
Modeling User Interactions in Social Communication Networks with Variable Social

Vector Clocks

Ta Yuan Hsu

University of Illinois at Chicago

Chicago, IL, 60607-7053, USA

Email: thsu4@uic.edu

Ajay D. Kshemkalyani

University of Illinois at Chicago

Chicago, IL, 60607-7053, USA

Email: ajay@uic.edu

Min Shen

University of Illinois at Chicago

Chicago, IL, 60607-7053, USA

Email: mshen6@uic.edu

Abstract—Social communication networks have been widely
investigated in recent years. From fine-grained temporal in-
formation’s point of view, social vector clock (SVC) is a
useful mechanism to track the most recent communication
with all other local peers in a social network. A modification of
conventional social vector clocks has been proposed to deal with
the issue of poor scalability without keeping whole temporal
views [1]. In this paper, we propose an idea of variable social
vector clocks (VSVCs) and the corresponding incremental
algorithm. Not only does it maintain the lower bound of how
out-of-date each peer can be with respect to others, but it
also considers the shortest friendship separation to restrict
how far information may be transmitted along time respecting
paths. Unless this separation is bounded to be infinite, some
communication messages could be lost implicitly. We also focus
on studying message inconsistency and reachable in-degree
communication distribution in several social networks based
on variable social vector clocks.

Keywords-variable social vector clocks; message loss rate;
reachable in-degree distribution

I. INTRODUCTION

The analysis of online communication for large social

networks and social supports has attracted wide attention in

a variety of areas over the past few decades. For example,

larger social networks act as tubes for information flows and

messaging communication [2][3]. Online social networks,

such as Facebook, provide a common platform to connect

individuals in terms of some characteristic attributes, such

as interests, activities, ideas, backgrounds, or events, and

allow them to interact with each other over the Internet. A

large amount of evidence shows that social network services

have already influenced the habit of using Internet and

become a major part of our daily lives all over the world

[4][5]. It also insinuates that the degree of social networking

communications grows quickly over time. Actually, it has

been a challenge to extract complete data flows for event-

driven communication in a large-scale network over long

periods of time. Since event-driven data flows may be highly

relevant with the spacing and ordering of events, the fine-

grained temporal approach has been proposed to figure out

the dynamic interactions in a social network through a

temporal framework [6].

Applying the fine-grained temporal view, some re-

searchers have begun to focus on information path latency

and indirect message exchanging in social communication

networks with the utilization of vector clocks from the

field of distributed systems. Vector clocks were conceptually

introduced by Mattern [7]. A vector clock in a concurrent

system can be used to track the lower bound of how recent

each process’s state is associated with any other one at a

given time. With a partial ordering of events in such a

system, vector clocks can detect whether a given pair of

events are causally related.

Kossinets et al. [8] applied the concept of vector clocks

to social networks, where they introduced a framework of

Social Vector Clocks (SVCs). Through SVCs, communica-

tion flows were visualized over time [9]. It has also been

used to formulate a temporal framework to figure out the

structure of information pathways [8]. Ignoring the subject

matter of information or messages, an ordering of time-

stamps can provide a global view of user interactions. The

SVC is an important mechanism capable of maintaining

the contents and timestamps of the latest communications

for each peer. As with Lamport timestamps, communication

messages contain the local state of the sending process’s

logical clock. Consider an example as shown in Figure 1.

Suppose that seven members are discussing some issues

about traveling through a series of direct or indirect com-

munication messages, such as user-targeted mention tweets,

over four days. Let peer A be a coordinator responsible

for collecting the other six members’ opinions to make a

conclusion. Peer A initially sent the first message to peer

B at 11PM on Tuesday. Subsequently, peer B could send

his idea and peer A’s opinion to peer C. Finally, peer A

would receive all indirect information from peers B, C, D,

E, and F and the message from peer G at 6PM on Friday.

Although peer A did not have direct communication with

any peers other than peer G and B, peer A is still aware of

the whole knowledge associated with all members’ thoughts

on Friday evening by indirect message exchanges using the

properties of SVCs. The reason is that all indirect up-to-date

communications between any two peers can be retained by

SVCs, but with quadratic space requirements. However, a

2014 28th International Conference on Advanced Information Networking and Applications Workshops

978-1-4799-2652-7/14 $31.00 © 2014 IEEE

DOI 10.1109/WAINA.2014.29

96

2014 28th International Conference on Advanced Information Networking and Applications Workshops

978-1-4799-2652-7/14 $31.00 © 2014 IEEE

DOI 10.1109/WAINA.2014.29

96

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:07 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Illustrative example of social network communication for seven

people. < · > denotes a communication message or a piggybacked message

large proportion of indirectly exchanged messages received

may be meaningless for most peers in a social network. For

example, if peer A informed another peer H (suppose that

peer H is peer A’s father) something independent of traveling

issue at 7AM Saturday, peer H would still receive all indirect

communication messages shown in Figure 1, even though

peer H was unconcerned with those messages. As illustrated

in this example, it is of no practical use to receive all peers’

indirect updated messages for analyzing user interactions

using the conventional SVCs in social groups. In [10], it

is shown that cognitive constraints may not impact the size

of the social network. One modification to the SVCs, along

with shortest time-respecting paths, has been proposed to

formulate the fine-grained temporal features applicable to

large-scale social interaction networks with better scalability

for link prediction [1]. The number of reachable indirect

incoming messages is delimited by the minimum number of

hops (μ) from the source to the receiver on time-respecting

paths; some messages may be lost and inconsistent when

μ < the number of peers. As shown in Figure 1, if μ
is bounded to be 1 such that any indirect updates will

be discarded, peer A may obtain inconsistent information.

This observation implies that the message loss rate must be

affected by the value of μ.

In this paper, we extend the modification of SVCs to be

variable social vector clocks (VSVCs) and apply VSVCs to

quantitatively analyze the influence of the restriction of μ
on the reachable information. Here, we focus on two small

social groups from Twitter, where participants can explicitly

dispatch messages to targeted receivers. The two groups are

a list of UK athletes organized by The Telegraph and a

list of past and present MLB players. We also present the

reasonable compromise of message loss rate and memory

space requirement, and then the degree of separation for

incoming reachable messages.

II. VECTOR CLOCKS

In this section, we first briefly introduce the concept of

conventional vector clocks (VC) in distributed systems [7].

We then give a simple overview about the framework of

SVCs and the modification of SVCs. Last, we explain how

to exploit the framework of variable social vector clocks

(VSVC) in social networks.

A. Conventional Vector Clocks

Basically, to establish vector clocks in the system, each

process Pi ∈ P (the set of processes in the system) maintains

a vector clock Vi of N (the number of processes in the

system) integers, which is updated by the following rules.

1) Before an internal event happens at process Pi, Vi[i] =
Vi[i] + 1.

2) Before process Pi sends a message, it first executes

Vi[i] = Vi[i] + 1, then it sends the message piggy-

backed with Vi.

3) When a process Pj receives a message with timestamp

U from Pi, it executes

∀k ∈ [1 . . .N], Vj[k] = max(Vj [k], U [k]);
Vj [j] = Vj [j] + 1; before delivering the message.

Conventional vector clock in a distributed system is used

to track the causal relation (≺) between two events that

happened in the system by comparing their corresponding

vector clock timestamps, i.e., ei ≺ ej ⇔ Vei
< Vej

,

where Vei
< Vej

means ∀a ∈ [1, N], Vei
[a] ≤ Vej

[a] and

∃b ∈ [1, N] such that Vei
[b] < Vej

[b]. Furthermore, the

conventional vector clock can also be expressed as a multi-

variate function on a 3-tuple (t, s, r), which is (time, sender,

receiver). Pi’s temporal view of every process in the system

at time t is defined as a function φi,t = (φi,t(j) : j ∈ P)
where φi,t(j) is Pi’s temporal view of a particular process

Pj at time t. Here, φi,t(j) corresponds to the jth entry of

Pi’s local vector timestamp Vi when Vi[i] = t.

B. Social Vector Clocks

The SVC updating approach basically obeys the mecha-

nism of the conventional vector clocks without any commu-

nication delay and with only one global time clock. When

receiving an incoming event (Et) sent on time slice t from

Pi, the timestamp of the receiver Pj’s temporal view of the

ith entry has to be equal to that of the jth entry of Pj’s

vector clock. The left of Figure 2 illustrates how to update

the entries on SVCs. For example, when P3 receives Et4

sent from P2 at t4, V3[2] = t4 and V3[3] = t4 as well. By

the rule 3 in the conventional vector clocks, V3[1] and V3[4]

will be t3 and t2, respectively.

In a N -peer social group, SVCs require O(N2) space

globally to maintain the latest temporal views. Under the

piggybacking approach, each peer will soon get a large

number of indirect updating messages from other peers.

However, most of receivers do not have any direct commu-

nication and their social-connection steps are too far away

9797

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:07 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Illustrative example of social network communication for four
peers with the SVCs.

from each other. In other words, it may not be efficient

to directly utilize SVCs, because too much impractical

information will be generated.

A modification of SVC updating approach has been

proposed in [1], where a parameter μ is introduced as the

minimum number of hops between a pair of peers along

time-respecting paths. The illustration of different values

assigned to μ is as follows:

μ = ∞ (it is sufficient for μ to be N -1 in a N -peer

social group): it is equivalent to the conventional SVC updat-

ing approach, considering unlimited indirect communication

spread without self-looping updating, as shown in Figure 2.

μ = 1 : it only focuses on direct friendship communication.

A receiver can update based on the incoming message if and

only if the corresponding sender ever directly interacts with

the receiver.

μ = 2 : not only does it allow all direct updating with

μ = 1, but it also considers friend-of-friend communication.

That is, a receiver j can accept an incoming piggybacked

message, indirectly come from peer k and directly sent from

peer i, if and only if peer k has ever directly interacted with

the receiver j.

C. Variable Social Vector Clocks

In order to consider all different reachable distances of

friendship, we define a universal framework of the variable

social vector clocks in social networks.

Not only does a process keep the latest temporal views

for each peer with respect to others, but it also computes

the shortest friendship distances for each pair of peers: the

jth entry of peer i’s social vector clock (Vi[j]) maintain two

records. The first record (Vi[j].time) still tracks the temporal

view of peer i on peer j and the second record (Vi[j].dist) is

the shortest time-respecting path. When an incoming event

Et occurs sent from peer j to peer i at time slice t, then

Vi[j].time = Et.timestamp
Vi[k].dist = min (Vj [k].dist +1,Vi[k].dist) when k 	= j
The right of Figure 2 illustrates some examples of ap-

plying VSVCs to the case in the left of Figure 2. Let us

consider V2 as the VSVC of P2. When receiving Et1, the

first entry of V2 contains t1 (the latest sending timestamp

of P1) and 1 (the value of μ) from P1 to P2. In this paper,

we use the framework of VSVCs to analyze how the social

communication is affected by μ.

III. METHODOLOGY

In order to investigate the impact of the hop-constrained

paths on social communications, we design an efficient

accumulative vector clock updating algorithm keeping track

of the mimimum number of hops the information travels

between a pair of sender and receiver. Whenever one com-

munication event Et happens, triggered from a sender peer

(Et.sender) to a receiver peer (Et.receiver), the receiver

peer’s vector clock needs to be updated. For each update,

the shortest distances from all peers to the receiver peer

need to be computed as well. The algorithm pseudo-code

of V ariableSocialV ectorClocks is shown in Algorithm 1.

A sequence of Et (0 ≤ t ≤ T) is treated as the input.

In lines 1-4, the timestamp vector (Vi.time) and distance

vector (Vi.dist) for each peer i with respect to any other

peer are initialized. Each peer maintains its own vector

clock with the latest information with respect to all other

peers. The value of DISTi [k] gives how many messages

are indirectly/directly delivered to peer i in the minimum

number of hops of k when k ≥1, where k is the shortest

distance between a pair of peers. Vx[y].time represents

the latest temporal view of peer x on peer y; Vx[y].dist
maintains the shortest distance from y to x.

There are four different cases for updating. Lines 7-17

deal with the first case when both sender’s and receiver’s

vector clocks have been active. ‘Active’ implies that a peer

has received at least one direct incoming information from

any other peer. This case occurs most often, such as Et7

shown in Figure 2. P1 becomes ‘active’ after time t6 and

P3 being ‘active’ after time t4. Lines 18-23 correspond to

the second case, such as Et2, where P4 has not been active

until t5 but P2 has become active since t1. Lines 24-28 treat

the third case like Et6 contrary to the second case. Lines 29-

32 illustrate the fourth case, such as Et1, where neither of

P1 and P2 has been active at t0.

Note that when a receiver j finishes updating timestamps

and distances, DISTj [] also needs to be updated by lines

17, 23, 28, 32 for different cases. Let’s consider the example

of Et2 as shown in Figure 2. After receiving Et1, V2 should

be [t1/1, t1/0,⊥,⊥]. DIST2 [0, 1, 2, 3]=[1, 1, 0, 0]. When

receiving Et2, V2 becomes [t1/1, t2/0,⊥, t2/1]. Based on

lines 27-28, when k=2, V2[2].dist is ‘0’. DIST2 [0]++ has

to run one time and will be equal to ‘2’. When k=0 and

3, V2[0].dist and V2[3].dist are both ‘1’. DIST2 [1]++ will

run two times and then becomes ‘3’. Lines 32-34 accumulate

DISTi[] from each peer into a global DIST [].

9898

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:07 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: VariableSocialVectorClocks

Input: E0,..., ET

Output: V0,...,VN−1 and DIST []

1 for i ← 0 to N − 1 do

2 Vi.time ←[⊥,...,⊥];

3 Vi.dist←[⊥,...,⊥];

4 DISTi ←[0,...,0];

5 while t ≤ T do

6 j ← Et.receiver; i← Et.sender;

7 if Vi and Vj have been active then

8 Vj [j].time←Et.time;

9 for k← 0 to N − 1 but k 	= j do

10 if Vi[k] 	= ⊥ and Vj [k] 	= ⊥ then

11 Vj [k].time←max(Vi[k].time,Vj [k].time);

12 if Vi[k].dist < Vj [k].dist then

13 Vj [k].dist←Vi[k].dist+1;

14 else if Vi[k] 	= ⊥ and Vj [k] is ⊥ then

15 Vj [k].time← Vi[k].time;

16 Vj [k].dist← Vi[k].dist+1;

17 DISTj [Vj[k].dist]++;

18 else if Vi is active but Vj has not been active then

19 Vj [j].time←Et.time; Vj [j].dist←0;

20 for k← 0 to N − 1 but k 	= j do

21 Vj [k].time← Vi[k].time;

22 Vj [k].dist← Vi[k].dist+1;

23 DISTj [Vj[k].dist]++;

24 else if Vj is active but Vi has not been active then

25 Vj [i].time ← Et.time; Vj [j].time← Et.time;

26 Vj [i].dist←1;

27 for k← 0 to N − 1 but k 	= j do

28 DISTj [Vj[k].dist]++;

29 else if both Vi and Vj have not been active then

30 Vj [i].time ← Et.time; Vj [j].time← Et.time;

31 Vj [i].dist←1; Vj [j].dist←0;

32 DISTj [1]←1;

33 t++;

34 for k ← 1 to N − 1 do

35 for i ← 0 to N − 1 do

36 DIST [k] ←DIST [k]+DISTi [k];

A. Message Loss Rate

V ariableSocialV ectorClocks is an incremental algo-

rithm to update the latest timestamp and the shortest distance

at each time slice t. In an N -peer social network group,

when μ is bounded to be N -1, it is equivalent to the

conventional social vector clock algorithm with unlimited

communication spread. Obviously, the total number of direct

or indirect updating messages without losing any communi-

cation is:

DIST [k] =

N−1∑
i=0

DISTi [k]; (NM =

N−1∑
k=1

DIST [k]) (1)

When the upper bound of μ < N , based on DIST [1 ∼ μ],

we can compute the message loss rate corresponding to the

specified value of μ:

RL(μ) = 1−

μ∑
k=1

DIST [k]

NM

(2)

RL(μ) can be viewed as the space saving rate. Interestingly,

it decreases as the upper bound of μ increases. With this

view, we can gain insight into how to determine the upper

bound of μ to efficiently utilize memory space without losing

reasonable communication in a social network.

B. Reachable in-degree distribution

In our methodology, we also study the reachable in-degree

distribution using the output vector clocks {V0,..,VN−1} at

the latest time slice T in Algorithm 1. We want to learn about

how many peers (Np) whose sending information can reach

one peer p in the steady state. Obviously, Np is subject to

μ based on the up-to-date value of Vp[i].dist. By summing

up the value of xi (xi: a unit step function)

Np(μ) =
N∑

i=1

xi

{
xi = 1 if Vp[i].dist ≤ μ; p 	= i
xi = 0 otherwise

(3)

If xi=1, a message sent from peer i can reach peer p;

otherwise, it is unreachable even though there exists a

connection path. Due to the variation of individual peers,

we normalize the value of Np for each peer:

Nave(μ) =

N−1∑
p=0

Np(μ)

N
(4)

We refer to Nave(μ) as the ‘average reachable in-degree dis-

tribution number’. Apparently, the value of Nave positively

depends on the bound of μ. Therefore, the average reachable

in-degree rate can be defined as:

Rave(μ) =
Nave(μ)

N
(5)

If social communication is in steady-state, Rave(μ) should

be close to 1-RL. Furthermore, we also use Nave(μ) to

evaluate the degrees of separation for individual social

networks in our experiments based on the six degrees of
separation proposed by Frigyes Karinthy in 1929.

IV. RESULTS AND EVALUATION

In this section, we present a brief overview of our system

architecture for experiment setup, dataset configuration, and

9999

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:07 UTC from IEEE Xplore. Restrictions apply.

our experimental results. The brief overview is followed by

the evaluation and discussion.

A. Experiment Setup

The system infrastructure is built along with the entities

outside the system that it interacts with and a description

of the interfaces between these entities. The datasets we

consider come from Twitter. We extract tweets to col-

lect communication data into our dataset using a REST

functional implementation through the twitter4j package

based on certain filters. To support our methodology,

V ariableSocialV ectorClocks is applied to two datasets to

illustrate the influence of the separation degree constraint on

social communication.

B. Datasets

In the Twitter data that we analyze, we filter them to

include only two targeted forms of communication. The

first one occurs in the form of retweets (where one user

rebroadcasts another user tweets). The second one happens

in the form of user mentions (where the @ symbol is used

to explicitly refer to a specific user). If there exist more than

one user in a tweet, we turn it into as many events as there

are multiple users represented in the tweet.

Twitter UK Olympics Data: The Olympics dataset cov-

ers Twitter communication among a set of 476 UK Olympic

athletes over the course of the 4 years until now, including

about 940,000 tweets. It is based on a list of UK athletes

organized by The Telegraph.

Twitter MLB Data: The MLB dataset includes Twitter

communication among a list of 550 past and present MLB

players in 2013 on Twitter, containing about 660,000 tweets.

It is based on a list of Major League Baseball players

organized by MLB.

C. Experiment Evaluation and Results

For the UK dataset, the total number of messages that can

be captured without any separation constraints is 48,797,781.

For the MLB dataset, the total number of messages delivered

is 25,154,068. Figure 3 shows the relationship between the

minimum number of hops(μ) and the message loss rate RL.

The detailed results are shown in Table I. If μ reaches

more than eleven, the message loss rates will be close to

or less than 1%, which are ignored in Table I. When the

upper bound of μ is limited to ‘two’, the memory space

requirements, proportional to 1-RL , can be reduced up to

about 0.69 ∼ 0.81. In several social networks, the case of

μ=2 has been considered and shown to be significant to the

impact of information brokerage activities [11]. Based on the

observation of RL in Table I, it shows that the variable social

vector clock updates can effectively improve the memory

space utilization and can more closely approximate how far

information should be tracked in real social networks. When

μ is bounded to be six, the values of RL (space saving rate)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

M
e

s
s
a

g
e

 L
o

s
s
 R

a
te

 (
R

L
)

The upper bond of the minimum number of hops μ

The distribution of message loss rates : RL

London 2012
MLB players

Figure 3. Message Loss Rate

Table I

MESSAGE LOSS RATES RL(μ) ; μ IS THE MINIMUM NUMBER OF HOPS;
N(μ) IS THE NUMBER OF RECEIVED MESSAGES

μ
London 2012 MLB players

RL(μ) N(μ) RL(μ) N(μ)
1 0.9491 2,482,898 0.9534 694,949

2 0.6915 15,055,874 0.8062 4,471,680

3 0.3576 31,345,425 0.4864 12,675,947

4 0.1851 39,766,327 0.2522 18,684,643

5 0.1055 43,649,830 0.1403 21,554,702

6 0.0653 45,611,294 0.0840 22,999,239

7 0.0436 46,670,688 0.0531 23,792,599

8 0.0308 47,292,706 0.0363 24,222,348

9 0.0227 47,688,174 0.0270 24,461,355

10 0.0167 47,980,881 0.0210 24,615,896

11 0.0130 48,161,113 0.0163 24,736,486

are about 6.5% and 8.4%, respectively. In other words, more

than 90% of direct or indirect communication messages may

be maintained. It implies that when μ = 6, the modification

of social vector clocks almost act as the conventional ones.

For the analysis of reachable in-degree distributions

(Nave(μ)), as per the definition in Section 3, Figure 4

shows the distributions of Nave(μ) for these two groups. In

[1], the authors only considered direct friendship (μ=1) and

friendship-of-friendship (μ=2) in their vector clock frame-

work. Several social networks, such as Facebook, Twitter,

and Google+, also allow direct friends and friends-of-friends

to communicate with each other. Based on the results shown

in Table II, when μ is bounded to be two, each peer can

communicate with about 30% ∼ 20% of peers on average

in these two social groups under steady-state situations.

The results are both consistent with the observations of the

message loss rate. In terms of the theory of six degrees

of separation, anyone or any individual in the real world

can be connected to each other on the planet through a

chain of acquaintances with six or fewer intermediaries. As

a result, when the minimum number of hops (μ) is bounded

100100

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:07 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

T
h

e
 a

v
e

ra
g

e
 r

e
a

c
h

a
b

le
 i
n

-d
e

g
re

e
 r

a
te

 R
a

v
e

The upper bond of the minimum number of hops μ

The reachable in-degree distribution rates

London 2012
MLB players

Figure 4. The Reachable In-degree Distributions

Table II

THE AVERAGE REACHABLE IN-DEGREE DISTRIBUTION NUMBER

(Nave(μ)) AND RATE (Rave(μ))

μ
London 2012 MLB players

Nave(μ) Rave(μ) Nave(μ) Rave(μ)
1 17 0.035714 13 0.02363

2 140 0.294118 107 0.194545

3 332 0.697479 328 0.596364

4 417 0.87605 455 0.827273

5 440 0.92437 490 0.890909

6 448 0.941176 502 0.912727

7 451 0.947479 508 0.923636

8 453 0.951681 511 0.929091

9 454 0.953782 512 0.930909

10 455 0.955882 513 0.932727

11 456 0.957983 514 0.934545

to be six, everyone can communicate with all the people in a

social networking community. Intuitively, ‘six’ is applicable

to evaluate our experimental results in the reachable in-

degree distributions. Interestingly, as shown in Table II when

μ = 6, Rave is more than 90% of peers in both cases. It

reasonably implies that each peer can almost communicate

with most of the peers within six steps in the same social

group.

V. CONCLUSIONS

In this paper, we presented a framework of

V ariableSocialV ectorClocks to incrementally update

VSVCs. We quantitatively analyzed the influence of the

constraint of the shortest friendship separation on the

message loss rates and reachable in-degree distributions

using two Twitter social network groups. Based on

the friendship policy in several social networks, where

they allow only direct friends and friends-of-friends to

communicate with each other, we focus on the minimum

number of hops (μ) of 1 and 2 in our experiment evaluation.

From the results of RL, we observe that when μ is bounded

to be ‘two’, the memory space requirements can be

effectively reduced up to 70% ∼ 80%. Taken together with

this restriction, the vector clock updates can become more

efficient for the memory space utilization and more closely

approximate how far information would be tracked along

time-respecting paths.

Our experiment results also show that when μ is bounded

to be six, the average reachable in-degree distribution rates

(Rave) in both social networking groups are statistically

more than 90% (i.e., it can almost exchange messages

with all peers in a social group). Besides, when the upper

bound of μ is ‘six’, the message loss rates (RL) in both

experimental settings are less than 10%. It means that most

of messages in social vector clocks can be retained. It is

consistent with the results of Rave. Furthermore, when μ
is 2, the message loss rates (RL) are respectively 70% and

80% (Table I) in agreement with the corresponding average

reachable in-degree distribution rates (Rave).

In our future work, we plan to integrate into social com-

munication aggregation analysis with variable social vector

clocks and develop a reasonable user interaction model.

REFERENCES

[1] C. Lee, B. Nick, U. Brandes, and P. Cunningham, “Link
prediction with social vector clocks,” in Proceedings of the

19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’13, Apr. 2013, pp.
784–792.

[2] B. Huberman and L. Adamic, “Information dynamics in
the networked world,” in Complex Networks, E. Ben-Naim,
H. Frauenfelder, and Z. Toroczkai, Eds. Springer, 2004, vol.
650, pp. 371–398.

[3] M. Granovetter, “The strength of weak ties,” Am. J. Sociol.,
vol. 78, no. 6, pp. 1360–1380, 1973.

[4] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence anal-
ysis in large-scale networks,” in Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’09, 2009, pp. 807–816.

[5] B. K. Lewis and C. Nicholes, “Social media and strategic
communication: A two-year study of attitudes and perceptions
about social media among college students,” Public Relations
Journal, vol. 6, no. 4, 2012.

[6] P. Holme and J. Saramäki, “Temporal networks,” Physics
Reports, vol. 519, no. 3, pp. 97–125, 2012.

[7] F. Mattern, “Virtual time and global states of distributed sys-
tems,” Proceedings of the Parallel and Distributed Algorithms

Conference, pp. 215–226, 1988.
[8] G. Kossinets, J. Kleinberg, and D. Watts, “The structure of

information pathways in a social communication network,”
in Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ser.
KDD ’08, 2008, pp. 435–443.

[9] M. Harrigan, “Using vector clocks to visualize communica-
tion flow.” in ASONAM, N. Memon and R. Alhajj, Eds. IEEE
Computer Society, 2010, pp. 241–247.

[10] R. M. Dunbar and R. Hill, “Social network size in humans,”
Human Nature, vol. 14, no. 1, pp. 53–72, 2005.

[11] R. S. Burt, “Secondhand brokerage: Evidence on the impor-
tance of local structure for managers, bankers, and analysts,”
Academy of Management, vol. 50, no. 1, pp. 119–148, 2007.

101101

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:44:07 UTC from IEEE Xplore. Restrictions apply.

