Immediate Detection of Predicates in Pervasive
Environments

Ajay D. Kshemkalyani
University of lllinois at Chicago

ajay@uic.edu

ABSTRACT

An important problem in pervasive environments is detect-
ing predicates on sensed variables in an asynchronous dis-
tributed setting to determine context. We do not assume
the availability of synchronized physical clocks because they
may not be available or may be too expensive for predicate
detection in such environments with a (relatively) low event
occurrence rate. We address the problem of detecting each
occurrence of a global predicate, at the earliest possible in-
stance, by proposing a suite of on-line middleware protocols
having varying degrees of accuracy. We analyze the degree
of accuracy for the proposed protocols. The extent of false
negatives and false positives is determined by the run-time
message processing latencies.

Categories and Subject Descriptors
C.2.4 [Distributed systems]: Distributed applications

General Terms

Theory, Design, Performance

Keywords

sensor networks, pervasive computing, predicate detection

1. INTRODUCTION

A pervasive environment can be modeled as a networked
autonomous embedded system that interacts with the phys-
ical world through sensors and actuators. Such systems aim
to sense-monitor-actuate the physical world. A pervasive
application is context-aware in that it can adapt its behav-
ior based on the characteristics of the environment [2, 6,
7, 15, 17]. A central issue is that of monitoring predicates
(or properties) defined on variables of the environment. In
the general case, the predicate is on a pattern of events and
has two components — a spatial component, and a temporal
component on the monitored variables. The temporal com-
ponent specifies various timing relations, such as those in [3,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ARM’2010, November 30, 2010, Bangalore, India.

Copyright 2010 ACM 978-1-4503-0455-9/10/11 ...$10.00.

4, 10], on the observed values of the variables. In this paper,
we consider the “instantaneous” snapshot of the variables, to
capture their values at the same instant in physical time in
the asynchronous message-passing distributed setting.

The existing literature on predicate detection for pervasive
environments, e.g., [2, 6, 10, 17], except for [7], assumes that
it can take instantaneous snapshots in the system. This is
possible with physically synchronized clocks. There is a wide
body of literature on providing tight clock synchronization
for wireless sensor networks [16]. Its costs are incurred by a
lower layer, and it also imposes an inevitable skew e which
leads to imprecision in detecting predicates in physical time.
Predicate detection is prone to false negatives and false pos-
itives when there are “races”. It has been shown that when
the overlap period of the local intervals, during which the
global predicate is true, is less than 2e, false negatives occur
[14]. In very resource-constrained sensor systems or those
in remote environments, clock synchronization service may
be unavailable or be too expensive in terms of energy usage.
Therefore, a companion paper [12] explored the option of
using lightweight middleware protocols, without accessing
physically synchronized clock service, to detect global pred-
icates. A drawback of those protocols is that a predicate
gets detected after each sensor has sensed one more event,
its next, locally. So there may be considerable delay. Im-
mediate detection is desirable for applications that require
real-time on-line actuation and raising alarms. Early detec-
tion was considered in [7]. Their algorithm detects a con-
junctive predicate only after all but one sensors have sensed
one more event, their next, locally.

In this paper, we complement the study of [12] by propos-
ing a suite of clock-free algorithms to detect global predi-
cates immediately. We characterize and qualify the error as
a function of the message transmission delay in reporting
sensed values. We express the accuracy of our algorithms
in terms of a parameter A. Define A as the bound on the
asynchronous message transmission delay for a system-wide
broadcast. A includes the delays for queuing in local out-
going and incoming buffers, retransmission if needed for re-
liability, process scheduling and context switching, until the
received message is processed. None of the algorithms need
to know or use A in the code! Actually, the accuracy is de-
termined by the actual message transmission delay Agctual
in any particular race condition, and Agctuar < A. Thus,
the accuracy of the algorithms is adaptable to the actual
operating conditions of the sensor network and can be much
better than predicted using the upper bound A.

The skew that governs the imprecision using physical clocks

is of the order of microsecs to millisecs if software protocols
are available. (Hardware solutions achieve nanosec skews
but are impractical in sensornets.) Although A, that de-
termines the accuracy of our algorithms, is of the order of
hundreds of millisecs to secs in small-scale networks, such
as smart offices and smart homes, it may be adequate when
the number of processes is low and/or the rate of occurrence
of sensed events is comparatively low. This is the case for
several environments such as office, home, habitat, wildlife,
nature, and structure monitoring. Lifeform and physical ob-
ject movements are typically much slower than A. And in
the wild, remote terrain, nature monitoring, events are often
rare, compared to A. Thus, we may not need the precision
(in urban settings or the wild) or be able to afford the asso-
ciated cost (in the wild) of synchronized physical clocks.
Our algorithms can detect conjunctive and relational pred-
icates ¢ [5]. ¢ is conjunctive if ¢ = A¢;, where ¢; is defined
on variables local to a single sensor. ¢ is relational if it is an
arbitrary logical expression on system-wide variables. The
characterization of the accuracy of detection is the same but
the level of accuracy is lower for relational predicates. Rela-
tional predicates are harder to detect because it requires ex-
amining the state lattice to consider “combinations of states”
which can together satisfy the predicate. This requires non-
polynomial time, which we explicitly avoid. See also [12].

2. SYSTEM AND EXECUTION MODEL

Sensor-actuator networks and pervasive environments are
distributed systems that interact with the physical world in
a sense-and-respond manner [8]. The world plane consists of
the physical world entities and the interactions among them.
The network plane consists of sensors and actuators and the
communication network connecting them. For the network
plane, we adapt the standard model of an asynchronous
message-passing distributed execution (see [11, 12]). Each
sensor-actuator is modeled as a process P;(i € [1...n]); the
local execution is a sequence of alternating states and state
transitions caused by “relevant” events. An event is a sens-
ing (observation) or actuation of the world plane by the net-
work plane. Assume a maximum of p such sensing events
at any process. The communication between any pair of
processes is FIFO. Messages (in the network plane) assem-
ble global properties from locally sensed values, and actuate
the controlled devices. The messages among the network
plane processes are control messages.

Our algorithms work even if communication is unreliable.
A lost message may lead to a wrong inference around the
time that the message is lost, but it has no ripple effect
on future detection. Our characterization of the accuracy
uses a (bounded) A which can also include re-transmission
attempt latencies.

An event occurs whenever a sensed value, whether dis-
crete or continuous, changes significantly. A sensed event
is modeled as e = (P;, val,ts) to denote the sensor process,
value of the attribute sensed, and the physical time of occur-
rence. For each process-attribute, an interval is represented
by a value, start time, and finish time as I = (val, ts,ty).
The interval is implicitly defined by two consecutive events
(P, vall,tl) and (P;,val2,t2) for that process-attribute, as:
I = (vall,ts =t1,ty = t2). Our goal is to evaluate a predi-
cate ¢ whenever the global state changes.

Problem: Detect each occurrence of a global (conjunctive
or relational) predicate ¢ on sensed attribute values of the

world plane, that held at some instant on a physical time
axis, but without using physically synchronized clocks in the
network plane having asynchronous message transmissions.
Each detection must occur on-line at the earliest possible
instant.

Due to the inherent asynchrony of the control messages
and lack of a global observer, there are many possible obser-
vations of the execution. The distributed computing litera-
ture has defined a lattice of global states and its sub-lattice
of consistent global states for executions of distributed pro-
grams with semantic deterministic sends and receives [5].
This lattice has been used to make assertions about ¢ un-
der all possible runs of the same distributed program. Due
to variations in local program scheduling and transmission
times, the same program passes through different paths in
the state lattice in different executions. The time cost of
detecting a relational predicate ¢ is exponential, O(p™) [5].
The problem of sensing the physical world is different in a
subtle way. We are also hampered by the lack of a global ob-
server. However, we do not make assertions about “all possi-
ble executions of the same distributed program” of the world
plane (see [12]); there is only the actual execution to make
assertions about. And in the world plane execution, there is
no “message passing” that can be captured by the network
plane. The control messages of the network plane induce an
artificial (non-semantic) lattice of consistent global states
[12]. We make approximations to the actual path traced
by the physical world execution, without constructing the
lattice and incurring that overhead.

Let Z = {I1,...I,} be a set of intervals, one per pro-
cess. Intervals in Z overlap in physical time iff max;([;.ts) <
min; (I;.t5). For this set of intervals, we define a number:

DEFINITION 1. overlap(Z) = min;(I;.ty) — max;(I;.ts)

overlap is useful to characterize the accuracy of our proto-
cols, as the best approximation to physical time. As our
model does not use physically synchronized clocks, an event
is a pair (P;, val); and neither do we know I.t; and I.t5.

3. APPROXIMATE SNAPSHOTS
3.1 Simple Clock-Free Algorithm

int: array Value_Vector|[l...n]

When event e = (P;,val) occurs at P;:

(1) transmit to sink (or broadcast) event notification (P;,val)
(2) (if broadcasting is being used) Evaluate_State(P;,val)
On P; receiving event notification e = (z,val) from P,:

(1) PEvaluate_State(z, val)

Evaluate_State(z,val) at P;:

(1) Value_Vector|z] +— val

(2) if ¢((Vj)Value_Vector[j] = true) then

3) observed Value_Vector satisfies ¢

(4) raise alarm/actuate

Figure 1: Simple Clock-Free Algorithm: Code at P;
to detect a predicate using event notifications.

Figure 1 gives a simple clock-free algorithm for evaluating
¢. Each time a new value is sensed by a sensor, it is transmit-
ted to a sink which is one of the n nodes (or a system-wide
broadcasting policy can be used). Fvaluate_State is executed
atomically with its invocation. A node tracks the latest
sensed value reported by P, in Value_Vector[z]. For now,
assume that a distinguished node (sink) runs Evaluate_State

N
AN

1 2

Figure 2: Overlap, a potential false negative.

Figure 3: Overlap, a potential false negative.

to evaluate ¢. However, if broadcasting is used, all nodes
can run Evaluate_State; we discuss the implications later.
If overlap > A, then the algorithm can detect that the inter-
vals overlap. Similarly, if overlap < —A, then the algorithm
can detect that the intervals do not overlap.

It is critical to analyze behavior in the face of race condi-

tions, i.e., when —A < overlap < A. We explain our results
using some examples for this range.
Examples: The examples use timing diagrams and show
three intervals X, Y, and Z, at processes P;, P;, and P,
respectively. These intervals are such that ¢ is true over
the sensed values in these intervals, and false over other
combinations of these and preceding or succeeding intervals.
The integer at the start of an interval is the local sequence
number of that interval. Messages in regular lines are the
notifications sent at the start of X, Y, and Z. Messages in
dotted lines are those sent at the start of the next intervals
following these — such messages are shown only when they
are relevant to the explanation of the example. If event
notifications are sent to a sink (instead of being broadcast),
the sink could be P;, Pj, or Pj.

In Figure 2, P; and P; will be able to detect ¢. However,
P cannot detect ¢ because by the time it receives the value
sensed by P;, Py’s locally sensed value has changed. We
will revisit this example in Section 3.2 to show that Py will
also be able to detect ¢ using “interval vectors” in the next
algorithm. In Section 3.3, we revisit this example to show
that this detection can be identified as a true positive by the
consensus-based algorithm.

In Figure 3, P; and P;, but not Py, will be able to detect ¢.
However, even with the use of “interval vectors”, P, remains
unable to detect ¢.

In Figure 4, none of the processes will be able to detect ¢,
even using our next algorithm using “interval vectors”. This
is an “inevitable” false negative; ¢ cannot be definitively
detected in our model, even if it is conjunctive. (Further,
even after using lattice evaluation, we can only suspect that
this overlap might have occurred [12].)

In Figure 5, none of the processes will be able to detect ¢.
However, with the use of “interval vectors”, we will observe
in Section 3.2 that P; will be able to detect ¢.

In Figure 6, P; and P; will detect ¢, resulting in a false
positive. This appears inevitable due to the message pat-
tern. However, we will show in Section 3.3 that using con-
sensus, this case can be identified as a potential false positive

P
l d

[
P _— ‘
] ‘//
P / z \
k7 2

Figure 4: Overlap, an “inevitable” false negative.

A
. Lo

Figure 5: Overlap, a potential false negative.

and thus be eliminated.

In Figure 7, none of the processes detect ¢, resulting in a
true negative. A false positive is not possible.

In Figure 8, P; detects false a positive. However, we will
see in Section 3.2 that using “interval vectors”, this false
positive can be eliminated.

THEOREM 1. For a single observer in a system without
any synchronized clocks, for the detection algorithm in Fig-
ure 1, we have:

1. overlap > A = ¢ is correctly detected

2. 0 < overlap < A => any outcome is possible

8. 0 > overlap > —A = any outcome is possible

4. overlap < —A = ¢ is correctly detected as not hold-

ng

From the application’s perspective, we can classify the
outcome of detection or non-detection as follows.

COROLLARY 1. For a single observer in a system with-
out any synchronized clocks, for the detection algorithm in
Figure 1, we have:

1. Positive detection =—> overlap > —A

2. Negative detection =—> overlap < A

When overlap in [-A, A], we cannot predict the outcome
and there will be potential false positives when overlap in
[—A, 0] and potential false negatives when overlap in [0, A].
Although we expect that in pervasive environments, these
cases are infrequent, we still don’t know the overlap and can-
not identify these potential false outcomes from the definitive
outcomes.
We enhance this algorithm in two ways; see Table 1.

Table 1: Comparison of proposed algorithms.

Simple Value_Vector at sink (or at all) node(s);
Clock-Free send to sink (or broadcast) event notification;
Algorithm evaluate ¢ whenever Value_Vector changes
(Section 3.1)

Interval Value_Vector, Interval_Vector at all nodes +

Vector broadcast Value_Vector, Interval_Vector +

Algorithm evaluate ¢ by all nodes whenever

(Section 3.2) | Interval_Vector changes

Consensus Interval Vector Algorithm +

Algorithm transmit (or broadcast) Consensus_Message +

(Section 3.3) | consensus evaluated at sink (or by all) node(s)

4 St
2NY 8
P e
)i =
P /Z /\\\
ko 2
Figure 6: No overlap, a potential false positive.

~
\
Y
~
o

=T <
N
-~

Figure 7: No overlap, false positive not possible.

3.2 Improved Accuracy using Interval Vectors

We propose using an Interval_Vector, in conjunction with
the Value_Vector, to track more up-to-date sensed values in
the Value_Vector. This helps to reduce the number of poten-
tial false outcomes. The vectors track the interval numbers
and the corresponding sensed value readings of the latest in-
tervals being considered. IV[j] = k (at any process) is used
to identify the kth interval at process Pj, that began when
the kth event was sensed by the sensor at P; and that would
end at the k + 1th event sensed by P;. Value_Vector[j] =z
(at any process) is used to identify that the value z held
during the IV [j]th interval at process P;.

Although the proposed interval vectors are similar to log-
ical vector clocks [13], there are some differences — for ex-
ample, (i) there is no underlying computation message ex-
change and all event notifications are control messages, and
(ii) on receiving an interval vector, the local component of
the interval vector does not advance. Variant of the interval
vector was used in [4].

The algorithm is given in Figure 9. There is no improve-
ment in the characterization of the outcomes, over that given
in Theorem 1 and Corollary 1. However, we do get a quan-
titative improvement by way of reducing false outcomes.
Specifically, in Theorem 1.2, the number of false negatives is
decreased, and in Theorem 1.3, the number of false positives
is decreased, as explained by the following examples.
Examples: In Figure 2, P, can now detect ¢ using the In-
terval_Vector to update the ith component of its Value_ Vector.
Thus, a false negative gets eliminated. However, in Figure 3,
the use of Interval Vector cannot help Py in eliminating its
false negative conclusion. Similarly, in Figure 4, the use of
Interval_Vector cannot help any process in eliminating its
false negative conclusion. But in Figure 5, the use of Inter-
val_Vector allows at least one process, viz., P;, to eliminate
its false negative conclusion.

In Figure 6, the use of Interval_Vector cannot help P; or
P; in eliminating their false positive conclusion. However,
in Figure 8, the use of Interval Vector allows P; reading a
false positive to eliminate it.

3.3 Improved Accuracy through Consensus
The algorithms of Figures 1 and 9 have these drawbacks:
1. a positive detection may be false (w/ overlap € [—A,0])
2. a negative detection may be false (w/ overlap € [0, A])

~y

<
=

=
~
[N \\\ ~

Figure 8: No overlap, a potential false positive.

int: array Interval_Vector[l...n]

int: array Value_Vector[l...n]

boolean: new

When event e = (P;,val) occurs at P;:

(1) Interval_Vector|i] + +

(2) Value_Vector[i] «+— val

(3) broadcast (P;, Interval_Vector, Value_Vector)

(4) Ewaluate_State(P;, Interval_Vector, Value_V ector)
On P; receiving event notification e = (z, IV, VV) from P.:
(1) Ewaluate_State(z,IV,VV)

Evaluate_State(z, IV,VV) at P;:

(1) new<«+—0

(2) forz=1ton

3) if IV[z] > Interval_Vector[z] then
(4) new — 1

(5) Interval_Vector[z] +— IV|z]

(6) Value_Vector[z] «+— VV][z]

(7) if new=1or z =1 then

(8) if ¢((Vj)Value_Vector[j]) = true then
9) observed Value_Vector satisfies ¢
(10) raise alarm/actuate

Figure 9: Interval Vector Algorithm: Code at P; to
detect a predicate using event vector notifications.

Our next algorithm eliminates the first drawback, and re-
duces the number of instances that suffer from the second
drawback. Rather than a positive and a negative bin, it cre-
ates three bins: positive, negative, and borderline. Positives
are all true with overlap € (0,00); borderline cases satisfy
overlap € (—A, A); negatives are true or a few “inevitable”
false cases with overlap € (0, A). The application is free to
classify the borderline cases in either direction.

Observe in the algorithms of Figures 1 and 9, that the
execution for each sensed event is very simple, namely state-
ments Evaluate_State.(2) and .(1)-(8), respectively. The in-
formation to evaluate the statement(s) is broadcast (assume
so for Figure 1 also), hence it is available to all the sensors
without added message cost, for “almost free”. As all the
sensors execute the procedure instead of some sink, we have
multiple (n) observers. The execution of the statement(s) is
affordable, and all sensors get to know the outcome.

However, due to Theorem 1.(2,3) and Corollary 1, each ob-
server may arrive at different outcomes. To see this, consider
a worst-case scenario where all the n sensors detect (almost)
simultaneous state changes, and execute the event broadcast
in response. This is a n-way race condition. Due to non-
determinism of message transmission times, each of the n
processes will observe one of O(n!) possible orderings of the
n broadcasts. Assuming that overlap € (—A, A), there may
be potential false negatives and potential false positives, and
these will be different for the n observers.

Examples: In Figure 3, IV = [4,7,1] will be detected by
P; and P; but not Pi; Py has a false negative.

In Figure 5, IV = [4,7,1] will be detected by P; but not
P; and Py; P; and Py have a false negative.

In Figure 6, IV = [4,7,1] will be detected by P; and P;

but not Py; P; and P; have a false positive.

So it appears we have increased the entropy or the chaos
in the observations among the n processes.

More generally, we have the following. The application
is observing a single instance of the real-world execution.
There are a maximum of np state transitions in the global
execution for a global observer, corresponding to the np sens-
ing events. In the Simple Clock-Free algorithm, there are
also np global states observed by any observer. However,
there are two levels of approximations in the observations.

1. Each of the n observer processes will observe its best
approximation of the actual global states at each of
the np events; each of the n observers may see different
approximations of the same actual global state.

2. Further, the np approximations of the actual global
states seen by a observer process will be observed in an
ordering that is the best approximation to the actual
ordering of the actual global states at the np events.
(That is, each of the n observers may observe a differ-
ent permutation of (its approximations of the global
states at) the np events, than each other or in the

actual execution. Thus, of the 0(5:,’;2:) valid permu-
tations, there is one permutation for the actual execu-

tion, and some n will be observed.)

Both levels of approximations are the best approximations
that can be made by the algorithm, and inevitable due to
the message transmission latencies that arise at run-time.
The Interval Vector algorithm has the same properties, but
gives better approximations. as discussed in Section 3.2.

As there are only np true global states, that occur in one
sequence, and the n observers are trying to all observe their
approximations of the mp states in an approximate serial
order, we propose to run a consensus algorithm among the n
processes’ inferences about their approximate observations.

Consider any of the np sensing events e. The event no-
tification (EN) broadcast communicates it to all processes.
Evaluate_State gets executed at each process, based on the
latest state information at that process. So there are n eval-
uations system-wide of ¢ over the most recent estimate (ap-
proximation) of the state immediately following e. Globally
for all np sensing events, there are n?p evaluations.

However, due to asynchrony in message transmissions and
race conditions, the n evaluations may not see the same
state. In order for the witness observers to corroborate their
observations of positives determined from Evaluate_State(IV),
we use a Consensus_Message(IV) to a sink. To determine
the number of witnesses of the same state IV, the sink col-
lates the received Consensus_Messages. Specifically, when
a process receives a Consensus_Message(IV), it maintains a
count of “confirmations” for that IV. Thus, it counts the
number of witnesses of any state by counting the number
of Consensus_Messages it receives for that state’s IV. The
algorithm is given in Figure 10.

o If ¢(e) is true, flag on the EN broadcast is set. When
EN is received, and locally where e occurs, each P;
tests if it can confirm the I'V of e using its local knowl-
edge as an approximation to e (Evaluate_State.(1-4)).
P; can “locally confirm” P,’s V'V even if IV # Interv-
al_Vector — this is useful [9] because if every P; “locally
confirms” P,’s V'V it must have occurred in physical
time. If P; can confirm, it sends a Consensus_M ess-
age(IV). The n?p Evaluate_State executions for the

int: array Interval_Vector[l...n]
int: array Value_Vector[l...n]
type Interval_Vector_Record
array [1...n] of int: vector
int: count
Interval Vector_Record: list Interval Vector_History
boolean: flag,z_new,i_new
When event e = (P;,val) occurs at P;:
(1) Interval_Vector[i] + +
(2) Value_Vector[i] < val
(3) if ¢((Vj)Value_Vector[j]) = true then
(4) flag +— 1
(5) else flag+— 0
(6) broadcast (P;, Interval_Vector, Value_Vector, flag)
(7) Evaluate_State(P;, Interval_Vector, Value_Vector, flag)
On P; receiving event notification e = (z, IV, VV,b) from P,:
(1) Ewaluate_State(z, IV,V'V, b)
Evaluate_State(z, IV,VV,b) at P;:
(1) ifb=1 then

(2) if IV [i] = Interval_Vector[i] then
3) V'V of z is “locally confirmed” by i to satisfy ¢
(4) broadcast Consensus_Message(z, IV, 1)

(5) z_new,i_new <— 0
(6) forz=1ton

(7) if IV [x] > Interval_Vector|z] then
(8) z_new +— 1
9) Interval_Vector[z] +— IV|z]
(10) Value_Vector[z] +— VV][z]
(11) else if IV[z] < Interval_Vector[z] then
(12) inew <— 1
(13) if znew =1 A inew =1 then
(14) if ¢((Vj)Value_Vector[j]) = true then
(15) observed Value_Vector satisfies ¢
)

broadcast Consensus_Message(z, Interval_Vector, i)
On P; receiving Consensus_Message(trigger, IV, s) from Ps:
(1) if IV is a new interval vector then

(2) create record z of type Interval_Vector_Record

(3) z.vector «— IV

(4) z.count «— 1

(5) insert « in Interval_ Vector_History

(6) start timer for 2A for x

(7) else

(8) let « be record of IV in Interval Vector_History

9) x.count + +

(10) if z.count = n then

(11) Corollary 2.1; raise alarm/actuate(true positive,IV')
(12) else

(13) Corollary 2.2; await more confirmations or timer pop

On P; getting a timer pop for Interval_Vector_History.x:
(1) Corollary 2.2; raise alarm/actuate(borderline,IV')
(2) delete record x from Interval_Vector_History

Figure 10: Consensus Algorithm: Code at P; to de-
tect a predicate using consensus.

np sensing events, can trigger up to n’p Consensus_-
Messages globally.

e The receipt of an EN also creates a potentially new ob-
servation point at a composite state formed by merging
the received EN’s IV and V'V into the local Interval_-
Vector and Value_Vector, representing the I'Vs and
VVs received cumulatively so far (Evaluate_State.(5-
12)). If a new (neither seen nor evaluated locally so far)
composite state Interval_Vector forms in Evaluate_-
State.13 (this happens at most n(n — 1)p times glob-
ally), and ¢ holds, a Consensus_Message is sent.

Worst-case number of Consensus_Messages is 2n’p—np. By

combining sends (lines (4) and (16)), this is at most n?p.
Note, the Consensus_Message need not be broadcast. If

it is broadcast (including to the sender), all processes learn

the results for “almost free” and will see the same result.
To characterize the extent to which the witness observers
corroborate their observations of positives determined from

Evaluate_State, we have introduced the “confirmation” count.

If (all // at least one but not all //none) processes see the
same state, identified using its Interval_Vector, and ¢ is true
in it, then we say that that state is confirmed by (all // only
some // none).

DEFINITION 2. ¢(VV,IV) is:

1. confirmed by all iff count(IV) =n

2. confirmed by only some iff n > count(IV) > 0
3. confirmed by none iff count(IV) =0

In the ideal case (far-spaced global interval transitions,
spaced further than A apart, across all sensors), each of the
np global states following the sensed events will be observ-
able by all processes. For each such global state in which
¢ was true, there will be n confirmations (one by each ob-
server). If Consensus_Message is broadcast, all processes
learn about it. For the non-ideal case, the number of confir-
mations is less than n. We have this result:

THEOREM 2. For n observers in a system without any
synchronized clocks, for the detection algorithm in Figure 10,
we have for any IV :

1. overlap > A = ¢ is confirmed by all

2. 0 < overlap < A = ¢ is confirmed by all, only some,
or none

3. 0 > overlap > —A = ¢ is confirmed by only some,
or none

4. overlap < —A = ¢ is confirmed by none

From the application’s perspective, we can classify the
outcome of detection or non-detection into three bins: posi-
tive, borderline, and negative, as follows. We also classify the
examples in Figures 2-8 in these bins. The figures do not
show the Consensus_Messages to avoid overcrowding, but
visualize that the Consensus_Message is broadcast at each
execution of Fvaluate_State in which ¢ is true.

COROLLARY 2. For n observers in a system without any
synchronized clocks, for the detection algorithm in Figure 10,
we have for any IV :
1. Confirmed by all <= positive bin =
true positive =—> overlap > 0
Examples: Figure 2.

2. Confirmed by only some <= borderline bin —
A > overlap > —A

The application can choose to classify this case as ei-
ther a positive or negative. For safety, a megative de-
cision can be made.
Examples: Figures 3, 5, 6.
8. Confirmed by none <= negative bin —>
(true negative (= overlap < 0) &
false negative having 0 < overlap < A)
Examples: Figures 7, 8; and Figure 4, resp.

Thus, those states that are confirmed by all the observers
(and in which ¢ is true) correspond to Corollary 2.1. Those
that are confirmed by only some observers (and in which ¢
is true) correspond to Corollary 2.2. Those that are seen by
none of the observers correspond to Corollary 2.3.

The algorithm gives the following advantages:

34 4 4

IV=6 6 7 7.

P A o ra
[4 S S

ne

SN W
~ QW
~ N W
~ N R

[\S]

7 local interval number O execution of Evaluate_State
I local sensed event

—broadcast of event notification
***** =broadcast of Consensus_Message

Figure 11: Example of on-the-fly state construction
and evaluation.

1. There are no false positives, and all interval overlaps
with overlap > A and some with overlap € [0, A) are
explicitly identified and declared.

Examples: In Figure 2, IV = [4,7,1] will be con-
firmed by all, i.e., by P;, P;, and Py.

2. Some of the cases having overlap € (—A,A) are ex-
plicitly identified.

Examples: In Figure 3, IV = [4,7,1] will be con-
firmed by P; and P; but not Py; in Figure 5, IV =
[4,7,1] will be confirmed by P; but not P; and Pg; in
Figure 6, IV = [4,7,1] will be confirmed by P; and P;
but not P, and would be a false positive if declared.

Such cases are placed in the bin “borderline” and the
application has the choice of raising an alarm or not.

Examples: Figure 4 is an unfortunate false negative, but
Theorem 2.(2,3,4) shows that overlap € (—oo, A) must hold.
Figure 7 and 8 are identified as true negative.

For the borderline bin, the application can treat the cases
with overlap > 0 as negatives (because the overlap period
was only a small positive), or cases with overlap < 0 as posi-
tives (because the interval “almost” overlapped). Essentially,
all cases in this bin can be treated alike.

It is important to understand that the algorithm implicitly
builds on-the-fly the lattice of those (up to n’p) states that
the nodes do actually observe collectively, based on the np
events. It also performs the corroborations among the n?p
observations on-the-fly.

Example: In Figure 11, the global state passes through:

...[3,6,0],[4,6,0],[4,7,0],[4,7,1],[4,7,2],[4,8,2] ...

Each sensed event triggers broadcast of the event notifi-
cation, indicated by the solid arrows. The ensuing execu-
tion of Ewvaluate_State at each process (indicated by the
circles) updates their Interval_Vectors. Assume that ¢ is
true in [4,7,1]. In this example, each process is able to

construct this state [4,7,1] as soon as it receives the event
notifications from the other two processes. On construct-
ing [4,7,1], Evaluate_State locally detects ¢ and broad-
casts the Consensus_Message, indicated by dashed arrows.
Once 1V ([4,7,1]).count = 3 for the Interval Vector_Record
of Consensus_Message([4,7,1]) at a process, the vector
[4,7,1] is “confirmed by all” at that process and is hence
a true positive. This will happen at all three processes. If
at one process IV ([4,7,1]).count = 3, then it is guaranteed
that all processes will eventually see the count 3 locally.

Now visualize that P; senses the next event (numbered
“8”) locally just before receiving the event notification from
Py, i.e., it transitions from [4,7,0] to [4,8,0] instead of to
[4,7,1]. Then each process receives exactly 2 confirmations
of [4,7,1] from P; and Py, and this IV = [4,7,1] can be clas-
sified in the “borderline” bin. Each process always receives
the same number of confirmations for any particular IV.

In another scenario, imagine all processes locally sense a
changed value in physical time immediately after Py begins
interval 1. This will result in an “inevitable” false negative
for IV =[4,7,1].

4. PERFORMANCE

As a baseline for comparison, observe that np transmis-
sions are essential to report the sensed events to a sink even
for centralized on-line detection wusing physically synchro-
nized clocks.

4.1 Simple Clock-Free Algorithm

The algorithm uses np event notifications.

e If sent to a sink, the messaging cost is the same as for
centralized on-line detection with physically synchro-
nized clocks.

e If broadcasting is done instead of sending to one sink,
every process can know the impact of each sensed event
(subject to our approximation results). In a single-hop
or small wireless network, the broadcast is just a little
more expensive. In a larger network, the extra messag-
ing goes up by a factor of —>— in a tree configuration

_log n, 3
and by a constant factor in a linear configuration.

With broadcasting, the np transmissions result in n%p
executions of Fvaluate_State across all the nodes, in-
stead of np at a single sink.

4.2 Interval Vector Algorithm

The above analysis for the broadcast case applies except
that the broadcast of event notifications is of 2 vectors in-
stead of 2 integers.

4.3 Consensus Algorithm

We incur the following cost for the second phase to run
consensus. Across the n?p executions of Evaluate_State,
only for those d times in which ¢ is evaluated to true (lines
(1-3) and/or (13-14)), a Consensus_Message is transmitted.
The worst-case, when d = 2n?p — np or simply n’p (see Sec-
tion 3.3), is very unlikely. If Consensus_Message is broad-
cast instead of transmitted to a sink, each node knows the
precise outcome. There is not much difference between a
broadcast and a “point-to-point” message in small networks
(Section 4.1).

However, the ezpected case occurs when the predicate ¢
occasionally becomes true, and there are few race conditions

because human and physical object movements in pervasive
environments are typically much slower than the latencies
that determine A. (In related work [7], simulations and an-
alytical results for a smart office show that increasing mes-
sage delays over a large range does not significantly increase
probability of incorrect detection.) In our expected case,
d € [0,n°p] but d < n?p. There will be d transmissions
(or broadcasts) of Consensus_Message. As d < n’p, and
we have np essential transmissions of event notification mes-
sages for on-line detection even by a single sink (even with
synchronized clocks), the consensus phase is not expected
to increase the messaging cost noticeably! Yet, it offers the
advantage of eliminating false positives and of classifying
outcomes in the “borderline” bin.

In the worst-case, in which there are n?p transmissions of
the Consensus_Message, a node receives n’p Consensus_Me-
ssages; at most n’p will have unique IV vectors. A naive
approach to correlate the IVs in these Consensus_Messages
tracks n’p entries in the Interval Vector_History. Smart
data structures can be used instead of the list and we can
perform garbage collection to reduce this number signifi-
cantly. In Figure 10, we use a list and a simple observation to
age and purge the record of an I'V within 2A time of its first
appearance in the list. The observation analyzes the slowest
case. A locally sensed event causes FEvaluate_State to de-
tect ¢, broadcast the event notification, and insert a record
of the corresponding I'V in the local Interval_Vector_History.
Within A time, the event notification reaches all nodes, and
their Interval_Vector is greater than or equal to the broad-
cast IV; if they also evaluate ¢ to be true for the IV broad-
cast, they will also send a Consensus_Message that must be
received by others within another A period. Hence, if any
confirmations of an entry in Interval Vector_History arrive,
they must within 2A of the insertion of the entry in the local
Interval_Vector_History.

5. DISCUSSION

In small sensor networks that use a shared medium, there
is a natural occurrence of total order and causal order among
the broadcasts [1]. Even if the shared medium is not present
or these message orders do not naturally occur, middleware
could provide these orders. Analyzing the impact of these
orders on the detection algorithm design and characterizing
the errors is an open problem. We did not make any as-
sumptions about these orders to make the results applicable
to wired, wireless, and hybrid networks.

Our algorithms are distributed and symmetric, with low
additional message overhead above that for centralized de-
tection at a single sink. Distribution and symmetry are more
conducive to tolerating failures and allowing sensor node mo-
bility with few adaptations. This deserves further study.

Our model allows communication failures. Except for po-
tential false positives and false negatives in the temporal
vicinity of a message loss, there are no long-term ripple ef-
fects on future detection. To provide fault-tolerance, we can
explore several directions, e.g., refine the “borderline” bin. If
the number of witnesses is closer to 1, the outcome is likely
a false positive; if closer to n, likely a true positive.

Table 2 compares the algorithms, and those in [12]. Any
and all nodes can act as sink. Note, in the Interval Vector
algorithm, a variable number of processes may see the same
positive. The Consensus algorithm declares a positive if all
see the same positive. Also, typically ¢ evaluates in O(n).

Table 2: Algorithms for detecting global predicates over sensed physical world properties.

Algorithm — || Strobe Vector Strobe Scalar Simple Clock-Free Interval Vector Consensus

Properties | algorithm ¢ [12] algorithm [12] algorithm algorithm algorithm

Message 1 BC of size O(n) 1 BC of size O(1) 1 msg of size O(1) 1 BC of size O(n) 1 BC of size O(n)/event

complexity /event /event to sink /event /event + d messages (or BCs),

(can BC instead) where d € [0,n%p]

Processing O(n?p)/node + O(np)/node + O(p)/node + O(n?p)/node + O(n?p)/node +
[O(n3p) + (O(np) | [O(n?p) + (O(np) O(np) eval of ¢ at O(np) eval of ¢ O(np) eval of ¢/node +
eval of ¢)] at sink eval of ¢)] at sink sink (if BC, at all) | at sink or at all O(d) at sink (or at all)

Detection after intervals after intervals <A <A < 2A

latency complete complete

Observer Yes Yes No No Yes

independence

Detection by
all observers

no extra msg cost no extra msg cost

use BC instead of
msg to sink

no extra msg cost no extra msg cost

overlap > A true positive true positive true positive true positive true positive

overlap some true positive; | some true positive; | some true positive; | some true positive; | some true positive;

€ (0,A) some false negative | some false negative | some false negative | some false negative | some false negative®;
(better than SCF)¢ | some in borderline

overlap true negative some true negative; | some true negative; | some true negative; | some true negative;

€ (—A,0) some false positive some false positive some false positive some in borderline
(better than SCF)?¢

overlap<—A true negative true negative true negative true negative true negative

“If this algorithm uses a borderline bin also, some of the false negatives (overlap € (0,A)) & some of the true negatives (overlap €
(=A,0)) go in it. For the remaining false negatives, footnote (b) also applies.

This algorithm cannot detect these as having occurred potentially, even for conjunctive ¢. (Lattice evaluation can classify these
in borderline. For relational ¢, lattice evaluation can combine cases in borderline to a positive occurrence of some one state from

the combination of the cases.)

“More accurate, i.e., fewer false negatives and more true positives, than Simple Clock-Free
IMore accurate, i.e., fewer false positives and more true negatives, than Simple Clock-Free

6. ACKNOWLEDGEMENTS

This work was supported by National Science Foundation
grant CNS 0910988, “Context-Driven Management of Het-
erogeneous Sensor Networks.”

7. REFERENCES

[1] K. Birman, T. Joseph, Reliable communication in the
presence of failures. ACM TOCS, 5(1), 1987.
[2] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, J. Lu, Managing
quality of context in pervasive computing. In
International Conf. on Quality Software, 193-200, 2006.
R. Cardell-Oliver, M. Renolds, M. Kranz, A space and
time requirements logic for sensor networks. In Second
Int. Symp. on Leveraging Applications of Formal
Methods, Verification, and Validation, 283-289, 2006.
[4] P. Chandra, A. D. Kshemkalyani, Causality-based
predicate detection across space and time. IEEE
Transactions on Computers, 54(11): 1438-1453, 2005.
[5] R. Cooper, K. Marzullo, Consistent detection of global
predicates. In Proc. ACM/ONR Workshop on Parallel
and Distributed Debugging, 163-173, May 1991.
[6] P. Hu, J. Indulska, R. Robinson, An autonomic context
management system for pervasive computing. In IEEE
International Conference on Pervasive Computing and
Communications (Percom), 213-223, 2008.
Y. Huang, X. Ma, J. Cao, X. Tao, J. Lu, Concurrent
event detection for asynchronous consistency checking
of pervasive context. In IEEE Int. Conference on
Pervasive Computing and Communications, 2009.
L. Kaveti, S. Pulluri, G. Singh, Event ordering in
pervasive sensor networks. In IEEE Int. Conf. on

3

[7

8

Pervasive Computing and Comm. Workshops, 2009.

[9] A.D. Kshemkalyani, Temporal interactions of intervals
in distributed systems. Journal of Computer and
System Sciences, 52(2): 287-298, April 1996.

[10] A.D. Kshemkalyani, Temporal predicate detection
using synchronized clocks. IEEE Transactions on
Computers, 56(11): 1578-1584, November 2007.

[11] A.D. Kshemkalyani, M. Singhal, Distributed
Computing: Principles, Algorithms, and Systems,
Cambridge University Press, 2008.

[12] A.D. Kshemkalyani, Middleware clocks for sensing the
physical world. In Proc of the International Workshop
on Middleware Tools, Services, and Run-Time Support
for Sensor Networks (MidSens’10), ACM Press, 2010.

[13] F. Mattern, Virtual time and global states of
distributed systems. Parallel and Distributed
Algorithms, North-Holland, pp 215-226, 1989.

[14] J. Mayo, P. Kearns, Global predicates in rough real
time. In IEEE Symp. on Parallel and Distributed
Processing, 17-24, 1995.

[15] M. Roman, C.Hess, R. Cerqeira, A. Ranganathan,
R.H. Campbell, K. Nahrstedt, A middleware
infrastructure for active spaces. IEEE Pervasive
Computing, 1(4): 74-83, 2002.

[16] B. Sundararaman, U. Buy, A. D. Kshemkalyani, Clock
synchronization for wireless sensor networks: a survey.
Ad-Hoc Networks, 3(3): 281-323, May 2005.

[17] C. Xu, S.C. Cheung, Inconsistency detection and
resolution for context-aware middleware support. In
Proc. ACM SIGSOFT Int. Symposium on Foundations
of Software Engineering, 336-345, 2005.

