
Distrib. Comput. (1998) 11: 169–189

c© Springer-Verlag 1998

Causality and atomicity in distributed computations
Ajay D. Kshemkalyani

Department of Electrical Engineering and Computer Science (MC 154), University of Illinois at Chicago, 851 South Morgan Street,
Chicago, IL 60607-7053, USA (e-mail: ajayk@eecs.uic.edu)

Received: July 1997 / Accepted: May 1998

Summary. In a distributed system, high-level actions can be
modeled by nonatomic events. This paper proposes causality
relations between distributed nonatomic events and provides
efficient testing conditions for the relations. The relations
provide a fine-grained granularity to specify causality rela-
tions between distributed nonatomic events. The set of re-
lations between nonatomic events is complete in first-order
predicate logic, using only the causality relation between
atomic events. For a pair of distributed nonatomic eventsX
and Y , the evaluation of any of the causality relations re-
quires |NX | × |NY | integer comparisons, where|NX | and
|NY |, respectively, are the number of nodes on which the
two nonatomic eventsX and Y occur. In this paper, we
show that this polynomial complexity of evaluation can by
simplified to a linear complexity using properties of par-
tial orders. Specifically, we show that most relations can be
evaluated in min(|NX |, |NY |) integer comparisons, some in
|NX | integer comparisons, and the others in|NY | integer
comparisons. During the derivation of the efficient testing
conditions, we also define special system execution prefixes
associated with distributed nonatomic events and examine
their knowledge-theoretic significance.

Key words: Distributed computation – Distributed system
– Atomicity – Time – Causality – Synchronization – Global
predicates – Concurrency

1 Introduction

Motivation and objectives

The causality relation represents the partial order of events in
a system execution [6, 8, 11, 14–16, 18, 26, 29–31, 36, 37, 39].
Thus far, the causality relation has been studied primarily
between single events in space-time. The notion of group-
ing elementary events in a system execution into higher level
nonatomic events is useful for event abstraction [9,19,22,27,
28,34]; it provides simplicity to the programmer and system
designer in reasoning at the appropriate level of complex-
ity by reducing the amount of information to be handled.

Specifically, nonatomic events are modeled in distributed
applications such as distributed multimedia, distributed de-
bugging, coordination in mobile systems, industrial process
control, planning, navigation, and virtual reality, and in
distributed agent-based programs. These applications deal
with nonatomic nonlinear events, also known as nonatomic
poset events, where at least some of the component atomic
events of each nonatomic nonlinear event occur concur-
rently [21, 27]. The event abstraction inherent in nonatomic
events, however, results in a loss of power to express and
reason with various degrees of causality, i.e., the traditional
causality relation [6, 8, 11, 14–16, 18, 26, 29–31, 36, 37, 39]
defined between individual points in space-time cannot be
used to capture or specify the synchronization conditions
between two nonatomic events at a fine level of granular-
ity using various degrees of causality, as required for ac-
curately modeling the interactions between the nonatomic
events. A broad spectrum of causality relations is needed to
allow the expression of various degrees of synchronization
between nonatomic events. Applications can choose rela-
tions from this fine-grained spectrum of relations, while still
retaining and using the benefits of event abstraction. We pro-
pose causality relations between nonatomic poset events in a
distributed system without assuming a global time axis, and
examine their uses.

Clearly, there is a need to evaluate the causality rela-
tions between nonatomic poset events efficiently. We devise
simplified evaluation conditions for the causality relations
between nonatomic poset events. The proposed evaluation
conditions provide the following savings. Let a nonatomic
event be a set consisting of atomic events. For a pair of
nonatomic eventsX and Y , there are|X| × |Y | pairs of
causality relations between the atomic elements in terms of
which the two nonatomic events are defined. A naive defini-
tion of causality would require|X| × |Y | checks for causal-
ity. However, for the causality relations that we define, we
first show that the evaluation of the causality relations can
be reduced to|NX |×|NY | integer comparisons, where|NX |
and |NY |, respectively, are the number of nodes on which
the two nonatomic eventsX and Y occur. Then we show
that the evaluation can by further simplified using properties
of partial orders. Specifically, we show that most relations

170

can be evaluated in min(|NX |, |NY |) integer comparisons,
some in|NX | integer comparisons, and the others in|NY |
integer comparisons. Thus, the simplified evaluation condi-
tions we derive have only a linear computational complexity
of testing, whereas evaluation of the relations as per their
definitions has a polynomial computational complexity of
testing.

This paper directly addresses the concluding thesis of
Schwarz-Mattern [37], namely that “. . . None of the pre-
sented schemes is sufficiently mature to serve as ageneral-
purpose mechanismfor the analysis of causality.. . . The
problem of anticipating the relevant behavior, assigning
meaningful semantics to general global predicates, and find-
ing correct and efficient algorithms for their detectionre-
mains to be a challenge.. . . Anyhow, the holy grail of
causality analysis has not been found yet.”

Model

A distributed system execution is modeled by the space-
time model. This model is a poset event structure model
as in [11, 15, 21, 22, 26–31, 34, 37]. Consider a poset (E,≺)
where≺ is an irreflexive partial ordering. LetE denote the
power set ofE and letA (/= ∅) ⊆ (E − ∅). There is an
implicit one-many mapping fromA to E. Each elementA
of A is a non-empty subset ofE, and is termed aninterval
or anonatomic event. (E,≺) represents points in space-time
which are the most primitive atomic events related by the
causality relation. Elements ofE are partitioned into local
executions at a coordinate in the space dimensions. Each
local executionEi is a linearly ordered set of events in
partition i. An evente in partition i is denotedei.

For a distributed computer system, points in the space
dimensions correspond to the set of processes (also termed
nodes), and Ei is the set of events executed by processi.
Causality between events at different nodes is imposed by
asynchronous message passing. In such a distributed com-
puter system,E represents the set of events and is discrete.
Moreover, we assume there are a finite number of nodesi,
and eachEi has a dummy initial event (⊥i) and a dummy
final event (>i). It follows that if A

⋂
Ei /= ∅, then (A

⋂
Ei) has a least and a greatest event. LetE⊥ andE> denote
the sets of initial events and final events, respectively. We
assume thatE⊥ andE> are antichains and that∀ ⊥i ∀>j

∀e ∈ (E \ E⊥ \ E>), ⊥i≺ e ≺ >j . We restrict any event
A in A that is of interest to the application to not contain
any dummy events.

Previous work

There is no well-understood notion of causality between two
nonatomic poset events in a distributed system execution,
wherein some events in one nonatomic event causally pre-
cede some events in the other nonatomic event [37]. Re-
lations between time durations and between instants have
been extensively studied in the literature on time and in-
terval algebras. Most previous work assumed that the non-
atomic events were linearly ordered and had unique start
and finish instants, e.g., [2,5,8,14,16,18,35] – and confined

Table 1. Relations in [21] are given in the first two columns. The third
column gives the evaluation conditions derived in this paper

Relationr Expression forr(X, Y) Evaluation condition using
relation� between cuts
(see Theorem 4)

R1 ∀x ∈ X∀y ∈ Y, x ≺ y
∧

x∈X
[∩⇓Y 6� x↑]

R1′ ∀y ∈ Y ∀x ∈ X, x ≺ y =
∧

y∈Y
[↓y 6� ∪⇑X]

R2 ∀x ∈ X∃y ∈ Y, x ≺ y
∧

x∈X
[∪⇓Y 6� x↑]

R2′ ∃y ∈ Y ∀x ∈ X, x ≺ y ∪⇓Y 6� ∪⇑X
R3 ∃x ∈ X∀y ∈ Y, x ≺ y ∩⇓Y 6� ∩⇑X
R3′ ∀y ∈ Y ∃x ∈ X, x ≺ y

∧
y∈Y

[↓y 6� ∩⇑X]

R4 ∃x ∈ X∃y ∈ Y, x ≺ y ∪⇓Y 6� ∩⇑X
R4′ ∃y ∈ Y ∃x ∈ X, x ≺ y

the study of causality to relations between such time dura-
tions or linear intervals. The literature above also assumed
that the linear nonatomic events occurred at a single point
in space, implying the existence of a global time axis. But
in a distributed system, there is no global time axis as ar-
gued in [26,29,37]. [8] includes a comprehensive review of
literature in this area.

In addition to dealing only with linear intervals, [2,14,18]
defined their relations using combinations of the≺ and =
relations between the start and finish instants, and such re-
lations were further studied in [5, 8, 16, 35]. However, the =
relation between atomic events has not been accorded an im-
portant role in the recent literature on causality in distributed
computing [6, 11, 15, 26–30, 37]. A possible explanation for
this is that in a linear system, as two atomic events slide
with respect to each other, the = relation is critical in the
transition from the≺ to its inverse� relation between the
points. However, this is not the case in a distributed system
where issues of concurrency are of greater research interest,
and results based only on≺ and � can be extended in a
straightforward manner to include the = relation.

Linear intervals or durations in distributed systems have
been used explicitly in specifying and detecting global pred-
icates, an area which was initiated by [13, 38]. The follow-
ing literature deals with causality between nonatomic poset
events in a distributed system execution and does not assume
a global time axis. Lamport defined system executions using
two relations−→ and−− → between nonatomic elements
and provided axioms A1 - A5 on these relations [27,28]. In-
formally, these relations are as follows. For two nonatomic
eventsX andY in A, X −→ Y iff every atomic event in
X causally precedes every atomic event inY . X −− → Y
iff some atomic event inX causally precedes some atomic
event inY . The model and axioms in [27] were further ex-
amined in [1, 4, 5].

Action refinement of posets is studied [17,19,33,34] and
surveyed [34] along with a survey of related work in Petri
nets [32]. In the literature on action refinement of posets,
there is no definition of causality between nonatomic poset
events other than the generic definition in [34] that it is
“the composition of the causality relation between individual
atomic events in unspecified subsets of the two nonatomic
poset events”.

A study of the temporal interactions of intervals has
shown that the two causality relations defined by Lamport
are not sufficient to capture the essential temporal proper-
ties of system executions and specify synchronization and

171

Table 2. Inclusion relationships between relations [21]

relation of row header R1 R2 R3 R4
to column header
R1 = v v v
R2 w = ‖ v
R3 w ‖ = v
R4 w w w =

causality relations between nonatomic events in distributed
systems [21]. The derivation of the 29 (respectively, 40)
possible temporal interactions between two nonatomic linear
intervals in a distributed system based on the dense (respec-
tively, nondense) model of time in [21] used a set of new
causality relations between nonatomic events [21]. This set
of causality relations did not assume a global time axis. Re-
lationsR1–R4 andR1′–R4′ which form a part of this set of
relations [21] are expressed in terms of the quantifiers over
X andY in the first two columns of Table 1. Table 2 gives
the hierarchy and inclusion relationship of the causality re-
lations R1–R4 of Table 1. Each cell in the grid indicates
the relationship of the row header to the column header.
The notation for the inclusion relationship between causal-
ity relations on nonatomic events is as follows. The inclusion
relation “is a subrelation of” is denoted ‘v’ and ‘w’ is the
inverse ofv. ‘=’ stands for equality between relations in ad-
dition to its standard usage as the equality in other contexts.
For two causality relationsr1 andr2, we definer1 ‖ r2 to be
(r1 6v r2

∧
r2 6v r1). The relations{R1, R2, R3, R4} form

a lattice hierarchy ordered byv. RelationsR2′ andR3′ are
different from R2 and R3, respectively, when applied to
posets but are the same asR2 andR3, respectively, when
applied to linear intervals.R1′ andR4′ are the same asR1
andR4, respectively. The complete hierarchy among the re-
lations of Table 1 is shown in Table 3; the motivation for
also using alternate names for the relations in Table 3 will
be given later. The causality relations between nonatomic
poset events will be derived using the relations in Table 1
and the hierarchy among them.

Significance and relation to previous work

The set of relations proposed in [21] formed a comprehen-
sive set of causality relations to derive and express all pos-
sible temporal interactions between a pair of linear intervals
using only the≺ relation between atomic events, and ex-
tended the partial hierarchy of relations of [27, 28]. How-
ever, when the relations of [21] are applied to a pair of
poset intervals, the hierarchy they form is incomplete. The
fine-grained causality relations between a pair of nonatomic
poset intervals proposed here extend the results [21] to non-
atomic poset events [23, 24]. They form a “comprehensive”
set of causality relations between nonatomic poset events
using first-order predicate logic and only the≺ relation be-
tween atomic events, and fill in the existing partial hierar-
chy of causality relations between nonatomic poset events,
formed by relations in [21, 27, 28]. A relational algebra for
the relations in [23,24] is given in [20,25]. Given any rela-
tion(s) betweenX andY , the relational algebra allows the
derivation of conjunctions, disjunctions, and negations of all
other relations that are also valid betweenX andY , as well

as betweenY andX. As we propose a suite of causality re-
lations between nonatomic poset events, there should be ef-
ficient ways to test whether such relations hold between any
pair of such events. We derive efficient linear-time evalua-
tion conditions for the proposed relations between nonatomic
poset events. Thus, this paper provides a framework not only
for specifying causality and global predicates between non-
atomic poset events, but also for analyzing and detecting
such causality at a low linear-time cost. The results con-
tribute to the fundamental area of causality and atomicity in
distributed computing [27, 28, 37].

Organization.Section 2 derives the fine-grained hierarchy of
causality relations to fill in the existing partial hierarchy of
causality relations. Section 3 derives simplified evaluation
conditions for the relations in Sect. 2. The simplified evalu-
ation conditions we derive have only a linear computational
complexity of testing, whereas evaluation of the relations as
per the definitions of the relations has a polynomial com-
putational complexity. Section 4 gives concluding remarks.
The results of this paper are included in [20].

2 Relations between poset events

Recall that each memberA of A represents a higher level
grouping of the events ofE and is an interval or a nonatomic
event.

Definition 1 An interval A is linear iff ∀x, y ∈ A, x �
y

∨
y � x.

Definition 2 NA, the node set of intervalA, is{i | Ei

⋂
A 6⊆

{⊥i,>i}}.

The above definition is preferred over the simpler defi-
nition NA = {i | Ei

⋂
A /= ∅} to make it applicable not only

to nonatomic events of interest to the application but also
to auxiliary nonatomic events containing⊥i and>i, defined
later. Causality relations specific to linear intervals are given
in [20]. These are used to derive the fine-grained causality
relations between nonatomic poset events, whose node set
has a size larger than one [23, 24].

Previous work on linear intervals and time durations,
e.g., [2,5,6,8,14–16,18], identified an interval by the instants
of its beginning and end. The beginning and end instants of
a linear interval are points in space-time which are atomic
events inE. For a nonatomic poset interval, it is natural
to identify counterparts for the beginning and end instants.
These counterparts serve as “proxy” events for the poset
interval just as the events at the beginning and end of linear
intervals such as time durations serve as proxies for the linear
interval. The proxies identify the durations on each node, in
which the nonatomic event occurs. For a nonatomic interval
X, let LX andUX correspond to the beginning ofX and the
end ofX, respectively.LX andUX can act as aproxy for
posetX. Two possible definitions of proxies are as follows
[20].

Definition 3 • LX = {ei ∈ X | ∀e′
i ∈ X, ei � e′

i}• UX = {ei ∈ X | ∀e′
i ∈ X, ei � e′

i}
Definition 4 • LX = {e ∈ X | ∀e′ ∈ X, e 6� e′}
• UX = {e ∈ X | ∀e′ ∈ X, e 6≺ e′}

172

Table 3. Full hierarchy of relations of Table 1 [21]. Relations are defined betweenX andY . RelationsR1, R1′, R2, R2′, R3, R3′, R4, R4′ of Table 1
are also referred to asa, a′, b, b′, c, c′, d, d′, respectively

Relation names: R1, a (= R1′, a′): R2, b: R2′, b′: R3, c: R3′, c′: R4, d (=R4′, d′):
its quantifiers forx ≺ y ∀x∀y (= ∀y∀x) ∀x∃y ∃y∀x ∃x∀y ∀y∃x ∃x∃y (= ∃y∃x)
R1, a (=R1′, a′) : ∀x∀y (= ∀y∀x) = v v v v v
R2, b: ∀x∃y w = w ‖ ‖ v
R2′, b′: ∃y∀x w v = ‖ ‖ v
R3, c: ∃x∀y w ‖ ‖ = v v
R3′, c′: ∀y∃x w ‖ ‖ w = v
R4, d (=R4′,d′): ∃x∃y (= ∃y∃x) w w w w w =

X

LX UX

proxy formed by grouping local min. or max. events

proxy formed by grouping of anti-chain of min. or max. events
space

time

atomic event

Fig. 1. Two definitions of proxies of a poset event

By Definition 3,LX andUX are the sets of the least and
greatest events at each node inNX , respectively. By Defini-
tion 4, LX andUX are the largest antichains containing the
minimal and maximal events ofX, respectively. We assume
that any one definition is consistently used, depending on
context and application. We will denote any proxy ofX as
X̂. From the system model, it follows that for a distributed
computer system, each nonatomic event has a well-defined
maximal and minimal event at each node in its node set,
and the node set is finite. Hence, the proxies of all non-
atomic events are finite and well-defined. Figure 1 depicts
the proxies ofX.

There are two aspects of a relation that can be specified
between poset intervals. One aspect deals with the determi-
nation of an appropriate proxy for each interval, and a good
choice of a proxy is the beginning or end of an interval. A
proxy for X andY can be chosen in 2×2 ways, correspond-
ing to the relations in{R1, R2, R3, R4}. From Table 2, it
follows that these four relations form a lattice ordered by
v. The second aspect deals with how the atomic elements
of the chosen proxies ofX andY are related by causality.
The chosen proxies can be related by the eight relationsR1,
R1′, R2, R2′, R3, R3′, R4, R4′ of Table 1, which are also
referred to asa, a′, b, b′, c, c′, d, d′, respectively, in Table 3
to avoid confusion with their original names used for the
first aspect of specifying the relations between poset inter-
vals. The inclusion hierarchy among the six distinct relations
forms a lattice ordered byv, as shown in Table 3.

The causality relations are formed by combining the two
aspects of deriving the relations, described above. The lattice
of relations{ R1*, R2*, R3*, R4* } between proxies forX
andY , and the lattice of relations{ a, a′, b, b′, c, c′, d, d′ }
between the elements of the proxies, when multiplied give a
lattice of 32 relations overA×A to expressr(X, Y). The

Table 4. Causality relationsr(X, Y) ∈ R for interactions between non-
atomic poset events. The third column gives the evaluation conditions

Relation Relation definition specified Evaluation condition using
r(X, Y) by quantifiers forx ≺ y, relation� between cuts

wherex ∈ X, y ∈ Y (see Theorem 4)
R1a ∀x ∈ UX ∀y ∈ LY

∧
x∈UX

[∩⇓LY 6� x↑]

R1a′ (= R1a) ∀y ∈ LY ∀x ∈ UX

∧
y∈LY

[↓y 6� ∪⇑UX]

R1b ∀x ∈ UX ∃y ∈ LY

∧
x∈UX

[∪⇓LY 6� x↑]

R1b′ ∃y ∈ LY ∀x ∈ UX ∪⇓LY 6� ∪⇑UX

R1c ∃x ∈ UX ∀y ∈ LY ∩⇓LY 6� ∩⇑UX

R1c′ ∀y ∈ LY ∃x ∈ UX

∧
y∈LY

[↓y 6� ∩⇑UX]

R1d ∃x ∈ UX ∃y ∈ LY ∪⇓LY 6� ∩⇑UX

R1d′ (= R1d) ∃y ∈ LY ∃x ∈ UX

R2a ∀x ∈ UX ∀y ∈ UY

∧
x∈UX

[∩⇓UY 6� x↑]

R2a′ (= R2a) ∀y ∈ UY ∀x ∈ UX

∧
y∈UY

[↓y 6� ∪⇑UX]

R2b ∀x ∈ UX ∃y ∈ UY

∧
x∈UX

[∪⇓UY 6� x↑]

R2b′ ∃y ∈ UY ∀x ∈ UX ∪⇓UY 6� ∪⇑UX

R2c ∃x ∈ UX ∀y ∈ UY ∩⇓UY 6� ∩⇑UX

R2c′ ∀y ∈ UY ∃x ∈ UX

∧
y∈UY

[↓y 6� ∩⇑UX]

R2d ∃x ∈ UX ∃y ∈ UY ∪⇓UY 6� ∩⇑UX

R2d′ (= R2d) ∃y ∈ UY ∃x ∈ UX

R3a ∀x ∈ LX ∀y ∈ LY

∧
x∈LX

[∩⇓LY 6� x↑]

R3a′ (= R3a) ∀y ∈ LY ∀x ∈ LX

∧
y∈LY

[↓y 6� ∪⇑LX]

R3b ∀x ∈ LX ∃y ∈ LY

∧
x∈LX

[∪⇓LY 6� x↑]

R3b′ ∃y ∈ LY ∀x ∈ LX ∪⇓LY 6� ∪⇑LX

R3c ∃x ∈ LX ∀y ∈ LY ∩⇓LY 6� ∩⇑LX

R3c′ ∀y ∈ LY ∃x ∈ LX

∧
y∈LY

[↓y 6� ∩⇑LX]

R3d ∃x ∈ LX ∃y ∈ LY ∪⇓LY 6� ∩⇑LX

R3d′ (= R3d) ∃y ∈ LY ∃x ∈ LX

R4a ∀x ∈ LX ∀y ∈ UY

∧
x∈LX

[∩⇓UY 6� x↑]

R4a′ (= R4a) ∀y ∈ UY ∀x ∈ LX

∧
y∈UY

[↓y 6� ∪⇑LX]

R4b ∀x ∈ LX ∃y ∈ UY

∧
x∈LX

[∪⇓UY 6� x↑]

R4b′ ∃y ∈ UY ∀x ∈ LX ∪⇓UY 6� ∪⇑LX

R4c ∃x ∈ LX ∀y ∈ UY ∩⇓UY 6� ∩⇑LX

R4c′ ∀y ∈ UY ∃x ∈ LX

∧
y∈UY

[↓y 6� ∩⇑LX]

R4d ∃x ∈ LX ∃y ∈ UY ∪⇓UY 6� ∩⇑LX

R4d′ (= R4d) ∃y ∈ UY ∃x ∈ LX

resulting set of poset relations is denotedR and given in the
second column of Table 4; the efficient evaluation conditions
that we derive for these relations in Sect. 3 are given in the
third column. The relations inR form a lattice of 24 unique
elements as shown in Fig. 2; the strongest relation isR1a
and the weakest isR4d. Relation R?#(X, Y) means that
the proxies ofX andY are chosen as per ?, and events in
the proxies are related as per #.R is comprehensive using
first-order predicate logic and only the≺ relation between
atomic events. Specifically,R defined between nonatomic
poset events is richer than the specific causality relations in
the literature. The suite of two relations in [27], viz.,−→
and−− →, correspond toR1a andR4d, respectively. The

173

R4a

R3a

R3c

R3d

R2a

R2b

R2d

R4dR1a R1d

R3b

R2c

a

b

d

c

4

3

2

lattice product
==

R2b

R2c

R3c

R3b

R4c

R4b

1

b

c

R4b

R1cR1c R4c

R1bR1b

Fig. 2. Hierarchy of relations between poset events

suite of relations in [21] and listed in Table 1 correspond to
the new relations as follows:R1 = R1′, R2, R2′, R3, R3′,
R4 = R4′ correspond toR1a, R2b, R2b′, R3c, R3c′, R4d,
respectively.

Note that by construction, (R,v) is a lattice as illus-
trated in Fig. 2. For a given pair of posetsX andY , it may
be the case that a combination of the relations inR may
hold. Specifically, ifR(X, Y) holds, then∀R′ | R v R′,
R′(X, Y) holds. Thus, ifR(X, Y) holds, then for eachR′
in the upward-closed subset ofR, R′(X, Y) holds. In the
partial order (R,v), all upward-closed subsets ofR corre-
spond exactly to the combinations of relations inR that can
hold concurrently for a given pair of nonatomic poset events.
It follows from the result in [3], page 400, that there is a
1–1 correspondence between the set of all upward-closed
subsets of a partial order and the set of antichains in the
partial order. Therefore, an enumeration of the antichains in
(R,v) gives an enumeration of the upward-closed subsets
of (R,v), which corresponds to all the combinations of the
relations inR that can hold for a pair of nonatomic poset
events.

The proposed hierarchy of causality relations in first-
order predicate logic is useful for applications that use non-
atomic poset events for event abstraction and also need a
fine level of granularity of causality relations to specify syn-
chronization relations and their composite global predicates
between the nonatomic poset events. The hierarchy gives an
insight into the existing possibilities and can be used by an
application to select a number of primitive relations with
good properties and clear intuitions, depending on the ap-
plication. There are two broad ways in which the proposed
relations will be used.

– The relations and their composite (global) predicates pro-
vide a precise handle toexpressa naturally occurring
or enforce a desired fine-grained level of causality or
synchronization in the computation. Processes in a dis-
tributed computation can synchronize as per one of the

relations inR whenever needed – each synchronization
performed causes a (global) predicate on some relation(s)
to become true. As the synchronization is achieved by
message-passing, it enables the detection of global func-
tions over the states of the nodes participating in the
synchronization.

– One needs todetectthe occurrence of a specific or any
or all relations that hold among nonatomic events in a
computation. Achieving this efficiently is the topic of
Sect. 3.

A specific meaning and expression for each relation and a
brief discussion of how the relation can be used is given in
Appendix A. Some broad classes of uses of the relations in-
clude modeling various forms of synchronization for group
mutual exclusion, initiation of nested computations, termi-
nation of nested computations, and monitoring the start or
end of a computation.

3 Efficient evaluation of causality relations

Objectives

The proposed relations are useful to distributed applications
that need a fine level of discrimination in specifying syn-
chronization and causality conditions, and for subsequent
reasoning. Complex conditions can be expressed as a predi-
cate over these relations. Given a trace of a distributed exe-
cution, the application identifies pertinent nonatomic events
and needs to know what relations are satisfied between pairs
of such events. Implicit in the use of these relations by appli-
cations is the need to detect whether some specific relation
holds between pairs of nonatomic events. We formalize this
requirement as follows.

Problem 1 Given a recorded trace of a distributed computa-
tion (E,≺) and a set of nonatomic eventsA, then for every
pair of nonatomic poset eventsX andY , whereX, Y ∈ A,
determine if a specific relationr(X, Y) holds, forr ∈ R.

An extension of this problem is the problem that requires
the detection of all possible relations that hold between pairs
of nonatomic events.

Problem 2 Given a recorded trace of a distributed computa-
tion (E,≺) and a set of nonatomic eventsA, then for every
pair of nonatomic poset eventsX andY , whereX, Y ∈ A,
determine all the relationsr(X, Y) that hold, forr ∈ R.

Problems 1 and 2 can be answered by testing for the
appropriate causality relation(s) in Table 4. Observe from
the second column of Table 4 that each relation between
nonatomic eventsX andY can be evaluated1 with |NX | ×
|NY | checks for causality. This is significantly better than
|X|× |Y | checks for causality that would be needed without
the use of proxies in the definitions of causality. However,
this evaluation has a polynomial computational complexity
(|NX |× |NY | checks for causality). Our objective is to sim-
plify the tests for the relations, which we achieve by using

1 We use the terms|NX | and |NY | which are upper bounds on|NX̂ |
and |NŶ |, respectively.

174

properties of partial orders. Specifically, we show using The-
orem 5 that relationsR∗a, R∗a′, R∗b′, R∗c, R∗d, andR∗d′
can be evaluated in min(|NX |, |NY |) integer comparisons,
relations R∗b in |NX | integer comparisons, and relations
R∗c′ in |NY | integer comparisons. The simplified evalua-
tion conditions we derive have only a linear computational
complexity, whereas evaluation as per the definitions of the
relations has a polynomial computational complexity.

Observe that each of the 32 relationsr(X, Y), for r ∈
R, was derived by choosing a proxŷX of the two possible
proxies ofX and a proxyŶ of the two possible proxies of
Y , thus making one of four choices, and applying one of the
eight relationsR in Table 1 to the chosen proxies. Thus, for
nonatomic poset eventsX andY , there is a 1–1 equivalence
between anyr(X, Y), for r ∈ R, andR(X̂, Ŷ), for some
R in Table 1 and somêX and someŶ . But X̂ and Ŷ are
themselves nonatomic poset events likeX andY – the only
difference is that for any nodei, |X̂i| ≤ 1 and |Ŷi| ≤ 1,
whereas|Xi| and |Yi| are bounded only by|Ei|. However,
we show that the evaluation methodology and complexity for
R(X, Y) is independent of the size of|Xi| and |Yi|. Hence,
we derive the evaluation methodology forR(X, Y), where
R belongs to Table 1. Then, using a suitable quantification
of X andY in these results to represent the various proxies
X̂ and Ŷ , we obtain the evaluation methodology for each
relation inR (Table 4).

Notation.We use the notation̂X when we specifically need
to distinguish a subset ofE that acts as a proxy for another
subsetX of E. Otherwise, when the distinction is not im-
portant, the notationX refers to any subset ofE, which can
also be a proxy of another set.

Strategy

We derive efficient linear-time tests for the relations in the
second column of Table 1 by proceeding by the following
steps to evaluate causality between two nonatomic eventsX
andY .

1. Define prefixes of an execution, termed cuts, and a rela-
tion � on these cuts. (See Sect. 3.1.)

2. Define certain cuts identified by nonatomic poset events.
(See Sect. 3.2.) These cuts represent useful causality in-
formation about the poset event, i.e., information about
the past and the future of the execution associated with
the poset event, in a compact form; moreover, each cut
has a different significance. Once identified, the cuts
which represent the causality information in a compact
form can be reused in evaluating causality relations with
other nonatomic poset events. This isKey Idea 1that en-
ables the efficient evaluation of the relations in Table 1.

3. Define timestamps for individual atomic events, for cuts,
and for nonatomic events. (See Sect. 3.3.) Timestamps
are introduced because they provide a practical handle
to test for causality. The timestamps of the cuts that rep-
resent causality information of the nonatomic events in
a compact form, also capture such causality information
in a compact form.

4. Derive simplified evaluation conditions for the relation
� between cuts identified byX and Y , using times-

tamps and properties of partial orders. (See Sect. 3.4
and specifically Theorem 3.) These simplified evalua-
tion conditions are possible because the cuts identified
by X andY are structured based on the membership of
X and Y and are not arbitrary cuts. This isKey Idea
2 that enables the efficient evaluation of the relations
in Table 1. The computational complexity of evaluating
each relation is min(|NX |, |NY |).

5. Show that each of the causality relations between non-
atomic posetsX andY in Table 1 holds iff the� rela-
tion holds between specific cuts identified byX, Y , and
the causality relation being considered. (See Sect. 3.5
and specifically Theorem 4.)
Using step 4, it follows that the computational complex-
ity of evaluating the causality relations is the same as the
computational complexity of the evaluation of the rela-
tion � between the appropriately chosen cuts identified
by X, Y , and the causality relation being considered.
(See Theorem 5).

6. Examine the overall cost of using the proposed method.
The cost includes a one-time cost of setting up the time-
stamp structure, and the cost of evaluating the relation
� between appropriately identified cuts based onX, Y ,
and the relation being evaluated.

3.1 Cuts of an execution

Let P be the set of all process/node partitions. An execution
prefix or acut is the union of downward-closed nonempty
subsets of eachEi, one for every nodei ∈ P .

Definition 5 A cut C is the union of a downward-closed
nonempty subset of eachEi in (E,≺), whereE =

⋃
∀i∈P Ei.

C ≡ C ⊆ E
∧

E⊥ ⊆ C
∧

ei ∈ C =⇒ (∀e′
i, e

′
i ≺ ei =⇒ e′

i ∈ C)

A cut is a nonatomic event and hence it has a well-
defined upper bound and lower bound at each node in its
node set. We defineS(C) to be the set of latest events at
each node in cutC. S(C) denotes the “surface” of cutC
and is the same as the proxyUC if UC is defined by Defi-
nition 3. However, we choose to use notationS(C) to allow
the application the choice of definition of the proxy as per
Definition 3 or 4.

Definition 6 • S(C) = {ei ∈ C | ∀e′
i ∈ C, ei � e′

i}
Given a cutC, Ci (or [S(C)]i) is a subset ofC (or S(C))

that contains elements in partitioni.

3.1.1 Comparison of cuts

It is a known result from lattice theory that the set of all cuts,
denotedC , forms a lattice ordered by the subset relation
“⊂”.

We introduce a new relation� over the set of cuts.
Loosely stated,� (C, C ′) signifies that cutC is a proper
subset of cutC ′ and moreover,Ci is a proper subset of
C ′

i. This relation is useful to derive simplified evaluation
conditions for the relations between nonatomic poset events
given in Table 1.

175

Definition 7 We express the relation�(C, C ′) in different
forms, each of which will be used subsequently.

1. � (C, C ′) iff (∀z ∈ (S(C) \ E⊥), z 6∈ S(C ′)
∧

z ∈
C ′)

∧
C ′ /= E⊥.

2. 6� (C, C ′) iff (∃z ∈ (S(C) \ E⊥), z ∈ S(C ′)
∨

z 6∈
C ′)

∨
C ′ = E⊥.

3. � (C, C ′) iff (∀z ∈ (S(C ′) \ E⊥), z 6∈ C)
∧

C ′ /=
E⊥ ∧

NC ⊆ NC′ .
4. 6� (C, C ′) iff (∃z ∈ (S(C ′) \ E⊥), z ∈ C)

∨
C ′ =

E⊥ ∨
NC 6⊆ NC′ .

All the four forms of the definition are equivalent. The
termsC ′ /= E⊥ andC ′ = E⊥ are required to make the defi-
nitions robust for certain cases whereC ′ = E⊥. The forms
in Definition 7.2 and Definition 7.4 express the condition
for 6� (C, C ′) which we will use subsequently as follows.
The significance of6� is that if 6�(C, C ′), then some ev-
ent in S(C) (equals or) happens causally after some event
in S(C ′). If we can chooseC ′ andC to correspond to ap-
propriate cuts ofX and Y , respectively, for anyR(X, Y),
where R ∈ Table 1, then we have a reexpression for the
relation R. Then the evaluation ofR(X, Y) reduces to the
evaluation of6�(C, C ′) which takes|P | evaluations in the
general case. ButC ′ and C are not arbitrary cuts; rather,
they are the cuts identified byX andY and are structured
based on the membership ofX and Y . We will show in
Sect. 3.4 that because of their structure, the evaluation of
6�(C, C ′) can be simplified.

3.2 Past and future cuts of a poset event

For atomic evente, there are two special cuts↓e and e↑.
↓e is the maximal set of events that happen before or equal
e. ↓e denotes the causal past (CP) ofe. e↑ is the union of
downward-closed sets of events at each node, such that the
set of events at anyi is the downward-closed set of events
at i upto and including the earliest event ati for which e
happens before or equals the event.e↑ is the complement
of the causal future (CCF) ofe and denotes the execution
prefix upto and including the beginning of the causal future
of e at each node.

Definition 8 [CP:] ↓e ≡ {e′ | e′ � e}
Definition 9 [CCF:] e↑ ≡ {e′ | e′ 6� e} ⋃{ei, i ∈ P | ei �
e
∧

(∀e′
i, e

′
i ≺ ei =⇒ e′

i 6� e)}
The cuts↓e and e↑ have the property that cut↓e has

a unique maximal event and cute↑ has a unique minimal
event. Also,↓e is downward-closed in (E,≺) wherease↑
is not.

Given a poset event, we define certain cuts that represent
the past and the future of the execution associated with the
poset event; each cut has a different significance. Each of
the causality relations between nonatomic posetsX and Y
in Table 1 will be shown to be equivalent to the� relation
between specific cuts identified byX, Y and the causality
relation being considered.

Definition 10 The second column of Table 5 defines certain
sets associated with posetX.

Lemma 1 The sets defined in Definition 10 are cuts.

Proof. The sets defined in Definition 10 are formed by the
union and intersection of cuts of the form↓x andx↑, and
the set of all cuts ofE is a lattice (C ,⊂) that is closed
under

⋃
and

⋂
. ut

Figure 3 illustrates the cuts C1–C4 defined in Table 5 for
a posetX containing 11 atomic events which are represented
by large circles. For each maximal or minimal event ofX at
a node, the corresponding dotted (dashed) line indicates the
surface of the past (future) of that event. Each such event,
and events on the surfaces of both its past and its future, are
marked using a unique marker (such as small shaded circle,
small circle, small shaded rectangle, and small rectangle) for
further clarity. The surface of each cut C1–C4 is marked by
a thick line and labeled.

The cuts∩⇓X and∪⇓X which are determined by the set
{↓x | x ∈ X} condense the causality information in each
cut in the set, i.e., information about the past of the execu-
tion associated with events inX. The cuts∩⇑X and∪⇑X
which are determined by the set{x↑ | x ∈ X} condense the
causality information in each cut in the set, i.e., information
about the future of the execution associated with events in
X.

Observe that∩⇓X and∪⇓X are downward-closed sub-
sets of (E,≺) whereas∩⇑X and ∪⇑X are not. We will
use this observation about∩⇓X and ∪⇓X in the proof of
Lemma 6.

Lemma 2 The members of a poset are related to the cuts
associated with the poset, defined in Definition 10, as follows.

2.1 ∀e′ ∈ S(∩⇓X)∀x ∈ X, e′ � x
2.2 ∀e′ ∈ S(∪⇓X)∃x ∈ X, e′ � x
2.3 ∀e′ ∈ S(∩⇑X)∃x ∈ X, x � e′
2.4 ∀e′ ∈ S(∪⇑X)∀x ∈ X, x � e′

Proof. From Definitions 8,9, and 10, and the definition of⋃
and

⋂
operations, we observe the following.

2.1 For anye′
j in S(∩⇓X), e′

j is min({[S(↓x)]j | x ∈ X}).
Therefore,∀x ∈ X, e′

j ∈ ↓x.
2.2 For anye′

j in S(∪⇓X), e′
j is max({[S(↓x)]j | x ∈ X}).

Therefore,∃x ∈ X, e′
j ∈ S(↓x).

2.3 For anye′
j in S(∩⇑X), e′

j is min({[S(x↑)]j | x ∈ X}).
Therefore,∃x ∈ X, e′

j ∈ S(x↑).
2.4 For anye′

j in S(∪⇑X), e′
j is max({[S(x↑)]j | x ∈ X}).

Therefore,∀x ∈ X, e′
j � e′′

j ∈ S(x↑).

The lemma follows from the above observations and by not-
ing that [S(↓x)]j � x andx � [S(x↑)]j . ut

The cuts of a nonatomic poset event defined in Defini-
tion 10 represent various execution prefixes associated with
the nonatomic event. The cuts C1–C4 will be used in de-
riving simplified evaluation conditions for the causality rela-
tions defined in Table 1. Cuts C1(X) and C2(X) are about the
past of the nonatomic event and cuts C3(X) and C4(X) are
about the future of the nonatomic event. The significance of
these cuts is discussed and expressed in knowledge-theoretic
terminology next [10,12]. We will use notationΦX andΦcut

to represent knowledge about nonatomic eventX and cut

176

Table 5. Definitions of special sets of posetX. These sets are shown to be cuts. Timestamps of the cuts are given in the third column

Label Definition Timestamp, derived from Defn. 14 and Lemma 3
C1(X) or ∩⇓X

⋂
∀x∈X

{↓x } T (∩⇓X) ≡ ∀i ∈ P, T (∩⇓X)[i] = min∀x∈X (T (↓x)[i])
C2(X) or ∪⇓X

⋃
∀x∈X

{↓x } T (∪⇓X) ≡ ∀i ∈ P, T (∪⇓X)[i] = max∀x∈X (T (↓x)[i])
C3(X) or ∩⇑X

⋂
∀x∈X

{x↑ } T (∩⇑X) ≡ ∀i ∈ P, T (∩⇑X)[i] = min∀x∈X (T (x↑)[i])
C4(X) or ∪⇑X

⋃
∀x∈X

{x↑ } T (∪⇑X) ≡ ∀i ∈ P, T (∪⇑X)[i] = max∀x∈X (T (x↑)[i])

Time

S(C1)

S(C2)
S(C3)

S(C4)

Atomic event within X Fig. 3. Cuts C1, C2, C3, and C4 of posetX

cut, respectively.Kx(Φ) is a predicate that is true if eventx
has knowledge ofΦ. Ψx represents the knowledge available
at eventx.

1. ∩⇓X is the maximum set of events that causally precede
everyx ∈ X. It represents the maximum execution prefix
about which all events inX have knowledge.
In knowledge-theoretic terms,∀x ∈ X, Kx(Φ∩⇓X) =

true. Also, ∀x ∈ X, Φ∩⇓X ⊆ Ψx.

2. ∪⇓X is the maximum set of events such that each event
causally precedes somex ∈ X. It represents the maxi-
mum execution prefix about which only all the events in
X collectively have knowledge, but no one event inX
may have complete knowledge.
In knowledge-theoretic terms,

⋃
∀x∈X (Ψx) = Φ∪⇓X .

Also, ∀ei ∈ S(∪⇓X)∃x ∈ X, Ψx ⊇ Ψei .
3. ∩⇑X is a cut such thatS(∩⇑X) is the set of earliest

events on each node that are causally preceded by some
x ∈ X. It represents the minimum execution prefix such
that all the maximum events of this prefix are preceded
by at least one event inX.
In knowledge-theoretic terms,∀ei ∈ S(∩⇑X)∃x ∈ X,
Kei

(Φx) = true. Also, ∀ei ∈ S(∩⇑X)∃x ∈ X, Ψx ⊆
Ψei .

4. ∪⇑X is a cut such thatS(∪⇑X) is the set of earliest
events on each node that are causally preceded by every
x ∈ X. It represents the minimum execution prefix such
that all the maximum events of this prefix are causally
preceded by all the events inX.
In knowledge-theoretic terms,∀ei ∈ S(∪⇑X), Kei

(ΦX)
= true. Also, ∀ei ∈ S(∪⇑X)∀x ∈ X, Ψx ⊆ Ψei .

Key Idea 1.The cuts∩⇓X, ∪⇓X, ∩⇑X, and∪⇑X aggregate
the causality information about allx in a nonatomic eventX
in a condensed form, as described above. Once identified at a
one-time cost, these cuts can be reused at a low cost to eval-
uate causality relations with respect to all other nonatomic
events. We will use these condensed forms of causality in-
formation to derive efficient tests for the causality relations
in Table 1.

Notation.We use↓X andX ↑, respectively, to denote cuts
about the past and future associated with any nonempty sub-
setX of E.

Definition 11 For any nonatomic poset eventX,
• ↓X denotes eitherC1(X) or C2(X).
• X ↑ denotes eitherC3(X) or C4(X).

We now informally show the relationsR(X, Y), for R
in Table 1, are implied by the relation6� on appropriately
identified cutsC1, C2, C3, andC4 associated withX and
Y using Lemma 2 and the knowledge-theoretic analysis of
the cutsC1, C2, C3, andC4. Formal proofs of the equiv-
alence betweenR(X, Y), for R in Table 1, and the relation
6� on appropriately identified cuts associated withX andY
are given subsequently in Theorem 4, Sect. 3.5. Note that
if 6�(C, C ′), then some event inS(C ′) happens before (or
equals) some event inS(C). However, in the following dis-
cussion, we assume that if6� (C, C ′), then some event in
S(C ′) happens before some event inS(C); subsequently, in
Sect. 3.5, we justify this assumption.

R∗a(X, Y): This relation holds if∀x ∈ X, 6�(∩⇓Y , x↑),
i.e., ∀x ∈ X, some event inS(∩⇓Y) happens causally
after some event inS(x↑), implying by the use of a
transitive argument and Lemma 2.1 that for all eventsx
in X, all events inY happen causally afterx.

R∗a′(X, Y): This relation holds iff∀y ∈ Y , 6�(↓y, ∪⇑X),
i.e., ∀y ∈ Y , some event inS(↓y) happens causally
after some event inS(∪⇑X), implying by the use of a
transitive argument and Lemma 2.4 that for all eventsy
in Y , y happens causally after all events inX.

R∗b(X, Y): This relation holds iff∀x ∈ X, 6�(∪⇓Y , x↑),
i.e., ∀x ∈ X, some event inS(∪⇓Y) happens causally
after some event inS(x↑), implying by the use of a
transitive argument and Lemma 2.2 that for all eventsx
in X, some event inY happens causally afterx.

R∗b′(X, Y): This relation holds iff 6� (∪⇓Y ,∪⇑X), i.e.,
some event inS(∪⇓Y) happens causally after some event
in S(∪⇑X), implying by the use of a transitive argument
and Lemmas 2.2 and 2.4 that some event inY happens
causally after all the events inX.

177

R∗c(X, Y): This relation holds iff 6� (∩⇓Y ,∩⇑X), i.e.,
some event inS(∩⇓Y) happens causally after some event
in S(∩⇑X), implying by the use of a transitive argument
and Lemmas 2.1 and 2.3 that all the events inY happen
causally after the same event inX.

R∗c′(X, Y): This relation holds iff∀y ∈ Y , 6�(↓y, ∩⇑X),
i.e., ∀y ∈ Y , some event inS(↓y) happens causally
after some event inS(∩⇑X), implying by the use of a
transitive argument and Lemma 2.3 that for all eventsy
in Y , y happens causally after some event inX.

R∗d(X, Y), R∗d′(X, Y): This relation holds iff 6� (∪⇓Y ,
∩⇑X), i.e., some event inS(∪⇓Y) happens causally af-
ter some event inS(∩⇑X), implying by the use of a
transitive argument and Lemmas 2.2 and 2.3 that some
event inY happens causally after some event inX.

3.3 Timestamps

3.3.1 Timestamps of atomic events

Conceptually, the causality relation between two events can
be determined by examining their space-time coordinates.
In practice, logical clocks are used to maintain time at each
process/node and track causality. Each atomic event is as-
signed a timestamp which is the clock value when the event
occurs. Dummy events are treated like regular events when
assigning or computing timestamps. We assume a clock sys-
tem such that the timestamps assigned to events have the
following property [15, 29] which is essential to determine
causality between any two events.

Property of timestamps: e ≺ e′ iff T (e) <2 T (e′)
We assume the following canonical vector clocks [15,29]

that have this property. Each primitive atomic evente is
assigned a timestampT (e) that is a vector2 of size |P |,
where P is the set of all process/node partitions. This is
the minimum size of a clock/timestamp that is required to
capture the above property of timestamps [11]. Assuming
that the identifier of a process/nodei is i itself, T (e) is
defined as follows.

Definition 12 T (e) ≡ ∀i ∈ P , T (e)[i] = |{ei | ei � e}|,
i.e., T (e)[i] is the number of events on nodei that causally
precede or equale.

Let T be the set{T (e) | e ∈ E}. Observe that there is
an isomorphism between the event structure (E,≺) and the
timestamp structure (T , <) [30].

Analogous to the timestampT (e), the reverse timestamp
TR(e) of an event indicates the number of events in the
future that are causally affected by the current event [7].
Observe that once the timestamp structure is established for
the entire computation, the “reverse” timestampTR(e) can
also be established.

Definition 13 TR(e) ≡ ∀i ∈ P , TR(e)[i] = |{ei | ei � e}|,
i.e.,TR(e)[i] is the number of events on nodei that causally
happen after or equale.

2 We will use the< relation as the “less than” relation between integers
and between vectors of integers. The usage should be clear from context.

Given two distinct atomic eventsej ande′
k, the causality

between them can be tested as follows. Ifj /= k, thenej ≺
e′

k iff T (ej)[j] ≤ T (e′
k)[j]. If j = k, then ej ≺ e′

k iff
T (ej)[j] < T (e′

k)[j].

3.3.2 Timestamps of cuts and nonatomic events

For a cutC, we define its timestampT (C) such that the
ith component of the timestamp is the maximum of theith
components of the timestamps of all the events inC that
occur at nodei.

Definition 14 T (C) ≡ ∀i ∈ P, T (C)[i] = max
∀xi∈C

(T (xi)[i])

Lemma 3 The timestamp of a cut composed by the union or
intersection of other cuts is as follows.

– If C ≡ ⋂
s=1,k Cs then T (C) ≡ ∀i ∈ P , T (C)[i] =

mins=1,k(T (Cs)[i])
– If C ≡ ⋃

s=1,k Cs then T (C) ≡ ∀i ∈ P , T (C)[i] =
maxs=1,k(T (Cs)[i])

Proof. Follows from Definitions 5 and 14, and the lattice
structure (C ,⊂). ut
Corollary 1 The timestamps of the cuts of a poset defined in
the second column of Table 5 are given in the third column
of the table.

Proof. Follows from Lemma 3. ut
Causality between nonatomic poset eventsX and Y is

determined as follows. Compare the timestamp of an appro-
priately chosen cut associated withX with the timestamp of
an appropriately chosen cut associated withY to test for the
� relation between the two cuts (Sect. 3.4). Then formally
show that this test (possibly multiple such tests) is equivalent
to the test for causality (Sect. 3.5).

From Definitions 8 and 12, observe thatT (↓x), the time-
stamp of cut↓x associated with any eventx is simplyT (x).
From Definitions 9 and 13, observe thatT (x↑), the time-
stamp of cutx↑ associated with any eventx is as follows:
T (x↑)[i] = |Ei| − TR(x)[i] − 1. (This calculation accounts
for the 2 dummy events inEi.) Using timestamps of cuts↓x
andx↑, the overhead of computing timestamps of the cuts
given in Table 5 for eachX is as follows. Theith component
of the timestamp of each ofC1(X) andC2(X) is a min and
max function, respectively, of{T ([S(↓x)]i)[i] | x ∈ X}.
Similarly, the ith component of the timestamp of each of
C3(X) andC4(X) is a min and max function, respectively,
of {T ([S(x↑)]i)[i] | x ∈ X}. Observe that forC1(X) and
C3(X), it suffices to consider only the least element in
X

⋂
Ei, for eachi ∈ NX . Similarly, observe that forC2(X)

andC4(X), it suffices to consider only the latest element in
X

⋂
Ei, for eachi ∈ NX . Consequently, theith compo-

nent of the timestamp of each ofC1(X), C2(X), C3(X),
and C4(X) is a min or max function over theith compo-
nents of|NX | timestamps, which has a|NX | computational
complexity. For|P | components of the timestamp, the com-
putational complexity is|NX | × |P |. Fortunately, we will
show that all the|P | components of the timestamps of the
cuts are not required for computing the� relation between

178

the cuts. Rather, for eventX, only the|NX | components for
the nodes inNX are relevant, and hence, only these need
to be computed. Therefore, the computational complexity of
computing the timestamp of a cutC1(X), C2(X), C3(X),
or C4(X) is |NX |2. Observe that this computation of the
timestamps of the above cuts has a one-time cost. Once
computed, the timestamp of a cut associated withX can be
reused in the evaluation of the relation� between this cut
and cuts associated with multiple other nonatomic events.
This cost of computing the timestamps will be considered
further in Sect. 3.6.1 when evaluating the efficacy of the
proposed method of testing for the relations in Table 1.

3.4 Efficient evaluation of� between past and future cuts
of posets

This section derives an efficient test (Theorem 3) for the�
relation between↓Y , a past cut of a poset eventY , andX ↑,
a future cut of poset eventX. Observe from Definition 7 that
�(C, C ′) can be tested by|P | integer comparisons: whether
T (ei)[i] < T (e′

i)[i], whereei ∈ S(C) and e′
i ∈ S(C ′), for

every i ∈ P . The objective is to minimize the number of
comparisons needed for this test, given the added informa-
tion thatC andC ′ are structured cuts of the form↓Y and
X ↑, respectively. (The cuts↓Y andX ↑ are determined by
the sets of cuts{↓y | y ∈ Y } and {x↑ | x ∈ X}, re-
spectively, which have the property that each cut↓y has a
unique maximal event and each cutx↑ has a unique mini-
mal event.) The efficient test we formulate will be used in
Sect. 3.5, where it is shown that this test for relation� be-
tween appropriately chosen cuts ofY andX is equivalent to
a test for the causality relations betweenX andY proposed
in Table 1.

Lemma 4 states that6� (↓ ei, ej ↑) iff ej causally pre-
cedesei.

Lemma 4 ↓ ei 6� ej ↑ iff ej � ei.

Proof. Observe thatej ↑ /= E⊥ and thatN↓ei
⊆ Nej↑.

(=⇒): By applying Definition 7.2 to the L.H.S., we infer
that∃k | [S(↓ ei)]k � [S(ej ↑)]k. It follows from the defini-
tion of ej ↑ and↓ ei thatej � [S(ej ↑)]k � [S(↓ ei)]k � ei,
henceej � ei.

(⇐=): From the R.H.S., we infer that [S(ej ↑)]i � ei.
Also, we haveei = [S(↓ ei)]i from the definition of↓ ei.
Therefore, [S(ej ↑)]i � [S(↓ ei)]i, and by Definition 7.4,
↓ ei 6� ej ↑. ut

As per Lemma 4, the test for↓ ei 6� ej ↑ is exactly a
check for causality between the two atomic events. From
the discussion in Sect. 3.3.1, this check requires one integer
comparison. We would like to generalize Lemma 4 to a test
for ↓Y � X ↑ and we use Definition 7.2 of6�(C, C ′) as
this form is more convenient to derive the simplified test.

Assertion 1 ↓Y 6� X ↑ iff ∃z ∈ S(↓Y), z ∈ S(X ↑)
∨

z 6∈
X ↑. (From Definition 7.2 and noting thatX ↑ /= E⊥)

The R.H.S. of Assertion 1 is true iff∃zi ∈ S(↓Y) such
that T (zi)[i] ≥ T ([S(X ↑)]i)[i]. Observe that there are|P |
elements inS(↓Y). Therefore, to determine↓Y 6� X ↑ as

per Assertion 1 requires|P | integer comparisons which is
the same computational complexity as that for the evaluation
as per Definition 7. However, we now show that this test can
be reduced to min(|NX |, |NY |) integer comparisons.

Lemma 5 is an intermediate result. Lemma 5.1 shows
the causality relation between each member ofS(X ↑) and
a member(s) ofS(X ↑) that occur at a node(s) inNX .
Lemma 5.2 shows the causality relation between each mem-
ber of S(↓Y) and a member(s) ofS(↓Y) that occur at a
node(s) inNY .

Lemma 5 The members ofS(X ↑) andS(↓Y) are related to
their events that lie inNX andNY , respectively, as follows:

5.1 ∀e′ ∈ S(X ↑) ∃xi ∈ S(X ↑), i ∈ NX

∧
xi � e′

5.2 ∀e′ ∈ S(↓Y) ∃yi ∈ S(↓Y), i ∈ NY

∧
yi � e′

Proof. The proof of (5.1) follows from Lemma 2.3 and
Lemma 2.4. The proof of (5.2) follows from Lemma 2.1
and Lemma 2.2. ut

The discussion following Assertion 1 showed that the
R.H.S. of Assertion 1 required|P | integer comparisons.
Lemma 6 gives a more efficient test for the R.H.S. of Asser-
tion 1, requiring only|NX | integer comparisons correspond-
ing to the timestamps’ components for nodes inNX . The
simplification is possible because we are not evaluating the
� relation between two arbitrary cuts but rather between the
cuts ↓Y and X ↑ which are determined by the sets of cuts
{↓y | y ∈ Y } and{x↑ | x ∈ X}, respectively, which have
the property that each cut↓y has a unique maximal event
and each cutx↑ has a unique minimal event. This property
suggests that sufficient causal information aboutX is con-
densed into theNX components, and leads to the following
idea.

Key Idea 2.If �(↓Y , X ↑) is violated (as in the L.H.S. of
Assertion 1), then some event inS(↓Y) equals or happens
causally after some event inS(X ↑). This violation must
occur at a node inNX because the events [S(X ↑)]NX

are
the earliest possible events among events inS(X ↑), in terms
of causality (see Lemma 6). Using analogous reasoning, this
violation must occur at a node inNY because the events
[S(↓Y)]NY

are the latest possible events among events in
S(↓Y), in terms of causality (see Lemma 7). Therefore, the
violation of �(↓Y , X ↑) can be detected by|NX | checks
for causality between atomic events, by comparing for each
i in NX , T ([S(X ↑)]i)[i] and T ([S(↓Y)]i)[i]. Analogously,
the violation of�(↓Y , X ↑) can be detected by|NY | checks
for causality between atomic events, by comparing for each
i in NY , T ([S(X ↑)]i)[i] andT ([S(↓Y)]i)[i]. Therefore, the
violation of�(↓Y , X ↑) can be detected in min(|NX |, |NY |)
integer comparisons. Whenever|NX | or |NY | is less than
|P |, we have a more efficient test for the causality relation
betweenS(↓Y) andS(X ↑).

Lemma 6 (∃z ∈ S(↓Y), z ∈ S(X ↑)
∨

z 6∈ X ↑) iff (∃z′
i ∈

S(↓Y), i ∈ NX

∧
[S(X ↑)]i � z′

i)

Proof. See Appendix B. ut
Theorem 1 ↓Y 6� X ↑ iff (∃z′

i ∈ S(↓Y), i ∈ NX

∧
[S(X ↑)]i

� z′
i)

179

Proof. Follows from Assertion 1 and Lemma 6. ut
The significance of Theorem 1 is that the test for↓Y 6�

X ↑ can be performed by only|NX | integer comparisons,
corresponding to theNX components of the timestamps of
↓Y and X ↑. Specifically,↓Y 6� X ↑ iff ∃zi ∈ S(↓Y),
wherei ∈ NX , such thatT (zi)[i] ≥ T ([S(X ↑)]i)[i].

We now also show that the test for↓Y 6� X ↑ can be
performed by only|NY | integer comparisons, corresponding
to the NY components of the timestamps of↓Y and X ↑.
Analogous to Assertion 1, Lemma 6, and Theorem 1 which
were stated in terms ofz ∈ S(↓Y), we have Assertion 2,
Lemma 7, and Theorem 2, respectively, in terms ofz ∈
S(X ↑).

Assertion 2 ↓Y 6� X ↑ iff ∃z ∈ S(X ↑), z ∈ ↓Y . (From
Definition 7.4 and noting thatX ↑ /= E⊥ andN↓Y ⊆ NX↑)

Lemma 7 (∃z ∈ S(X ↑), z ∈ ↓Y) iff (∃z′
i ∈ S(X ↑), i ∈

NY

∧
z′
i � [S(↓Y)]i)

Proof. See Appendix B. ut
Theorem 2 ↓Y 6� X ↑ iff (∃ z′

i ∈ S(X ↑), i ∈ NY

∧
z′
i �

[S(↓Y)]i)

Proof. Follows from Assertion 2 and Lemma 7. ut
The significance of Theorem 2 is that the test for↓Y 6�

X ↑ can be performed by only|NY | integer comparisons,
corresponding to theNY components of the timestamps of
↓Y and X ↑. Specifically,↓Y 6� X ↑ iff ∃ zi ∈ S(X ↑),
wherei ∈ NY , such thatT (zi)[i] ≤ T ([S(↓Y)]i)[i].

Theorem 3 ↓Y 6� X ↑ can be determined inmin(|NX |,
|NY |) integer comparisons.

Proof. From Theorems 1 and 2,↓Y 6� X ↑ can be evaluated
in |NX | and |NY | integer comparisons, respectively. The
result follows. ut

Theorem 3 states that the test for↓Y 6� X ↑ can be
performed by only min(|NX |, |NY |) integer comparisons.
(What is required is either theNX or NY components of
the timestamps of↓Y and X ↑. From the discussion in
Sect. 3.3.2, it follows that the one-time overhead of creat-
ing these timestamps is as follows. To create either theNX

components of the timestamp of↓Y or theNY components
of the timestamp ofX ↑ takes a computational complexity of
O(|NX |×|NY |). To create either theNX components of the
timestamp ofX ↑ or theNY components of the timestamp
of ↓Y takes a computational complexity ofO(|NX |×|NX |)
andO(|NY |×|NY |), respectively.) The significance of The-
orem 3 is that it will be used in Sect. 3.5 to provide the upper
bound on the number of comparisons required to evaluate
the causality relations between nonatomic poset events de-
fined in Table 1.

3.5 Evaluation conditions for causality relations

In this section, we formalize the evaluation conditions for
the causality relations in Table 1 and show that they have a
linear computational complexity. In Theorem 4, we formally

show the equivalence of the relation definitionsR(X, Y) in
the second column of Table 1 to the validity of the� rela-
tion between one (in some cases,|NX | or |NY |) pairs of cuts
of the form X ↑ and ↓Y , as specified in the third column
of Table 1. This equivalence was informally introduced in
Sect. 3.2. By Theorem 3, the evaluation of↓Y � X ↑ re-
quires min(|NX |, |NY |) integer comparisons. In Theorem 5,
we use Theorems 3 and 4 to derive the exact number of in-
teger comparisons needed to evaluate each of the causality
relations of Table 1. RelationsR1, R1′, R2′, R3, R4, and
R4′ can be evaluated in min(|NX |, |NY |) integer compar-
isons, relationR2 in |NX | integer comparisons, and relation
R3′ in |NY | integer comparisons. These simplified evalu-
ation conditions also give a physical interpretation to the
relations in terms of the cuts defined in Table 5 and which
can be visualized using Fig. 3.

The causality relations between nonatomic poset events
in the second column of Table 1 are defined using the
“causes” (≺) relation between the atomic events. However,
the evaluation conditions in the third column of Table 1 are
based on Theorems 1 and 2, and are therefore true for the
“causes or equals” (�) relation between atomic events. The
� relation between events ofX andY evaluates to the same
as the≺ relation iff no two events, one fromX and one from
Y , in the evaluation have an identical timestamp. Hence, we
use the following assertion.

Assertion 3 When evaluatingR(X, Y), ∀R in Table 1, no
two events inX andY have an identical timestamp.

Assertion 3 can be satisfied even if there are common
events inX and Y by using the following trick. Letzx

i
and zy

i denote the eventzi that is common toX and Y ,
respectively. Solely for the purpose of satisfying Assertion 3,
when computing the timestamp ofY as per Definition 10,
assign toT (zy

i)[i], a valueT (zy
i)[i] − δ, whereδ is smaller

than the smallest increment to the timestamp component on
the occurrence of an event. Thenzx

i ≺ zy
i iff T (zx

i) ≤
T (zy

i). Thus, by evaluatingT (zx
i) ≤ T (zy

i) for zx
i � zy

i , we
effectively evaluatezx

i ≺ zy
i . Observe that (T , <) remains

isomorphic to (E,≺) even if this trick is used.

Theorem 4 The relations defined in the second column of
Table 1 are true iff the corresponding evaluation conditions
given in the third column of Table 1 are true.

Proof. In the proof, we assume that an eventx occurs at
nodei and eventy occurs at nodej.
Part 1 (=⇒): We show that if any relation from{R1, R2,
R2′, R3, R3′, R4} in the second column of Table 1 holds,
then the corresponding evaluation condition in the third col-
umn is true.

(I) RelationR1(X, Y), i.e.,∀x∀y, x ≺ y: ∀y ∈ Y , [S(↓y)]i
� x. Thus, min({[S(↓y)]i | y ∈ Y }) � x. We also have
min({[S(↓y)]i | y ∈ Y }) = [S(∩⇓Y)]i. So [S(∩⇓Y)]i �
x = [S(x↑)]i. Hence,∩⇓Y 6� x↑. But this is true for
all x ∈ X. The evaluation condition

∧
x∈X [∩⇓Y 6� x↑]

follows.
The other evaluation condition corresponding toR1′ can
be similarly shown.

(II) Relation R2(X, Y), i.e., ∀x∃y, x ≺ y: For anyy ∈ Y ,
[S(∪⇓Y)]i � [S(↓y)]i because of construction of∪⇓Y

180

(see Definition 10). Also, becauseR2 holds, for each
x ∈ X, for somey ∈ Y , y � [S(↓y)]i � x = [S(x↑)]i.
Thus, [S(∪⇓Y)]i � [S(x↑)]i and this holds for each
x ∈ X. The evaluation condition follows.

(III) Relation R2′(X, Y), i.e., ∃y∀x, x ≺ y: From the rela-
tion, we can infer that∃y ∈ Y ∀x ∈ X, [S(x↑)]j �
y. Thus, max({[S(x↑)]j | x ∈ X}) � y. We also
have max({[S(x↑)]j | x ∈ X}) = [S(∪⇑X)]j . So
[S(∪⇑X)]j � y. We also havey � [S(∪⇓Y)]j . The
evaluation condition follows because [S(∪⇓Y)]j �
[S(∪⇑X)]j .

(IV) Relation R3(X, Y), i.e., ∃x∀y, x ≺ y: From the rela-
tion, we can infer that∃x ∈ X∀y ∈ Y , [S(↓y)]i � x.
Thus, min({[S(↓y)]i | y ∈ Y }) � x. We also have
min({[S(↓y)]i | y ∈ Y }) = [S(∩⇓Y)]i. So [S(∩⇓Y)]i �
x. We also havex � [S(∩⇑X)]i. The evaluation condi-
tion follows because [S(∩⇓Y)]i � [S(∩⇑X)]i.

(V) RelationR3′(X, Y), i.e., ∀y∃x, x ≺ y: For anyx ∈ X,
[S(∩⇑X)]j � [S(x↑)]j because of the construction of
∩⇑X (see Definition 10). Also, becauseR3′ holds, for
eachy ∈ Y , for somex ∈ X, x � [S(x↑)]j � y =
[S(↓y)]j . Thus, [S(↓y)]j � [S(∩⇑X)]j , and this holds
for eachy ∈ Y . The evaluation condition follows.

(VI) Relation R4(X, Y), i.e., ∃x∃y, x ≺ y: As noted in (II)
above, for anyy ∈ Y , [S(∪⇓Y)]i � [S(↓y)]i. Also, be-
cause of the construction of∩⇑X (see Definition 10),
for any x ∈ X, x � [S(∩⇑X)]i, similar to the rea-
soning in (V) above. Given that the relation holds, then
y � [S(↓y)]i � x, therefore, [S(∪⇓Y)]i � [S(↓y)]i �
x � [S(∩⇑X)]i by combining the above, and hence
[S(∪⇓Y)]i � [S(∩⇑X)]i. The evaluation condition fol-
lows.

(end of Part 1).

Part 2 (⇐=): We show that a relation from{R1, R2, R2′,
R3, R3′, R4} given in the second column of Table 1 holds if
the corresponding evaluation condition in the third column is
true. Throughout this proof, we will refer to Assertion 1 and
its use of variablez which was defined such thatz ∈ S(↓Y)
andz ∈ S(X ↑)

∨
z 6∈ X ↑. Observe thatz exists in all the

cases considered.

(I) Relation R1(X, Y), i.e., ∀x∀y, x ≺ y: Consider any
x ∈ X. From the definition ofx↑ (Definition 9) and
Assertion 1, it follows thatx � z. From Lemma 2.1, it
follows that ∀y ∈ Y , z � y. By transitivity, ∀y ∈ Y ,
x � y.
The above argument is true for allx ∈ X. Hence,∀x ∈
X∀y ∈ Y , x � y.
The validity of the other evaluation condition is similarly
shown.

(II) Relation R2(X, Y), i.e., ∀x∃y, x ≺ y: Consider any
x ∈ X. From the definition ofx↑ (Definition 9), and
from Assertion 1,x � z. From Lemma 2.2, it follows
that ∃y ∈ Y , z � y. By transitivity, x � y.
The above argument is true∀x ∈ X. Hence,∀x ∈
X∃y ∈ Y , x � y.

(III) Relation R2′(X, Y), i.e., ∃y∀x, x ≺ y: Consider an
eventz that exists by Assertion 1. From Lemma 2.4, it
follows that∀x ∈ X, x � z. From Lemma 2.2, it follows

that ∃y ∈ Y , z � y. By transitivity, ∃y ∈ Y ∀x ∈ X,
x � y.

(IV) Relation R3(X, Y), i.e., ∃x∀y, x ≺ y: Consider an
eventz that exists by Assertion 1. From Lemma 2.3, it
follows that∃x ∈ X, x � z. From Lemma 2.1, it follows
that ∀y ∈ Y , z � y. By transitivity, ∃x ∈ X∀y ∈ Y ,
x � y.

(V) Relation R3′(X, Y), i.e., ∀y∃x, x ≺ y: Consider any
y ∈ Y . From the definition of↓y (Definition 8) and
Assertion 1,z � y. From Lemma 2.3, it follows that
∃x ∈ X, x � z. By transitivity, x � y.
The above argument is true∀y ∈ Y . Hence,∀y ∈ Y ∃x ∈
X, x � y.

(VI) Relation R4(X, Y), i.e., ∃x∃y, x ≺ y: Consider an
event z that exists by Assertion 1. From Lemma 2.3,
it follows that ∃x ∈ X, x � z. From Lemma 2.2, it
follows that ∃y ∈ Y such thatz � y. By transitivity,
∃x ∈ X∃y ∈ Y , x � y.

From (I)–(VI), each evaluation condition in the third col-
umn of Table 1 implies the corresponding causality relation
between nonatomic poset events in the second column, but
with the ≺ relation between atomic events replaced by�
(see Definition 7). Recall that the evaluation conditions were
evaluated after assigning modified timestamps to satisfy As-
sertion 3. The use of such modified timestamps was to trick
the evaluation of� using these timestamps into being equiv-
alent to the evaluation of≺, as explained in the discussion
following Assertion 3. Therefore, the� relation is equiva-
lent to the≺ relation in the evaluation method. Hence, the
relations in the second column of Table 1 are true if the
corresponding evaluation conditions in the third column are
true. (end of Part 2). ut
Theorem 5 Each relationR(X, Y) in Table 1 can be eval-
uated with the following computational complexity: rela-
tions R1, R1′, R2′, R3, R4, and R4′ can be evaluated in
min(|NX |, |NY |) integer comparisons, relationsR2 in |NX |
integer comparisons, and relationsR3′ in |NY | integer com-
parisons.

Proof. The computational complexity of testing the condi-
tions in the third column of Table 1 is the computational
complexity of testing the corresponding relations in the sec-
ond column, by Theorem 4.

RelationsR2′, R3, R4, R4′: These relations can be evalu-
ated using a single test↓Y � X ↑. By Theorem 3, these
relations can be evaluated in min(|NX |, |NY |) integer
comparisons.

RelationR2: This relation can be evaluated using|NX | tests
of the form ↓Y � X ′′ ↑, where |NX′′ |= 1. By Theo-
rem 3, each test can be evaluated in 1 integer compar-
ison. So the relation can be evaluated in|NX | integer
comparisons.

RelationR3′: This relation can be evaluated using|NY |
tests of the form↓Y ′′ � X ↑, where |NY ′′ |= 1. By
Theorem 3, each test can be evaluated in 1 integer com-
parison. So the relation can be evaluated in|NY | integer
comparisons.

RelationsR1, R1′: By reasoning similar to that forR2 and
R3′, these relations can be evaluated in|NX | and also in

181

|NY | integer comparisons, i.e., min(|NX |, |NY |) integer
comparisons. ut
The relations inR can be replaced by similar relations

with the� relation between the individual atomic events in-
stead of the≺ relation. As seen above, the evaluation condi-
tions work for these modified relations with the same linear
complexity – the only difference is that Assertion 3 is not
relevant.

Recall that each of the 32 relationsr(X, Y), for r ∈ R,
is equivalent to a relationR(X̂, Ŷ), where R belongs to
Table 1, by using a suitable quantification ofX and Y in
Table 1 to represent their various proxiesX̂ and Ŷ instead.
Each of the 2 proxies of a nonatomic event has 4 cuts as-
sociated with it. Figure 4 illustrates the four cuts associated
with the two proxies of the eventX of Fig. 3. The sur-
faces of the cuts are marked as in Fig. 3. These cuts can be
used in Theorems 3 and 4 upon which Theorem 5 is based.
Therefore, by using a suitable quantification ofX andY to
represent their proxies, we have the following.

– Theorem 4 gives the evaluation methodology for each
relation r(X, Y), for r ∈ R (see the third column of
Table 4). This also results from a suitable quantification
of X andY in Table 1.

– Theorem 5 gives the exact computational complexity of
evaluating each relationr(X, Y), for r ∈ R. Specifi-
cally, relationsR∗a, R∗a′, R∗b′, R∗c, R∗d, and R∗d′
can be evaluated in min(|NX̂ |, |NŶ |) integer compar-
isons, relationsR∗b in |NX̂ | integer comparisons, and
relationsR∗c′ in |NŶ | integer comparisons. These eval-
uation conditions have only a linear computational com-
plexity.

3.6 Overhead analysis

Implicit in the analysis of the computational complexity of
evaluating the relations inR (see Theorem 5, the discussion
following it, and Table 4), we assumed that the timestamp
structure was established. However, that requires some over-
head. We now analyze the overall overhead in answering
Problems 1 and 2.

3.6.1 Timestamp structure

As the computation progresses, the vector timestamp of each
event is locally recorded, and periodically, the vector times-
tamps are collected by a central process to establish the time-
stamp structure. (Note that the vector timestamps can get
large but as shown in Theorem 3, the evaluation ofr(X, Y)
requires only those components of the timestamps ofX and
Y that correspond to nodes inNX̂ and/or NŶ .) The cost
of maintaining a local vector clock and of piggybacking a
vector timestamp on messages is essential to track causality
between atomic events in a distributed computation based
on message-passing [15, 29]. Therefore, they contribute no
overhead to the computation of causality between nonatomic
poset events. As the trace of the execution is collected at the
central process, the application identifiesA, the set of non-
atomic events of interest to it. Implicit in the identification

of eachA ∈ A is the identification of the proxiesLA and
UA. These are trivially identified assuming that the execu-
tion trace stores atomic events that occurred at each node
in sorted order. For each proxŷX, where X̂ is LX and
UX , of eachX ∈ A, the timestamps ofC1(X̂), C2(X̂),
C3(X̂), C4(X̂) are calculated using the timestamps of each
↓x andx↑, wherex ∈ X̂. The ith component of the time-
stamp ofC1(X̂) andC2(X̂) can be computed in|NX̂ | steps
as it requires the identification of the min and max, respec-
tively, of a set of|NX̂ | integers{T ([S(↓x)]i)[i] | x ∈ X̂}.
Similarly, the ith component of the timestamp ofC3(X̂)
and C4(X̂) can be computed in|NX̂ | steps as it requires
the identification of the min and max, respectively, of a set
of |NX̂ | integers{T ([S(x↑)]i)[i] | x ∈ X̂}. Thus, theith
component of the timestamps of the cutsC1(LX), C2(LX),
C3(LX), C4(LX), C1(UX), C2(UX), C3(UX), C4(UX) are
computed in 4× |NX̂ | steps.

To evaluater(X, Y), wherer ∈ R, we evaluateR(X̂, Ŷ),
whereR ∈ Table 1. As per Theorem 4, this requires the com-
parison of theNX̂ components of the timestamps of bothX̂

and Ŷ , or the comparison of theNŶ components of the
timestamps of bothX̂ and Ŷ . As X andY can be two ar-
bitrary events inA, in the worst-case, we need to compute
the components of the timestamps corresponding to nodes3

in
⋃

∀Ai∈A
NAi

. Hence, the worst-case complexity of com-
puting the timestamp structure of all the proxies of all the
events inA is |A| × 4|NA| × |⋃∀Ai∈A

NAi
|. (We can

do better by defining an ordering on members ofA and
when evaluating a relation betweenX andY , always com-
paring the components of the timestamps corresponding to
the node set of the lower ordered ofX andY . This reduces
the above overhead of setting up timestamps by about half.)
Further practical aspects of handling the trace are given in
Appendix C.

3.6.2 Problem 1

Problem 1 aims at detecting a specific relation fromR be-
tween every ordered pair of nonatomic eventsX andY in
A.

The computational complexity of evaluating any relation
using the naive definition of the relation given in the second
column of Table 4 is|A|2 × |NA|2.

The computational complexity of the proposed method
to evaluate any relation in Table 4 is the sum of two compo-
nents. The first component deals with the overhead of estab-
lishing the timestamp structure, computed in Sect. 3.6.1. The
second component gives the actual overhead of evaluating
the causality relations by the proposed method. From The-
orem 5, it follows that the overhead of detecting a specific
relation fromR between each pair of nonatomic events in
A by using the proposed method is|A|2 × |NA|.

The combined overhead of establishing the timestamp
structure of cuts and evaluating the causality relations by the
proposed method is thus (|A|× 4|NA|× |⋃∀Ai∈A

NAi |) +
(|A|2 × |NA|).

3 In the following analysis, we will useNA and |NA| instead ofNÂ
and |NÂ| because|NA| provides an upper bound on|NÂ|.

182

Surface of a cut of UXAtomic event within X Surface of a cut of LX

S(C1)
S(C2) S(C3)

S(C4)

S(C1)
S(C2)

S(C3)

S(C4)

Time

Fig. 4. Cuts of proxiesLX andUX

The proposed method is better than the naive method in
computational complexity for values of|A| and |NA| that
satisfy the following inequality.

|A| × 4|NA| × |

⋃
∀Ai∈A

NAi
|

 + (|A|2 × |NA|)

≤ |A|2 × |NA|2
The above inequality simplifies to the following.

4 × |

⋃
∀Ai∈A

NAi
|

 ÷ (|NA| − 1) ≤ |A|, for |NA| /= 1 (1)

The term |⋃∀Ai∈A
NAi | is the set of all nodes at which

events of interest occur in the distributed computation.
Clearly, |⋃∀Ai∈A

NAi
| ≤ |P |. Also A ⊆ 2E , the power

set of all events that occur at all the nodes, (the setP) dur-
ing the computation. Thus,|⋃∀Ai∈A

NAi
| is typically very

much less than|A| and hence, it is profitable to use the pro-
posed method. For|NA| = 1, we use the results in [21] that
deals with interactions between linear intervals; the proposed
theory and evaluation methods are applicable for|NA| > 1.
For a wide range of applications such as industrial process
control and monitoring distributed activities, events at dif-
ferent sites collectively trigger various events at the same
set of sites, which requires modeling of interaction between
2 nonatomic events having the same node set. In this case,
the node sets of all the nonatomic events of interest to an
application are identical and Inequality 1 simplifies as fol-
lows.

(4 × |NA|) ÷ (|NA| − 1) ≤ |A|, for |NA| /= 1 (2)

Thus, the proposed method is profitable to address Problem 1
for all values of |A| and |NA| satisfying Equation 2. In
particular, for|NA| = 2, |A| ≥ 8; for |NA| = 3, |A| ≥ 6;
for |NA| = 5, |A| ≥ 5; and asymptotically as|NA| −→ ∞,
|A| ≥ 4. As |A| is typically much larger than these values,
the proposed method of evaluating causality is very efficient.

3.6.3 Problem 2

Problem 2 aims at detecting every possible relation fromR

that holds between every ordered pair of nonatomic events
X andY in A.

A set of axioms to reason with the proposed relations
was proposed in [25]. For a given pair of nonatomic events,

having detected that some relation holds between the events,
several other relations can be deduced between the pair of
events using the axiom system. Application-specific heuris-
tics should be used to determine the order of evaluating the
relations inR in conjunction with the axiom system be-
cause in each application, it is likely that some relations are
more likely to hold than other relations. The savings offered
by the use of the axiom system and by the choice of a ju-
dicious order of evaluation of relations are similar, whether
the relations are evaluated using the naive method as per the
definitions in the second column of Table 4, or using the
method proposed in this paper. Therefore, we disregard the
use of the axiom system for purposes of assessing the sav-
ings offered by the proposed method over the naive method
in evaluating the relations. For a fair comparison of the two
methods, we assume that each relation inR is evaluated.

The overhead of evaluating all the 24 relations fromR

between each pair of nonatomic events inA by using the
naive definitions given in the second column of Table 4 is
24× |A|2 × |NA|2.

The combined overhead of establishing the timestamp
structure of cuts and evaluating the causality relations by the
proposed method is (|A|×4|NA|× | ⋃∀Ai∈A

NAi |) + 24×
(|A|2×|NA|). The first term is the overhead to establish the
timestamp structure for each of the eight cuts associated with
the two proxies of each nonatomic event, as discussed in
Sect. 3.6.1. The second term gives the overhead of detecting
all the 24 relations fromR between each pair of nonatomic
events inA by using the proposed method, and is derived
from Theorem 5.

The proposed method is better than the naive method
in computational complexity when the following inequality
holds.
|A| × 4|NA| ×

∣∣∣∣∣∣
⋃

∀Ai∈A

NAi

∣∣∣∣∣∣

 + 24× (|A|2 × |NA|)

≤ 24× (|A|2 × |NA|2)

The above inequality simplifies to the following.

∣∣∣∣∣∣
⋃

∀Ai∈A

NAi

∣∣∣∣∣∣

 ÷ (6 × (|NA − 1|))

≤ |A|, for |NA| /= 1 (3)

From the discussion following Inequality 1, we have:
(a) |⋃∀Ai∈A

NAi
| is typically very much less than|A|

and hence, it is profitable to use the proposed method.

183

(b) |NA| /= 1, and the results are applicable for|NA| > 1.
(c) For applications for which it can be assumed that the node
sets of all the nonatomic events of interest to the application
are identical, Inequality 3 simplifies to the following.

(|NA|) ÷ (6 × (|NA − 1|)) ≤ |A|, for |NA| /= 1 (4)

From the above analysis, it follows that for all values of|NA|
(|NA| /= 1), independent of the value of|A|, the proposed
method offers savings over the naive method.

3.7 A note on alternate evaluation conditions

Observe from the derivation of Theorem 3 that several of the
relations can be evaluated either by projectingX ↑ on NY

or by projecting↓Y on NX . The projection ofX ↑ on NY

requires cuts of the formX ↑ which are somewhat harder
to determine than cuts of the form↓X. This is because it
is not possible to determine a nondummy event [S(X ↑)]k,
for somek, until after that event actually occurs. Alternate
evaluation conditions can be formulated, that project↓Y on
NX and deal with cuts of the form↓X rather than of the
form X ↑. Evaluation conditions for the relations in Table 1,
using only cuts of the form↓Z, are given in the fourth
column of Table 6. Next, we determine the complexity of
evaluating↓X ⊆ ↓Y , prove the correctness of the evaluation
conditions in the fourth column of Table 6 and determine the
complexity of these evaluation conditions.

Theorem 6 ↓X ⊆ ↓Y iff (∀zi ∈ S(↓Y) where i ∈ NX ,
[S(↓X)]i � zi)

Proof. (=⇒): ∀i ∈ P , [S(↓X)]i � [S(↓Y)]i by definition
of the ⊆ relation. Hence, the R.H.S. follows.

(⇐=): For each nodei ∈ NX , we have [S(↓X)]i �
[S(↓Y)]i. As↓X is a downward-closed set whose maximum
elements are members ofX that occur at nodes inNX , and
↓Y is also downward-closed, for any nodek, [S(↓X)]k �
[S(↓Y)]k. The L.H.S. follows. ut

The significance of Theorem 6 is that the test for↓X ⊆
↓Y can be performed by only|NX | integer comparisons,
corresponding to theNX components of the timestamps of
↓X and↓Y . Specifically,↓X ⊆ ↓Y iff ∀zi ∈ S(↓Y), where
i ∈ NX , T (zi)[i] ≥ T ([S(↓X)]i)[i].

Theorem 7 ↓X ⊆ ↓Y can be determined in|NX | integer
comparisons.

Proof. Follows from Theorem 6 and the fact that [S(↓X)]i
� [S(↓Y)]i can be evaluated in one integer comparison.ut
Theorem 8 The relations defined in the second column of
Table 6 are true iff the corresponding evaluation conditions
given in the fourth column of Table 6 are true.

Proof. In the proof, we assume that an eventx occurs at
nodei and eventy occurs at nodej.
Part 1 (=⇒): We show that if any relation from{R1, R2,
R2′, R3, R3′, R4} in the second column of Table 6 holds,
then the corresponding evaluation condition in the fourth
column is true.

(I) RelationR1(X, Y), i.e.,∀x∀y, x ≺ y: Consider anyx ∈
X. ∀y ∈ Y , y � [S(↓y)]i � x. Thus, min({[S(↓y)]i |
y ∈ Y }) � x. We also have min({[S(↓y)]i | y ∈ Y }) =
[S(∩⇓Y)]i. So [S(∩⇓Y)]i � x, for eachx ∈ X. As
∪⇓X is downward-closed with the maximal elements
being members ofX, and∩⇓Y is also downward-closed,
hence for any nodek, [S(∪⇓X)]k � [S(∩⇓Y)]k.

(II) Relation R2(X, Y), i.e., ∀x∃y, x ≺ y: For anyy ∈ Y ,
[S(∪⇓Y)]i � [S(↓y)]i because of construction of∪⇓Y
(see Definition 10). Also, becauseR2 holds, for each
x ∈ X, there is somey ∈ Y such thaty � [S(↓y)]i � x.
As ∪⇓X is downward-closed with the maximal elements
being members ofX, and∪⇓Y is also downward-closed,
hence for any nodek, [S(∪⇓X)]k � [S(∪⇓Y)]k.

(III) Relation R2′(X, Y), i.e., ∃y∀x, x ≺ y: From the re-
lation, we can infer that∃y ∈ Y such that given
any x ∈ X, x � [S(↓y)]i. We also have that∪⇓X
is downward-closed with the maximal elements being
members ofX, and↓y is also downward-closed, hence
for any nodek, [S(∪⇓X)]k � [S(↓y)]k.

(IV) Relation R3(X, Y), i.e., ∃x∀y, x ≺ y: From the rela-
tion, we can infer that∃x ∈ X∀y ∈ Y , [S(↓y)]i � x.
Thus, min({[S(↓y)]i | y ∈ Y }) � x. We also have
min({[S(↓y)]i | y ∈ Y }) = [S(∩⇓Y)]i. So [S(∩⇓Y)]i �
x. As ↓x is downward-closed withx as its maximal ele-
ment, and∩⇓Y is also downward-closed, hence for any
nodek, [S(↓x)]k � [S(∩⇓Y)]k.

(V) Relation R3′(X, Y), i.e., ∀y∃x, x ≺ y: The condition
of column 4 is a reexpression of column 2.

(VI) Relation R4(X, Y), i.e., ∃x∃y, x ≺ y: As noted in
(II) above, for anyy ∈ Y , [S(∪⇓Y)]i � [S(↓y)]i.
Given that the relation holds, then∃x ∃y such that
y � [S(↓y)]i � x, therefore, [S(∪⇓Y)]i � [S(↓y)]i � x
by combining the above. As↓x is downward-closed with
x as its maximal element, and∪⇓Y is also downward-
closed, hence for any nodek, [S(↓x)]k � [S(∪⇓Y)]k.

In each of the above cases, the evaluation condition in
the fourth column follows. (end of Part 1).

Part 2 (⇐=): We show that a relation from{R1, R2, R2′,
R3, R3′, R4} given in the second column of Table 6 holds if
the corresponding evaluation condition in the fourth column
is true.

(I) RelationR1(X, Y), i.e., ∀x∀y, x ≺ y: For anyx ∈ X,
x ∈ ∪⇓X and x � [S(∩⇓Y)]i = zi. From Lemma 2.1,
it follows that ∀y ∈ Y , zi � y. By transitivity, ∀y ∈ Y ,
x � y.
The above argument is true for allx ∈ X. Hence,∀x ∈
X∀y ∈ Y , x � y.

(II) Relation R2(X, Y), i.e., ∀x∃y, x ≺ y: For anyx ∈ X,
x ∈ ∪⇓X andx � [S(∪⇓Y)]i = zi. From Lemma 2.2, it
follows that∃y ∈ Y , zi � y. By transitivity, x � y.
The above argument is true∀x ∈ X. Hence,∀x ∈
X∃y ∈ Y , x � y.

(III) Relation R2′(X, Y), i.e., ∃y∀x, x ≺ y: Consider any
y ∈ Y that makes the evaluation condition true. For
eachx ∈ X, x ∈ ∪⇓X and x � [S(↓y)]i = zi. From
Lemma 2.1, it follows thatzi � y. By transitivity,x � y.
Hence,∃y ∈ Y ∀x ∈ X, x � y.

184

Table 6. The fourth column extends Table 1 by giving evaluation conditions using cuts of form↓Z

Relationr Expression forr(X, Y) Evaluation condition using Evaluation condition using
relation� between cuts relation⊆ between cuts
(see Theorem 4) (see Theorem 8)

R1 ∀x ∈ X∀y ∈ Y , x ≺ y
∧

x∈X
[∩⇓Y 6� x↑] ∪⇓X ⊆ ∩⇓Y

R1′ ∀y ∈ Y ∀x ∈ X, x ≺ y =
∧

y∈Y
[↓y 6� ∪⇑X]

R2 ∀x ∈ X∃y ∈ Y , x ≺ y
∧

x∈X
[∪⇓Y 6� x↑] ∪⇓X ⊆ ∪⇓Y

R2′ ∃y ∈ Y ∀x ∈ X, x ≺ y ∪⇓Y 6� ∪⇑X
∨

y∈Y
[∪⇓X ⊆ ↓y]

R3 ∃x ∈ X∀y ∈ Y , x ≺ y ∩⇓Y 6� ∩⇑X
∨

x∈X
[↓x ⊆ ∩⇓Y]

R3′ ∀y ∈ Y ∃x ∈ X, x ≺ y
∧

y∈Y
[↓y 6� ∩⇑X]

∧
y∈Y

∨
x∈X

[↓x ⊆ ↓y]

R4 ∃x ∈ X∃y ∈ Y , x ≺ y ∪⇓Y 6� ∩⇑X
∨

x∈X
[↓x ⊆ ∪⇓Y]

R4′ ∃y ∈ Y ∃x ∈ X, x ≺ y

(IV) Relation R3(X, Y), i.e., ∃x∀y, x ≺ y: Consider any
x ∈ X that makes the evaluation condition true.x =
[S(↓x)]i � [S(∩⇓Y)]i = zi. From Lemma 2.1, it follows
that ∀y ∈ Y, zi � y. By transitivity, ∀y ∈ Y , x � y.
Hence,∃x ∈ X∀y ∈ Y , x � y.

(V) Relation R3′(X, Y), i.e., ∀y∃x, x ≺ y: The condition
in column 4 is a reexpression of column 2.

(VI) Relation R4(X, Y), i.e., ∃x∃y, x ≺ y: Consider any
x ∈ X that makes the evaluation condition true.x =
[S(↓x)]i � [S(∪⇓Y)]i = zi. From Lemma 2.2, it follows
that ∃y ∈ Y , zi � y. By transitivity, x � y. Hence,
∃x ∈ X∃y ∈ Y , x � y.

From (I)–(VI), each evaluation condition in the fourth
column of Table 6 implies the corresponding causality re-
lation between nonatomic poset events in the second col-
umn, but with the≺ relation between atomic events replaced
by � (see Definition 7). Using the timestamp modification
technique used in the proof of Theorem 4, the relations in
the second column of Table 6 are true if the corresponding
evaluation conditions in the fourth column are true. (end of
Part 2). ut
Theorem 9 Each relationR(X, Y) in Table 6 can be evalu-
ated with the following computational complexity: relations
R1, R1′, R2, R3, R4, andR4′ can be evaluated in|NX | inte-
ger comparisons, and relationsR2′ andR3′ in |NX |× |NY |
integer comparisons.

Proof. The proof is along the lines of the proof of The-
orem 5, except that it uses Theorems 7 and 8 instead of
Theorems 3 and 4. ut

There does not appear to be a more efficient way than
|NX |×|NY | integer comparisons to evaluateR2′ andR3′ on
X andY using cuts of the form↓Z onX andY . If relations
R2′ and R3′ are not used, the other relations in Table 6
can be evaluated in|NX | integer comparisons, instead of
min(|NX |, |NY |) integer comparisons needed forR1, R1′,
R3, R4, andR4′ (Theorem 5) using cuts of the formX ↑ and
↓Y . However, the overhead of establishing the timestamp
structure is half that determined in Sect. 3.6.

4 Concluding remarks

This paper examined a hierarchy of causality relations be-
tween nonatomic poset events in distributed computations.

The hierarchy of relations is complete using first-order pred-
icate logic and only the relation≺ between atomic events,
and extends the hierarchy of Lamport [27,28] and the hierar-
chy of [21], for nonatomic poset events. The causality rela-
tions are useful for distributed applications and agent-based
programs that use nonatomicity for event abstraction, but
also need a fine level of granularity of causality relations to
specify synchronization relations and their composite global
predicates. Each application can choose appropriate causality
relations from the hierarchy to specify and capture causality
and synchronization conditions between its nonatomic poset
events. The classification gives an insight into the existing
possibilities and can be used to select a number of primi-
tive relations with good properties and clear intuitions. We
also expect that researchers currently working in specify-
ing distributed predicates using linear intervals [13, 38] will
leverage the expressive power and convenience offered by
the suite of relations on poset events, which are shown to
have a low linear-time evaluation cost.

Complex conditions can be expressed as a predicate over
the proposed causality relations. Implicit in the use of these
relations by distributed applications are the needs (i) to de-
tect whether some specific relation holds between each pair
of nonatomic events in a given set of nonatomic events, and
(ii) to determine all the relations that are true between each
pair of nonatomic events, in a given set of nonatomic events.
We derived efficient evaluation conditions for the proposed
causality relations between nonatomic poset eventsX and
Y ; most relations can be evaluated in min(|NX |, |NY |) in-
teger comparisons, some in|NX | integer comparisons, and
the others in|NY | integer comparisons, where|NX | and
|NY |, respectively, are the number of nodes on which the
two nonatomic eventsX and Y occur. Thus, the simpli-
fied evaluation conditions we derive for the relations have
only a linear computational complexity of testing, whereas a
naive evaluation of the relations as per their definitions has a
polynomial computational complexity (|NX |×|NY |) of test-
ing. The use of the simplified evaluation conditions incurs a
one-time cost of setting up the timestamp structure, which
we analyzed. We then examined the conditions under which
it is profitable to use the proposed method of evaluating the
relations over the naive method based on the definitions.

During the derivation of the efficient testing conditions,
we also defined special system execution prefixes associated
with nonatomic poset events and examined their knowledge-
theoretic significance. We also saw how to capture causality

185

information associated with a nonatomic event, i.e., informa-
tion about the past and future execution associated with the
nonatomic event, in a condensed and aggregated form via
the definition of special execution prefixes associated with
the nonatomic event. Furthermore, we provided a mecha-
nism to capture such condensed information about causality
of a nonatomic event using a timestamp that has the same
size as the timestamp of a single atomic event. As distributed
applications become more widespread and sophisticated, the
proposed theory will be useful to evaluate causality relations
between distributed nonatomic events. The results contribute
to the fundamental area of causality and atomicity in dis-
tributed computing [27, 28, 37] and attempt to provide an
answer in the search for the holy grail of causality analy-
sis [37].

Having defined a suite of causality relations, it is in-
teresting to determine all the orthogonal relations that can
exist between two nonatomic poset events, analogous to the
results for linear intervals in [21]. (A set of orthogonal rela-
tions is such that for any two events, (i) the events must be
related by one and only one of these relations, and (ii) no re-
lation in this set can be expressed as the disjunction of other
relations in this set.) LetR∗ be the set of all conjunctions of
relations inR that can hold forr(X, Y), for r ∈ R – each
member ofR∗ is a conjunction of the members of an an-
tichain of Fig. 2 and can be identified as discussed in Sect. 2.
For eachrel1(X, Y), whererel1 ∈ R∗, determine which
rel2(Y, X) can hold, whererel2 ∈ R∗, using the relational
algebra [25] which allows the derivation of allr′(Y, X) from
any r(X, Y), wherer, r′ ∈ R. Then each conjunction of a
relationrel1(X, Y) and a compatible relationrel2(Y, X) is
orthogonal from every other such conjunction; denote this
set of conjunctions asR∗∗, which then represents all the
possible orthogonal relations between two posets, using only
the ≺ relation between atomic events.

A hierarchical framework for defining views of a com-
putation at higher levels of granularity was given in [22], in
which the events in any view partitioned the set of events
in any finer-level view. Also, the definition of the ordering
relation among the events in each view was flexible but use-
ful definitions were seen to capture some notion of causal-
ity. The hierarchical framework can be adapted to include
the fine-grained causality relations between overlapping non-
atomic events and their evaluation conditions.

Acknowledgments.The comments of the three anonymous referees were
very useful in improving the presentation of the paper. Referee 2 detected
a loophole in the definition of cuts, which resulted in the addition ofE⊥
andE> to the model.

References

1. Abraham U, Ben-David S, Magidor M: On global-time and inter-
process communication, In: Kwiatkowska M, Shields M, Thomas R,
(eds.),Semantics for Concurrency,Workshops in Computing, pp 311–
323, London: Springer 1990

2. Allen J: Maintaining knowledge about temporal intervals, CACM
26(11): 832–843 (1983)

3. Aigner M: Combinatorial Theory, Berlin Heidelberg New York:
Springer 1979

4. Anger F: On Lamport’s interprocessor communication model, ACM
Trans. Prog. Lang. and Syst. 11(3): 404–417 (1989)

5. Anger F, Rodriguez R: The lattice structure of temporal interval re-
lations, Journal of Applied Intelligence 6(1): 29–38 (1996)

6. de Bakker JW, de Roever WP, Rozenberg G (eds.):Linear time,
branching time, and partial orders in logics and models of concur-
rency, LNCS 354, Berlin Heidelberg New York: Springer 1989

7. Basten T: Breakpoints and time in distributed computations, In: Tel G,
Vit ányi P (eds.),Proc. 8th Int. Workshop on Distributed Algorithms,
LNCS 857, pp 340–354, Berlin Heidelberg New York: Springer 1994

8. Benthem JV:The Logic of Time, Dordrecht: Kluwer 1991
9. Boudol G, Castellani I: Concurrency and atomicity, Theoretical Com-

puter Science 59: 25–84 (1988)
10. Chandy KM, Misra J: How processes learn, Distributed Computing

1: 40–52 (1986)
11. Charron-Bost B: Concerning the size of clocks in distributed systems,

Information Processing Letters 39: 11–16 (1991)
12. Charron-Bost B, Delporte-Gallet C, Fauconnier H: Local and temporal

predicates in distributed systems, ACM Trans. on Prog. Lang. and Sys.
17(1): 157–179 (1995)

13. Cooper R, Marzullo K: Consistent detection of global predicates,
Proc. ACM/ONR Workshop on Parallel and Distributed Debugging,
pp 163–173, May 1991

14. Dobbs HAC: The dimensions of the sensible present, In:The Study
of Time, pp 274–292, Berlin Heidelberg New York: Springer 1972

15. Fidge CA: Timestamps in message-passing systems that preserve par-
tial ordering, Australian Computer Science Communications 10(1):
56–66 (1988)

16. Fishburn PC:Interval Orders and Interval Graphs: A Study of Par-
tially Ordered Sets, New York: Wiley 1985

17. Goltz U, Rensink A: Finite Petri nets as models for recursive causal
behavior, Theoretical Computer Science 124(1): 169–179 (1994)

18. Hamblin CL: Instants and intervals, In:The Study of Time, pp 324–
332, Berlin Heidelberg New York: Springer 1972

19. Janssen W, Poel M, Zwiers J: Action systems and action refinement
in the development of parallel systems, In: Baeten JCM, Groote JF,
(eds.)Concur ’91, LNCS 527, pp 298–316, Berlin Heidelberg New
York: Springer 1991

20. Kshemkalyani A: Temporal interactions of intervals in distributed sys-
tems,Technical Report TR-29.1933, IBM, September 1994

21. Kshemkalyani A: Temporal interactions of intervals in distributed
systems, Journal of Computer and System Sciences 52(2): 287–298
(1996) (Contains some parts of [20]).

22. Kshemkalyani A: Framework for viewing atomic events in distributed
computations, Theoretical Computer Science 196(1–2): 45–70 (1998)
(Abstract appears inProc. of Euro-Par’96, In: Boug̀e L, Fraigniaud
P, Mignotte A, Roberts Y (eds.), LNCS 1123, pp 496–505, Berlin
Heidelberg New York: Springer 1996.)

23. Kshemkalyani A: Relative timing constraints between complex events,
Proc. 8th IASTED Conf. on Parallel and Distributed Computing and
Systems, pp 324–326, October 1996

24. Kshemkalyani A: Synchronization for distributed real-time applica-
tions, Proc. 5th Workshop on Parallel and Distributed Real-time Sys-
tems,IEEE Computer Society Press, pp 81–90, April 1997

25. Kshemkalyani A: Causality between nonatomic poset events in dis-
tributed computations,Proc. 5th IEEE Workshop on Future Trends in
Distributed Computing Systems, pp 276–282, 1997

26. Lamport L: Time, clocks, and the ordering of events in a distributed
system, CACM 21(7): 558–565 (1978)

27. Lamport L: On interprocess communication, Part I: Basic formalism,
Part II: Algorithms, Distributed Computing 1: 77–101 (1986)

28. Lamport L: The mutual exclusion problem, Part I: A theory of inter-
process communication, Part II: Statements and solutions, Journal of
the ACM 33(2): 313–348 (1986)

29. Mattern F: Virtual time and global states of distributed systems,Par-
allel and Distributed Algorithms, pp 215–226, Amsterdam: North-
Holland 1989

30. Mattern F: On the relativistic structure of logical time in distributed
systems, In: Datation et Controle des Executions Reparties, Bigre 78:
3–20 (1992)

31. Minkowski H: Space and time, In:The Principle of Relativity, pp 73–
81, Dover New York: 1905

32. Olderog ER:Nets, Terms, and Formulas, Cambridge Tracts in Theo-

186

retical Computer Science, 1991
33. Reisig W: Temporal logic and causality for concurrent systems,Con-

currency ’88, LNCS 335, pp 121–139, Berlin Heidelberg New York:
Springer 1992

34. Rensink A:Models and Methods for Action Refinement,Ph.D. thesis,
University of Twente, The Netherlands, 1993

35. Rodriguez R, Anger F, Ford K: Temporal reasoning: A relativistic
model, Int. Journal of Intelligent Systems 6: 237–254 (1991)

36. Russell B:Our Knowledge of the External World, London: Allen &
Unwin 1926

37. Schwarz R, Mattern F: Detecting causal relationships in distributed
computations: In search of the holy grail, Distributed Computing 7(3):
149–174 (1994)

38. Spezialetti M, Kearns P: A framework for the consistent monitor-
ing of distributed computations,Proc. IEEE International Conf. on
Distributed Computing Systems, pp 61–68 (1989)

39. Wiener N: A contribution to the theory of relative position, Proc.
Cambridge Philosophical Society 17: 441–449 (1914)

Appendix A: Meaning and use of relations inR

Distributed applications and agent-based programs that model
nonatomic poset events, e.g., applications for distributed
multimedia, distributed debugging, coordination in mobile
systems, industrial process control, navigation, planning, and
virtual reality will find use for the proposed relationsR.
And as applications get more sophisticated, they will increas-
ingly use the proposed relations to express and enforce fine-
grained causality relations between nonatomic poset events.
In the following discussion, the “X computation” and “Y
computation” refer to the computation performed by the non-
atomic eventsX andY , respectively.

We first consider the significance of the groups of rela-
tions R∗a(X, Y), R∗b(X, Y), R∗b′(X, Y), R∗c(X, Y),
R∗c′(X, Y), andR∗d(X, Y). Each group deals with a par-
ticular proxyX̂ and Ŷ .

– R∗a(X, Y): All events in Ŷ know the results of theX
computation (if any,) upto all the events in̂X. This is a
strong form of synchronization between̂X and Ŷ .

– R∗b(X, Y): For each event in̂X, some event in̂Y knows
the results of theX computation (if any,) upto that event
in X̂. The Y computation may then exchange informa-
tion about theX computation uptoX̂, among the nodes
participating in theY computation.

– R∗b′(X, Y): Some event inŶ knows the results of the
X computation (if any,) upto all events in̂X. These
relations are useful when it is sufficient for one node in
NŶ to detect a global predicate across all nodes inNX̂ .
If the event inŶ is at a node that behaves as the group
leader ofNŶ , then it can either inform the other nodes
in NŶ or make decisions on their behalf.

– R∗c(X, Y): All events in Ŷ know the results of theX
computation (if any,) upto some common event inX̂.
This group of relations is useful when it is sufficient for
one node inNX̂ to inform all the nodes inNŶ of its state,
such as when all the nodes inNX̂ have a similar state.
If the node at which the event in̂X occurs has already
collected information about the results/ states of theX
computation uptoX̂ from other nodes inNX̂ (thus, that
node behaves as the group leader ofX̂), then the events
in Ŷ will know the states of theX computation uptoX̂.

– R∗c′(X, Y): Each event inŶ knows the results of the
X computation (if any,) upto some event in̂X. If it is
important to the application, then the state at each event
in X̂ should be communicated to some event inŶ .

– R∗d(X, Y): Some event in̂Y knows the results of theX
computation (if any,) upto some event in̂X. The nodes
under consideration at which the events inŶ and X̂,
respectively, occur may be the group leaders ofNŶ and
NX̂ , respectively. This group leader ofNX̂ may have
collected relevant state information from other nodes in
NX̂ , and conveys this information to the group leader
of NŶ , which in turn distributes the information to all
nodes inNŶ .

The above significance of each group of relations applies
to each individual relation of that group. The specific use and
meaning of each of the 24 relations inR is given next. We
do not restrict the explanation that follows to any specific
application.

R1∗(X, Y): This group of relations deals withUX andLY .
Each relation signifies a different degree of transfer of con-
trol for synchronization, as in group mutual exclusion (gmu-
tex), from theX computation to theY computation.

– R1a(X, Y): The Y computation at any node inNY be-
gins only after that node knows that theX computation
at each node inNX has ended, e.g., a conventional dis-
tributed gmutex in which each node inNY waits for an
indication from each node inNX that it has relinquished
control.

– R1b(X, Y): For every node inNX , the final value of
its X computation is known by (or its mutex token is
transferred to) some node inNY before that node inNY

begins itsY computation. Thus, nodes inNY collec-
tively (but not individually) know the final value of the
X computation by the time the last among them begins
its Y computation. This is a weak version of synchro-
nization/gmutex.

– R1b′(X, Y): Before beginning itsY computation, some
node inNY knows the final value of theX computation
at each node inNX . This is a weak version of synchro-
nization/gmutex (but stronger thanR1b) with the prop-
erty that at least one node inNY cannot begin itsY
computation until the final value of theX computation
at each node inNX is known to it.

– R1c(X, Y): The final value of theX computation at
some node inNX is known to all the nodes inNY before
they begin theirY computation. This is a weak form of
synchronization/gmutex which is useful when it suffices
for a particular node inNX to grant all the nodes inNY

gmutex permission to proceed with theY computation;
this node inNX may be the group leader ofNX , or
simply all the nodes inNX have the same final local
state of theX computation within this application.

– R1c′(X, Y): Each node inNY begins itsY computation
only after it knows the final value of theX computation
of some node inNX . This is a weak form of synchro-
nization/gmutex (weaker thanR1c) which requires each
node inNY to receive a final value (or gmutex token)
from at least one node inNX before starting itsY com-
putation. This relation is sufficient for some applications

187

such as those requiring that at most one (additional) pro-
cess be admitted to join those in the critical section when
one process leaves it.

– R1d(X, Y): Some node inNY begins itsY computation
only after it knows the final value of (or receives a gmu-
tex token from) theX computation at some node inNX .
This is the weakest form of synchronization/gmutex.

R2∗(X, Y): This group of relations deals withUX andUY .
The relations can signify various degrees of synchronization
between the termination of computationsX and Y , where
X is nested withinY or X is a subcomputation ofY . Al-
ternately,Y could denote activity at processes that have al-
ready spawnedX activity in threads, andY can complete
only afterX completes.

– R2a(X, Y): The Y computation at any node inNY can
terminate only after that node knows the final value of
(or the termination of) theX computation at each node in
NX . This is a strong synchronization before termination,
betweenX andY .

– R2b(X, Y): For every node inNX , the final value of its
X computation is known by at least one node inNY

before that node inNY terminates itsY computation.
Thus, all the nodes inNY collectively (but not individu-
ally) know the final values of theX computation before
they terminate theirY computation. This is a weak syn-
chronization before termination.

– R2b′(X, Y): Before terminating itsY computation, some
node inNY knows the final value of theX computation
at all nodes inNX . This is a stronger synchronization
before termination thanR2b wherein at least one node in
NY cannot terminate itsY computation without know-
ing the final state of theX computation at all nodes in
NX . This suffices for all applications in which it is ad-
equate for one node inNY to detect the termination of
theX computation at each node inNX before that node
terminates itsY computation.

– R2c(X, Y): The final value of theX computation at
some node inNX is known to all theNY nodes before
they terminate theY computation. This is a weak form
of synchronization. The pertinent node inNX could rep-
resent a critical thread in theX computation, or could
be the group leader ofNX that represents theX com-
putation at all nodes inNX .

– R2c′(X, Y): Each node inNY terminates itsY com-
putation only after it knows the final value of theX
computation at some node inNX . This is a weaker form
of synchronization before termination thanR2c, but is
adequate when all the nodes inNX are performing a
similar X computation.

– R2d(X, Y): Some node inNY terminates itsY compu-
tation after it knows the final value of theX computation
at some node inNX . This is a weak form of synchro-
nization; however, if the concerned nodes inNX and
NY are the respective group leaders of theX and Y
computations and, respectively, collect/distributed infor-
mation from/to their groups, then a strong form of syn-
chronization can be implicitly enforced because whenY
terminates, it is known to each node inNY that theX
computation has terminated.

R3∗(X, Y): This group of relations deals withLX andLY .
The relations can signify various degrees of synchronization
between the initiation of computationsX and Y , whereY
is nested withinX or Y is a subcomputation ofX. Alter-
nately,X could denote activity at processes that have already
spawnedY activity in threads.

– R3a(X, Y): The Y computation at any node inNY be-
gins after that node knows the initial values of theX
computation at each node inNX . This is a strong form
of synchronization between the beginnings of theX and
Y computations.

– R3b(X, Y): For each node inNX , the initial state of its
X computation is known to some node inNY before
that node inNY begins itsY computation. Thus, all the
nodes inNY collectively (but not individually) know the
initial state of theX computation. This synchronization
is sufficient when the forkedY computations at each
node in NY are only loosely coupled and should not
know each others’ initial states communicated by theX
computation; while at the same time ensuring that the
initial state of theX computation at each node inNX is
available to at least one node inNY before it commences
its Y computation.

– R3b′(X, Y): Before beginning itsY computation, some
node in NY knows the initial state of theX compu-
tation at all the nodes inNX . Thus theY computa-
tion at this node can run a parallelX computation for
fault-tolerance, or can be made an entirely deterministic
function of the inputs to theX computation. This node
in NY can coordinate theY computation of the other
nodes inNY . This synchronization is weaker thanR3a
but stronger thanR3b.

– R3c(X, Y): The initial state of theX computation at
some node inNX is known to all the nodes inNY before
they begin theirY computation. This is a weak synchro-
nization; however, it is adequate when the subject node
in NX has forked all the threads that will performY ,
and behaves as the group leader ofX that initiates the
nested computationY .

– R3c′(X, Y): Each node inNY begins itsY computation
only after it knows the initial state of theX computation
at some node inNX . Thus each node executing the com-
putationY has itsY computation forked or spawned by
some node inNX and itsY computation corresponds to
a nested branch ofX. The nodes inNY may not know
each others’ initial values for theY computation; the
X computations at (some of) theNX nodes have semi-
independently forked theY computations at the nodes in
NY . This form of synchronization is weaker thanR3c.

– R3d(X, Y): Some node inNY begins itsY computation
only after it knows the initial state of theX computation
at some node inNX . This is a weak form of synchro-
nization in which only one node inNX and one node
in NY coordinate their respective initial states of their
local X and Y computations. However, if the node in
NX that initiated theX computation forks off the main
thread for theY computation, then this form of synchro-
nization between the initiations ofX andY is adequate
to haveY as an entirely nested computation withinX.

188

R4∗(X, Y): This group of relations deals withLX andUY .
The relations signify different degrees of synchronization
between a monitoring computationY that knows the initial
values with which theX computation begins, and then the
monitoring computationY terminates.

– R4a(X, Y): The Y computation at any node inNY ter-
minates only after that node knows the initial values of
theX computation at each node inNX . This is a strong
form of synchronization between the start ofX and the
end ofY .

– R4b(X, Y): For every node inNX , the initial state of
its X computation is known by at least one node inNY

before that node inNY terminates itsY computation.
Even if there is no exchange of information in theY
computation about the state of theX computation at in-
dividual nodes inNX , this relation guarantees that when
Y completes, the (initial) local states at each of theNX

nodes are collectively (but not individually) known by
NY .

– R4b′(X, Y): Before terminating itsY computation, some
node inNY knows the initial state of theX computation
at all the nodes inNX . This node inNY can detect if
an initial global predicate of theX computation across
the nodes inNX is satisfied, before it terminates itsY
computation. If this node inNY behaves as a group
leader, it can then inform all the other nodes inNY to
terminate theirY computations.

– R4c(X, Y): The initial state of theX computation at
some node inNX is known to all the nodes inNY

before they terminate theirY computation. This weak
synchronization is adequate for applications where all
the NX nodes start theirX computation with similar
values. Alternately, if the node inNX behaves as a group
leader, it can first detect the initial global state of theX
computation and then inform all the nodes inNY .

– R4c′(X, Y): Each node inNY terminates itsY compu-
tation only after it knows the initial state of theX com-
putation at some node inNX . This is a weaker form of
synchronization thanR4c because the states of all nodes
in NX may not be observed before the nodes inNY ter-
minate theirY computation. But this will be adequate for
applications in which each node inNX is reporting the
same state/value of theX computation, and each node
in NY simply needs a confirmation from some node in
NX before it terminates itsY computation. For example,
a mobile host (anNY node) may simply need a confir-
mation from some base station (anNX node) before it
exits itsY computation.

– R4d(X, Y): Some node inNY terminates itsY computa-
tion after it knows the initial state of theX computation
at some node inNX . This weak form of synchroniza-
tion is sufficient when the group leader ofX which is
responsible for kicking off the rest ofX informs some
node (or the group leader) of the monitoring distributed
programY that computationX has successfully begun.

Appendix B: Proofs of Lemmas 6 and 7

Lemma 6 (∃z ∈ S(↓Y), z ∈ S(X ↑)
∨

z 6∈ X ↑) iff (∃z′
i ∈

S(↓Y), i ∈ NX

∧
[S(X ↑)]i � z′

i)

Proof. (=⇒): The L.H.S. is an expression over the events
in S(X ↑) andS(↓Y) that occur at the node at which event
z occurs. Letz = ej and [S(X ↑)]j = e′

j . Then from the
L.H.S., it follows thate′

j � ej = z. (1)
From Lemma 5.1, we can infer that∃i ∈ NX such that

xi = [S(X ↑)]i
∧

xi � e′
j . (2)

As the relation� is transitive, from (1) and (2), we infer
that z � e′

j � xi. As ↓z has a unique maximal elementz
and there is a causality path fromxi to z, we havexi �
[S(↓z)]i. (3)

As z ∈ S(↓Y), and ↓z and ↓Y are both downward-
closed subsets ofE, we have↓z ⊆ ↓Y ; hence, [S(↓z)]i �
[S(↓Y)]i. (4)

Let z′
i = [S(↓Y)]i. Then z′

i = [S(↓Y)]i � [S(↓z)]i �
xi = [S(X ↑)]i by combining (3) and (4). The RHS follows.

(⇐=): z′ that exists as per the R.H.S. of the lemma sat-
isfies the condition onz in the L.H.S. of the lemma. The
proof follows. ut
Lemma 7 (∃z ∈ S(X ↑), z ∈ ↓Y) iff (∃z′

i ∈ S(X ↑), i ∈
NY

∧
z′
i � [S(↓Y)]i)

Proof. (=⇒): The L.H.S. is an expression over the events
in S(X ↑) and ↓Y that occur at the node at which eventz
occurs. Letz = ej and [S(↓Y)]j = e′

j . Then from the L.H.S.,
it follows that z = ej � e′

j . (1)
From Lemma 5.2, we can infer that∃ i ∈ NY such that

yi = [S(↓Y)]i
∧

yi � e′
j . Using (1), we haveyi � z. (2)

Observe thatz is either [S(C3(X))]j or [S(C4(X))]j .

– If X ↑ = C3(X), we can infer from the definition of
C3(X) that z is the earliest event at nodej among all
[S(x↑)]j , ∀x ∈ X, and therefore∃x ∈ X, x � z. Com-
bining this with (2), we have∃x ∈ X, x � z � yi, and
hence [S(C3(X))]i � yi.

– If X ↑ = C4(X), we can infer from the definition of
C4(X) that z is the latest event at nodej among all
[S(x↑)]j , ∀x ∈ X, and therefore∀x ∈ X, x � z. Com-
bining this with (2), we have∀x ∈ X, x � z � yi, and
hence [S(C4(X))]i � yi.

In either case, we have [S(X ↑)]i � yi = [S(↓Y)]i. The
R.H.S. follows.

(⇐=): Eventz′ that exists as per the R.H.S. of the lemma
satisfies the condition onz in the L.H.S. of the lemma. The
proof follows. ut

Appendix C: Discussion on the evaluation methodology

Issues concerning the evaluation of causality relations be-
tween nonatomic poset events are discussed next. Recall
that a central monitoring process collects the trace of the
distributed execution. The central process need not perform
an exhaustive trace because it is prohibitively expensive.
Rather, the trace can focus on events that are “relevant” or
“potentially relevant” to the application. The central process
has to identify nonatomic poset events – this is done us-
ing the≺ relation between atomic events using application-
specific and domain-specific information. Once the trace of
the distributed execution has been collected, an off-line anal-
ysis as described in Sect. 3.6.1 is always feasible. An on-line

189

analysis of the computation as the trace is being collected by
the central process is also achievable as follows. The times-
tamps of individual events and cutsC1(X) andC2(X) are
computable/available as soon asX is identified and are in-
dependent of the future computation. Timestamps ofC3(X)
andC4(X) depend on the reverse timestamps of individual
events and depend on the future computation. These can be
determined once the nondummy events in eachS(x↑) have
occurred. The central process periodically considers traces of
the computation collected thus far and assuming that this is
the complete computation, uses reverse timestamps to com-
pute timestamps ofC3(X) andC4(X) to compute/evaluate
causality relations among nonatomic events contained en-
tirely within this trace. Only for those eventsX whose
timestamps forC3(X) andC4(X) cannot be computed be-
cause the nondummy events in eachS(x↑) have not yet
occurred, the following technique can be used. The reverse
timestamps of events and timestamps of cutsC3 and C4
are incrementally updated the next time the central process

runs a trace analysis. LetQr and Qs be the traces at time
r and s, respectively, at the central process. Letr < s.
ThenQr is a prefix ofQs. Let TR r(X) be a reverse time-
stamp computed at timer. TR s(X), the reverse timestamp
of X at times is computed as follows. IfTR r(X)[i] /= >i,
thenTR s(X)[i] = TR r(X)[i] + (Qs[i] − Qr[i]), otherwise
TR s(X)[i] has to be explicitly computed.

Ajay Kshemkalyani is an Assistant Professor of Electrical Engineering and
Computer Science at the University of Illinois at Chicago since Septem-
ber 1998. From 1991 to 1997, he worked at IBM Research Triangle Park
in computer networks and distributed systems and subsequently was an
Assistant Professor at the University of Cincinnati from 1997 to 1998. He
received a Ph.D. in Computer and Information Science from The Ohio State
University in 1991, and a B.Tech. in Computer Science and Engineering
from the Indian Institute of Technology, Mumbai, in 1987. His current
research interests are in distributed computing, computer networking, and
operating systems. He is a member of the ACM and a senior member of
the IEEE.

