaluation condi-
tion follows becauseq(NyY)]; > [S(NyX)]s.

(V) RelationR3(X,Y), i.e.,Vydz,z < y: For anyz € X,
[S(NyX)]; = [S(z1)]; because of the construction of
Ny X (see Definition 10). Also, becauge3’ holds, for
eachy € Y, for somez € X, z X [S@)]; 2y =
[SUy],. Thus, BUy)]; = [S(NyX)];, and this holds
for eachy € Y. The evaluation condition follows.

(VI) Relation R4(X,Y), i.e.,Jz3y,z < y: As noted in (II)
above, for any € Y, [S(UyY)]: = [S{y)]:. Also, be-
cause of the construction of, X (see Definition 10),
for anyz € X, x = [S(N4X)];, similar to the rea-

thatdy € Y, 2z < y. By transitivity, 3y € YVx € X,
T =Y.

(IV) Relation R3(X,Y), i.e., dzVy, x < y: Consider an
eventz that exists by Assertion 1. From Lemma 2.3, it
follows thatdx € X, z < z. From Lemma 2.1, it follows
thatVy € Y, z < y. By transitivity, 3x € XVy € Y,

Tz =X y.

(V) Relation R3'(X,Y), i.e., Vy3z, < y: Consider any
y € Y. From the definition of|y (Definition 8) and
Assertion 1,z < y. From Lemma 2.3, it follows that
Jx € X, z < z. By transitivity, z < y.

The above argumentis trivg € Y. HenceVy € Y3x €
X,z Xy.

(VI) Relation R4(X,Y), i.e., dzdy, = < y: Consider an
event z that exists by Assertion 1. From Lemma 2.3,
it follows that 3z € X, x < z. From Lemma 2.2, it
follows that3y € Y such thatz < y. By transitivity,
dJre XdyeY,z<y.

From (1)-(VI), each evaluation condition in the third col-
umn of Table 1 implies the corresponding causality relation
between nonatomic poset events in the second column, but
with the < relation between atomic events replaced ¥y
(see Definition 7). Recall that the evaluation conditions were
evaluated after assigning modified timestamps to satisfy As-
sertion 3. The use of such modified timestamps was to trick
the evaluation o using these timestamps into being equiv-

soning in (V) above. Given that the relation holds, thenalent to the evaluation ok, as explained in the discussion

y = [SUy)i = z, therefore, F(UyY)]; = [SUy)l: =
x = [S(NyX)]; by combining the above, and hence
[S(UyY)]: = [S(NyX)]:. The evaluation condition fol-

lows. a
(end of Part 1).

Part 2 (=): We show that a relation fronjR1, R2, R2,
R3, R3, R4} given in the second column of Table 1 holds if

the corresponding evaluation condition in the third column is

true. Throughout this proof, we will refer to Assertion 1 and
its use of variable which was defined such thate S(}Y)
andz € S(X1)\ z € X 1. Observe that exists in all the
cases considered.

() Relation R1(X,Y), i.e., VaVy, x < y: Consider any
x € X. From the definition ofx1 (Definition 9) and
Assertion 1, it follows thatr < z. From Lemma 2.1, it
follows thatVy € Y, z < y. By transitivity, Vy € Y,

Tz =X y.

The above argument is true for alle X. Hencevz €
XVyeY,x=<y.

The validity of the other evaluation condition is similarly
shown.

(I) Relation R2(X,Y), i.e., Va3y, = < y: Consider any
x € X. From the definition ofr1 (Definition 9), and
from Assertion 1,2 < z. From Lemma 2.2, it follows
that3y € Y, z < y. By transitivity, x < y.

The above argument is truér € X. Hence,Vx €
XdyeVY,x=<y.

(IN) Relation R2'(X,Y), i.e., yVx, x < y: Consider an
eventz that exists by Assertion 1. From Lemma 2.4, it
follows thatvz € X, x < z. From Lemma 2.2, it follows

following Assertion 3. Therefore, the relation is equiva-
lent to the< relation in the evaluation method. Hence, the
relations in the second column of Table 1 are true if the
corresponding evaluation conditions in the third column are
true. (end of Part 2). O

Theorem 5 Each relationR(X,Y") in Table 1 can be eval-
uated with the following computational complexity: rela-
tions R1, R1’, R2/, R3, R4, and R4’ can be evaluated in
min(|Nx|, | Ny|) integer comparisons, relation®2 in | Nx|

integer comparisons, and relatiod&3’ in | Ny | integer com-
parisons.

Proof. The computational complexity of testing the condi-
tions in the third column of Table 1 is the computational
complexity of testing the corresponding relations in the sec-
ond column, by Theorem 4.

RelationsR2', R3, R4, R4': These relations can be evalu-
ated using a single te$tt” < X 1. By Theorem 3, these
relations can be evaluated in miNx |, [Ny |) integer
comparisons.

Relation R2: This relation can be evaluated usidgy | tests
of the form Y <« X"1, where|Nx~|= 1. By Theo-
rem 3, each test can be evaluated in 1 integer compar-
ison. So the relation can be evaluated| M| integer
comparisons.

RelationR3": This relation can be evaluated usingy |
tests of the form|Y” <« X1, where |[Ny~|= 1. By
Theorem 3, each test can be evaluated in 1 integer com-
parison. So the relation can be evaluatedNg | integer
comparisons.

RelationsR1, R1": By reasoning similar to that foR2 and
R3, these relations can be evaluated Ny | and also in
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| Ny | integer comparisons, i.e., miiNx |, | Ny|) integer  of eachA € .4 is the identification of the proxies 4 and
comparisons. ad Ua. These are trivially identified assuming that the execu-
tion trace stores atomic events that occurred at each node
in sorted order. For each proxy, where X is Lx and

Ux, of eachX € .4, the timestamps oC1(X), C2(X),

The relations in2 can be replaced by similar relations
with the < relation between the individual atomic events in-
stead of the< relation. As seen above, the evaluation condi- 5 5 . .
tions work for these modified relations with the same IinearC3(X)’ CA4(X) are calcylated gsmg the timestamps qf each
complexity — the only difference is that Assertion 3 is not +* @ndzT, wherez € X, Theith component of the time-
relevant. stamp ofC'1(X) andC2(X) can be computed iV ;| steps

Recall that each of the 32 relation&X, Y), for r € .22,  as it requires the identification of the min and max, respec-
is equivalent to a relatio?(X,Y), where R belongs to tively, of a set of|[Nx| integers{T'([S(l 2)]:)[4] | € X}.
Table 1, by using a suitable quantification &f and Y in Similarly, the ith component of the timestamp @f3(X)
Table 1 to represent their various proxi&sandY instead. and C4(X) can be computed iNN¢| steps as it requires
Each of the 2 proxies of a nonatomic event has 4 cuts asthe identification of the min and max, respectively, of a set
sociated with it. Figure 4 illustrates the four cuts associatetbf [Ny | integers{T([S(z1)]:)[i] | = € X}. Thus, theith
with the two proxies of the evenk of Fig. 3. The sur- component of the timestamps of the cGt&(Ly), C2(Lx),
faces of the cuts are marked as in Fig. 3. These cuts can b€3(L ), C4(Lx), C1(Ux), C2(Ux), C3(Ux), C4(Ux) are
used in Theorems 3 and 4 upon which Theorem 5 is baseccomputed in 4x |Ny| steps.

Therefore, by using a suitable quantificationofandY” to To evaluate (X, Y), wherer € .2, we evaluate?(X, V),
represent their proxies, we have the following. whereR € Table 1. As per Theorem 4, this requires the com-

— Theorem 4 gives the evaluation methodology for eachParison of they components of the timestamps of both
relation (X,Y), for r € .22 (see the third column of andY’, or the comparison of theVy components of the
Table 4). This also results from a suitable quantificationtimestamps of botlX andY. As X andY can be two ar-

of X andY in Table 1. bitrary events in 4, in the worst-case, we need to compute
— Theorem 5 gives the exact computational complexity ofthe components of the timestamps corresponding to fodes
evaluating each relation(X,Y), for r € .%. Specifi-  in{J, 4. , Na,. Hence, the worst-case complexity of com-

cally, relationsR*a, R*a’, R*V', R*c, R*d, and R*d’ puting the timestamp structure of all the proxies of all the
can be evaluated in mifi{z|,[Ny |) integer compar-  events in. 2 is |. 4| x 4/Na| x |Uya.c o Na,l|- (We can
isons, relationsR*b in |[Ng| integer comparisons, and do better by defining an ordering on members. f and
relationsR*¢’ in | Ny | integer comparisons. These eval- when evaluating a relation betwegh andY’, always com-
uation conditions have only a linear computational com-paring the components of the timestamps corresponding to
plexity. the node set of the lower ordered &fandY. This reduces
the above overhead of setting up timestamps by about half.)

) Further practical aspects of handling the trace are given in
3.6 Overhead analysis Appendix C.

Implicit in the analysis of the computational complexity of

evaluating the relations it2 (see Theorem 5, the discussion 3 6.2 pProblem 1

following it, and Table 4), we assumed that the timestamp

structure was established. However, that requires some oveproblem 1 aims at detecting a specific relation froghbe-

head. We now analyze the overall overhead in answeringween every ordered pair of nonatomic eveitsand Y in
Problems 1 and 2. .
The computational complexity of evaluating any relation
] using the naive definition of the relation given in the second
3.6.1 Timestamp structure column of Table 4 ig. 4|2 x |N4|2.
. _ The computational complexity of the proposed method
As the computation progresses, the vector timestamp of eacly oy ajuate any relation in Table 4 is the sum of two compo-
event is locally recorded, and periodically, the vector times-pants The first component deals with the overhead of estab-
tamps are collected by a central process to establish the timghing the timestamp structure, computed in Sect. 3.6.1. The
stamp structure. (Note that the vector timestamps can g&lecong component gives the actual overhead of evaluating
large but as shown in Theorem 3, the evaluation(f,Y)  {he causality relations by the proposed method. From The-
requires only those components of the timestamp¥ @nd oo 5t follows that the overhead of detecting a specific
Y that correspond to nodes iz and/or Ny.) The cost  reation from.#2 between each pair of nonatomic events in
of maintaining a local vector clock and of piggybacking a , by using the proposed method |isZ|? x | N 4.
vector timestamp on messages is_essential to traqk causality The combined overhead of establishing the timestamp
between atomic events in a distributed computation based;rciyre of cuts and evaluating the causality relations by the

on message-passing [15,_29]. Therefo_re, they contribute NBroposed method is thus ¢| x 4/N.4| x |Uyac s Na,)+
overhead to the computation of causality between nonatomi 22 % [Na]) i€t
O Al):

poset events. As the trace of the execution is collected at th
Centrf'il process, the appllcatl_on |der_‘t|_ﬂ$, the Set Of non- 3 In the following analysis, we will us&V4 and|N4| instead ofN 4
atomic events of interest to it. Implicit in the identification and|~N ;| becausé N 4| provides an upper bound div 4|.
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The proposed method is better than the naive method ithaving detected that some relation holds between the events,
computational complexity for values of4| and|N4| that  several other relations can be deduced between the pair of
satisfy the following inequality. events using the axiom system. Application-specific heuris-
tics should be used to determine the order of evaluating the
relations in.22 in conjunction with the axiom system be-

|-l < 4Na x| U Nagl | +(-4 ? % |Nal) cause in each application, it is likely that some relations are
vAiet more likely to hold than other relations. The savings offered
< | #|? x |Nal? by the use of the axiom system and by the choice of a ju-
. L . dicious order of evaluation of relations are similar, whether

The above inequality simplifies to the following. the relations are evaluated using the naive method as per the

definitions in the second column of Table 4, or using the

4x | U Na|| = (INa| —1) <. 2], for [Na|#1 (1) method propqsed in this paper. Therefore, we di§regard the

’ - use of the axiom system for purposes of assessing the sav-
ings offered by the proposed method over the naive method
The term|Uy4,c . Na,| is the set of all nodes at which in evaluating the relations. For a fair comparison of the two
events of interest occur in the distributed computation.methods, we assume that each relatiorvihis evaluated.
Clearly, | UVAie +Na,| < |P|. Also. 2 C 2F, the power The overhead of evaluating all the 24 relations from
set of all events that occur at all the nodes, (thefetlur-  between each pair of nonatomic events i by using the
ing the computation. Thus| J,, . , Na,| is typically very  naive definitions given in the second column of Table 4 is
much less thah 4| and hence, it is profitable to use the pro- 24 x |. 2|> x [N 4|,
posed method. FAiV,| = 1, we use the results in [21] that The combined overhead of establishing the timestamp
deals with interactions between linear intervals; the proposeg@tructure of cuts and evaluating the causality relations by the
theory and evaluation methods are applicable|f65| > 1. proposed method ig. (4| x 4 Na| x [Uy4,e. » Na,|) +24x
For a wide range of applications such as industrial procesg|. 4|2 x |N4|). The first term is the overhead to establish the
control and monitoring distributed activities, events at dif- timestamp structure for each of the eight cuts associated with
ferent sites collectively trigger various events at the samehe two proxies of each nonatomic event, as discussed in
set of sites, which requires modeling of interaction betweerSect. 3.6.1. The second term gives the overhead of detecting
2 nonatomic events having the same node set. In this casell the 24 relations fron2 between each pair of nonatomic
the node sets of all the nonatomic events of interest to amrvents in -4 by using the proposed method, and is derived
application are identical and Inequality 1 simplifies as fol- from Theorem 5.

VA;e. 2

lows. The proposed method is better than the naive method
(4x [Na) =+ (Na| — 1) < | 2|, for |Na| # 1 @) wofac?sr.nputatlonal complexity when the following inequality
Thus, the proposed method is profitable to address Problem

for all values of|. 4| and |N,4| satisfying Equation 2. In P 212

particular, for|[Ns| =2, |.#| > 8; for [N4| = 3, |.#4| > 6; X ANl X U Nag| | +24x (1217 x [NaD

VA;e 4
)

The above inequality simplifies to the following.

for [IN4| =5, || > 5; and asymptotically agV4| — oo,
. 2| > 4. As|. 2| is typically much larger than these values, < 24 x (| 4|?> x |N4
the proposed method of evaluating causality is very efficient

3.6.3 Problem 2 U Na|| = ®x(Na—1))
Problem 2 aims at detect ible relation frgm ~ ©
roblem 2 aims at detecting every possible relation frx /
that holds between every grdere)é F|Joair of nonatomic eventsS 2], for [Na| 7 1 (3)
X andY in 4. From the discussion following Inequality 1, we have:
A set of axioms to reason with the proposed relations(a) |y ,c., NVa;| is typically very much less than 2|
was proposed in [25]. For a given pair of nonatomic eventsand hence, it is profitable to use the proposed method.
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(b) [Na| # 1, and the results are applicable fév4| > 1. () RelationR1(X,Y), i.e.,VaVy, x < y: Consider any: €
(c) For applications for which it can be assumed thatthe node X.Vy € Y, y = [S(y)]; = «. Thus, min{[S{ y)]; |
sets of all the nonatomic events of interest to the application y € Y'}) = . We also have miq(S(y)]: |y € Y}) =
are identical, Inequality 3 simplifies to the following. [S(NyY)]:. So [S(NyY)]; = «, for eachx € X. As

, Uy X is downward-closed with the maximal elements
(INa)+ (6 x (Na—1))) < |. 4|, for [Na| #1 4) .

being members ok, andn, Y is also downward-closed,
From the above analysis, it follows that for all valueg st | hence for any nodé, [S(UyX)]x < [S(NyY )]k

(INa| # 1), independent of the value of#|, the proposed (Il) Relation R2(X.Y), i.e.,VaJy, = < y: For anyy € Y,
method offers savings over the naive method. [S(UyY)]s = [S(y)]: because of construction of Y’
(see Definition 10). Also, becaus®? holds, for each
x € X, there is somg € Y such thaty > [S({v)]; = «.

As Uy X is downward-closed with the maximal elements

being members ok, andu, Y is also downward-closed,

Observe from the derivation of Theorem 3 that several of the hence _for any nodé, [.S(UUX)]’“ = [S(L_J@Y)]k'

relations can be evaluated either by projectikig- on Ny (i) Relation R2'(X,Y), i.€., Iyvz, & < y: From the re-
or by projectingl Y on Nx. The projection ofX 1 on Ny lation, we can infer thady € Y such that given
requires cuts of the fornX 1 which are somewhat harder anyx € X, z < [S(y)l;- We also have thaty X
to determine than cuts of the forgnX. This is because it is downward-closed with the maximal elements being
is not possible to determine a nondummy evest{ 1], members ofX, and]y is also downward-closed, hence
for somek, until after that event actually occurs. Alternate for any nodek, [S(UU.X)]’“ = [S(W)]k'_

evaluation conditions can be formulated, that proje&ton (IV) Relation R3(X,Y), i.e., d2Vy, = < y: From the rela-
Nx and deal with cuts of the formy X rather than of the tion, we can infer thaBlz € Xvy € Y, [Sy)l: = =.
form X 1. Evaluation conditions for the relations in Table 1,  11uS: min¢[S(y)l: | y € Y}) = x. We also have
using only cuts of the form.Z, are given in the fourth min{SUy)i |y € Y1) = [S(0y V)] So [S(NyY)]; =
column of Table 6. Next, we determine the complexity of ~ *- AS | is downward-closed with as its maximal ele-
evaluating| X C Y, prove the correctness of the evaluation ~ Ment: and, ¥ is also downward-closed, hence for any
conditions in the fourth column of Table 6 and determine the nodek, [SULa)], < [S(NyY)]x-

3.7 A note on alternate evaluation conditions

complexity of these evaluation conditions.

Theorem 6 | X C Y iff (Vz; € S(IY) wherei € Ny,
[SUX)]: = 2)

Proof. (=): Vi € P, [SUX)]: = [S(Y)]; by definition

of the C relation. Hence, the R.H.S. follows.
(«<=): For each node € Ny, we have F({ X)]; =

[S({Y)]:. As| X is a downward-closed set whose maximum

elements are members &f that occur at nodes iVy, and
1Y is also downward-closed, for any nod&e [S({ X)]x =
[S(LY)]k. The L.H.S. follows. a

The significance of Theorem 6 is that the test fof C

1Y can be performed by onlyNx| integer comparisons,

(V) Relation R3'(X,Y), i.e., Vy3z, x < y: The condition
of column 4 is a reexpression of column 2.

(VI) Relation R4(X,Y), i.e., dz3y, x < y: As noted in
(1) above, for anyy € Y, [S(UyY): = [SU Y-
Given that the relation holds, thefr Jy such that
y = [S(y)l: = z, therefore, F(UyY)]; = [SUy)]: = =
by combining the above. Asz is downward-closed with
x as its maximal element, andyY is also downward-
closed, hence for any node [S(| z)]x = [S(UyY)]k.

In each of the above cases, the evaluation condition in
the fourth column follows. (end of Part 1).

Part 2 (=): We show that a relation fronfR1, R2, R2,
R3, R3', R4} given in the second column of Table 6 holds if

corresponding to théVx components of the timestamps of the corresponding evaluation condition in the fourth column

JX and]Y. Specifically,| X C | Y iff Vz; € S(]Y), where
i € Nx, T(z)[i] > T((SU X))l

Theorem 7 | X C |Y can be determined ilNVx| integer
comparisons.

Proof. Follows from Theorem 6 and the fact that(] X)];
< [S{Y)]; can be evaluated in one integer comparisom.

is true.

(I) Relation R1(X,Y), i.e.,VzVy, x < y: For anyx € X,
r € UgX andz < [S(NyY)]; = 2. From Lemma 2.1,
it follows thatVy € Y, z; < y. By transitivity, Vy € Y,
T =y.
The above argument is true for alle X. Hence,vx €
XVyeY,x=uy.

Theorem 8 The relations defined in the second column of (I) Relation R2(X,Y), i.e.,Vz3y, z < y: For anyz € X,

Table 6 are true iff the corresponding evaluation conditions

given in the fourth column of Table 6 are true.

Proof. In the proof, we assume that an evenbccurs at
node: and eventy occurs at nodg.
Part 1 (=): We show that if any relation frod R1, R2,

R2, R3, R3, R4} in the second column of Table 6 holds,
then the corresponding evaluation condition in the fourth

column is true.

x € UyX andz < [S(UyY)]; = z;. From Lemma 2.2, it
follows that3y € Y, z; < y. By transitivity, z < y.

The above argument is truéx € X. Hence,Vz €
XdyeY,z=Xy.

(1) Relation R2'(X,Y), i.e., IyVz, = < y: Consider any
y € Y that makes the evaluation condition true. For
eachr € X, » € Uy X andx < [S{y)]; = z;. From
Lemma 2.1, it follows that; < y. By transitivity,z < .
Hence,dy e YVz € X, z <X v.
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Table 6. The fourth column extends Table 1 by giving evaluation conditions using cuts of fdfm

Relationr  Expression forr(X,Y)  Evaluation condition using  Evaluation condition using

relation < between cuts relatioa. between cuts
(see Theorem 4) (see Theorem 8)
R1 VeeXvyeY,z <y N, MY Lzl UpX CNyY
RY YyeYVee X,z <y ZAyey[iy%UﬂX]
R2 Vee XyeY,z<y /\mex[uuiwgzﬂ UgX CuyYy
R2 JyevyvVre X,z <y Uy €UpX \/yey[Uquiy]
R3 JreXWweY,z<y MY £nNyX \/wex[wgm}y}
R3 YyeYaze X,z <y /\yeyuy;(mﬂX] /\yey V,exlbz Sl
R4 JreXyeY,z<y UY €£NyX \/Iex[mguuy]

R4 JyeYre X,z <y

(IV) Relation R3(X,Y), i.e., 3zVy, x < y: Consider any The hierarchy of relations is complete using first-order pred-
x € X that makes the evaluation condition true.= icate logic and only the relatior between atomic events,
[SU2)]: 2 [S(MyY)] = 2. From Lemma 2.1, it follows  and extends the hierarchy of Lamport [27,28] and the hierar-
thatvy € Y, z; < y. By transitivity, Vy € Y, =z < v. chy of [21], for nonatomic poset events. The causality rela-

Hence,dz € XVy e Y, z < y. tions are useful for distributed applications and agent-based
(V) Relation R3(X,Y), i.e., Vy3z, x < y: The condition  programs that use nonatomicity for event abstraction, but

in column 4 is a reexpression of column 2. also need a fine level of granularity of causality relations to
(VI) Relation RA(X,Y), i.e., 3z3y, * < y: Consider any specify synchronization relations and their composite global

z € X that makes the evaluation condition true.= predicates. Each application can choose appropriate causality

[SU )] 2 [S(UyY)]; = z;. From Lemma 2.2, it follows  relations from the hierarchy to specify and capture causality
that 3y € Y, z; =< y. By transitivity, x < y. Hence, and synchronization conditions between its nonatomic poset
JreXyeY, z<y. events. The classification gives an insight into the existing
possibilities and can be used to select a number of primi-
From (1)-(V1), each evaluation condition in the fourth tjve relations with good properties and clear intuitions. We
column of Table 6 implies the corresponding causality re-ajso expect that researchers currently working in specify-
lation between nonatomic poset events in the second colng distributed predicates using linear intervals [13,38] will
umn, but with the< relation between atomic events replaced |everage the expressive power and convenience offered by
by < (see Definition 7). Using the timestamp modification the suite of relations on poset events, which are shown to
teChnique used in the prOOf of Theorem 4, the relations irhave a low linear-time evaluation cost.
the second column of Table 6 are true if the Corresponding Comp|ex conditions can be expressed as a predicate over
evaluation conditions in the fourth column are true. (end Ofthe proposed causality relations. Implicit in the use of these
Part 2). o relations by distributed applications are the needs (i) to de-
tect whether some specific relation holds between each pair
of nonatomic events in a given set of nonatomic events, and
(ii) to determine all the relations that are true between each
pair of nonatomic events, in a given set of nonatomic events.
We derived efficient evaluation conditions for the proposed
causality relations between nonatomic poset evéntand
Y; most relations can be evaluated in mi¥g|, | Ny|) in-
Otﬁger comparisons, some Vx| integer comparisons, and
the others in|Ny| integer comparisons, wheréVx| and
| Ny |, respectively, are the number of nodes on which the

There does not appear to be a more efficient way thafWo nonatomic events{ and Y occur. Thus, the simpli-
|Nx|x|Ny| integer comparisons to evalua®®’ andR3' on fied evaluation conditions we derive for the relations have

X andY using cuts of the fornj Z on X andY'. If relations ~ Only a linear computational complexity of testing, whereas a
R2 and R3 are not used, the other relations in Table 6 naive evaluation of the relations as per their definitions has a
can be evaluated ilVx| integer comparisons, instead of Polynomial computational complexity/{x | x | Ny |) of test-

min(Nx|, |Ny|) integer comparisons needed f&1, R/, ing. The use of the simplified evaluation conditions incurs a
R3, R4, andR4’ (Theorem 5) using cuts of the forii 1 and one-time cost of setting up the timestamp structure, which

LY. However, the overhead of establishing the timestampg/Ve analyzed. We then examined the conditions under which
structure is half that determined in Sect. 3.6. it is profitable to use the proposed method of evaluating the

relations over the naive method based on the definitions.

Theorem 9 Each relationR(X,Y) in Table 6 can be evalu-
ated with the following computational complexity: relations
R1, RY, R2, R3, R4, and R4’ can be evaluated ilVx| inte-
ger comparisons, and relation32’ and R3' in | Nx| x | Ny |
integer comparisons.

Proof. The proof is along the lines of the proof of The-
orem 5, except that it uses Theorems 7 and 8 instead
Theorems 3 and 4. O

4 Concluding remarks During the derivation of the efficient testing conditions,
we also defined special system execution prefixes associated

This paper examined a hierarchy of causality relations bewith nonatomic poset events and examined their knowledge-

tween nonatomic poset events in distributed computationstheoretic significance. We also saw how to capture causality



information associated with a nonatomic event, i.e., informa- 5.

tion about the past and future execution associated with the

nonatomic event, in a condensed and aggregated form via®:

the definition of special execution prefixes associated with
the nonatomic event. Furthermore, we provided a mecha- 5
nism to capture such condensed information about causality
of a nonatomic event using a timestamp that has the same

size as the timestamp of a single atomic event. As distributed 8.
applications become more widespread and sophisticated, the®-

proposed theory will be useful to evaluate causality relations
between distributed nonatomic events. The results contribute

to the fundamental area of causality and atomicity in dis- 11.

tributed computing [27, 28, 37] and attempt to provide an

answer in the search for the holy grail of causality analy- 12.

sis [37].

Having defined a suite of causality relations, it is in-
teresting to determine all the orthogonal relations that can
exist between two nonatomic poset events, analogous to the

results for linear intervals in [21]. (A set of orthogonal rela- 14.

tions is such that for any two events, (i) the events must be

related by one and only one of these relations, and (ii) no re-15-

lation in this set can be expressed as the disjunction of other
relations in this set.) Le#2* be the set of all conjunctions of
relations in.#2 that can hold for(X,Y), for r € .22 — each

member of.22* is a conjunction of the members of an an- 17.

tichain of Fig. 2 and can be identified as discussed in Sect. 2.
For eachrell(X,Y), whererell € .22*, determine which
rel2(Y, X) can hold, whereel2 € .22*, using the relational
algebra [25] which allows the derivation of all(Y, X) from
anyr(X,Y), wherer, v’ € .72. Then each conjunction of a
relationrell(X,Y) and a compatible relatiorel2(Y, X) is

orthogonal from every other such conjunction; denote this 20.

set of conjunctions as2**, which then represents all the
possible orthogonal relations between two posets, using onl
the < relation between atomic events.

A hierarchical framework for defining views of a com-
putation at higher levels of granularity was given in [22], in
which the events in any view partitioned the set of events
in any finer-level view. Also, the definition of the ordering
relation among the events in each view was flexible but use-
ful definitions were seen to capture some notion of causal-
ity. The hierarchical framework can be adapted to include

the fine-grained causality relations between overlapping non-24.

atomic events and their evaluation conditions.

25.
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Appendix A: Meaning and use of relations in.72

— R*¢(X,Y): Each event inY” knows the results of the

X computation (if any,) upto some event K. If it is
important to the application, then the state at each event
in X should be communicated to some event’in
R*d(X,Y): Some event irt” knows the results of th&
computation (if any,) upto some event.k. The nodes
under consideration at which the eventsYnand X,
respectively, occur may be the group leadersvgf and
Ny, respectively. This group leader df; may have
collected relevant state information from other nodes in
Ny, and conveys this information to the group leader
of Ny, which in turn distributes the information to all
nodes inNy.

The above significance of each group of relations applies

to each individual relation of that group. The specific use and
meaning of each of the 24 relations.i? is given next. We

do not restrict the explanation that follows to any specific
application.

Distributed applications and agent-based programs that modgh «(x y): This group of relations deals wittix and Ly-.
nonatomic poset events, e.g., applications for distributed-ach relation signifies a different degree of transfer of con-

systems, industrial process control, navigation, planning, angey from the X computation to th&” computation.
virtual reality will find use for the proposed relationg.

And as applications get more sophisticated, they will increas- — R1la(X,Y): TheY computation at any node ilVy be-

ingly use the proposed relations to express and enforce fine-

gins only after that node knows that th& computation

grained causality relations between nonatomic poset events. at each node ilVx has ended, e.g., a conventional dis-
In the following discussion, theX computation” and ¥
computation” refer to the computation performed by the non-
atomic eventsX andY’, respectively.

tributed gmutex in which each node ¥y waits for an
indication from each node iV that it has relinquished
control.

We first consider the significance of the groups of rela- —

tions R*a(X,Y), R*D(X,Y), R*V'(X,Y), R*¢(X,Y),
R*J(X,Y), and R*d(X,Y). Each group deals with a par-

R1b(X,Y): For every node inNx, the final value of
its X computation is known by (or its mutex token is
transferred to) some node ¥y before that node iVy

ticular proxy X andY'.

R*a(X,Y): All events inY know the results of theY
computation (if any,) upto all the events . This is a
strong form of synchronization between andY'.
R*b(X,Y): For each event itk , some event it knows
the results of theX computation (if any,) upto that event
in X. TheY computation may then exchange informa-
tion about theX computation uptof(, among the nodes
participating in theY” computation.

R*V(X,Y): Some event i knows the results of the
X computation (if any,) upto all events i. These

relations are useful when it is sufficient for one node in —

Ny to detect a global predicate across all nodes/ip.

If the event inY is at a node that behaves as the group
leader of Ny, then it can either inform the other nodes
in Ny or make decisions on their behalf.

R*e(X,Y): All events inY know the results of theX
computation (if any,) upto some common eventXh
This group of relations is useful when it is sufficient for
one node inV; to inform all the nodes itVy- of its state,
such as when all the nodes Mg have a similar state.
If the node at which the event iX occurs has already
collected information about the results/ states of e
computation uptaX from other nodes inVy (thus, that
node behaves as the group Ieadelf(()f then the events
in ¥ will know the states of the computation uptoX.

begins itsY computation. Thus, nodes iVy collec-
tively (but not individually) know the final value of the
X computation by the time the last among them begins
its Y computation. This is a weak version of synchro-
nization/gmutex.

R1V'(X,Y): Before beginning it& computation, some
node in Ny knows the final value of th& computation

at each node iVy. This is a weak version of synchro-
nization/gmutex (but stronger thaRlb) with the prop-
erty that at least one node Ny cannot begin itsY’
computation until the final value of th& computation

at each node iVy is known to it.

Rle(X,Y): The final value of theX computation at
some node ilVx is known to all the nodes iVy before
they begin theirly” computation. This is a weak form of
synchronization/gmutex which is useful when it suffices
for a particular node iVy to grant all the nodes iVy
gmutex permission to proceed with the computation;
this node inNx may be the group leader d¥y, or
simply all the nodes inVx have the same final local
state of theX computation within this application.
R1J(X,Y): Each node inVy begins itsY’ computation
only after it knows the final value of th& computation

of some node inVx. This is a weak form of synchro-
nization/gmutex (weaker thaR1c) which requires each
node in Ny to receive a final value (or gmutex token)
from at least one node iV before starting it¥” com-
putation. This relation is sufficient for some applications



187

such as those requiring that at most one (additional) pro23*(X,Y): This group of relations deals withx and Ly.
cess be admitted to join those in the critical section whenThe relations can signify various degrees of synchronization
one process leaves it. between the initiation of computations andY, whereY

— R1d(X,Y): Some node inVy begins itsY computation  is nested withinX or Y is a subcomputation oX. Alter-
only after it knows the final value of (or receives a gmu- nately, X could denote activity at processes that have already
tex token from) theX computation at some node My. spawnedY” activity in threads.
This is the weakest form of synchronization/gmutex.

R2*(X,Y): This group of relations deals wittixy andUy.

The relations can signify various degrees of synchronization
between the termination of computatioAs and Y, where

X is nested withinY” or X is a subcomputation of". Al-
ternately,Y” could denote activity at processes that have al-

— R3a(X,Y): TheY computation at any node iy be-
gins after that node knows the initial values of the
computation at each node iNy. This is a strong form
of synchronization between the beginnings of ftieand
Y computations.

ready spawnedX activity in threads, and” can complete  — R3b(X,Y): For each node iiVy, the initial state of its

only after X completes.

— R2a(X,Y): TheY computation at any node iy can

terminate only after that node knows the final value of

(or the termination of) th& computation at each node in

Nx. This is a strong synchronization before termination,

betweenX andY'.

— R2b(X,Y): For every node inVy, the final value of its
X computation is known by at least one node k-
before that node inVy terminates itsY’ computation.
Thus, all the nodes itVy collectively (but not individu-
ally) know the final values of th& computation before
they terminate theit” computation. This is a weak syn-
chronization before termination.

— R2V(X,Y): Before terminating it§” computation, some
node inNy knows the final value of th& computation
at all nodes inNx. This is a stronger synchronization
before termination tha®2b wherein at least one node in
Ny cannot terminate it§” computation without know-
ing the final state of theX computation at all nodes in
Nx. This suffices for all applications in which it is ad-
equate for one node ifVy to detect the termination of
the X computation at each node iy before that node
terminates itsY” computation.

— R2¢(X,Y): The final value of theX computation at
some node iNVy is known to all theNy nodes before
they terminate th&” computation. This is a weak form
of synchronization. The pertinent node/&y could rep-
resent a critical thread in th& computation, or could
be the group leader aVx that represents th& com-
putation at all nodes iiN.

— R2¢(X,Y): Each node inNy terminates itsY” com-
putation only after it knows the final value of th¥
computation at some node i¥ix. This is a weaker form
of synchronization before termination thdt2c, but is
adequate when all the nodes My are performing a
similar X computation.

— R2d(X,Y): Some node inVy terminates itsY” compu-
tation after it knows the final value of th€ computation
at some node inVx. This is a weak form of synchro-
nization; however, if the concerned nodes iy and
Ny are the respective group leaders of theand Y

computations and, respectively, collect/distributed infor-

mation from/to their groups, then a strong form of syn-
chronization can be implicitly enforced because when
terminates, it is known to each node iy that the X
computation has terminated.

X computation is known to some node ¥y before
that node inNy begins itsY” computation. Thus, all the
nodes inNy collectively (but not individually) know the
initial state of theX computation. This synchronization
is sufficient when the forked” computations at each
node in Ny are only loosely coupled and should not
know each others’ initial states communicated by ke
computation; while at the same time ensuring that the
initial state of theX computation at each node Ny is
available to at least one node Wy before it commences
its Y computation.

R3V'(X,Y): Before beginning it computation, some
node in Ny knows the initial state of theX compu-
tation at all the nodes inVy. Thus theY computa-
tion at this node can run a parall&l computation for
fault-tolerance, or can be made an entirely deterministic
function of the inputs to theX computation. This node
in Ny can coordinate th& computation of the other
nodes inNy. This synchronization is weaker thaBa
but stronger thaR3b.

R3c(X,Y): The initial state of theX computation at
some node iVx is known to all the nodes itVy- before
they begin theiy” computation. This is a weak synchro-
nization; however, it is adequate when the subject node
in Nx has forked all the threads that will perforin,
and behaves as the group leaderXfthat initiates the
nested computatiofir.

R3c(X,Y): Each node inVy begins itsY” computation
only after it knows the initial state of th& computation

at some node iV x. Thus each node executing the com-
putationY has itsY” computation forked or spawned by
some node iNVx and itsY computation corresponds to
a nested branch ok. The nodes inVy may not know
each others’ initial values for th& computation; the
X computations at (some of) th€x nodes have semi-
independently forked th® computations at the nodes in
Ny. This form of synchronization is weaker thdt8c.
R3d(X,Y): Some node inVy begins itsY” computation
only after it knows the initial state of th& computation

at some node inVy. This is a weak form of synchro-
nization in which only one node iNy and one node
in Ny coordinate their respective initial states of their
local X andY computations. However, if the node in
Ny that initiated theX computation forks off the main
thread for theY” computation, then this form of synchro-
nization between the initiations of andY is adequate
to haveY as an entirely nested computation withih
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R4*(X,Y): This group of relations deals withx andUy-. Proof. (=): The L.H.S. is an expression over the events
The relations signify different degrees of synchronizationin S(X 1) and S(]Y) that occur at the node at which event
between a monitoring computatidn that knows the initial = occurs. Letz = e¢; and [S(X1)]; = e;. Then from the

values with which theX computation begins, and then the L.H.S., it follows thate); < e; = 2. (1)

monitoring computatiort” terminates. From Lemma 5.1, we can infer tha@t € Ny such that
—_ /

— R4a(X,Y): TheY computation at any node iVy ter- z; = [S(X)i \wi < . (2)

minates only after that node knows the initial values of As the relation= is transitive, from (1) and (2), we infer

the X computation at each node i¥y. This is a strong thatz = ¢} > x;. As |z has a unique maximal element
form of synchronization between the start Xfand the ?ga;;]]ere is a causality path from to 2, we havex; (:?)
end of Y. i
. : P As z € S(JY), and ]z and | Y are both downward-
— R4b(X,Y): For every node inNx, the initial state of )
its X computation is known by at least one nodeNg E:E)(jtig)]subsets oF, we havel z C |Y; hence, E(W)]i(f)
before that node inVy terminates itsY” computation. i _
Even if there is no exchange of information in the Let z = [SUY)]i. Thenz = [SUY)); = [SUL2)]: =
computation about the state of thé computation at in- %% ~ [S_(‘XT,)]Z' by cqmblmng (3) and (4). The RHS follows.
dividual nodes inVx, this relation guarantees that when . . (=) 2 thaf[ .eX'StS as per the R.H.S. of the lemma sat-
Y completes, the (initial) local states at each of ffie isfies the condition orx in the L.H.S. of the lemma. The
nodes are collectively (but not individually) known by proof follows. 0
Ny o , Lemma 7 (3z € S(X1), z € |Y) iff 32/ € S(X1), i €
— R4V (X,Y): Before terminating it¥” computation, some Ny A2 < [SUY)]:)
node inNy knows the initial state of th&' computation "
at all the nodes inVx. This node inNy can detect if Proof. (=): The L.H.S. is an expression over the events
an initial global predicate of th& computation across in S(X 1) and]Y that occur at the node at which event
the nodes inNy is satisfied, before it terminates i1$ occurs. Let = ¢; and [S(1 Y)]; = ¢}. Then from the L.H.S.,
computation. If this node inVy behaves as a group it follows thatz =e; < ¢’.. (1)

leader, it can then inform all the other nodesNi- to From Lemma 5.2, vv]e can infer thati € Ny such that
terminate theiry” computations. yi = [SUi Awi = 6;__ Using (1), we havey; > z. (2)
— R4c(X,Y): The initial state of theX computation at Observe that is either [S(C3(X))]; or [S(C4(X))];.
some node inNx is known to all the nodes inVy
before they terminate thelf’ computation. This weak — If X1 = C3(X), we can infer from the definition of
synchronization is adequate for applications where all ~ C3(X) that z is the earliest event at nodeamong all
the Nx nodes start theitX computation with similar [S(z D], V= € X, and thereforelr € X, x < z. Com-
values. Alternately, if the node iNy behaves as a group bining this with (2), we havélr € X, » < z < y;, and
leader, it can first detect the initial global state of tkie hence B(C3(X))]: = .
computation and then inform all the nodes . - If X1 = C4(X), we can infer from the definition of
— R4J(X,Y): Each node inVy terminates itsY” compu- C4(X) that z is the latest event at nodg among all
tation only after it knows the initial state of th& com- [S(z1)];, Yz € X, and thereforerz € X, z < 2. Com-
putation at some node iVx. This is a weaker form of bining this with (2), we have/z € X, z < z < y;, and

synchronization thaf4c because the states of all nodes ~ hence B(C4(X))]; < .

in Nx may not be observed before the nodesVip ter- . _
minate theiry” computation. But this will be adequate for I_llnselftoh”eorv\?sse, we haves{X 1) = y; = [S(Y)];. The

applications in which each node iNx is reporting the .
sgr%e state/value of th& computatign ang eacr? node (%) Event:’ that exists as per the R.H.S. of the lemma
! satisfies the condition onin the L.H.S. of the lemma. The

in Ny simply needs a confirmation from some node in
Nx before it terminates it¥” computation. For example, proof follows. =
a mobile host (anVy node) may simply need a confir-
mation from some base station (&fx node) before it
exits itsY computation.

— R4d(X,Y): Some node inVy terminates it¥” computa-
tion after it knows the initial state of th& computation
at some node inVy. This weak form of synchroniza-
tion is sufficient when the group leader &f which is
responsible for kicking off the rest o informs some
node (or the group leader) of the monitoring distributed
programY that computationX has successfully begun.

Appendix C: Discussion on the evaluation methodology

Issues concerning the evaluation of causality relations be-
tween nonatomic poset events are discussed next. Recall
that a central monitoring process collects the trace of the
distributed execution. The central process need not perform
an exhaustive trace because it is prohibitively expensive.
Rather, the trace can focus on events that are “relevant” or
“potentially relevant” to the application. The central process
has to identify nonatomic poset events — this is done us-
Appendix B: Proofs of Lemmas 6 and 7 ing the < relation between atomic events using application-
specific and domain-specific information. Once the trace of
Lemma 6 (3z € S(Y),z€ SXNV=z¢ X1 iff (32 € the distributed execution has been collected, an off-line anal-
S(Y), i€ Nx ALS(X D] < 2)) ysis as described in Sect. 3.6.1 is always feasible. An on-line
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analysis of the computation as the trace is being collected byuns a trace analysis. L&" and Q° be the traces at time
the central process is also achievable as follows. The times: and s, respectively, at the central process. Lket< s.
tamps of individual events and cusl(X) andC2(X) are  ThenQ" is a prefix ofQ*. Let T%-"(X) be a reverse time-
computable/available as soon Asis identified and are in- stamp computed at time 77-*(X), the reverse timestamp
dependent of the future computation. Timestamp&'8(X) of X at times is computed as follows. H#-"(X)[i] # T,

and C4(X) depend on the reverse timestamps of individualthenT?-5(X)[i] = T®-"(X)[i] + (Q*[i] — Q"[]), otherwise
events and depend on the future computation. These can BE"-5(X)[i] has to be explicitly computed.

determined once the nondummy events in ed¢ht) have

occurred. The central process periodically considers traces of
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