
Fast Graph Exploration by a Mobile Robot

Ajay D. Kshemkalyani

Department of Computer Science
University of Illinois at Chicago

Chicago, USA
Email: ajay@uic.edu

Faizan Ali

Department of Computer Science
University of Illinois at Chicago

Chicago, USA
Email: fali28@uic.edu

Abstract—Given an undirected, anonymous, port-labeled
graph of n nodes, m edges, and degree Δ, we require a
mobile robot to visit all the nodes in the graph. We give two
algorithms to solve this problem in O(m) time. Algorithm
Robot-Memory uses O(n logΔ) bits at the robot, and 1 bit
at each node. Algorithm Node-Memory uses O(logΔ) bits at
each node. The algorithms Robot-Memory and Node-Memory
trade-off the memory requirements at the robot and at the
nodes. The algorithms are capable of perpetual exploration or
patrolling, and are variants of depth-first search (DFS). The
algorithms fill in existing gaps in the trade-offs between robot
memory, memory at each node, and exploration time, in the
body of literature on the graph exploration problem.

Keywords-Mobile robot; graph exploration; graph traversal;

I. INTRODUCTION

A. Background

We are given an undirected graph G with n nodes, m
edges, and diameter D. The maximum degree of any node

is Δ. The graph is anonymous, i.e., nodes do not have unique

identifiers. At any node, its incident edges are uniquely

identified by a label in the range [0, δ − 1], where δ is

the degree of that node. We refer to this label of an edge

at a node as the port number at that node. We assume

no correlation between the two port numbers of an edge.

There is a single robot, whose objective is to visit all the

nodes in the graph, and detect when this has been done. The

algorithms should also be capable of repeated exploration (or

patrolling) of the graph.

Graph exploration and patrolling by a robot is important

for mission-critical applications such as rescue and surveil-

lance in dangerous, harmful, and unknown environments.

B. Related Work

In the graph exploration problem, the objective is to visit

all the nodes of the graph. There are many results for

this problem. We do not allow the use of pebbles (pebbles

are markers that can be left and collected from the nodes

by the mobile robot). Several other works assume specific

topologies such as trees [1], [3], [4], [6] or directed graphs.

Panaite and Pelc [8] provide a fast algorithm that has m+3n
steps (time complexity) but uses node labels, i.e., the graph is

not anonymous. Variants of the Panaite and Pelc algorithm,

in which the agent assigns unique labels to nodes, are given

in [9]. We do not compare with such works.

The following are the closest works on exploration in

general graphs in our model. An adaptation of standard

depth-first search (DFS) to a distributed system uses 1 bit

at the robot and O(Δ) bits per node. Fraigniaud et al. [5]

showed that using only memory at a robot, the robot can

explore an anonymous graph using θ(D logΔ) bits based

on an increasing depth-restricted DFS. They did not analyze

the time complexity to visit all the nodes, which turns out

to be
∑D

i=1 O(Δi) = O(ΔD+1) which is very high. Their

algorithm has no mechanism to avoid getting caught in

cycles and the only way out of cycles is the depth-restriction

on the DFS. The robot also requires knowledge of D to

terminate. If D is not known, the algorithm will continue

with x-depth restricted DFSs, for x ≥ D + 1, without ever

knowing that all the nodes have been visited. Cohen et al. [2]

gave two DFS-based algorithms with O(1) memory at the

nodes. The first algorithm uses O(1) memory at the robot

and 2 bits memory at each node to traverse the graph. The 2

bits memory at each node is initialized by short labels in a

pre-processing phase which takes time O(mD). Thereafter,

each traversal of the graph takes up to 20m time steps. The

second algorithm uses O(logΔ) bits at the robot and 1 bit

at each node to traverse the graph. The 1 bit memory at each

node is initialized by short labels in a pre-processing phase

which takes time O(mD). Thereafter, each traversal of the

graph takes up to O(Δ10m) time steps. Using the Rotor-

Router algorithm [10] allowing only O(logΔ) bits per node,

an oblivious robot (i.e., robot is not allowed any memory)

that also has no knowledge of the entry port when it enters a

node, can explore an anonymous port-labeled graph in 2mD
time steps [10]. Menc et al. [7] proved a lower bound of

Ω(mD) on the exploration time steps for the Rotor-Router

algorithm.

C. Our Results

Our results assume that the undirected graph, with m
edges, n nodes, diameter D, and degree Δ, is anonymous,

i.e., nodes have no labels. However, the ports (leading to

incident edges) at a node have locally unique labels.

115

2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)

978-1-5386-9555-5/18/$31.00 ©2018 IEEE
DOI 10.1109/AIKE.2018.00025

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 21:21:10 UTC from IEEE Xplore. Restrictions apply.

Table I
COMPARISON OF THE ALGORITHMS FOR EXPLORATION ON GRAPHS.

Algorithm Robot Memory at Traversal Features
Memory Each Node Time Steps

Distributed DFS 1 O(Δ) 2m distributed DFS

Fraigniaud et al. [5] O(D logΔ) −− O(ΔD+1) need to know D for termination
Cohen et al. [2] O(1) 2 20m+O(mD) O(mD) time steps for pre-processing

O(logΔ) 1 O(Δ10m) +O(mD) O(mD) time steps for pre-processing
Rotor-Router [7], [10] −− O(logΔ) O(mD) in-port agnostic

Robot-Memory O(n logΔ) 1 4m− 2n+ 2 can do patrolling
Node-Memory −− O(logΔ) 4m− 2n+ 2 O(1) memory at robot needed for patrolling

We provide two time-efficient algorithms to solve graph

traversal in our system model. As opposed to the O(ΔD+1)
[5] or 20m + O(mD) [2] or O(Δ10m) + O(mD) [2] or

O(mD) [10] time steps algorithms in the literature, all our

algorithms are fast, requiring 4m− 2n+2 time steps. Both

our algorithms are capable of ongoing exploration of the

graph, i.e., perpetual exploration or repeated exploration of

the graph, also known as graph patrolling. The following is

an overview of our algorithms; the upper bound results are

given in Table I.

1) We present algorithm Robot-Memory which needs

O(n logΔ) bits at the robot and 1 bit memory at each

node, running in 4m−2n+2 time steps per traversal.

The algorithm is capable of repeated traversals of the

graph.

2) Algorithm Node-Memory uses O(logΔ) bits at each

node and runs in 4m−2n+2 time steps per traversal.

If perpetual exploration is to be achieved, as opposed

to a single traversal of the graph, then one bit is needed

at the robot.

Both algorithms are variants of depth-first search (DFS) and

their complexity is summarized in Table I along with that of

the existing works in the literature. Although our algorithms

are simple, we are not aware of any literature which has

published these DFS variants. The algorithms fill in existing

gaps in the trade-offs between robot memory, memory at

each node, and exploration time, in the body of literature on

the graph exploration problem.

II. TRAVERSAL USING ROBOT MEMORY

Algorithm 1 (Robot-Memory) gives the code for a robot

to perpetually traverse the graph. In addition to the three

persistent variables: (i) odd, (ii) state, and (iii) stack, the

robot uses a non-persistent variable port entered to track

the port through which it enters (and then exits) a node,

except for the initial start node where this is set to −1
(line (10)). Variable odd enables perpetual traversal; in odd

numbered traversals, this is set to 1 and in even-numbered

traversals, this is set to 0. The value of odd is flipped when

a complete traversal of the graph is detected, in lines (23)-

(24). Each node uses a single boolean variable, visited,

which is used to track whether the node has been visited in

the current traversal. In conjunction with odd, the boolean

visited takes on different semantics in odd-numbered and

even-numbered traversals. After an odd-numbered traversal,

the visited value at each node is 1, and for the next (even-

numbered) traversal, this initial value of 1 should be treated

as “not visited”. Thus, in odd-numbered (even-numbered)

traversals, visited = 0 (=1) means the node has not yet been

visited by the robot. The stack is used to track the sequence

of port numbers through which the DFS path traced by the

robot can be backtracked. The port entered is pushed onto

stack in forward exploration (line (16)), and popped from

stack in backtracking (lines (19) and (28)). At the start

node, port entered is set to −1 (line (10)) and this value

is pushed on to stack (line (16)); so bottom of stack is −1.

At the initial node, the robot sets port entered to −1;

else when the robot enters a node, it sets port entered to

the entry port (lines 7-10).

• (lines 11-20) If the state is explore, then if the node

has been visited before, the robot changes state to

backtrack and moves back through the entry port

(lines 12-14). Otherwise, the robot sets visited to

odd to mark that the node has been visited, pushes

port entered (the parent pointer of the node) onto

the stack, and increments port entered in a mod-

ulo fashion. It then moves through port entered to

continue forward exploration, unless the new value of

port entered equals the entry port, in which case there

is no further graph to explore from this node, and the

robot backtracks through the entry port after changing

state to backtrack and popping the stack.

• (lines 21-29) If the state is backtrack, the robot

increments port entered in a modulo fashion, changes

state to explore and resumes forward exploration by

moving through port entered, unless the new value

of port entered is the parent pointer of the node

(top(stack)), in which case the robot remains in state
backtrack, pops the stack, and backtracks through

port entered. The robot also checks for complete

traversal of the graph (line 23) and if detected, flips

the odd bit.

116

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 21:21:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Robot-Memory, code at robot i

1: Variables at robot:

2: odd← 1 ∈ {0, 1}
3: state← explore ∈ {explore, backtrack}
4: stack ←⊥ of type {−1, 0, 1, · · · , logΔ− 1}

5: Variables at a node:

6: visited← 0 ∈ {0, 1}

7: if robot moves to current node then
8: port entered← entry port

9: else
10: port entered← −1
11: if state = explore then
12: if visited = odd then
13: state← backtrack
14: move through port entered

15: visited← odd
16: push(stack, port entered)
17: port entered← (port entered+ 1) mod δ
18: if port entered = top(stack) then
19: state← backtrack; pop(stack)

20: move through port entered
21: else if state = backtrack then
22: port entered← (port entered+ 1) mod δ
23: if top(stack) = −1 AND port entered = 0 then
24: odd← odd
25: if port entered �= top(stack) then
26: state← explore
27: else
28: pop(stack)

29: move through port entered

Theorem 1: Algorithm 1 (Robot-Memory) achieves per-

petual exploration of the graph in O(m) steps per traversal,

with O(n logΔ) bits at each robot and 1 bit per node.

Proof: Observe that the robot executes a variant of

a DFS in the traversal of the graph. The robot traverses

each edge of the DFS tree two times (once forward, once

backward), and each non-tree edge four times (once for

exploration in each direction, and once for backtracking in

each direction). So for a total of 4(m−(n−1))+2(n−1) =
4m − 2n + 2 times. One traversal is completed when the

start node is revisited (top(stack) = −1) and the next port

via which to explore is port 0 (line (23)). The value of

odd is then flipped (line (24)). Thus, the robot executes for

4m − 2n + 2 steps in one traversal, so the running time is

O(m) per traversal.

Each node has a boolean, visited. The robot has booleans

odd and state, and the stack. The maximum number of

entries in stack is n − 1 as the algorithm is a variant of

DFS. Each stack entry is a port number at a visited node,

and is thus bounded by logΔ bits. Hence, the memory at

the robot is bounded by O(n logΔ).
The mechanism of flipping the value of odd for each

new traversal (lines (23)-(24)), in conjunction with setting

visited to odd each time a node is visited for the first time

in a traversal (line (15)), allows for perpetual exploration of

the graph.

III. TRAVERSAL USING NODE MEMORY

Algorithm 2 Node-Memory, code at robot i

1: Variables at robot (not needed for single exploration):

2: odd← 1 ∈ {0, 1}

3: Variables at a node:

4: parent ptr ← −1 ∈ {−1, 0, 1, · · · , log δ − 1}
5: visited← 0 ∈ {0, 1}
6: port last forward← −1 ∈ {−1, 0, 1, · · · , log δ − 1}

7: if robot moves to current node then
8: port entered← entry port

9: else
10: port entered← −1
11: if visited = odd OR port entered �=

port last forward then
12: if visited = odd then
13: move through port entered

14: visited← odd
15: parent ptr ← port entered
16: port entered← (port entered+ 1) mod δ
17: if port entered �= parent ptr then
18: port last forward← port entered

19: move through port entered
20: else if visited = odd AND port entered =

port last forward then
21: port entered← (port entered+ 1) mod δ
22: if parent ptr = −1 AND port entered = 0 then
23: odd← odd
24: if port entered �= parent ptr then
25: port last forward← port entered

26: move through port entered

Algorithm 2 (Node-Memory) gives the code for a robot

to traverse the graph, with memory at the nodes. A single

bit, odd, similar to that used in Algorithm 1, is used at the

robot only if perpetual traversal is required. Three variables

are used at each node: (i) parent ptr that is used to point

to the parent node in the DFS traversal; (ii) visited that

indicates whether the node has been visited in the current

traversal; and (iii) port last forward that in conjunction

with port entered (a temporary variable) and visited, is

used to determine whether the robot is on its first visit to the

node (i.e., robot is in explore state) or whether the robot is in

117

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 21:21:10 UTC from IEEE Xplore. Restrictions apply.

backtracking state, in this traversal. Variable odd at the robot

enables perpetual traversal; in odd numbered traversals, this

is set to 1 and in even-numbered traversals, this is set to

0. The value of odd is flipped when a complete traversal

of the graph is detected, in lines (22)-(23). In conjunction

with odd, the boolean visited takes on different semantics in

odd-numbered and even-numbered traversals. After an odd-

numbered traversal, the visited value at each node is 1, and

for the next (even-numbered) traversal, this initial value of

1 should be treated as “not visited”. Thus, in odd-numbered

(even-numbered) traversals, visited = 0 (=1) means the node

has not yet been visited by the robot.
The boolean visited at each node is also necessary for the

robot to know whether it is visiting a node in forward explo-

ration mode or in backtracking mode. Rather than maintain

a variable state at the robot, here port last forward is

maintained at each node; it indicates the port number on

which the robot most recently exited the node in forward

exploration mode. It is updated in lines (18) and (25) just

before moving out of the node in the forward exploration

state. The initial value is −1. The robot visits the node in

backtracking state if and only if (i) the node has been visited

before in this exploration (i.e., visited = odd) and (ii)

port entered = port last forward. This test is used in

line (20) to test for backtracking mode, and its complement

is used in line (11) to test for forward exploration mode.

This use of port last forward was given in [9].
At the initial node, the robot sets port entered to −1;

else when the robot enters a node, it sets port entered to

the entry port (lines 7-10).

• (lines 11-19) If the state is explore, determined

by the test visited = odd OR port entered �=
port last forward, then if the node has been visited

before, the robot moves back through the entry port

(lines 11-13). Otherwise, the robot sets visited to odd
to mark that the node has been visited, sets parent ptr
to port entered, and increments port entered in a

modulo fashion. It then moves through port entered
after setting port last forward to port entered, to

continue forward exploration, unless the new value of

port entered equals parent ptr (the entry port), in

which case there is no further graph to explore from

this node, and the robot backtracks through the entry

port port entered.

• (lines 20-26) If the state is backtrack, de-

termined by the test visited = odd AND

port entered = port last forward, the robot incre-

ments port entered in a modulo fashion, and resumes

forward exploration by moving through port entered
after setting port last forward to port entered, un-

less the new value of port entered is the parent

pointer of the node (parent ptr), in which case the

robot backtracks through port entered. The robot also

checks for complete traversal of the graph (line 22) and

if detected, flips the odd bit.

Theorem 2: Algorithm 2 (Node-Memory) achieves per-

petual exploration of the graph in O(m) steps per traversal,

with O(logΔ) bits at each node and 1 bit at the robot. For

a single traversal of the graph, no memory is required at the

robot.

Proof: Observe that the robot executes a variant of

a DFS in the traversal of the graph. The robot traverses

each edge of the DFS tree two times (once forward, once

backward), and each non-tree edge four times (once for

exploration in each direction, and once for backtracking in

each direction). So for a total of 4(m−(n−1))+2(n−1) =
4m − 2n + 2 times. One traversal is completed when the

start node is revisited (parent ptr = −1) and the next

port via which to explore is port 0 (line (22)). The value

of odd is then flipped (line (23)). Thus, the robot executes

for 4m− 2n+ 2 steps in one traversal, so the running time

is O(m) per traversal.

Each node has a boolean, visited, and parent ptr and

port last forward variables of type port (�log(δ + 1)�
bits each). Hence, the memory at each node is bounded by

O(logΔ).
The single bit variable odd at the robot is required only

for perpetual exploration. For a single traversal of the graph,

it is not required. All instances of variable odd in the code

get replaced by “1” and instances of odd get replaced by

“0”. Lines (22)-(23) are not needed.

REFERENCES

[1] C. Ambuhl, L. Gasieniec, A. Pelc, T. Radzik, and X. Zhang,
“Tree exploration with logarithmic memory,” ACM Trans.
Algorithms, Vol. 7(2), pp. 17:1–17:21, 2011.

[2] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Pe-
leg, “Label-guided graph exploration by a finite automaton,”
ACM Trans. Algorithms, Vol. 4(4), pp. 42:1–42:18, 2008.

[3] Y. Disser, F. Mousset, A. Noever, N. Skoric, and A. Steger,
“A general lower bound for collaborative tree exploration,” in
Proc. SIROCCO 2017, pp. 125–139, 2017.

[4] P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc,
“Collective tree exploration,” Networks, Vol. 48(3): 166–177,
2006.

[5] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg,
“Graph exploration by a finite automaton,” Theor. Comput.
Sci., Vol. 345(2-3): 331–344, 2005.

[6] Y. Higashikawa, N. Katoh, S. Langerman, and S.-I. Tanigawa,
“Online graph exploration algorithms for cycles and trees by
multiple searchers,” J. Comb. Optim., Vol. 28(2): 480–495,
2014.

[7] A. Menc, D. Pajak, and P. Uznanski, “Time and space
optimality of rotor-router graph exploration,” Inf. Process.
Lett., Vol. 127: 17–20, 2017.

[8] P. Panaite and A. Pelc, “Exploring unknown undirected
graphs,” J. Algorithms, Vol. 33(2): 281–295, 1999.

[9] Y. Sudo, D. Baba, J. Nakamura, F. Ooshita, H. Kakugawa, and
T. Masuzawa, “An agent exploration in unknown undirected
graphs with whiteboards,” in Proc. of the Third International
Workshop on Reliability, Availability, and Security, 2010.

[10] V. Yanovski, I.A. Wagner, and A.M. Bruckstein, “A dis-
tributed ant algorithm for efficiently patrolling a network,”
Algorithmica, Vol. 37(3): 165–186, 2003.

118

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 21:21:10 UTC from IEEE Xplore. Restrictions apply.

