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Abstract

Recent advances in micro-electromechanical (MEMS) technology have led to the development of small, low-cost,
and low-power sensors. Wireless sensor networks (WSNs) are large-scale networks of such sensors, dedicated to observ-
ing and monitoring various aspects of the physical world. In such networks, data from each sensor is agglomerated
using data fusion to form a single meaningful result, which makes time synchronization between sensors highly desir-
able. This paper surveys and evaluates existing clock synchronization protocols based on a palette of factors like pre-
cision, accuracy, cost, and complexity. The design considerations presented here can help developers either in choosing
an existing synchronization protocol or in defining a new protocol that is best suited to the specific needs of a sensor-
network application. Finally, the survey provides a valuable framework by which designers can compare new and exist-

ing synchronization protocols.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, tremendous technological
advances have occurred in the development of
low-cost sensors, which are capable of wireless
communication and data processing [29,32,
61,65]. Wireless sensor networks (WSNs) are dis-
tributed networks of such sensors, dedicated to
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closely observing real-world phenomena. Such
sensors may be embedded in the environment or
enabled with mobility; they can be deployed in
inaccessible, dangerous, or hostile environments.
The sensors need to configure themselves in a com-
munication network, in order to collect informa-
tion that has to be pieced together to assemble a
broader picture of the environment than what each
sensor individually senses. A huge surge of interest
in this field has been triggered by applications in
domains as diverse as military [16], environmental
[7,8,63], medical [33], scientific [1,5,39,60,72,73],
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Table 1

Example applications of wireless sensor networks

Domain Applications

Military Detection of nuclear, biological, and chemical attacks and presence of hazardous materials
Prevention of enemy attacks via alerts when enemy aircrafts are spotted
Monitoring friendly forces, equipment and ammunition

Environmental Forest fire monitoring, flood detection, and earthquake detection
Monitoring ecological and biological habitats

Civilian Determining spot availability in a parking lot. Active badge tracking at the workplace
Surveillance for security in banks and shopping malls. Highway traffic monitoring

Health Tracking and monitoring doctors inside a hospital

Identifying pre-defined symptoms by telemonitoring human physiological data

Home and K-12 education

The intelligent home and smart kindergarten, where wireless networks are

used in developmental, problem-solving environments

Scientific

Space and interplanetary exploration. Deep undersea exploration

Subatomic particle study. High-energy physics. Study of cosmic radiation

and industrial, civilian, and home networks
[9,33,41,69,70], as shown in Table 1. As wireless
sensor networks become an integral part of the
modern era [6,13,14,22,23,26], addressing the is-
sues in designing such networks becomes manda-
tory. Good sources of further information on
wireless sensor networks and the challenges therein
include surveys authored by Akyildiz et al. [2,3],
by Culler and Hong [13], by Culler et al. [14], by
Tilak et al. [64], and by Tubaishat and Madria
[66].

In wireless sensor networks, the basic operation
is data fusion, whereby data from each sensor is
agglomerated to form a single meaningful result
[17,44,71,74,76-78]. For instance, in forest fire
monitoring, a forest fire can be detected by differ-
ent sensors at different points in time when the fire
enters the range of each sensor. Sensor readings
(e.g., direction or velocity) and timestamps (indi-
cating the time at which the fire was sensed) are
passed along so that fusion of such information
from various sensors will add up to a global result.
In this case, it might be the time elapsed since the
fire was first spotted and its direction. The fusion
of individual sensor readings is possible only by
exchanging messages that are timestamped by each
sensor’s local clock. This mandates the need for a
common notion of time among the sensors. Proto-
cols that provide such a common notion of time
are clock synchronization protocols.

Researchers have developed successful clock
synchronization protocols for wired networks over
the past few decades. These are unsuitable for a
wireless sensor environment because the challenges
posed by wireless sensor networks are different and
manifold. The most important differences are sum-
marized here. First, wireless sensor networks can
contain several thousands of sensors and their
wide deployment is enabled by the fact that sen-
sors are becoming cheaper and smaller in size.
For example, a military tracking application may
consist of hundreds of thousands of sensors, and
scalability becomes a major issue. If a particular
area needs sudden surveillance it might be popu-
lated with thousands of sensors in an ad-hoc man-
ner, and the network must be scalable to the
change. Second, self-configuration and robust-
ness become a direct necessity in order to function
under rapid deployment conditions and operation
in inaccessible or dangerous environments. Third,
energy conservation is a very important concern.
It is impossible to provide a power source to each
sensor in such a vast network, and the small sizes
of sensors restrict the amount of energy that can
be stored and procured.

This paper has three objectives. First, it presents
a survey of clock synchronization protocols for the
rapidly emerging wireless networks, based on a
palette of factors such as precision, accuracy, cost,
and complexity. The survey will help a reader
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choose the most appropriate protocol for his
application. Second, our analysis of issues underly-
ing synchronization protocols will guide designers
in defining new protocols tailored to specific appli-
cations of sensor networks. Finally, the survey
establishes a framework for comparing new and
existing clock synchronization protocols.

Although there are many surveys on wireless
sensor networks, most of the existing surveys do
not focus on time synchronization. Culler et al. re-
cently published an overview of sensor networks in
a special issue of IEEE Computer magazine [14].
Tilak et al. [64] present performance metrics for
sensor networks along with a classification of sen-
sor networks based on the organization of commu-
nicating nodes within a network. Their survey is
especially valuable in its ability to relate the syn-
chronization requirements to the organization of
a sensor network. Akyildiz et al. wrote an excellent
survey on sensor networks [3]. These authors dis-
cuss various communication protocols based on
the layers of the Open System Interconnection
(OSI) model. Several open research issues—includ-
ing hardware design, modulation protocols, and
strategies to overcome signal propagation ef-
fects—are discussed along with various MAC pro-
tocols. Hill et al. [29] discuss various hardware
architectures for nodes in sensor networks. Their
survey was published in a special issue of the Com-
munications of the ACM on wireless sensor net-
works. The issue contains various other articles
that discuss synchronization issues in these net-
works [13,63,71]. The work closest to ours is Elson
and Romer’s discussion of the design principles
underlying synchronization protocols for wireless
networks [20].

This paper is organized as follows. Section 2
discusses the foundations of clock synchronization
and reviews traditional synchronization protocols
for wired networks that are not constrained by
the peculiar limitations of wireless sensor net-
works. It is necessary to understand these proto-
cols to appreciate why new protocols had to be
designed specifically for wireless sensor networks.
Section 3 introduces the reader to clock synchroni-
zation in wireless sensor networks by explaining
the peculiar characteristics of such networks that
render the traditional synchronization protocols

ineffective. The section next explains the design
principles underlying clock synchronization proto-
cols for wireless sensor networks. It then provides
a classification of existing protocols based on syn-
chronization issues and application-dependent fea-
tures. Section 4 analyzes several existing clock
synchronization protocols for wireless sensor net-
works. Section 5 presents a quantitative and qual-
itative comparison of clock synchronization
protocols. The conclusions of our survey are given
in Section 6.

2. Traditional clock synchronization
2.1. Motivation

In centralized systems, there is no need for syn-
chronized time because there is no time ambigu-
ity. A process gets the time by simply issuing a
system call to the kernel. When another process
then tries to get the time, it will get either an equal
or a higher time value. Thus, there is a clear
ordering of events and the times at which these
events occur.

In distributed systems, there is no global clock
or common memory. Each processor has its own
internal clock and its own notion of time. In prac-
tice, these clocks can easily drift seconds per day,
accumulating significant errors over time. Also,
because different clocks tick at different rates, they
may not remain always synchronized although
they might be synchronized when they start. This
clearly poses serious problems to applications that
depend on a synchronized notion of time. For
most applications and algorithms that run in a dis-
tributed system, we need to know time in one or
more of the following aspects.

e The time of the day at which an event happened
on a specific machine in the network.

e The time interval between two events that hap-
pened on different machines in the network.

e The relative ordering of events that happened
on different machines in the network.

Unless the clocks in each machine have a com-
mon notion of time, time-based queries cannot be
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answered. Some practical examples that stress the
need for synchronization are listed below.

e In database systems, the order in which pro-
cesses perform updates on a database is impor-
tant to ensure a consistent, correct view of the
database. To ensure the right ordering of
events, a common notion of time between co-
operating processes becomes imperative.

o Liskov [43] states that clock synchronization
improves the performance of distributed algo-
rithms by replacing communication with local
computation. When a node N needs to query
node M regarding a property, it can deduce
the property with some previous information
it has about node M and its knowledge of the
local time in node M.

e It is quite common that distributed applications
and network protocols use timeouts, and their
performance depends on how well physically
dispersed processors are time-synchronized.
Design of such applications is simplified when
clocks are synchronized.

Clock synchronization is the process of ensur-
ing that physically distributed processors have a
common notion of time. It has a significant effect
on many areas like security systems, fault diagno-
sis and recovery, scheduled operations, database
systems, and real-world clock values.

2.2. Clocks in distributed systems

In distributed systems where each machine has
its own physical clock, we have seen that clock
synchronization is of significant importance. Be-
fore delving into the details of synchronizing
clocks, we define the notion of a clock. A computer
clock is an electronic device that counts oscilla-
tions in an accurately-machined quartz crystal, at
a particular frequency. It is also defined as an
ensemble of hardware and software components
used to provide an accurate, stable, and reliable
time-of-day function to the operating system and
its clients. Computer clocks are essentially timers.
The timer counts the oscillations of the crystal,
which is associated with a counter register and a
holding register. For each oscillation in the crystal,

the counter is decremented by one. When the
counter becomes becomes zero, an interrupt is gen-
erated and the counter is reloaded from the hold-
ing register. Therefore, it is possible to program
a timer to generate an interrupt 60 times a minute,
where each interrupt is called a clock tick, by set-
ting an appropriate value in the holding register.
At each clock tick, the interrupt procedure incre-
ments the clock value stored in memory.

The clock value can be scaled to get the time of
the day; the result can be used to timestamp an
event on that computer. In practice, the quartz
crystals in each of the machines in a distributed
system will run at slightly different frequencies,
causing the clock values to gradually diverge from
each other. This divergence is formally called the
clock skew, which can lead to an inconsistent no-
tion of time. Clock synchronization is performed
to correct this clock skew in distributed systems.
There are two broad ways to achieve this.

e Clocks are synchronized to an accurate real-
time standard like universal coordinated time
(UTC). Clocks that must not only be synchro-
nized with each other but also have to adhere
to physical time are termed physical clocks.
Such clocks are the subject of this paper.

e For applications in which causality-based logi-
cal time can be substituted for real-time (e.g.,
mutual exclusion requires only the logical con-
dition that no two processes access the critical
section concurrently), clocks are relatively syn-
chronized to each other because the require-
ment is only to provide an ordering of events,
and not the exact real-world time at which each
event occurred. For clocks that provide only
relative synchrony, only causality-based consis-
tency of clocks matters as opposed to syn-
chrony with respect to physical time. Such
clocks are denoted by (causality-based) logical
clocks [37,38]. Synchronizing such clocks will
not be considered in this paper.

2.3. Clock inaccuracies

We require the following definitions. For any
two clocks C, and C,, Fig. 1 gives our termino-
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1—ptol+p.

Time: The time of a clock in a machine p is given by the function Cp(t), where C)(¢) = ¢ for a perfect clock.
Frequency : Frequency is the rate at which a clock progresses. The frequency at time ¢ of clock Cj, is C;(t).

Offset: Clock offset is the difference between the time reported by a clock and the real time. The offset of the clock C,
is given by Cq(t) — t. The offset of clock C, relative to Cj at time ¢ > 0 is given by Cq (¢) — C(2).

Skew: The skew of a clock is the difference in the frequencies of the clock and the perfect clock. The skew of a clock
C, relative to clock Cy, at time ¢ is (C(t) — Cy(t)).
If the skew is bounded by p, then as per Equation 1, clock values are allowed to diverge at a rate in the range of

Drift (rate): The drift of clock C, is the second derivative of the clock value with respect to time, namely C?, (t). The
drift of clock C, relative to clock Cy at time ¢ is (C, (t) —

Cy (1))

Fig. 1. Clock terminology.

logy, which is consistent with previous definitions
[46,47,50].

The term software clock normally refers to the
time in a computer clock to stress that it is just a
counter that gets incremented for crystal oscilla-
tions. The interrupt handler must increment the
software clock by one every time an interrupt
(i.e., a clock tick) occurs. Most common clock
hardware is not very accurate because the fre-
quency that makes time increase is never exactly
right. Even a frequency deviation of just 0.001%
would cause a clock error of about one second
per day. This is also a reason why clock perfor-
mance is often measured with very fine units like
one part per million (PPM).

Consider the physical clock synchronization of
machines in a distributed system to UTC. At any
point of time, if the time at UTC is ¢z, the time in
the clock of machine p is C,(¢). In a perfect world,
C,(1) =t for all p and all 7. This means dC/dr = 1.
However, due to the clock inaccuracy discussed
above, a timer (clock) is said to be working within
its specification if

dc

<=«
I—p < <lp, (1)

Fast Clock
dC/dt > 1
Perfect Clock

1) dC/dt=1
5%
£ Slow Clock
4 dCrdt< 1
2
©)

UTC, t

Fig. 2. Behavior of fast, slow, and perfect clocks with respect to
UTC.

where constant p is the maximum skew rate speci-
fied by the manufacturer. Fig. 2 illustrates the
behavior of fast, slow, and perfect clocks with re-
spect to UTC.

2.4. Clock synchronization protocols
The requirements of a clock synchronization

protocol are listed in Fig. 3. Numerous clock syn-
chronization protocols have been developed in the

e The protocol should cope with unreliable network transmission and unbounded message latencies.

e When synchronizing two nodes, each node must be able to estimate the local time on the other node’s clock. This
is not a trivial issue due to non-deterministic message delays between the nodes in a distributed system.

e Time must never run backward. This implies that clocks must be gradually and gracefully advanced until the
correction is achieved, rather than being outright set back.

e Synchronization overhead must not degrade system performance.

Fig. 3. Requirements of clock synchronization protocols.
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past few decades. Some of the representative pro-
tocols are discussed next.

2.4.1. Remote clock reading method

Clock synchronization between any two nodes
is generally accomplished by message exchanges,
which allow one of the nodes to estimate the time
in the other node’s clock. Once the time difference
between the clocks of the nodes is computed, the
clocks can be corrected or adjusted to run in tan-
dem. In the presence of non-deterministic and un-
bounded message delays, messages can get delayed
arbitrarily, which makes synchronization very
difficult. The effectiveness of a synchronization
protocol centers around its ability to prevent
non-deterministic message delays from affecting
the quality of synchronization.

Cristian defined the Remote Clock Reading
method, which handles unbounded message delays
between processes [11]. This protocol is also used
by other clock synchronizing methods [28,51].
When a process wants a time estimate of a remote
process, it sends a time request and waits for the
remote process to respond. When it receives the re-
sponse, the process calculates the round-trip as the
difference between the time at which it initiated the
request and the time at which it received the re-
sponse. The response contains the estimate of the
time on the remote process. On obtaining such a
response, it corrects its local clock to the sum of
the estimate and half the round-trip time. Several
trials are performed because the message delay is
non-deterministic and the trial which offers the
least round-trip time is chosen; alternately, the
average of multiple trials is chosen. Cristian’s
method synchronizes several clients to an accurate
time service (universal coordinated time) using the

T, T,
Client —————————— === - - - - o= - -,

Request

Time server ---------------

Fig. 5. Remote clock reading [11].

remote clock reading method, as shown in Fig. 4
and illustrated in Fig. 5.

Drawbacks. A disadvantage of Cristian’s proto-
col is that the time for any message to be sent is
highly variable due to network traffic and message
routing. These factors are not only hard to mea-
sure accurately but also unpredictable. This proto-
col also induces a high complexity in terms of the
number of message exchanges, and there is no
definitive means of deciding how many trials must
be performed to reach an accurate round-trip time
estimate.

2.4.2. Time transmission method

Arvind [4] defined the Time Transmission Proto-
col (TTP), which is used by a node to communi-
cate the time on its clock to a target node. The
target node then estimates the time in the source
node by using the message timestamps and mes-
sage delay statistics.

Algorithm. Assume that M is the source node and
S is the target node. The algorithm for estimating
the time is given in Fig. 6. Eq. (2) gives the specific
formula to estimate the time.

client.

message).

o A client sends a message to the server requesting a timestamp. Let this message be initiated at time 7p local to the

e The server then returns a message holding the timestamp (Stime). Stime is the local time at the server.
e The client receives this message at its local time, say, 77.

e The client then sets its time to Siime (accurate time from the server) + (11-T5)/2 (time required to transmit the

e To ensure accuracy, several round-trips are made and the average is used or the shortest round-trip is used.

Fig. 4. Cristian’s synchronization protocol.
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e M sends a series of synchronization messages to S. The 7*" message is sent at time T} of M s clock and received
at time R; of S’s clock.

S estimates M’s time as,

Test = Rn — (R(n) — T(n)) +d )
where,
R(n) = % Z Ri, T(n)= %ZTz 3
i=1 i=1

- d is the estimate of the expected value of message delay.
- R,, is the time at which the n*" message is received by S.

Test is the target’s estimate of the time at the source. Once the time on the source is estimated, the target corrects
its local clock to achieve synchronization.

Fig. 6. The time transmission algorithm [4].

287

Derivation. The derivation of formula (2) in Fig.
6 is as follows.

e The actual time T, on the source node AM’s
local clock is

Tyt =R, — (Sny (4)

where 9, is the offset between clocks S and M.
e Since J,, is not determinable, the average value
over n messages is

_ 1 <&
o(n) = > 6 (5)
i=1
e From this formulation, we get,

Tapprox = Ry — 0(n). (6)

e The ith message is received at S only d; units
after it is transmitted by M.

Ri:Ti+di+5i' (7)
It follows that,

o(n) = R(n) — T(n) —d(n). (8)
Rearranging, we get

Tapprox = Ry — R(n) + T(n) + d(n). 9)

As individual message delays are not known,
d(n) is replaced with d, an expected value of
message delay. Typprox NOW becomes

Tew =R, —R(n) + T(n) +d. (10)

Drawbacks. The protocol involves a large num-
ber of synchronization messages, resulting in a
high computational overhead. The number of mes-
sages required for synchronization reduces the
applicability of the protocol.

2.4.3. Offset delay estimation method

The offset delay estimation method is employed
by the Network Time Protocol (NTP) [48] which is
widely used for clock synchronization on the Inter-
net. The design of NTP involves a hierarchical tree
of time servers. The primary server at the root syn-
chronizes with the UTC. The next level contains
secondary servers, which act as a backup to the
primary server. At the lowest level is the synchro-
nization subnet which has the clients.

Clock offset and delay estimation. In practice, a
source node cannot accurately estimate the local
time on the target node due to varying message
or network delays between the nodes. This proto-
col employs a very common practice of performing
several trials and chooses the trial with the mini-
mum delay. Recall that Cristian’s remote clock
reading method [11] also relied on the same strat-
egy to estimate message delay.

Fig. 7 shows how NTP timestamps are num-
bered and exchanged between peers 4 and B. Let
T, T>, Ts, T4 be the values of the four most recent
timestamps as shown. Assume that clocks 4 and B
are stable and running at the same speed. Let
a=T,— Tyand b = T, — T,. If the network delay
difference from A to B and from B to A, called
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T, T,

Ts T,

Fig. 7. Offset and delay estimation [48].

differential delay, is small, the clock offset 6 and
round-trip delay 6 of B relative to 4 at time T4
are approximately given by the following.

_a+b
2

Each NTP message includes the latest three
timestamps 7, T> and T3, while T} is determined
upon arrival. Thus, both peers 4 and B can inde-
pendently calculate delay and offset using a single
bidirectional message stream as shown in Fig. 8.
The NTP protocol is shown in Fig. 9.

0

, 0=a—b. (11)

Server A

\

Server B Ti;

\/

Fig. 8. Timing diagram for the two servers [48].

Drawbacks. The offset delay estimation proto-
col is similar to Cristian’s method [11] due to its
averaging approach. The disadvantage of both
methods is that they lead to a high synchronization
overhead in terms of message complexity and re-
duced accuracy. However, accuracy of the net-
work time protocol is better than for Cristian’s
protocol because delays are partly compensated.

2.4.4. Set-valued estimation method
The set-valued estimation method [40] is partic-
ularly useful in systems where modeling uncer-

O; - measure of offset (6)
D; - transmission delay of two messages ().

m/ takes t’ to transfer.

B(t), we have

The round-trip delay is estimated as:

e A pair of servers in symmetric mode exchange pairs of timing messages.

e A store of data is then built up about the relationship between the two servers (pairs of offset and delay).
Specifically, assume that each peer maintains pairs (O;,D;), where

e The offset corresponding to the minimum delay is chosen.
Specifically, the delay and offset are calculated as follows. Assume that message m takes time ¢ to transfer and

— The offset between A’s clock and B’s clock is O. If A’s local clock time is A(t) and B’s local clock time is

A)=B@l)+ 0O (12)

Then,
Tio=Ti3+t+0 (13)
Ti=Ti-1 — O+t (14)

Assuming t = t’, the offset O; can be estimated as:

Oi = (TI;Q — Tif3 + Ti—l - Ti)/2 (15)

D =(T; —Ti—3) — (Ti-1 — Ti—2) (16)
— The eight most recent pairs of (O;, D;) are retained.

— The value of O; that corresponds to minimum D; is chosen to estimate O.

Fig. 9. The network time protocol synchronization protocol [48].
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bars.

e Processor P; sends out N messages to processor P; at local times ¢;, fork = 1,..., N.

e Processor P; receives replies to these messages from processor P; at times %;; and each received message is
stamped with #;; and the local time, ¢;5, when processor P; received the k'™ message. The message-passing
events between P; and P; are shown in the space-time diagram in Figure 11.

e When the last reply is received from processor P;, the originating processor P; has a set of time-stamped triples,
(tak, Lk Tar) (18)

Using the triples, a graph is plotted with the local time on processor P; on the X-axis and local time on processor
P; on the Y-axis. Each data triple can be plotted as an error bar, as shown in Figure 12. The relative drift a;; and
the relative offset b;; are determined from the slope and Y-intercept of any line that passes through all of the error

Fig. 10. The set-valued estimation protocol, shown for a pair of processes P; and P; [40].

tainty is not directly captured by a priori models.
Assume that a distributed system consists of pro-
cessors P;, for i=1,...,N. Let t; denote the local
time on the clock for processor P;. We assume that
the local times #; and #; on processors P; and P},
respectively, can be related by the linear equation:

t[:ai‘t'+b[‘, 17
75 7

where a;; and b;; represent the relative skew and off-
set between the two hardware clocks.

For any two processors P; and P; which pass
messages between each other, the protocol works
as shown in Fig. 10.

Clock correction. Clock correction is performed
using an algorithm by Dolev et al. [18], which
works as follows. Synchronization proceeds in
rounds and the interval between synchronization
rounds is predefined. The node that first reaches
the end of the synchronization round is obviously
the fastest and all other nodes have to adjust their
rate to match the rate of this node.

There are two tasks associated with each node,
time monitor and message handler. If a node
reaches the end of the synchronization period be-
fore receiving any message from other nodes, it
performs the time monitor task by sending a mes-
sage to every other node indicating that it has
reached the end of its synchronization period first.
Every other node will execute the message handler
to process the incoming message and adjust its
clock to the fastest clock.

Drawbacks. The advantage of this protocol is
that every node tries to act as a synchronizer at
the same time and at least one succeeds. There is
no single point of failure associated with the sys-

LTI N

q
q
q
\j

i1 fj2 N

Fig. 11. Message passing between P; and P; [40].

timing uncertainty

ti3 &I

J— a

w N

trué timing relationship

i I
Y

41 42 N

Fig. 12. Data triples plotted with the local time of P; on the X-
axis and the local time of P; on the Y-axis [40].

tem. However, message corruption and message
losses might greatly degrade the accuracy. In addi-
tion, there is a possibility of instability during clock
correction because nodes always seek to adjust
their clock rates to match the fastest clock in the
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network. If a processor P; overcorrects its clock
(e.g., because of variations in message transmission
delays), this will trigger a new round of corrections
as all other nodes will try to match the new clock
rate of P;. Worse yet, this phenomenon may repeat
itself and continue indefinitely, leading to faster
and faster clock rates throughout the network.

3. Clock synchronization in wireless sensor networks

The traditional clock synchronization protocols
surveyed in the previous section are widely used in
wired networks. However, they are not suitable
for wireless sensor networks for a variety of reasons
that we discuss in this section. Clock synchroniza-
tion in wireless sensor networks requires newer
and more robust approaches. A thorough under-
standing of the challenges posed by wireless sensor
networks is crucial for the successful design of
synchronization protocols for such networks. This
section examines the design principles for clock syn-
chronization in wireless sensor networks, and then
classifies various such synchronization protocols.

3.1. Challenges of sensor networking

Wireless sensor networks have tremendous po-
tential because they will expand our ability to mon-
itor and interact remotely with the physical world.
Smart sensors have the ability to collect vast
amounts of hitherto unknown data, which will pave
the way for a new breed of computing applications
as we showed in Table 1. Sensors can be accessed re-
motely and placed where it is impractical to deploy
data and power lines. Nodes can be spaced closely,
yielding fine-grained pictures of real-world phe-
nomena that are currently modeled only on a large
scale. However, to exploit the full potential of
sensor networks, we must first address the peculiar
limitations of these networks and the resulting tech-
nical issues. Evidently, sensor networks can be best
exploited by applications that perform data fusion
to synthesize global knowledge from raw data on
the fly. Although data fusion requires that nodes
be synchronized, the synchronization protocols
for sensor networks must address the following fea-
tures of these networks.

3.1.1. Limited energy

While the efficiency of computing devices is
increasing rapidly, the energy consumption of a
wireless sensor network is becoming a bottleneck.
Due to the small size and cheap availability of the
sensors, sensor networks can employ thousands
of sensors. This makes it impossible to wire each
of these sensors to a power source. Also, the need
for unmanned operation dictates that the sensors
be battery-powered. Since the amount of energy
available to such sensors is quite modest, synchro-
nization must be achieved while preserving energy
to utilize these sensors in an efficient fashion.

3.1.2. Limited bandwidth

In wireless sensor nets, much less power is
consumed in processing data than transmitting it.
Presently, wireless communication is restricted to
a data rate in the order of 10-100 Kbits/s [21].
Pottie and Kaiser [55] have shown that the energy
required to transmit 1 bit over 100 m, which is
3 joules, can be used to execute 3 million instruc-
tions. Bandwidth limitation directly affects message
exchanges among sensors, and synchronization is
impossible without message exchanges.

3.1.3. Limited hardware

The hardware of a sensor node is usually very re-
stricted due to its small size. A typical sensor node
like the Berkeley Mica2 mote [35] has a small solar
battery, an 8-bit CPU that runs at a speed of
10 MHz, 128 KB to 1 MB memory, and a commu-
nication range of less than 50 m. Hill et al. [29] sur-
veyed some sensor-network platforms as well as the
most popular sensor architectures, such as Spec,
Smartdust, Intel’s Imote [32], and Stargate. Fig.
13 illustrates the configuration of a typical sensor

1 Kbps-1Mbps,
128KB-1MB - 3-100 meters
Limited Storage | Transceiver Lossy Transmissions

Memory Ul Embedded

Processor $-bit, 10 MHz,
H Slow Computations
Sensors T
66% of Total Cost
Requires Supervision Battery

Fig. 13. Sensor node hardware for Mica mote [29].
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node. The restrictions on computational power and
storage space pose a huge challenge. The size of a
sensor cannot be increased because it would make
it more expensive and consume more power. This
would prevent the deployment of thousands of sen-
sor nodes, which is usually required for efficient
operation of several critical applications.

3.1.4. Unstable network connections

An implicit advantage usually available to a
wireless network is mobility. Mobile ad-hoc net-
works are becoming increasingly popular and the
following issues must be addressed.

e The communication range of the mobile sensors
is very limited (roughly 20-100 m), which
makes message exchanges between sensor nodes
difficult.

e A wireless medium is unshielded to external
interference and this may lead to a high percent-
age of message loss.

e A wireless connection suffers from a restricted
bandwidth and intermittent connectivity.

e The network topology frequently changes due
to the mobility of the nodes. Dynamic reconfig-
uration becomes necessary.

3.1.5. Tight coupling between sensors and physical
world

WSNs seek to monitor real-world phenomena
and the network design is tailored to the specific
environment being sensed. Therefore, as WSNs
are used for critical and diverse applications like
military tracking, forest fire monitoring, and geo-
graphical surveillance, the network has to be
tailored to suit the application. For instance, sen-
sors can be used to measure temperature, light,
sound, or humidity, and the application (e.g., for-
est fire monitoring) decides the type of sensors to
be used (e.g., temperature sensors).

3.2. Design principles of clock synchronization in
sensor networks

Researchers have developed a wide variety of
clock synchronization protocols for traditional
wired networks over the past few decades, as sur-

veyed in Section 2. However, due to the peculiar
characteristics, limitations, and the dynamic nature
of wireless sensor networks, as seen in Section 3.1,
these protocols cannot be applied directly. Several
important design considerations are listed next.

3.2.1. Energy efficiency

e External time standard (GPS) usage
In sensor nets, energy conservation is very
important. Traditional protocols like NTP [48]
and TEMPO [28] use an external standard like
Global Positioning System (GPS) or Universal
Time (UTC) to synchronize the network to an
accurate time source. However, the use of GPS
poses a high demand for energy which is usually
not available in sensor networks. This makes it
difficult to maintain a common notion of time.

e Mode of transmission
Reduction of energy is achieved by choosing to
transmit over multiple short distances instead of
a single long path. This translates into either a
lower transmit power or a higher data transmis-
sion speed over a given distance. Either one will
decrease the total end-to-end energy needed to
transmit a packet of data. This implies that in
large sensor networks, data is transmitted in
sequences or hops, instead of a single long path
from the sender to the receiver.

¢ Proactive versus reactive routing
A proactive protocol keeps track of all the nodes
in a node’s neighborhood, having total knowl-
edge of all possible routes at all times. Reactive
protocols do not maintain routing information
proactively and find routes only when they need
them. A reactive protocol leads to energy sav-
ings because nodes do not waste energy by
attempting to maintain synchronization at all
times. Nodes are awakened only when they are
needed. Elson et al.’s Reference Broadcast Syn-
chronization (RBS) [19] uses a similar technique,
called post-facto synchronization.

3.2.2. Infrastructure

In many critical sensor applications, the net-
work is deployed in an ad-hoc fashion. Ad-hoc
networks are networks of mobile wireless sensors
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in which the mobile nodes constantly change their
neighborhood and the configuration. This denies
the convenience of having an infrastructure like
NTP [48], which has several layers of servers that
provide an accurate source of time. In ad-hoc sen-
sor networks, the nodes must cooperate to orga-
nize themselves into a network and resolve
contention for the available bandwidth. These
tasks become more complex if the number of
nodes grows or if the relationship among nodes
changes rapidly, for instance, because of mobility.

3.2.3. End-to-end latency

Traditional wired networks are fully connected
networks in which the variability in the propagation
and (intermediate) queuing delay is relatively small.
In addition, any node can send a message directly to
another node at any point in time. This implies a
constant end-to-end delay throughout the network
and provides a close approximation for the actual
latency. Sensor nets may be large in size and have
to deal both with mobility and wireless transmission
over a shared medium. These features make it
impractical to assume a single latency bound be-
tween the ends of the network. Sensor nets therefore
need localization algorithms to reduce this latency
error as well as the jitter, the unpredictable variation
in transmission times. Also, protocols that assume a
fully connected network cannot be applied to multi-
hop sensor networks.

3.2.4. Message loss and message delivery

Fault-tolerant algorithms for traditional wired
networks handle message loss by sending extra
messages. This ensures that every node partici-
pates in the synchronization, leading to better
operation. Several protocols for wired networks
employ the averaging method to compute the
delay between two nodes, which is a critical aspect
in maintaining synchronized time. Message loss
handling and estimating message delay by averag-
ing are not desirable in sensor nets because of the
following reasons.

e Transmission of every bit requires energy and
multiple message transmissions to estimate aver-
age delays lead to higher energy requirements.

e Message delivery is very unreliable due to the
dynamic nature of the network, the intermittent
connectivity, and the limited communication
range of each node.

3.2.5. Network dynamics

A stationary sensor network, without any
mobility, usually requires an initial set-up before
beginning operation. However, if the application
demands a higher population of nodes in a partic-
ular part of the network, the addition of extra
nodes changes the neighborhood of each node
and the configuration of the network. Dynamic
sensor networks add further challenges because
the nodes are mobile. Mobility directly leads to a
frequent change in topology of the network.
Hence, the protocols used for such networks,
whether stationary or dynamic, must ensure self-
configuration (by use of suitable neighborhood
definition or leader election protocols) to achieve
synchronization.

3.3. Classification of synchronization protocols

Wireless sensor networking can be applied to a
wide range of applications, from simple parking
lot monitoring to safety-critical applications like
earthquake detection. As most networks are very
closely coupled to the application, the protocols
used for synchronization differ from each other
in some aspects and resemble each other in other
aspects. We classify synchronization protocols
based on two kinds of features.

1. Synchronization issues
2. Application-dependent features

3.3.1. Synchronization issues

Wireless sensor networks provide answers to
user queries by fusing data from each sensor to
form a single answer or result. To accomplish this
data fusion, it becomes necessary for these sensors
to agree on a common notion of time. All the par-
ticipating sensors can be enveloped in a common
timescale by either synchronizing the local clocks
in each sensor or by just translating timestamps
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that arrive at a sensor into the local clock times.
Various options are now described.

clock of each node to the local clock of every
other node in the network. Local timestamps
are then compared using the table. In this way,

o Master—slave versus peer-to-peer synchroniza- a global timescale is maintained while letting

tion

Master—slave. A master—slave protocol assigns
one node as the master and the other nodes
as slaves. The slave nodes consider the local
clock reading of the master as the reference
time and attempt to synchronize with the mas-
ter. In general, the master node requires CPU
resources proportional to the number of slaves,
and nodes with powerful processors or lighter
loads are assigned to be the master node.
Mock et al. [49] have adopted the IEEE
802.11 clock synchronization protocol due to
its simple, non-redundant, master/slave struc-
ture. Ping’s protocol [54] also adheres to the
master-slave mode.

Peer-to-peer. Most protocols in the literature,
such as RBS [19], Romer’s protocol [56], the
protocol by PalChaudhuri et al. [53], the time
diffusion protocol by Su and Akyildiz [62],
and the asynchronous diffusion protocol of Li
and Rus [42] are based on a peer-to-peer struc-
ture. Any node can communicate directly with
every other node in the network. This elimi-
nates the risk of master node failure, which
would prevent further synchronization. Peer-
to-peer configurations offer more flexibility
but they are also more difficult to control.
Clock correction versus untethered clocks

Clock correction. Most methods in practice per-
form synchronization by correcting the local
clock in each node to run on par with a global
timescale or an atomic clock, which is used to
provide a convenient reference time. The proto-
col of Mock et al. [49] and Ping’s protocol [54]
are based on this method. The local clocks of
nodes that participate in the network are cor-
rected either instantaneously or continually to
keep the entire network synchronized.
Untethered clocks. Achieving a common notion
of time without synchronization is becoming
popular, because a considerable amount of
energy can be saved by this approach. RBS [19]
builds a table of parameters that relate the local

the clocks run untethered. Romer [56] uses the
same principle. When timestamps are exchanged
between nodes, they are transformed to the local
clock values of the receiving node. The round-
trip delay between two nodes and the idle time
of a message are taken into consideration.
Internal synchronization versus external synchro-
nization

Internal synchronization. In this approach, a
global time base, called real-time, is not avail-
able from within the system and the goal is to
minimize the maximum difference between the
readings of local clocks of the sensors. The pro-
tocol of Mock et al. [49] uses internal synchro-
nization.

External synchronization. In external synchroni-
zation, a standard source of time such as Uni-
versal Time (UTC) is provided. Here, we do
not need a global time base since we have an
atomic clock that provides actual real-world
time, usually called reference time. The local
clocks of sensors seek to adjust to this reference
time in order to be synchronized. Protocols like
NTP [48] synchronize in this fashion because
external synchronization is better suited to
loosely coupled networks like the Internet.
Most protocols in sensor networks do not per-
form external synchronization unless the appli-
cation demands it, because energy efficiency is a
primary concern and employing an external
time source typically induces high-energy
requirements.

Internal synchronization usually leads to a
more correct operation of the system, while
external synchronization is primarily used to
give users convenient reference time informa-
tion. Note that internal synchronization can
be performed in a master—slave or peer-to-peer
fashion. External synchronization cannot be
performed in a peer-to-peer fashion; it requires
a master node which communicates with a time
service like GPS to synchronize the slaves and
itself to the reference time.
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e Probabilistic versus deterministic synchroniza-
tion

Probabilistic synchronization. This technique
provides a probabilistic guarantee on the maxi-
mum clock offset with a failure probability that
can be bounded or determined. The reasoning
behind a probabilistic approach is that a deter-
ministic approach usually forces the synchroni-
zation protocol to perform more message
transfers and induces extra processing. In a
wireless environment where energy is scarce,
this can be very expensive. The protocol of Pal-
Chaudhuri et al. [53] is a probabilistic variation
of RBS [19]. Arvind [4] defined a probabilistic
protocol for wired networks.

Deterministic synchronization. Arvind [4] defines
deterministic algorithms as those that guarantee
an upper bound on the clock offset with cer-
tainty. Most algorithms in the literature are
deterministic. Sichitiu and Veerarittiphan’s pro-
tocol [58] is centered on a deterministic algo-
rithm. RBS [19] and the time-diffusion
protocol [62] are also deterministic.
Sender-to-receiver  versus  receiver-to-receiver
synchronization

Most existing methods synchronize a sender
with a receiver by transmitting the current clock
values as timestamps. As a consequence, these
methods are vulnerable to variance in message
delay. Newer methods such as RBS [19] per-
form synchronization among receivers using
the time at which each receiver receives the
same message. Such an approach reduces the
time-critical path, which is the path of a message
that contributes to non-deterministic errors in
the protocol.

Sender-to-receiver synchronization. This tradi-
tional approach usually happens in threesteps.

1. The sender node periodically sends a mes-
sage with its local time as a timestamp to
the receiver.

2. The receiver then synchronizes with the
sender using the timestamp it receives from
the sender.

3. The message delay between the sender and
receiver is calculated by measuring the total
round-trip time, from the time a receiver

requests a timestamp until the time it
actually receives a response.
The drawbacks of this approach are obvi-
ous. There is a variance in message delay
between the sender and the receiver. The
variance is due to network delays (promi-
nent in multi-hop networks) and the work-
load in the nodes that are involved. Most
methods compute the average message delay
after performing many trials, during which
they lose accuracy and add further over-
head. Also, optimization of the time taken
by the sender to prepare and transmit the
message, and the time taken by the receiver
to process the message must be considered.
Receiver-to-receiver synchronization. This ap-
proach exploits the property of the physical
broadcast medium that if any two receivers
receive the same message in single-hop trans-
mission (see below), they receive it at approxi-
mately the same time. Instead of interacting
with a sender, receivers exchange the time at
which they received the same message and com-
pute their offset based on the difference in recep-
tion times. The obvious advantage is the
reduction of the message-delay variance. This
protocol is vulnerable only to the propagation
delay to the various receivers and the differences
in receive time.

Table 2 classifies the various protocols for clock

synchronization, based on the analysis in this
section.

3.3.2. Application-dependent features

o Single-hop versus multi-hop networks

Single-hop communication. In a single-hop net-
work, a sensor node can directly communicate
and exchange messages with any other sensor
in the network. However, many wireless sen-
sor-network applications span several domains
or neighborhoods. (Nodes within a neighbor-
hood can communicate via single-hop message
transmission.) The network is often too large,
making it impossible for each sensor node to
directly exchange messages with every other
node. Elson and Romer [20] show that a single
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Protocol Synchronization issues

Master—slave vs. Internal vs. external  Probabilistic Sender-to-receiver Clock

peer-to-peer vs. deterministic ~ vs. receiver-to-receiver  correction
RBS [19] Peer-to-peer Both Deterministic Receiver-to-receiver No
Romer [56] Peer-to-peer Internal Deterministic Sender-to-receiver No
Mock et al. [49] Master/slave Internal Deterministic Receiver-to-receiver Yes
Ganeriwal et al. [25] Master/slave Both Deterministic Sender-to-receiver Yes
Ping [54] Master/slave Both Deterministic Sender-to-receiver Yes
PalChaudhuri et al. [53] Peer-to-peer Both Probabilistic Receiver-to-receiver No
Sichitiu and Veerarittiphan [58]  Peer-to-peer Internal Deterministic Sender-to-receiver Yes
Time-diffusion protocol [62] Peer-to-peer Internal Deterministic Receiver-to-receiver Yes
Asynchronous diffusion [42] Peer-to-peer Internal Deterministic Sender-to-receiver Yes

latency bound cannot be assumed. Protocols
such as those by Mock et al. [49], Ganeriwal
et al. [24,25], Ping [54], and PalChaudhuri
et al. [53] are based on single-hop communica-
tion; however, they can be extended to multi-
hop communication.

Multi-hop communication. The need for multi-
hop communication arises due to the increase
in the size of wireless sensor networks. In such
settings, sensors in one domain communicate
with sensors in another domain via an interme-
diate sensor that can relate to both domains
[19]. Communication can also occur as a
sequence of hops through a chain of pairwise-
adjacent sensors. RBS [19], Ping’s protocol
[54], the protocol by PalChaudhuri et al. [53],
and Su and Akyildiz’s time-diffusion protocol
[62] can be suitably extended to handle multi-
hop communication.

Stationary networks versus mobile networks
Most sensor networks are tightly coupled to the
application and synchronization protocols vary
depending on the application at hand. Mobility
is an inherent advantage of a wireless environ-
ment but it induces more difficulties in achiev-
ing synchronization. It leads to frequent
changes in network topology and demands that
the protocol be more robust.

Stationary networks. In stationary sensor net-
works, the sensors do not move. An example
is a network of sensors for monitoring the
motion of a vehicle in a certain area. For
these sensor networks, the topology remains
unchanged once the sensors are deployed in

the environment. The protocols used by RBS

[19], Mock et al. [49], Ganeriwal et al. [24,25],

and PalChaudhuri et al. [53] are geared to sta-

tionary networks.

Mobile networks. In a mobile network, the sen-

sors have the ability to move, and they connect

with other sensors only when entering the geo-
graphical scope of those sensors. The scope of

a mobile sensor is the communication range up

to which it can communicate and successfully

exchange messages with other sensors. Romer

[56] shows the need for a robust protocol,

which can handle the frequent changes in net-

work topology due to the mobility of the nodes.

The change in topology is often a problem

because it requires resynchronization of nodes

and recomputation of the neighborhoods or
clusters.

MAC-layer-based approach versus standard

approach

The Media Access Control (MAC) layer is a

part of the Data Link Layer of the Open System

Interconnection (OSI) model. This layer is

responsible for the following functions.

— Providing reliability to the layers above it
with respect to the connections established
by the physical layer.

— Preventing transmission collisions so that the
message transmission between one sender
and the intended receiver node(s) does not
interfere with transmission by other nodes.

MAC protocols effectively utilize the MAC layer

to achieve better energy efficiency, which is cru-

cial in sensor networks. The IEEE 802.11 MAC
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protocol [31] is widely used. Several variations

of this protocol have been defined for the pur-

pose of controlling power consumption, includ-

ing the protocols listed below. A survey by Chen

et al. [10] compares some of these protocols.

— Sensor-MAC (S-MAC) [75],

— Power-Aware Multi-Access Protocol
(PAMAS) [59],

— Energy-Conserving MAC (EC-MAC) [34],

— Packet-Reservation Multiple Access MAC
(PRMA) [27],

— Distributed-Queuing Request Update Multi-
ple Access (DQRUMA) [36],

— Multiservice Dynamic Reservation TDMA
(MDR-TDMA) [52].

Reference Broadcast Synchronization [19] does

not rely on MAC protocols in order to avoid a

tight integration of the application with the

MAC layer. The protocols used by Mock et al.

[49], Ganeriwal et al. [24,25], and Sichitiu and

Veerarittiphan [58]rely on the CSMA/CA proto-

col for the MAC layer. A survey of MAC proto-

cols for sensor networks is given by Jones et al.

[34].

Table 3 classifies the various protocols for clock
synchronization, based on the analysis in this
section.

4. Discussion of synchronization protocols

In the previous section, we analyzed the issues
underlying synchronization in sensor networks.

Table 3
Classification based on application-dependent features

Now we summarize various existing synchroniza-
tion protocols and their relationships to the above
issues. We also discuss the relative advantages and
disadvantages of these protocols. Given that sensor
networks are generally closely tied to the real-world
environment that they monitor, different networks
will have different characteristics affecting their
synchronization requirements. For this reason,
some of the protocols that we discuss below will
be more suitable than others in some cases and vice
versa.

We will specifically consider the following
protocols.

1. Reference Broadcast Synchronization (RBS)
seeks to reduce non-deterministic latency using
receiver-to-receiver synchronization and to con-
serve energy via post-facto synchronization [19].

2. Romer’s protocol, which has been successfully
applied to mobile ad-hoc networks, uses an
innovative time transformation algorithm for
achieving clock synchronization [56]. This pro-
tocol appears to be especially effective in envi-
ronments with strict resource constraints.

3. Mock’s protocol extends the IEEE 802.11
master-slave protocol by exploiting the
tightness property of the communication med-
ium [49]. Minimal message complexity and fault
tolerance are the main benefits of this protocol.

4. Network-wide Time Synchronization is geared
toward networks with a large node density [24].

5. Delay Measurement Time Synchronization Pro-
tocol for wireless sensor networks [54] is an
energy-efficient protocol due to its low message

Protocol Application-dependent features
Single-hop vs. multi-hop MAC layer vs. standard Geared to mobility

RBS [19] Both Standard No
Romer [56] Both Standard Yes
Mock et al. [49] Single-hop MAC layer No
Ganeriwal et al. [25] Both MAC Layer Yes
Ping [54] Both Standard No
PalChaudhuri et al. [53] Both Standard No
Sichitiu and Veerarittiphan [58] Both MAC Layer No
Time-diffusion protocol [62] Both Standard Yes
Asynchronous diffusion [42] Both Standard Yes
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complexity. It is also lighter in computational
cost, albeit less accurate, than the RBS protocol
[19].

. The Probabilistic Clock Synchronization Service
for sensor networks extends RBS by providing
probabilistic bounds on the accuracy of clock
synchronization [53].

. Sichitiu and Veerarittiphan’s protocol provides
good synchronization accuracy in wireless sen-
sor networks while using a deterministic proto-
col with minimal computational and storage
complexity [58].

. The Time-Diffusion Protocol (TDP) by Su and
Akyildiz achieves a network-wide ‘‘equilib-
rium” time using an iterative, weighted averag-
ing technique based on a diffusion of messages
involving all the nodes in the synchronization
process [62].

. The Asynchronous Diffusion protocol by Li and
Rus uses a strategy similar to TDP; however,
network nodes execute the protocol and correct
their clocks asynchronously with respect to each
other [42].

4.1. Reference broadcast synchronization [19]

The Reference Broadcast Synchronization (RBS)
protocol is so named because it exploits the broad-
cast property of the wireless communication med-
ium [19]. According to this property, two receivers
located within listening distance of the same sender
will receive the same message at approximately the
same time. In other words, a message that is
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broadcast at the physical layer will arrive at a set
of receivers with very little variability in its delay.
If each receiver records the local time as soon as
the message arrives, all receivers can synchronize
with a high degree of precision by comparing their
local clock values when the message was received.
This protocol uses a sequence of synchronization
messages from a given sender in order to estimate
both offset and skew of the local clocks relative to
each other. The protocol exploits the concept of
time-critical path, that is, the path of a message
that contributes to non-deterministic errors in a
protocol. Fig. 14 compares the time-critical path
of traditional protocols, which are based on sen-
der-to-receiver synchronization, with receiver-to-
receiver synchronization in RBS.
Non-deterministic transmission delays are detri-
mental to the accuracy of a synchronization proto-
col because they make it difficult for a receiver to
estimate the time at which a message was sent
and vice versa. In general, the time involved in
sending a message from a sender to a receiver is
the result of the following four factors, all of which
can vary non-deterministically.
1. Send time: The time spent by the sender for
message construction and the time spent to
transmit the message from the sender’s host to
the network interface.
. Access time: The time spent waiting to access
the transmit channel.
. Propagation time: The time taken for the mes-
sage to reach the receiver, once it has left the
sender.
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Critical Path

Time-critical path for traditional protocols (left) and RBS protocol (right) [19].
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4. Receive time: The time spent by the receiver to
process the message.

By considering only the times at which a mes-
sage reaches different receivers, the RBS protocol
directly removes two of the largest sources of
non-determinism involved in message transmis-
sion, namely the send time and the access time.
Thus, this protocol can provide a high degree of
synchronization accuracy in sensor networks.
The RBS protocol uses the algorithm shown in
Fig. 15 to estimate the phase offset between the
clocks of two receivers.

This protocol can produce highly accurate re-
sults if message reception by each receiver is tight
and if each receiver can record its local clock read-
ing as soon as the message is received. This is often
the case for single-hop communication in a wire-
less network. In practice, however, messages sent
over a wireless sensor network can be corrupted.
In addition, a receiving node may not be able to
record the time of message arrival promptly, for
instance, if the node was busy with other computa-
tions when the message arrived. To alleviate these
non-deterministic factors, the RBS protocol uses a
sequence of reference messages from the same sen-
der, rather than a single message. Receiver j will
compute its offset relative to any other receiver i
as the average of clock differences for each packet
received by nodes i and j:

Offset[i, j] = % Z(Ti,k —Tix)- (19)
=1

In this equation, parameters i and j denote two
receivers, m 1s the number of reference broadcasts,
and T, is node 7’s clock when it receives broad-
cast k.

Elson et al. [19] conducted an experiment with
an actual network of n sensor nodes that were

given random clock offsets; the times of m message
transmissions were selected randomly. Each syn-
chronization message was delivered to every recei-
ver and timestamped using the receiver’s clock.
Since every receiver computes its offset with every
other receiver, O(n’) offsets were obtained and
compared with the actual offsets. The maximum
difference between computed and actual offsets
was considered to be the group dispersion.

In order to show that the precision of offset esti-
mation increased with the number of broadcasts,
an experiment was conducted for values of m be-
tween 1 and 50 broadcasts and values of n between
1 and 20 receivers for a total of 1000 trials. In the
case of two receivers, the results show that when 30
reference broadcasts were sent instead of one
broadcast, the precision improved from an error
of 11 us to 1.6 us. A precision of the order of
microseconds is clearly an excellent accuracy result
for a sensor network.

The RBS protocol also estimates the skew be-
tween clocks in neighboring nodes of a sensor net-
work. The skew computation must use multiple
reference broadcasts in order to observe variations
in the offset of two node clocks over time. Elson
et al. [19] use the least squares method to find a
best-fit line that will provide an estimate of an-
other node’s clock skew.

An experiment was conducted with a network
of Berkeley motes [35]. A reference packet with a
sequence number was periodically broadcast in a
network of five motes. Each mote used a 2 ps res-
olution clock to timestamp the reception times of
incoming broadcasts.

Fig. 16 shows a diagram by Elson et al. in which
they plot the performance of their protocol [19].
Each point in the diagram represents the difference
between the times at which the two nodes reported
receiving a reference broadcast, plotted on a time-

A W N =

received the same message.

. A transmitter broadcasts a reference packet to two receivers.
. Each receiver records the time at which the packet was received, according to its local clock.
. The receivers exchange the observed times at which they received the packet.

. The clock offset between two receivers is computed as the difference of the local times at which the receivers

Fig. 15. Estimation of phase offset in RBS protocol [19].
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Fig. 16. Clock skew estimation in RBS: each point represents
the phase offset between two nodes [19].

scale defined by one node’s clock. If T} is the time
at which receiver i’s clock received message k, the
coordinates of each point in the figure are defined
as follows for each message k received by receivers
rp and ry:

X = Trl,kv y= Trzik - Trl,k- (20)

The diagonal line drawn through the points rep-
resents the best linear fit of the plotted points. The
vertical impulses, read with respect to the right-
hand Y-axis, show the distance from each point
to the best-fit line. Outliers (i.e., the points with
the highest residual error) are discarded. A node
can compute a least squares error fit (diagonal
line) and convert time values between its local
clock and that of its peers. Here are some addi-
tional features of the RBS protocol [19].

No clock correction. Once clock offset and skew
are estimated, the local clocks of nodes are not
corrected to run synchronously with a global time-
scale. Instead, each node keeps a table of parame-
ters that relate the offset and skew of the node with
respect to every other clock in the network. When-
ever a clock reading is received from another node,
a node checks its table to translate the clock value
received to the local timescale. The advantage of
this method is that considerable energy is saved
by avoiding the process of correcting or resetting
each node’s local clock to a global time.

Post-facto synchronization. The RBS protocol
achieves a high level of energy conservation by
performing synchronization only when it is

needed. Clocks run untethered at their own natu-
ral rates and the timestamps from different clocks
are compared only when an event of interest oc-
curs. This technique is similar to reactive routing,
which we discussed earlier. By synchronizing the
nodes only when necessary, energy is conserved
because the nodes can be switched to power-saving
mode at all other times.

Multi-hop communication. Multi-hop synchro-
nization is required in sensor networks that span
several node neighborhoods. Evidently, the possi-
bility of multiple hops would introduce a high de-
gree of variability in message transmission time
between multiple receivers of the same message.
In this case, the RBS protocol would lose its accu-
racy. To avoid loss of precision, two nodes located
in different neighborhoods are typically synchro-
nized using a third node lying in the intersec-
tion of the two neighborhoods. The support
for multi-hop communication is more than a
convenience; large sensor networks make it a
necessity.

Advantages:

1. The largest sources of error (send time and
access time) are removed from the critical path
by decoupling the sender from the receivers.

2. Clock offset and skew are estimated indepen-
dently of each other; in addition, clock correc-
tion does not interfere with either estimation
because local clocks are never modified.

3. Post-facto synchronization prevents energy
from being wasted on expensive clock updates.

4. Multi-hop support is provided by using nodes
belonging to multiple neighborhoods (i.e.,
broadcasting domains) as gateways.

5. This protocol is applicable to both wired and
wireless networks.

6. Both absolute and relative timescales can be
maintained.

Disadvantages:

1. The protocol is not applicable to point-to-point
networks; a broadcasting medium is required.

2. For a single-hop network of # nodes, this proto-
col requires O(n?) message exchanges, which
can be computationally expensive in the case
of large neighborhoods.
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3. Convergence time, which is the time required to
synchronize the network, can be high due to the
large number of message exchanges.

4. The reference sender is left unsynchronized in
this method. In some sensor networks, if the ref-
erence sender needs to be synchronized, it will
lead to a significant waste of energy.

4.2. Time synchronization in ad-hoc networks [56]

Romer’s synchronization protocol was designed
specifically for ad-hoc communication networks
[56]. These networks consist of mobile, wireless
computing devices that can spontancously com-
municate when they are brought within each
other’s relatively limited transmission range. When
this happens, a symmetric bidirectional link is
formed between pairs of neighboring nodes and
node synchronization takes place, if necessary.
Ad-hoc networks are further characterized by the
following features. First, nodes are highly dynamic
(mobile) and sparsely distributed. Second, the
links or connections among the nodes have a rela-
tively short range (e.g., measuring in the order of
hundred feet or less) and a short life span, due to
node mobility. Third, message passing is possible
in the following two ways.

1. Two nodes can exchange messages if one node
enters the communication range of the other.
This is a direct way of message exchange.

2. Two nodes that reside in different partitions can
communicate by using store and forward tech-
niques. An intermediate node can receive the
message from the sender, store it temporarily,
and eventually forward it to the receiver after
entering the receiver’s communication range.

Fig. 17 shows a time chart for communication
between a sender and a receiver through an inter-
mediate node. At time ¢;, node 1 (the sender) sends
a message to node 3 (the receiver) through node 2,
an intermediate node that stores the message. If
node 2 comes into the receiver’s transmission range
at time ¢,, the message is forwarded to node 3.

Romer notes that two fundamental assump-
tions underlying synchronization in traditional
networks no longer hold in ad-hoc networks [56].

Fig. 17. Store and forward communication [56].

First, in traditional networks, the message trans-
mission delay between any two nodes can be esti-
mated with a high degree of accuracy. Second, in
those networks it is possible for nodes to periodi-
cally exchange messages in order to synchronize
with each other. In ad-hoc networks, the first
assumption does not hold because an intermediate
node may introduce an arbitrarily long delay in
communication between a sender and a receiver.
The second assumption does not hold because
energy constraints make it impossible to establish
a-priori synchronization between arbitrary pairs
of nodes in ad-hoc networks.

Romer’s protocol is based on two assumptions.
The first assumption puts an upper bound, usually
denoted by p, on the maximum skew of computer
clocks. Second, whenever a message is exchanged
between two nodes, the connection remains long
enough for the two nodes to exchange one addi-
tional message.

Similar to RBS, the key idea underlying Ro-
mer’s protocol is to avoid synchronizing the local
clocks of network nodes but instead to generate
timestamps using untethered local clocks. When
timestamps are passed between nodes, they are
transformed to the local time of the receiving
node. Since this transformation will generally
introduce errors, Romer’s protocol seeks to define
an upper bound on the absolute value of the clock
error received by a node.

When a message containing a timestamp is
transferred between nodes, the timestamp is first
transformed from the local time to a common time
transfer format (UTC) and then to the local time
of the receiver. In more detail, the synchronization
protocol performs the following steps: (1) deter-
mine lower and upper bounds for the real-time
elapsed from the generation of the timestamp in
the source node to the arrival of the message in
the destination node; (2) transform these bounds



B. Sundararaman et al. | Ad Hoc Networks 3 (2005) 281-323

to the time of the destination node; and (3) sub-
tract the resulting values from the time of arrival
in the destination node. The resulting interval
specifies lower and upper bounds for the real-time
elapsed from the generation of the timestamp in
the source node to the arrival of the message in
the destination node. If real-time differences
(UTC) are denoted by Az and computer clock dif-
ferences by AC, the transformation is based on the
following equation.

AC

(I=p) <5 <T+p) (21)

The equation above can be transformed into:

(I =p)At < AC < (1 + p)As, (22)
AC AC

PR x7 - 2
1+p 1—p (23)

It can be inferred that the local clock difference
AC that corresponds to the real-time difference Az
can be bounded by the following interval:

[(1 = p)As, (1+ p)Ad]. (24)

The basic principles underlying Romer’s syn-
chronization protocol are summarized in Fig. 18.
In order to transform a time difference AC from

301

the local time of node 1 (with an upper bound p;
on its skew) to the local time of node 2 (with upper
bound p;), At is first estimated by the real-time
interval [;3¢-,2%], which in turn is estimated by

the time interval [AC };—Z?, AC }f—’;ﬂ relative to the

local time of node 2. Since an estimate of the life-
time of a timestamp is calculated as the timestamp
is passed along different nodes, it is not practical to
assume a constant message delay. In general, the
transmission delay between any pair of nodes in-
volved in the transmission will be variable. Thus,
the message delay between every pair of nodes
along the path must be estimated in order to arrive
at an accurate solution. The message delay be-
tween two nodes is estimated by bounding it with-
in interval [0, r¢t] where rt¢t is the round-trip time
between the two nodes.

According to Fig. 19, the delay d for message
M, can be estimated by the following equation,
relative to the sender’s clock:

1_ps
1+p,°

The difference 3 — t, is the round-trip time (rt?),
and t¢ —t5 represents the storage time of the mes-
sage at the receiver. Also, ps and p, are the p values
for sender and receiver, respectively.

0<d<(t5—1t)— (te —t5) (25)

e The goal is to determine estimates of the lifetime of a timestamp.

e Synchronize local clocks of nodes only when an event of interest occurs (similar to reactive routing).
o Generate timestamps to record the time at which an event of interest occured.

e Timestamps are updated by each node using its local clock and the time transformation method.

e The final timestamp is expressed as an interval with a lower bound and an upper bound.

Fig. 18. Principles underlying Romer’s synchronization protocol [56].
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Fig. 19. Message delay estimation [56].
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Fig. 20. Timestamp estimation process [56].

As a message is transmitted over a sequence of
nodes, the round-trip time r¢f between each pair of
nodes and the idle time (or storage time) are accu-
mulated to estimate the value of the timestamp. A
node # involved in the transmission must add the
times computed by all nodes including the message
delay between each pair of nodes in order to esti-
mate the timestamp’s value. Fig. 20 further illus-
trates this mechanism.

Meier et al. recently defined an improved ver-
sion of Romer’s protocol [45]. We briefly discuss
this improvement in Section 4.10 below.

Advantages:

1. Local node clocks are allowed to run at their
own natural rates, which saves energy by avoid-
ing computer clock correction.

2. The protocol requires low resource and message
overhead, making it appropriate for resource-
restricted environments.

3. The protocol is suitable for applications that
need to communicate over long distances, that
is, distances much greater than the nodes’ trans-
mission ranges.

4. The time estimation is bounded within an
interval.

Disadvantages:

1. The synchronization error increases with the
number of hops along the path of the message
containing the timestamp. In sparse networks,
the number of hops is usually high and this
poses an obvious problem unless p is quite
small.

2. Elson and Romer [20] have claimed that the
synchronization achieved by this approach is
localized and short-lived. This is appropriate
for networks with highly mobile nodes, but it
clearly limits the applicability of Romer’s
protocol.

3. The protocol requires round-trip estimation,
which can increase the synchronization error.

4.3. Continuous clock synchronization in wireless
real-time applications [49]

Mock et al. [49] defined a protocol for continu-
ous clock synchronization in wireless sensor net-
works by extending the IEEE 802.11 standard
[31] for wireless local area networks. Their proto-
col improves precision by exploiting the tightness
of the communication medium, similar to RBS
[19], and also tolerates message loss. The corner-
stone of the protocol by Mock et al. is the use of
continuous clock synchronization. This is in con-
trast with the IEEE 802.11 standard, which uses
instantaneous clock synchronization.

In the case of instantaneous synchronization, a
node computes a local clock error and adjusts its
clock using this computation. This results in
abrupt changes in local clock time, which can
cause time discontinuity. Time discontinuity can
lead to serious faults in distributed systems, such
as a node missing important events (e.g., dead-
lines) or recording the same event multiple times.
Ryu and Hong [57] show one such possibility, as
seen in Fig. 21. In the figure, assume that a task
has a deadline at time 19. Assume further that at

before sync

| | after sync

Deadline miss

Fig. 21. Instantaneous versus continuous correction [57].
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e The master takes its local timestamp at ¢, and broadcasts it at time t2.
o All slaves physically receive this message at time ¢3.

e Each slave adjusts its clock value to match the master’s clock at ¢4.

Fig. 22. The IEEE 802.11 protocol.

time 18 resynchronization occurs, resulting in local
clock being corrected by 2 time units in the for-
ward direction because it lags behind the reference
clock by 2 time units. After synchronization, the
local clock advances to time 20 and the deadline
at time 19 is missed.

Continuous clock synchronization avoids such
discrepancies by spreading the correction over a fi-
nite interval. The local clock time is corrected by
gradually speeding up or slowing down the clock
rate. However, this approach suffers from a high
run-time overhead since clocks need to be adjusted
every clock tick.

The IEEE 802.11 standard [31] includes a mas-
ter—slave protocol for clock synchronization which
achieves limited precision due to instantaneous
synchronization. Mock et al. improved the IEEE
802.11 protocol, which we show in Fig. 22, by
employing continuous correction and by using an
advanced rate adjustment algorithm.

The time-critical path in the IEEE 802.11 proto-
col is the interval between the master taking its
timestamp and the slaves adjusting their clocks

master

slave

time
t, t, t; t,

Fig. 23. Time-critical path of IEEE synchronization protocol
[49].

master

slave

time
6ot t3 gty t5 t6

Fig. 24. Reduced time-critical path (from 5 to ;) [49].

(i.e., from ¢ to t4). Fig. 23 illustrates this time-crit-
ical path.

Given that the time-critical path above could be
quite lengthy, Mock et al. exploit the broadcast
property of the medium by assuming that message
reception is tight, similar to the RBS protocol [19].
If two receivers receive the same message, it can be
assumed that they receive it at approximately the
same time. Based on this property, the time critical
path is shortened as shown in Fig. 24.

Fig. 25 shows the main steps in the synchroniza-
tion protocol of Mock et al. The protocol uses two
messages for synchronization between a master
and a group of slaves, a so-called indication mes-
sage followed by a confirmation message. However,
subsequent synchronizations are achieved with a
single message as the master timestamp for the last
confirmation message now serves as the indication
message for the next synchronization round. This
technique achieves synchronization with just one
broadcast message per synchronization round,
resulting in a significant reduction in the message
overhead.

After the slave nodes complete the estimation of
the master’s time, they must correct their local

[ R S

. The master prepares an indication message (time ¢1) and broadcasts it (time t2).

. The message is delivered to a number of slave nodes with negligible delay, assuming tight message reception.
. Each slave and the master receive the message (time ¢3) and take a local timestamp (time ¢4).

. The master sends its own timestamp in the confirmation message (time ts).

. Each slave compares the master timestamp with its own timestamp for the reception of the last indication message,
computes the difference ¢s—t,, and adjusts its local clock (time £6).

Fig. 25. Synchronization protocol by Mock et al. [49]. Time instants 7y,.. ., are relative to Fig. 24.
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clocks to reflect the master’s clock value. As we
discussed earlier, the protocol uses a rate-based
algorithm to adjust the virtual clocks of slave
nodes to run in tandem with the master. The differ-
ence between a virtual and a physical clock can be
summarized as follows. The physical clock of a
node consists of an oscillator, which periodically
generates events, and a counter, which records
the number of elapsed events. This physical clock
is not adjustable in any way. The counter’s value
cannot be incremented or decremented by the sys-
tem’s software, and its frequency is also fixed. A
virtual clock is defined as a function from physical
clock values to virtual clock values. A virtual clock
is intended to correct the skew rate of the physical
clock of the slave such that it resembles the phys-
ical clock of the master. The function chosen is
usually a linear transformation for the sake of
simplicity.

Clock correction is performed by correcting the
parameters of the linear transformation from
physical to virtual clock values with every new syn-
chronization. Thus, changing a virtual clock really
means changing the parameters of the transforma-
tion from physical to virtual clock values. The goal
is to make the virtual clock match the master clock
as closely as possible.

Fig. 26 plots the transformation from physical
to virtual clock values at a slave node. Function
MC relates actual master clock values with a slave’s
clock values. The goal of the protocol is to estimate
this function as accurately as possible. Assuming a

Virtual ‘
clock SC;
T Q Q
Tiy
SCi,

tm b MC

tm j »

¢ G Ui t t;  Physical

clock

Fig. 26. Time adjustment showing the slave’s physical clock on
the X-axis and the virtual clock on the Y-axis [49].

constant clock skew between the master’s and the
slave’s clocks, function MC is linear. Thus, this
function is shown in Fig. 26 as a straight line. Let
SC be the virtual clock of a slave that is corrected
at every synchronization point. The values m;,
tmjy contained in a message indicate the master
timestamps for synchronization messages sm; and
smjyy, respectively. Values ¢; and ¢,y indicate the
corresponding timestamps on the slave’s physical
clock. Suppose that ¢; is the next synchronization
point and that #; is some physical time between
t;1and ¢;. T;,_; and T are the corresponding vir-
tual times of the slave clock for physical times
t;—1 and ¢/, respectively. Clock correction is per-
formed by adjusting SC at every synchronization
point. The adjustment is performed by changing
the parameters of the linear transformation func-
tion and this adjustment is performed gradually
over a period of time (continuous) to avoid time
discontinuity. After the point Q in Fig. 26, it can
be observed that the master node and the slave
are in synchrony, assuming tight reception.

The protocol of Mock et al. also provides a high
degree of tolerance with respect to message loss.
This is an important feature because the rate of
message loss is higher in wireless than in wired net-
works as the wireless medium is rather prone to
external interference. The protocol defines an omis-
sion degree Op to be an upper bound on the num-
ber of consecutive messages that can be lost due
to errors in the medium. In order to tolerate up
to Op consecutive message losses, the timestamp
values for the last n (n = Op + 1) messages are in-
cluded in each synchronization message. Thus, a
slave can synchronize with the master on the recep-
tion of a message, if it has received at least one of
the previous n synchronization messages.

Advantages:

1. The protocol provides reasonably good accu-
racy results when message transmission between
master and slaves is tight.

2. The protocol improves over the IEEE 802.11
protocol by using continuous, rather than
instantaneous, clock updates [31].

3. The message complexity of the protocol is quite
low because the protocol requires only one mes-
sage per synchronization round.
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4. The protocol accounts for potential message
losses, a common situation in wireless net-
works.

Disadvantages.

1. The protocol assumes tight communication
between the master and the slaves. Conse-
quently, the protocol cannot accommodate
multi-hop communication because of its longer
and unpredictable delays.

2. A considerable amount of energy is spent on
performing clock correction. This problem is
exacerbated by the fact that clock correction is
continuous.

3. The computational load on each node is high
due to the rate-based correction method.

4.4. Network-wide time synchronization in sensor
networks [24]

Scalability is a primary concern in wireless sen-
sor networks because of the large number of nodes
with very limited energy resources at each node.
The network-wide time synchronization protocol
is aimed at ensuring that synchronization accuracy
does not degrade significantly as the number of
nodes being deployed increases [24]. The objective
of the protocol is to establish a unique global time-
scale by creating a self-configuring hierarchical
structure in a wireless network. A node in this
structure can simultaneously act as a synchroniza-
tion server to a number of client nodes and as a syn-
chronization client to another (server) node. The
significance of this method lies in achieving syn-
chronization at a network-wide level as opposed
to methods which work effectively only within a
small cluster of nodes lying in a neighborhood,
such as RBS and continuous clock correction
[19,49]. The network-wide time synchronization
protocol works in two phases: The level discovery
phase, followed by the synchronization phase.

Level discovery phase. The level discovery phase
is based on constrained flooding. The root node is
assigned level 0; this node initiates this phase by
broadcasting a level-discovery packet that con-
tains the identity and the level of the sender. The
immediate neighbors that receive this packet as-

sign themselves a level that is one greater than
the level in the packet received (i.e., level 1 in this
case). After this step, these neighbors broadcast a
new level-discovery packet with their own level.
This process is continued until each node has a
level. Upon being assigned a level, a node neglects
further packets to implement a constrained
flooding.

Collision handling is important at this point be-
cause a node may not receive any level-discovery
packets due to MAC layer collisions. When a node
is deployed, it waits for some time to be assigned a
level. If it is not assigned a level within that period,
it times out and broadcasts a level-request packet.
The neighbors reply to this request by sending
their own level and the new node defines its level
to be one greater than the level it received.

Synchronization phase. Consider a message ex-
change between two nodes 4 and B, as shown in
Fig. 27. T, and T, represent the time measured
by A’s local clock. Similarly, 7, and T35 represent
the time measured by B’s local clock. We assume
that A’s level is greater than B’s by one. The syn-
chronization phase of the protocol is described in
Fig. 28.

Unfortunately, the hierarchical structure that
the protocol imposes on the net makes the proto-
col vulnerable to node failures. This issue must
be addressed because nodes can fail unpredictably
in a sensor network. When this happens, it is pos-
sible for a node at level i not to have a neighbor
(i.e., a synchronization server) at level i — 1. In
such cases, the node at level i would not receive
an acknowledgement to its synchronization mes-
sage. To handle this case, the node retransmits a

L T
Node B

Node A

T T

Fig. 27. Message exchange between two nodes 4 and B [24].
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. Attime 71, A sends a synchronization-pulse message to B. The synchronization-pulse message contains the level

number of A and the value of 71. Node B receives this packet at T, where T> = T + ¢ + d and J represents the
clock offset between the two nodes and d represents the propagation delay.

. At time T3, B sends an acknowledgement packet to A. This packet contains the level number of B and the

values of 171, T, and T5. With this information, node A calculates the clock offset and delay as follows.

TQ*T1)*(T4*T3).d7 (To —T1) + (Ts — T3)
5 d =

_(
0= 2

(26)

. Node A corrects its clock to synchronize with node B, based on the computed offset.

Fig. 28. Synchronization protocol for network-wide time synchronization protocol [24].

message for a fixed number of times before assum-
ing that it has lost all its neighbors. If the node
does not receive any responses to its synchroniza-
tion messages, it broadcasts a level-request packet
with a new level. Next, the node synchronizes with
its new neighbors as described in Fig. 28. The
number of retransmissions of a synchronization
message is subject to two constraints. If this num-
ber is too large, it will increase the time taken for
synchronization (i.e., the convergence time). If
the number is too small, a node may erroneously
conclude that its server has died. In this case, the
protocol will cause unnecessary message flooding
in the network. The authors suggest that an opti-
mal number of retransmissions is four [24].

Advantages:

1. The protocol is scalable and the synchroniza-
tion accuracy does not degrade significantly as
the size of the network is increased.

2. Network-wide synchronization is effectively
achieved in contrast with the protocol by Mock
et al. [49], which works effectively only within a
small cluster of nodes.

3. Network-wide synchronization is computation-
ally less expensive when compared to such pro-
tocols as NTP [48].

Disadvantages:

1. Energy conservation is not very effective
because it requires a physical clock correction
to be performed on local clocks of sensors while
achieving synchronization.

2. The protocol requires a hierarchical infrastruc-
ture which makes it unsuitable for applications
with highly mobile nodes.

3. Support for multi-hop communication is not
provided.

4.5. Delay measurement time synchronization
protocol [54]

Time-keeping is the process of maintaining a
uniform notion of time among the sensors that
participate in the network [54]. A global time-
stamp provides a basis for merging individual sen-
sor readings into a database. Also, synchronized
time is essential for energy-efficient scheduling
and power management. This protocol, which ap-
pears in Fig. 29, includes the following features.

1. Maintenance of a local clock.
2. Synchronization of local clocks over the whole
network to create a network time.

Eal i

nized.

packet.

1. Aleader is chosen among a set of communicating nodes.
The leader broadcasts its local clock value to the other nodes.
All receiving nodes compare their local clock values relative to the leader’s time.

If the delays in the path from one node to another node can be estimated accurately, the two nodes can be synchro-

5. When the message is broadcast, the sender of the packet will be synchronized with all the nodes that receive its

Fig. 29. Algorithm underlying flexible lightweight time-keeping protocol [54].
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3. Synchronizing to a global time source by con-
necting the global source to the synchronization
leader in the network.

4. Application programming interface for provid-
ing services to client applications.

This protocol has been implemented on sensor
nodes consisting of Berkeley motes running the
TinyOS kernel [61]. Node synchronization is based
on the concepts of event timestamps and network
event scheduling. The synchronization protocol
specifically combines delay measurement with the
property of the sender’s timestamp being a com-
mon-view timestamp from the receivers’ point of
view. The receivers can synchronize with each
other better than they can synchronize with the
sender.

The synchronization accuracy of this protocol is
bounded mainly by the precision of delay measure-
ments along the path. Since only one message is re-
quired to synchronize all nodes within the leader’s
transmission range, this method is quite energy
efficient. It is also computationally lightweight be-
cause there are no complex mathematical opera-
tions involved.

Multi-hop synchronization is also supported by
extending the single-hop synchronization protocol
as follows. If a node knows that it has children, it
sends a broadcast time signal after adjusting its
own time. The node can now synchronize with
its children by using single-hop time communica-
tion with a known leader. To tackle the problem
that in most networks nodes have no knowledge
about their children, the concept of a time-source
level is used to identify the network distance of a
node from the master. A time master initiates the
synchronization protocol; the master’s time source
level is zero. A node synchronizing directly with
the master is at time source level one. This algo-
rithm guarantees that the root time will be propa-
gated to all network nodes with a limited number
of broadcasts.

Advantages:

1. A user application interface is provided to mon-
itor a wireless sensor network at run-time.

2. Computational complexity is low and energy
efficiency is quite high.

Disadvantages:

1. The protocol can be applied only to low resolu-
tion, low frequency external clocks.

2. Synchronization accuracy is traded for low com-
putational complexity and energy efficiency.

4.6. Probabilistic clock synchronization service in
sensor networks [53]

Most synchronization protocols in practice rely
exclusively on deterministic algorithms. An advan-
tage of deterministic methods is that they usually
guarantee an upper bound on the error in clock
offset estimation. However, when the system re-
sources are severely constrained, a guarantee on
synchronization accuracy may result in a large
number of messages being exchanged during syn-
chronization. In these cases, probabilistic algo-
rithms can provide reasonable synchronization
accuracy with lower computational and network
overhead than deterministic protocols. Pal-
Chaudhuri et al. [53] defined an extension to
RBS [19], by providing a probabilistic bound on
the accuracy of clock synchronization. An attrac-
tive feature of their protocol extension is that it
allows to tradeoff dynamically synchronization
accuracy for computational and energy resources.

As we show in Fig. 16, in RBS [19] multiple
messages are sent from the sender to the set of
receivers, and the differences in actual reception
times at the receivers are plotted. As these mes-
sages are independently distributed, the difference
in reception times gives a Gaussian (or normal)
distribution with zero mean. Assuming a Gaussian
probability distribution for the synchronization
error, the relationship between a given maximum
error in synchronization and the probability of
actually synchronizing with an error less than the
maximum error can be easily computed.

If the maximum error allowed between two syn-
chronizing nodes is €y,x, then the probability of
synchronizing with an error e < €, 1S derived
from the Gaussian distribution property,

fimux 67.\72/2dx
e @

P(| € |< 6maX) =
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As the €. limit is increased, the probability
of failure (1 — P(|e| < emax)) decreases exponen-
tially.

Based on this relation between the maximum
synchronization error and the probability of actu-
ally synchronizing with a smaller error than the
predefined maximum, PalChaudhuri et al. [53] de-
rive expressions that convert service specifications
(maximum clock synchronization error) to actual
protocol parameters (number of messages and syn-
chronization overhead). The probability of the
achieved error being less than the maximum spec-
ified error is given as follows:

Vmax (28)

P < €max = 2erf
(| € |I< €max) erf —

In the above equation, # is the minimum num-
ber of synchronization messages to guarantee the
error and ¢ is the variation of the distribution.

The relationship between the number of
messages, n, and error probability P is shown in
Table 4. The table reports data for ey,./o ratios
of 0.5, 1.0, and 2.0.

Advantages:

1. A probabilistic guarantee reduces both the
number of messages exchanged among nodes
and the computational load on each node.

2. A tradeoff between synchronization accuracy
and resource cost is allowed.

3. Support for multi-hop networks, which span
several domains, is provided.

Table 4
Variation in probability and number of messages for different
values of €. /0 [53]

€max/ O Probability Number of messages
0.5 0.95 16

0.5 0.99 28

0.5 0.999 44

1.0 0.95 4

1.0 0.99

1.0 0.999 11

2.0 0.95 1

2.0 0.99 2

2.0 0.999 3

Disadvantages:

1. In safety-critical applications (e.g., nuclear
plant monitoring), a probabilistic guarantee
on accuracy may not suffice.

2. The protocol is sensitive to message loss; how-
ever, provisions for message loss are not
considered.

4.7. Sichitiu and Veerarittiphan's protocol [58]

Sichitiu and Veerarittiphan’s protocol [58] pro-
vides deterministic clock synchronization for wire-
less sensor networks with minimal computational
and storage complexity. The protocol is especially
suitable for applications with severe constraints on
computational power and bandwidth. It uses two
algorithms called mini-sync and tiny-sync. The
tiny-sync algorithm acquires its name from the fact
that it needs very limited resources, fewer re-
sources than mini-sync.

The two algorithms have various common
features.

1. A tight deterministic bound is provided for
clock offset and skew, as opposed to probabilis-
tic guarantees [53].

2. The protocols are highly tolerant to message
losses.

3. Both protocols have low computational and
storage complexity.

4. Both protocols can be extended to any commu-
nication network that allows bidirectional data
transmission.

5. The estimation of clock skew and offset is per-
formed using the set-valued estimation method
[40] discussed in Section 2.4.4.

Recalling Eq. (17) of the set-valued estima-
tion method, for nodes 1 and 2, the skew and
offset between their clocks are captured by the fol-
lowing equation, where a;, and by, represent the
skew and offset between the clocks in node 1 and
node 2.

H (l) = alztz(t) + bys. (29)
Sichitiu and Veerarittiphan’s protocol [58] ex-

tends the set-valued estimation method [40] in
two significant ways.
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1. Relaxing the immediate reply assumption. In
Fig. 11, it is assumed that node P; immediately
responds to node P; The correctness of the
approach is not affected if P; sends a delayed
reply. However, if the delay between #; and 7;
increases, the precision of the estimates will
decrease. Since P; can delay its reply in practice,
the loss of precision is handled by letting P;
timestamp the message both upon receipt (#)
and when it resends it (#;,). This gives us two
data points (fi, tjkr, t and ty, ¢, tx) which will
be treated independently. The obvious solution
is to choose the data point that gives a better
precision.

2. Increasing accuracy by considering the minimum
delay. 1f the minimum delay that a message
encounters between two nodes is known, the
data points can be adjusted for a boost in preci-
sion. In Fig. 11, if the delay between the time P;
timestamps the message (¢;;) and the time at
which P; timestamps the message (1), as well
as the delay between P; timestamping the mes-
sage and P; receiving that timestamp are
known, we can use this information in the data
triplet to make more estimates.

Tiny-sync: The tiny-sync algorithm is based on
the observation that not all data points obtained
from the set-valued estimation method are useful.
Each data point consists of two constraints, which
are bounds on the clock offset and clock skew. At
any point of time, only four constraints are kept in-
stead of six constraints. Upon the arrival of a new
data point, the two new constraints are compared
with the existing data points and only the four con-
straints that result in the best estimates are kept.

The computational complexity of the tiny-sync
algorithm is relatively low because the compari-
sons to determine the four best constraints involve
only a few arithmetic operations. In addition, the
storage space required is also quite low because
at any time, only four constraints and eight time-
stamps (two per constraint) need to be stored.

Mini-sync: The mini-sync algorithm improves
the accuracy of Tiny-sync at a small computational
cost. In Fig. 12, when the data point that corre-
sponds to [t3,f3] arrives, we can ignore the

data point that corresponds to #;; and consider only

the first and third data points. However, when the
fourth data point arrives, since we discarded the
second data point, we are forced to use the first
and the fourth data points as bounding constraints.
Although the second data point—when bound to
the fourth data point—could have yielded better
precision, this precision cannot be accomplished
because the second data point was discarded. Mini-
sync corrects this flaw and improves precision by
discarding a constraint only if a newer constraint
eliminates an existing constraint. This means that
the constraints corresponding to the second data
point will not be discarded when the third data
point arrives. It will instead be saved until the
fourth data point uses it to obtain a better estimate.
In practice, experiments reveal that around 40 data
points (80 constraints) have to be stored at a time,
which is quite reasonable.

Advantages:

1. The protocols provide a tight, deterministic syn-
chronization scheme with low storage and com-
putational complexity.

2. The protocols are suitable for sensor networks
that are highly constrained in bandwidth and
computational power.

3. The protocols are tolerant of message losses.

Disadvantages:

1. The scalability and robustness of the protocols
have not been discussed.

2. The convergence time, which is the time needed
to achieve synchronization of the entire net-
work, is high.

3. The sensor network is logically organized as a
hierarchy, making it inapplicable to mobile sen-
sor networks.

4.8. Time-diffusion synchronization protocol [62]

The Time-Diffusion synchronization Protocol
(TDP) enables all the sensors in the network to
have a local time that is within a small bounded
time deviation from the network-wide ‘“‘equilib-
rium” time. Due to clock skews, the algorithms
within the protocol have to be applied periodically.
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Hence, the protocol operates in alternating active
and inactive phases. The protocol is comprised of
several algorithms, which will be described next
in the context of one such active phase.

Within each active phase there are multiple cy-
cles, each cycle lasting a duration 7. In each cycle,
a subset of the nodes are elected as the masters by
an Election/Relection Procedure (ERP). Each
master concurrently initiates a diffusion of timing
messages; these messages effectively create a tree-
like propagation structure dynamically in the net-
work, for each diffusion. The non-leaf nodes in this
tree are the nodes which propagate the timing mes-
sages, and are termed as “diffused leaders”. These
diffused-leader nodes are also elected by the ERP.
Thus, it may happen that a node does not qualify
to be a diffused leader node, and hence will not
propagate the diffusion. The goals of the ERP
are twofold.

¢ To eliminate outlier nodes whose clock variance
is above some threshold function based on a
specific type of variance calculation, termed
the Allen variance. This variance is determined
by exchanging messages and calculating devia-
tions between pairs of adjacent nodes using a
Peer Evaluation Procedure (PEP).

e To achieve load distribution among the nodes
because the roles of masters and diffused leaders
put a greater demand on the energy resource.
The load distribution is achieved by taking
turns at being the master, based on factors such
as the available energy level being above a tun-
able threshold.

In each cycle, the diffusion of timing messages
helps to converge the local times, and reach a com-
mon notion of the system-wide time.

Each cycle has two logical functions, executed
serially—(1) determining master nodes and dif-
fused leader nodes, using the PEP, and then (2)
the main Time Diffusion Procedure (TP). Each
cycle has duration t; the TP consists of multiple
rounds, initiated J time units apart. The timing
relations are illustrated in Fig. 30. There is a single
broadcast within each round, with respect to a sin-
gle master. Note that each master initiates a con-
current broadcast that gets diffused in that round

PEP rounds of TP PEP rounds of TP

T T
cycle cycle

Fig. 30. Illustration of timing relationships between the TP
rounds (each of duration ¢) and the PEP duration within each
cycle, and the various cycles, each of duration 7, within an
active phase.

diffusion initiated
by A
_______ diffusion initiated

by E

...~ diffusion initiated
by K

® master node

O diffused leader node . K

Fig. 31. Illustration of time diffusion with three master nodes
and n = 3 hops. The level of a node is defined with respect to
each master. Outlier nodes, which do not diffuse timing
messages, are not shown for simplicity. In each round, nodes
take the hop-weighted (or cumulative deviation weighted)
average of the different times received from the masters’
diffused broadcasts.

in a tree-like structure, as illustrated in Fig. 31.
Also note that the masters’ time can be coordi-
nated to an external precise time server that does
periodic broadcasts of a reference time. If no time
servers are available, the protocol works equally
well by using a time that is independent of the time
used by the Internet, e.g., Universal Coordinated
Time (UTC). We now look at the details of a sin-
gle cycle with respect to a single master.

1. The first function (PEP) in each cycle is to
determine the master node eligibility for the
next cycle, and the diffused leader responsibility
for the remainder of this cycle.

(a) The first step occurs between any master,
which is at level one, and its neighbors.
(i) The master sends a large number of
timestamped scan messages to its
neighbors.
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(i1) The neighbors send back acknowledge-
ments containing the 2-sample Allen
variance of the local clock from the
master’s clock.

(ii1) Based on the received samples, the mas-
ter calculates (a) an outlier ratio y,. for
itself (y) and each neighbor z, (b) the
average of the Allen variances, and
(c) the average of the Allen deviations.
Now, (a), (b), and (c) are sent to each
neighbor z in a RESULT message.

(b) In each subsequent step j=2,3,...,n, the
above is repeated between each level j dif-
fused leader node and its neighbors.

As this broadcast diffusion progresses, all sen-
sors will get the outlier ratios and the average
Allen deviation (with respect to their neigh-
bors). These are used to evaluate the quality
of their clocks with respect to their neighbors.
If a node’s average outlier ratio is >1, its local
clock deviates from the clocks of its neighbors
by more than twice the Allen variance. In this
case, that node does not become a diffused lea-
der during the (Time Diffusion Procedure of
the) current cycle, or a master in the next
cycle.

Further, among the nodes that are eligible for

being masters in the next cycle, whether a node

will actually qualify for being a master in the
next cycle now depends on its energy availabil-
ity being above a certain (dynamically adjust-
able) threshold. Load balancing is done by
rotating the role of master nodes; hence the
algorithm can be viewed as being distributed.

Analogously but somewhat differently, whether

the nodes eligible to become diffused leaders in

the current cycle actually assume that role is
determined dynamically for each round in this
cycle, based on energy level considerations.

. The TP performs the main function of diffusing
the time from each master in a tree-like manner
for n hops, where n is some predetermined
parameter smaller than the diameter of the net-
work. It uses the message M(?,s;,1,Lr.4), Where
o ¢y, is the diffused time of the master M, to

which the nodes synchronize in round i.

e nis the number of levels (i.e., depth) to which

the timing information is to be diffused.

e [ is the deviation of the corresponding
tyr; at a node k hops from the master M.
The TP within any cycle has a succession of
rounds initiated by the master, 0 time units
apart from ¢,,0. The broadcast within a round
completes before the next round is initiated.
The following broadcast is executed for each

round 7.
(a) The first step, executed between any master,
which is at level one, and its neighbors:

(i) Send a timing message M(?s.:1,0rr.x)
to neighboring nodes at time ;.

(i1) Elected diffused leaders at the next level
respond with a timestamped ACK
message.

(ii)) Master computes A = average(A)),
where A, is the round-trip time between
the master and the diffused leader ;.
The diffused time from the master node
is

Here, ¢ is the amount of time that the
nodes wait (relative to t,,,;) before
adjusting their clocks at the end of
the round. The standard deviation o
of the rtt A;, which gives an estimate
of the quality of diffused time 7,/ is
accumulated in f,,, at each hop from
the master. This accumulated deviation
is

Bui = Buar + % (31)

where k < n is the number of hops
from the master.

(b) On  receiving a  timing  message
M(tprin, Pars), for each subsequent step
j=2,3,...,n, the above is repeated between
the elected diffused leaders at level j, and
their neighbors.

For each round, each node builds a table Table

with rows of the following format, and popu-

lates it with the information received within that
round.

(master_id M, By, tari)- (32)

After each round i within a cycle, each node re-
sets its time to ¢;, the weighted sum of the times
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ta; in its table, based on the values of all the
diffused messages received in this round from
different master initiators, and as recorded in
the local Table. The table is also cleared at the
end of each round i.

t; =
(Brgotmi) in Table

[Zﬂ,w,u in TableﬁM',k’] - ﬁM,k
v sl ) AR K1 <
DT by ) in rabte 22 — tavieBar ] = B ]

* tM7i~ (33)

For any t,,;, (i) the numerator of the weight is
the sum of all the deviations of all the diffusion
messages, less the deviation for this particular
message, and (ii) the denominator of the
weight is the sum of all such numerators for
all the timing entries in the table. Thus, the va-
lue of each clock is set to the weighted average
of the clock values of the different master
nodes of that round, after averaging the data
collected from multiple messages received with-
in that round. Due to the weighted averaging,
all the nodes tend towards a common equilib-
rium time.

Advantages:

1. The protocol is tolerant of message losses.

2. The protocol achieves a system-wide “equilib-
rium” time across all nodes, computed using
an iterative weighted averaging technique, and
involves all the nodes in the synchronization
process.

3. The diffusion does not rely on a static level-by-
level transmission. This non-dependence on a
static structure provides flexibility and fault-
tolerance.

4. The protocol is geared towards mobility.

5. Although there is a hierarchical structure, that
is neutralized by having multiple master nodes
distributed across the network.

6. Most synchronization protocols require precise
time servers and cannot function properly with-
out these servers. On the other hand, the TDP
protocol can provide synchronization even
without external time servers.

Disadvantages:

1. Each active period has multiple cycles, and each
cycle has multiple rounds, in each of which a
diffusion broadcast is initiated by multiple mas-
ters. This leads to high complexity.

2. The convergence time tends to be high when no
external precise time servers are used. However,
if the servers are used, the convergence time is
comparable to a server-based technique.

3. It appears that it is possible for clocks to
run backward. This can happen whenever a
clock value is suddenly adjusted to a lower
value.

4.9. Asynchronous diffusion protocol [42]

Li and Rus have defined a so-called rate-based
diffusion protocol in which nodes achieve synchro-
nization by flooding their neighbors with informa-
tion about each node’s local clock value [42]. After
each node has learned the clock values of all its
neighbors, the node can use a mutually agreed
upon consensus value to adjust its clock. Examples
of consensus values suggested by the authors in-
clude the highest clock reading in the net, the low-
est clock reading, or some statistical value based
on the clock readings (e.g., the average or the med-
ian of the readings). According to the authors,
using the highest or the lowest reading yields the
simplest synchronization algorithm; however, this
strategy lacks robustness. A malicious or erratic
node may impose an abnormally high (or low)
clock value on the whole network.

Li and Rus define a synchronous and an
asynchronous version of their rate-based diffusion
protocol [42]. Fig. 32 illustrates the synchronous
version. The algorithm appearing in the figure is
assumed to be executed with a certain frequency
by all nodes contained in the network. During
each synchronization round, each network node
n; exchanges its clock reading with every neighbor
n;. Node n; adjusts its clock value by a factor pro-
portional to ¢; — t;, the difference in the clock val-
ues of n; and n; Coefficient r; is the so-called
diffusion value of node n; relative to n; this value
indicates the weight of n; when adjusting n,’s clock
value.



B. Sundararaman et al. | Ad Hoc Networks 3 (2005) 281-323 313

1. for each node n; in network A do
Exchange clock reading between n; and its neighbors in N
for each neighbor n; do

2
3
4. Let ¢; and t; be the readings of n; and n;
5

Adjust n's clock to be ¢; — 745 + (ti — t5).

Fig. 32. Algorithm underlying the synchronous version of Li
and Rus’s diffusion protocol [42].

Li and Rus define the r coefficients in such a way
that ViVij, r; > 0 and also 3,  ,7;; = 1. Also, the
coefficients are symmetric, meaning that ViVj, r; =
r;;. When nodes 7; and n; are not in the same neigh-
borhood, they cannot exchange clock readings. In
this case, the coefficients are assigned values r; =
r;; = 0. Li and Rus showed that this protocol con-
verges to the average value of the clock readings
in the network, within a certain error, in a bounded
number of synchronization rounds [42]. The
number of synchronization rounds depends on
the actual values of the coefficients in the network.

In the asynchronous version of Li and Rus’s dif-
fusion-based protocol, nodes compute average
clock readings asynchronously with respect to
other network nodes. (In the synchronous version,
nodes exchange clock values and adjust their
clocks simultaneously.) Fig. 33 illustrates the algo-
rithm underlying the asynchronous version of the
diffusion protocol.

Any network node can now update its clock va-
lue asynchronously with respect to other nodes in
the network. As we show in Fig. 33, a node n; starts
a round of synchronization by first asking all its
neighbors for their clock values. Next, the node
computes the average of its clock value and the val-
ues obtained from the neighbors. Finally, the node
updates its clock to the computed average and noti-
fies its neighbors of the computed value. Li and
Rus show that the asynchronous version of the
protocol converges to the average value of clock
readings in the network, under relatively broad

assumptions on network connectivity, provided
that all net nodes perform synchronization with a
certain probability. Nodes are not required to be
fully connected with all other nodes in the network
in order for this protocol to converge, although the
network must be connected at all times [42]. Evi-
dently, if a node or node subset becomes perma-
nently disconnected from the rest of the network,
network-wide clock synchronization is impossible.
Li and Rus ran many simulations of the asyn-
chronous synchronization algorithm while varying
several synchronization parameters. Some simula-
tions show that the synchronization error among
network nodes decreases exponentially with the
number of synchronization rounds for a network
of 200 nodes [42]. In addition, Li and Rus analyzed
the convergence speed of the protocol as a function
of node density (i.e., the number of nodes in a
neighborhood). These simulations show that
sparse networks (i.e., networks with few nodes in
a given area) exhibit both a slower convergence
speed and a high variation in convergence time.
Networks with a high node density converge faster,
and with lower variation, than sparse networks.
Similarly, the convergence speed improves as the
communication range of the nodes is increased.

Advantages:

1. The protocol achieves a system-wide “‘equilib-
rium” time across all nodes involved in a
synchronization.

2. The protocol does not rely on an external time
server or a synchronization leader to reach con-
vergence, which is beneficial for the robustness
of the protocol.

Disadvantages:

1. The protocol seems to violate a fundamental
requirement of clock synchronization, namely,
that time never run backward. (See Fig. 3
above.) As nodes adjust their clock values

1. for each node n; in network A with uniform probability do
2. Askn;’s neighbors for their clock values
3. Compute average value of all readings, including n;’s

4. Adjust n;’s value to the computed average and send the new value to all n;’s neighbors

Fig. 33. Algorithm underlying the asynchronous version of Li and Rus’s diffusion protocol [42].
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down, they will repeat clock values obtained
earlier, defeating one purpose of synchroniza-
tion. This problem is exacerbated in the asyn-
chronous version of the protocol because in
this case, nodes can adjust their clock values
independent of other nodes in the network.

2. The protocol assumes that any two nodes can
accurately swap their clock readings when run-
ning their synchronization protocol. In practice,
achieving this goal can be quite difficult. Li and
Rus advocate the use of the RBS protocol [19]
for this purpose, because RBS can in fact
achieve a high level of accuracy.

3. The complexity of the protocol is quite high,
comparable to that of RBS. Many synchroniza-
tion rounds are needed to reach reasonable con-
vergence, and each node must communicate
with every other node in its neighborhood
to achieve convergence. Worse yet, in Li and
Rus’s simulations, hundreds of synchronization
rounds are needed to achieve reasonable accu-
racy [42]. It is unclear whether the asynchro-
nous diffusion protocol can improve RBS’s
synchronization accuracy.

4. The protocol makes no provisions for exploit-
ing clock skews in achieving synchronization.
Given that all node pairs exchange clock infor-
mation during each synchronization round, it
would be relatively easy for nodes to estimate
the skew of their neighbors’ clocks in an effort
to improve accuracy.

4.10. Other protocols

Clock synchronization in sensor networks is
currently the subject of numerous active investiga-
tions. For reasons of space, we are unable to dis-
cuss in detail all the new protocols that have
been defined recently. In this subsection, we briefly
summarize some of those protocols.

4.10.1. Tulone’s Clock Reading protocols

Tulone sketched a deterministic protocol and a
probabilistic protocol for clock synchronization in
sensor networks [67]. The first protocol, called
Deterministic Clock Reading (DCR), seeks to mini-

mize the offset of a node’s clock relative to other
nodes in a sensor network when the node is out
of the communication range of any other network
node. Assume that synchronization rounds, during
which nodes correct their clock values, occur peri-
odically in a sensor network. If a node becomes
temporarily isolated from the network, it will miss
one or more synchronization rounds with neigh-
boring nodes. In this case, the offset of the node’s
clock relative to the clock of its neighbors may
grow beyond an acceptable threshold.

The DCR protocol observes the standard devi-
ation of a node’s clock with respect to one of the
node’s neighbors over two consecutive synchroni-
zation rounds. The observed deviations can be
used to correct the speed of a node’s clock, similar
to Cristian and Fetzer’s calibrated-clocks method
[12]. In the world of sensor networks, the rationale
of the DCR method is similar to that of the set-
valued estimation protocol, which we discussed
in Section 2.4.4, in that DCR adjusts a node’s
clock rate based on multiple readings of a neigh-
bor’s clock. As with set-valued estimation, it is un-
clear whether DCR will work in practice, because
it is possible for a node to overcorrect its clock
rate. This may happen when a node overestimates
the speed of a neighbor’s clock, for instance, be-
cause of unpredictable variations in message trans-
mission delays. When this happens, a chain of
corrections involving all nodes in an entire neigh-
borhood may ensue, causing all nodes to increase
indefinitely their clock rates.

The second protocol, Probabilistic Clock Read-
ing (PCR) is a probabilistic variation of DCR.
PCR overcomes the problem of intermittent com-
munication by using the theory of time-series
forecasting. A network node uses a time-series
approximation of a sequence of clock readings
from one of the node’s neighbors in order to esti-
mate the offset and skew of the neighbor’s clock
relative to the node’s clock [67].

4.10.2. Meier et al.’s protocol

Meier et al. recently defined an improved ver-
sion of Romer’s protocol [45] which we discussed
in Section 4.2. Similar to Romer’s protocol, Meier
et al. seek to provide tight lower and upper bounds
on the clock reading of local node n; when an event
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is detected by a different node n;. Meier et al. define
a tighter lower bound for #;’s clock reading using a
different formula from Romer’s protocol. In addi-
tion, Meier et al. define a method for defining opti-
mal bounds under the assumption that message
delay uncertainties are negligible [45]. Under this
assumption, multiple consecutive message ex-
changes between two nodes can be regarded as a
single communication event. Although these
assumption are not true in practice, the method
of Meier et al. can be modified to accommodate
small communication delays, such as those
achieved with RBS [19].

4.10.3. Lightweight Tree-based Synchronization
Van Greunen and Rabaey’s Lightweight Tree-
based Synchronization (LTS) protocol [68] is a
slight variation of the network-wide synchroniza-
tion protocol of Ganeriwal et al. [25] which we dis-
cussed in Section 4.4. Similar to network-wide
synchronization, the main goal of the LTS proto-
col is to achieve reasonable accuracy while using
modest computational resources (both in terms
of memory space and CPU time). Van Greunen
and Rabaey give two versions of the LTS protocol
[68]. In the centralized version, each round of syn-
chronization is initiated by a designated node at
some frequency. In the decentralized version, any
node can start a synchronization round. As with
Network-Wide Synchronization [25], the LTS
protocol seeks to build a tree structure within the
network. Adjacent tree nodes exchange synchroni-
zation information with each other. A disadvan-
tage is that the accuracy of synchronization
decreases linearly in the depth of the synchroniza-
tion tree (i.e., the longest path from the node that
initiates synchronization to a leaf node). Van Gre-
unen and Rabaey discuss various ideas for limiting
the depth of the tree; the performance of both pro-
tocol versions is analyzed with simulations [68].

4.10.4. TSync protocol

Similar to Van Greunen and Rabaey’s LTS pro-
tocol, Dai and Han’s T'Sync protocol [15] is based
on the network-wide synchronization protocol of
Ganeriwal et al. [25]. As with LTS, T'Sync has a

centralized version, called the Hierarchical Refer-
encing Time Synchronization (HRTS) protocol,
and a decentralized version, called the Individual
Time Request (ITR) protocol. The HRTS protocol
cleverly combines the notion of hierarchical syn-
chronization, typical of network-wide synchroniza-
tion, with receiver-to-receiver synchronization,
similar to RBS [19]. Dai and Han further enhance
the performance of both the HTRS and ITR proto-
cols by using dedicated MAC-layer channels for
synchronization. The ITR protocol differs from
the HRTS protocol in that synchronization is initi-
ated by any node as opposed to a designated base
station. Dai and Han compared empirically the
performance of the HRTS and ITR protocols with
a multi-hop extension of RBS [19]. In Dai and
Han’s experiments, HRTS can achieve a synchroni-
zation accuracy close to that of the RBS extension,
while reducing the total number of exchanged mes-
sages with respect to RBS. However, the accuracy
obtained with both RBS and HRTS, in the order
of 20 us for single-hop synchronization, is lower
than other reported results for RBS. (See, e.g.,
[19].) The performance of the ITR protocol is
worse than both HRTS and RBS, especially in
the case of multi-hop synchronization.

4.10.5. Hu and Servetto’s protocol

Finally, Hu and Servetto [30] defined a protocol
for synchronization in networks with a high con-
centration of nodes per unit of surface. Synchroni-
zation proceeds in concentric waves, starting from
a master node located in the center of the network.
Under strong assumptions on the behavior of the
net, Hu and Servetto show that their protocol is
optimal in the sense that all nodes will eventually
synchronize with the master’s clock. This is a valu-
able theoretical result; however, it is currently un-
clear how this protocol will perform in practice.
Hu and Servetto assume that there is no communi-
cation delay between nodes (i.e., message transmis-
sion delay is always zero) and no conflicts on
network use (i.e., a node will have immediate ac-
cess to the network whenever it needs to transmit
a message). In addition, the complexity of the pro-
tocol seems to be high, meaning that achieving
optimality involves a large number of message ex-
changes among network nodes.
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5. Comparison of protocols

We compare and evaluate the various synchro-
nization protocols. Before we evaluate the various
protocols, we must first define in detail the criteria
that we will use in our comparisons. For the sake
of clarity, we divide our evaluation criteria be-
tween quantitative and qualitative criteria. The
former include synchronization accuracy, compu-
tational complexity, and convergence time. The
latter include scalability, energy efficiency, and
fault-tolerance. When taken together, these mea-
sures provide a good characterization of the appli-
cability and performance of each protocol.

5.1. Quantitative evaluation

We note at the outset that the protocols dif-
fer broadly in their computational requirements,
energy consumption, precision of synchroniza-
tion results, and communication requirements. In
addition, no protocol clearly outperforms the
others in all possible applications of wireless
networks. Rather, it is quite likely that the choice
of a protocol will be driven by the characteristics
and requirements of each application. For in-
stance, a low-cost, low-precision protocol could
be appropriate for many environmental monitor-
ing applications. However, many safety-critical
applications, such as aircraft navigation or intru-
sion detection in military systems, will demand
high-precision protocols in order for nodes to
correctly identify events occurring in the net and
for an application to respond to those events.

Synchronization precision. Each network node
has a physical clock consisting of hardware oscilla-
tor circuits. Unfortunately, the frequency of hard-
ware clocks varies from one node to another
within a specified range. Thus, clocks on different
nodes in wireless networks operate at different
rates. Consequently, the clock values used for syn-
chronization in wireless networks are not physical
clock readings. Instead, network nodes generally
use a logical notion of clocks and time. Logical
clocks can be modified both by software (e.g., dur-
ing synchronization) and hardware (e.g., by the
physical clocks). Consequently, synchronization
precision can be defined in two ways.

1. Absolute precision. The maximum error (i.e.,
skew and offset) of a node’s logical clock with
respect to an external standard such as UTC.

2. Relative precision. The maximum deviation
(i.e., skew and offset) among logical clock read-
ings of the nodes belonging to a wireless
network.

In our discussions, we generally use the notion
of relative precision (2) above, unless otherwise
noted. In general, high synchronization precision
is clearly a desirable feature of a synchronization
protocol. However, in the protocols that we stud-
ied, higher synchronization precision comes at
the expense of increased computational cost mea-
sured in terms of algorithmic complexity, the num-
ber of messages exchanged among nodes, and the
storage requirements of the protocol. The quanti-
tative precision of the various protocols appears
in Table 5.

Piggybacking. Piggybacking is the process of
combining the acknowledgement messages during
synchronization with messages that carry synchro-
nization data among nodes. Instead of sending
independent acknowledgement messages, these
messages are piggybacked on the data messages
that have to be sent to the node, in order to reduce
message traffic in the network. Piggybacking is
clearly advantageous because wireless networks
are often subject to severe bandwidth constraints
and piggybacking alleviates communication de-
mands on the network. In addition, piggybacking
can also reduce the storage requirements on net-
work nodes because storage space is also saved
by clubbing acknowledgements with data mes-
sages. Romer’s protocol [56] and network-wide
time synchronization [24,25] use piggybacking.

Computational complexity. As wireless net-
works often have limited hardware capabilities
and severe energy constraints, the complexity of
a synchronization protocol can make a protocol
impractical for many applications. Here we distin-
guish between the computational complexity of a
protocol (i.e., its run-time and memory require-
ments) from the message complexity (i.e., the
number of messages exchanged during synchroni-
zation). (See also discussion on convergence time
below.)
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Table 5
Quantitative performance comparison of synchronization protocols
Protocols Factors for performance comparison

Precision Piggybacking Complexity Convergence GUI Network Sleep

time services  size mode

RBS [19] 1.854+1.28 us N/A High N/A No 2-20 Nodes Yes
Romer [56] 3 ms Yes Low N/A No Unknown Yes
Mock et al. [49] 150 ps No High Low No Unknown No
Ganeriwal et al. [25] 16.9 ps No Low Unknown No 150-300 Nodes Yes
Ping [54] 32 ps Yes Low High (multi-hop) Yes Unknown No
PalChaudhuri et al. [53] Unknown Unknown High N/A No Unknown Yes
Sichitiu et al. [58] 945 us No Low High (multi-hop) No N/A Yes
Time Diffusion Protocol [62] 100 ps No High High (multi-hop) No 200 Nodes Yes
Asynchronous diffusion [42]  Unknown No High High (multi-hop) No 200400 Nodes Yes

In our evaluations, we consider both the asymp-
totic behavior of a protocol’s computation time
and its memory requirements, relative to the num-
ber of nodes being synchronized. Even though a
protocol’s computational requirements might be
linear in the number of nodes synchronizing with
each other, the protocol may still be impractical
if these requirements exceed physical node re-
sources. RBS [19], the protocol by Mock et al.
[49], asynchronous diffusion [42], and TDP [62]
have higher computational and storage complexity
compared to Romer’s protocol [56], network-wide
time synchronization [25], and the protocol by Sic-
hitiu and Veerarittiphan [58].

Convergence time. Convergence time is the total
time required to synchronize a network. A proto-
col that requires a large number of message ex-
changes per synchronization will result in a
longer convergence time. As discussed earlier,
reducing message complexity is vital to the cost-
efficiency of a synchronization protocol for sensor
networks. Since convergence time is directly pro-
portional to message complexity and bandwidth
use, reducing the convergence time is also an
important factor in wireless networks.

RBS [19], Romer’s protocol [56], and the proto-
col by PalChaudhuri et al. [53] do not emphasize
low convergence time because they are based on
reactive routing. In these protocols, synchroniza-
tion is performed relatively infrequently, when an
event of interest occurs in the net. Thus, conver-
gence time and message complexity are of less crit-
ical importance in protocols that use reactive
routing. The protocol by Mock et al. [49] requires

a low convergence time because only one message
is required per synchronization round. Other pro-
tocols [54,58] can tolerate high convergence times
for multi-hop networks.

GUI services. Graphic User Interface (GUI) ser-
vices can present, in a clear and comprehensible
manner, meaningful results achieved by the net-
work to an end user. Since some wireless networks
require on-line monitoring by human users, we in-
cluded the existence of GUI services in our perfor-
mance comparisons. Only Ping’s protocol [54]
provides such services to the application and
higher-level kernel modules. Two services are spe-
cifically defined: (1) time reading and (2) synchro-
nized network event scheduling. These services
allow a user to schedule a synchronized event over
a network by providing an interface to the user’s
timeframe.

Network size. Some authors have conducted
empirical evaluations of synchronization protocols
on actual sensor networks. Although this informa-
tion is not available for most of the protocols that
we studied, the network-wide time synchronization
protocol of Ganeriwal et al. [25] is noteworthy in
this regard. This protocol was found to handle
neighborhoods with up to 300 nodes.

Compatibility with sleep mode. The ability of a
node to be in low-power (sleep) mode can be criti-
cal to meeting the node’s energy requirements. The
key idea underlying sleep mode is that nodes must
be synchronized and active only when the applica-
tion demands it. RBS [19] highlights this feature by
way of post-facto synchronization. Other protocols
[24,25,56] support this feature as well.
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Table 5 shows the performance of the protocols
relative to the quantitative criteria. The RBS pro-
tocol [19] yields excellent accuracy results even in
the case of networks with modestly-equipped sen-
sor nodes. The accuracy reached by the protocol is
truly outstanding, in the order of few microsec-
onds, for a network of nodes (i.e., the Berkeley
motes) with severely limited computational and
energy resources. The convergence time and mes-
sage complexity of the protocol are relatively high,
of the order of O(m - n*) messages for m synchroni-
zation rounds involving n nodes within single-hop
reach of each other. However, the CPU load and
storage requirements of the protocol are modest,
making RBS appropriate for even the simplest of
today’s sensor nodes. Moreover, the lack of clock
adjustments sharply reduces the energy needs of
the protocol relative to other protocols. Romer’s
protocol [56] achieves reasonably good accuracy
(in the order of few milliseconds) with low compu-
tational complexity. The advantages of continuous
time synchronization [49] are high accuracy results
and low convergence time; however, these results
are obtained at the expense of computational
complexity.

Network-wide Time Synchronization [24,25] is
an excellent compromise among synchronization
accuracy, computational complexity, and conver-
gence time. While the accuracy results are in the
order of tens of microseconds, low computational
complexity and fast convergence time make this
protocol quite attractive when higher accuracy is
not required. An additional strength of this proto-
col is that the protocol has been tested on an ac-
tual sensor network containing 300 nodes. The
Delay-Measurement Time Synchronization proto-
col has comparable accuracy results as Network-
Wide Time Synchronization [54]. However, this
result is obtained at the expense of a longer
convergence time. Improvements to Network-
Wide Time Synchronization were defined by Dai
and Han [15]. Their method has yielded excellent
accuracy results with lower message complexity
than RBS.

The protocol by PalChaudhuri et al. [53] is
interesting because it uses a probabilistic algo-
rithm. While probabilistic algorithms hold consid-
erable promise for clock synchronization in sensor

networks, at this time it is unclear how these pro-
tocols will perform in practice. Finally, a protocol
by Sichitiu and Veerarittiphan [58] achieves good
accuracy results (less than one millisecond). This
is quite impressive considering that the protocol
also has low computational complexity. How-
ever, the convergence time of this protocol is quite
high.

The asynchronous diffusion protocol of Li and
Rus [42] and the time diffusion protocol of Su
and Akyildiz [62] use an averaging method to ad-
just node clocks. These protocols are reasonably
robust; however, the issue of clocks running back-
ward must be suitably addressed before these pro-
tocols are implemented in practice.

5.2. Qualitative evaluation

We evaluate the protocols based on overall
quality criteria. In contrast to Section 5.1 above,
here we discuss the goals of each protocol and
the extent to which we deem that the protocol suc-
ceeds in achieving those goals. While a quantita-
tive study deals with parameters that help the
reader fine-tune a synchronization protocol by
providing a telescopic view, a qualitative study
provides a broader and more general perspective.
Table 6 compares the various protocols in terms
of the following qualitative criteria.

Energy efficiency. Energy efficiency is an impli-
cit requirement in most wireless networks. The ex-
tent to which this requirement must be enforced
will vary depending on an application. For in-
stance, in the case of sensor networks the require-
ment is quite strict, forcing nodes to sleep as
frequently as possible and severely limiting the en-
ergy available for synchronization and other net-
work tasks. The main reason behind this energy
constraint is the small size of batteries in sensor
nodes, which greatly limits the amount of energy
that can be stored and produced (e.g., with solar
cells).

An important tradeoff for wireless networks is
between using the available energy for computing
or for communicating. Pottie and Kaiser [55] have
shown that, in the case of sensor networks using
radio frequency transmitters and receivers, the
energy required to transmit 1 bit over 100 m,
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which is 3 joules, can be used to execute 3 million
instructions. This finding makes it clear that com-
munication is far more energy-intensive than com-
putation. Elson and Romer [20] have stressed that
in low-power radio networks, listening and send-
ing and receiving messages requires much more en-
ergy than in a wired network. The CPU is also
sparingly available because it is shut down often
to conserve energy.

Accuracy. Accuracy is a measure of how well the
time maintained within the network is true to the
standard time. In other words, it is a measure of
the precision of synchronization. A protocol with
high accuracy thereby guarantees high precision.
In the case of absolute precision, this means that
the synchronized time in the network does not devi-
ate much from an external standard (e.g., UTC or
GPS). In the case of relative precision, this means
that, when a set of synchronized nodes is consid-
ered, the maximum deviation of the clock of any
node within the set is reasonably small.

Several protocols considered in this survey are
highly accurate. (See, e.g., [19,58].) Probabilistic
synchronization [53] allows a user to choose a de-
sired level of accuracy. The option of trading off
accuracy for a lower complexity could be quite
useful, depending on the network’s load.

Scalability. Elson and Romer [20] state that the
scope of a network is the geographic span of nodes
that are synchronized and the completeness of cov-
erage within that region. In general, the scope of a
network can be expanded by increasing the number
of nodes in the network. As the sensors are becom-

Table 6

Qualitative performance tabulation of synchronization protocols

ing cheaper, wireless sensor networks are becoming
increasingly large, up to tens of thousands of
nodes. Thus, synchronization protocols must be
sufficiently scalable with respect to network size.
Most protocols that handle sensor networks place
scalability on top of their list of priorities.
Although most authors have not measured sca-
lability in their experiments, Ganeriwal et al.
[24,25] have used a network of 150-300 nodes to
test scalability. In addition, Su and Akyildiz used
a net with 200 nodes to test the scalability of
TDP [62]. RBS [19] typically synchronizes 3-20
nodes in a neighborhood; however, this protocol
works well even in much larger networks using
gateways between neighborhoods. Protocols in
which the synchronization error increases with
the size of the network, such as Romer’s protocol
[56], achieve scalability at the expense of accuracy.
Overall complexity. The quantitative evaluation
in the previous subsection distinguishes various
complexity measures, including CPU load, storage
requirements, and message complexity (i.e., con-
vergence time). In this section, overall complexity
is viewed as a combination of algorithmic complex-
ity, overhead caused due to fault tolerance provi-
sions, and communication overhead. Romer’s
protocol [56] is probably the best choice for a re-
source-restricted environment because of its low
complexity. However, this method is not highly
accurate. This is not surprising as highly accurate
protocols usually incur high overall complexity.
Fault tolerance. Fault tolerance plays an impor-
tant role because a wireless medium is rather

Protocols Qualitative performance comparison
Accuracy Energy efficiency Overall complexity Scalability Fault tolerance

RBS [19] High High High Good No
Romer [56] Average High Low Poor No
Mock et al. [49] High Low Low N/A Yes
Ganeriwal et al. [25] High Average Low Good Yes
Ping [54] High High Low Good No
PalChaudhuri et al. [53] Unknown High Low Good No
Sichitiu and Veerarittiphan [58] High High Low N/A Yes
Time Diffusion Protocol [62] High Average High Good Yes
Asynchronous diffusion [42] Unknown Low High N/A Yes
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error-prone. The poor reliability of message deliv-
ery in a wireless medium can have devastating ef-
fects on synchronization protocols because
synchronization requires message exchanges.
Some fault-tolerant protocols [24,49,58] address
message loss to some extent, but others have not ad-
dressed this issue. Consequently, it is unclear how
sensitive their protocols are to message loss. This
is somewhat troublesome because handling mes-
sage loss can result in significant overheads and per-
formance degradation during synchronization.

6. Conclusions

With increasing frequency, attention has been
focused on wireless sensor networks because of
their wide applicability to a diverse range of appli-
cation areas. Among the many difficulties in
designing and building such networks, a central
challenge is providing clock synchronization
among the sensor nodes. Providing a common
time axis is necessary for a large number of sensor
applications because the data they report has to be
meaningfully fused to draw coherent inferences
about the environment being sensed.

Traditional clock synchronization protocols for
wired networks cannot be used because wireless
sensor-network protocols require the ability to
adapt dynamically, the ability to handle sensor
mobility, and scalability. The sensors themselves
are heavily resource-constrained because of limited
battery power. Furthermore, they need to operate
in highly lossy and unreliable environments. As a
result, several clock synchronization protocols
for wireless sensor networks have been designed
in the recent past.

This paper presented a survey and analysis of
existing clock synchronization protocols for wire-
less sensor networks, based on a variety of factors
including precision, accuracy, cost, and complex-
ity. The design considerations presented here will
help the designer in building a successful clock
synchronization scheme, best tailored to his appli-
cation. Specifically, the detailed analysis of the
various options and possible solutions for each
of the factors involved will guide the designer in

integrating various solution features to create a
successful clock synchronization scheme for the
application. Finally, the survey will be a helpful
benchmark for designers to compare and contrast
their results with the protocols that are widely in
use.
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