
Global Predicate Detection
under Fine-Grained Modalities

Punit Chandra and Ajay D. Kshemkalyani

Computer Science Department,
Univ. of Illinois at Chicago, Chicago, IL 60607, USA

{pchandra,ajayk}@cs.uic.edu

Abstract. Predicate detection is an important problem in distributed
systems. Based on the temporal interactions of intervals, there exists a
rich class of modalities under which global predicates can be specified.
For a conjunctive predicate φ, we show how to detect the traditional
Possibly(φ) and Definitely(φ) modalities along with the added infor-
mation of the exact interaction type between each pair of intervals (one
interval at each process). The polynomial time, space, and message com-
plexities of the proposed on-line detection algorithms to detect Possibly
and Definitely in terms of the fine-grained interaction types per pair of
processes, are the same as those of the earlier on-line algorithms that
can detect only whether the Possibly and Definitely modalities hold.

1 Introduction

Predicate detection in a distributed system is useful in many contexts such as
monitoring, synchronization and coordination, debugging, and industrial process
control [2,4,6,7,8,14,16,17]. Marzullo et al. defined two modalities under which
predicates can hold for a distributed execution [4,14].

– Possibly(φ): There exists a consistent observation of the execution such that
φ holds in a global state of the observation.

– Definitely(φ): For every consistent observation of the execution, there exists
a global state of it in which φ holds.

The formalism and axiom system given in [9] identified an orthogonal set � of
40 fine-grained temporal interactions between a pair of intervals in a distributed
execution. It was shown in [10] that this formalism provides much more expres-
sive power than the Possibly and Definitely modalities, and a mapping from �
to the Possibly and Definitely modalities was given. A conjunctive predicate
is of the form

∧
i φi, where φi is any predicate defined on variables local to pro-

cess Pi. We show that for a conjunctive predicate φ (e.g., xi = 2 ∧ yj > 8),
Possibly(φ) and Definitely(φ) can be detected along with the added informa-
tion of the exact interaction type between each pair of intervals, one interval at
each process. This provides flexibility and power to monitor, synchronize, and
control distributed executions. The time, space, and message complexities of the

V.A. Saraswat (Ed.): ASIAN 2003, LNCS 2896, pp. 91–109, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

92 Punit Chandra and Ajay D. Kshemkalyani

Table 1. Comparison of space, message and time complexities. n = number of pro-
cesses, M = maximum queue length at P0, p = maximum number of intervals occurring
at any process, ms = total number of messages exchanged between all the processes.
Note: p ≥ M , as all the intervals may not be sent to P0.

Avg. time comp- Total number Space at P0 (= Avg. space at
lexity at P0 of messages total msg. space) Pi, i ∈ [1, n]

GW94 [6] O(n2M) or O(nms) O(ms) O(n2M) or O(nms) O(n)
(Possibly)
GW96 [7] O(n2M) or O(nms) O(ms) O(n2M) or O(nms) O(n)

(Definitely)
Fine Poss, O(n2M) or O(min(4ms, np)) O(min[(4n − 2)np, O(n)
Fine Def , O(n[min(4ms, np)]) 10nms])
Fine Rel

proposed on-line, centralized detection algorithms (Algorithms Fine Poss and
Fine Def - the main results) to detect Possibly and Definitely in terms of the
fine-grained modalities per pair of processes, are the same as those of the earlier
on-line, centralized algorithms [6,7] that can detect only whether the Possibly
and Definitely modalities hold. Table 1 compares the complexities. Fine Rel,
which is an intermediate problem we need solve, is introduced later.

The power of our approach stems from the use of intervals as opposed to
individual events in the distributed execution. The intervals at each process are
identified to be the durations during which the local predicate is true [10,12].
We now state Problems Fine Poss and Fine Def .

Problem Fine Poss Statement. For a conjunctive predicate φ, determine on-
line if Possibly(φ) is true. If true, identify the fine-grained pairwise interac-
tion between each pair of processes when Possibly(φ) first becomes true.

Problem Fine Def Statement. For a conjunctive predicate φ, determine on-
line if Definitely(φ) is true. If true, identify the fine-grained pairwise inter-
action between each pair of processes when Definitely(φ) first becomes true.

Section 2 gives the background and objectives. Section 3 presents the frame-
work and data structures. Section 4 and Section 5 present the on-line algorithms.
Section 6 gives the conclusions.

2 System Model, Background, and Objectives

2.1 System Model

We assume an asynchronous distributed system in which n processes commu-
nicate only by reliable message passing. We do not assume FIFO channels. To
model the system execution, let ≺ be an irreflexive partial ordering representing
the causality relation on the event set E. E is partitioned into local executions at
each process. Let N denote the set of all processes. Each Ei is a linearly ordered
set of events executed by process Pi. An event e at Pi is denoted ei. The causality

Global Predicate Detection under Fine-Grained Modalities 93

Table 2. Dependent relations for interactions between intervals are given in the first
two columns [9]. Tests for the relations are given in the third column [10].

Relation r Expression for r(X, Y) Test for r(X, Y)
R1 ∀x ∈ X∀y ∈ Y, x ≺ y V −

y [x] > V +
x [x]

R2 ∀x ∈ X∃y ∈ Y, x ≺ y V +
y [x] > V +

x [x]
R3 ∃x ∈ X∀y ∈ Y, x ≺ y V −

y [x] > V −
x [x]

R4 ∃x ∈ X∃y ∈ Y, x ≺ y V +
y [x] > V −

x [x]
S1 ∃x ∈ X∀y ∈ Y, x �� y

∧
y �� x if V −

y [y] �< V −
x [y]

∧
V +

y [x] �> V +
x [x]

then (∃x0 ∈ X: V −
y [y] �≤ V x0

x [y]∧
V x0

x [x] �≤ V +
y [x]) else false

S2 ∃x1, x2 ∈ X∃y ∈ Y, x1 ≺ y ≺ x2 if V +
y [x] > V −

x [x]
∧

V −
y [y] < V +

x [y]
then (∃y0 ∈ Y : V +

x [y] �< V y0

y [y]∧
V y0

y [x] �< V −
x [x]) else false

relation on E is the transitive closure of the local ordering relation on each Ei

and the ordering imposed by message send events and message receive events
[13]. A cut C is a subset of E such that if ei ∈ C then (∀e′

i)e
′
i ≺ ei =⇒ e′

i ∈ C.
A consistent cut is a downward-closed subset of E in (E, ≺) and denotes an ex-
ecution prefix. For event e, there are two special consistent cuts ↓ e and e ↑. ↓ e
is the maximal set of events that happen before e. e ↑ is the set of all events up
to and including the earliest events at each process for which e happens before
the events.

Definition 1. Cut ↓ e is defined to be {e′ |e′ ≺ e} and cut e ↑ is defined to be
{e′ |e′ 	
 e}

⋃
{ei, i = 1, . . . , |N | | ei
 e

∧
(∀e′

i ≺ ei, e
′
i 	
 e)}.

The system state after the events in a cut is a global state; if the cut is
consistent, the corresponding system state is a consistent global state. We assume
that the popular vector clocks are available [5,15] – the vector clock V has the
property that e ≺ f ⇐⇒ V (e) < V (f).

A conjunctive predicate is of the form
∧

i φi, where φi is a predicate defined
on variables local to process Pi. The intervals of interest at each process are the
durations in which the local predicate is true. Such an interval at process Pi is
identified by the (totally ordered) subset of adjacent events of Ei for which the
local predicate is true.

2.2 Pairwise Interactions

There are 29 or 40 possible mutually orthogonal ways in which any two durations
can be related to each other, depending on whether the dense or the nondense
time model is assumed [9]. Informally speaking, with dense time, ∀x, y in in-
terval A, x ≺ y =⇒ ∃z ∈ A | x ≺ z ≺ y. These orthogonal interaction types
were identified by first using the six relations given in the first two columns of
Table 2. Relations R1 (strong precedence), R2 (partially strong precedence), R3
(partially weak precedence), R4 (weak precedence) define causality conditions

94 Punit Chandra and Ajay D. Kshemkalyani

Table 3. The 40 independent relations in
 [9]. X and Y are intervals. The upper
part of the table gives the 29 relations assuming dense time. The lower part of the
table gives 11 additional relations if nondense time is assumed.

Interaction Relation r(X, Y) Relation r(Y, X)
Type R1 R2 R3 R4 S1 S2 R1 R2 R3 R4 S1 S2

IA(= IQ−1) 1 1 1 1 0 0 0 0 0 0 0 0
IB(= IR−1) 0 1 1 1 0 0 0 0 0 0 0 0
IC(= IV −1) 0 0 1 1 1 0 0 0 0 0 0 0
ID(= IX−1) 0 0 1 1 1 1 0 1 0 1 0 0
ID′(= IU−1) 0 0 1 1 0 1 0 1 0 1 0 1
IE(= IW −1) 0 0 1 1 1 1 0 0 0 1 0 0
IE′(= IT −1) 0 0 1 1 0 1 0 0 0 1 0 1
IF (= IS−1) 0 1 1 1 0 1 0 0 0 1 0 1
IG(= IG−1) 0 0 0 0 1 0 0 0 0 0 1 0
IH(= IK−1) 0 0 0 1 1 0 0 0 0 0 1 0
II(= IJ−1) 0 1 0 1 0 0 0 0 0 0 1 0
IL(= IO−1) 0 0 0 1 1 1 0 1 0 1 0 0
IL′(= IP −1) 0 0 0 1 0 1 0 1 0 1 0 1
IM(= IM−1) 0 0 0 1 1 0 0 0 0 1 1 0
IN(= IM ′−1) 0 0 0 1 1 1 0 0 0 1 0 0
IN ′(= IN ′−1) 0 0 0 1 0 1 0 0 0 1 0 1

ID′′(= (IUX)−1) 0 0 1 1 0 1 0 1 0 1 0 0
IE′′(= (ITW)−1) 0 0 1 1 0 1 0 0 0 1 0 0
IL′′(= (IOP)−1) 0 0 0 1 0 1 0 1 0 1 0 0

IM ′′(= (IMN)−1) 0 0 0 1 0 0 0 0 0 1 1 0
IN ′′(= (IMN ′)−1) 0 0 0 1 0 1 0 0 0 1 0 0

IMN ′′(= (IMN ′′)−1) 0 0 0 1 0 0 0 0 0 1 0 0

whereas S1 and S2 define coupling conditions. Assuming that time is dense, it
was shown in [9] that there are 29 possible interaction types between a pair of
intervals, as given in the upper part of Table 3. Of the 29 interactions, there are
13 pairs of inverses, while three are inverses of themselves. The twenty-nine in-
teraction types are specified using boolean vectors. The six relations R1-R4 and
S1-S2 form a boolean vector of length 12, (six bits for r(X, Y) and six bits for
r(Y, X)). The interaction types are illustrated in [9]. The nondense time model,
whose importance is given in [9], permits 11 interaction types between a pair of
intervals, defined in the lower part of Table 3, besides the 29 identified before.
Of these, there are five pairs of inverses, while one is its own inverse. These
interaction types are illustrated in [9]. The set of 40 relations is denoted as �.

2.3 Modalities for Global Predicates

Observe that for any predicate φ, three orthogonal relational possibilities hold
under the Possibly/ Definitely classification: (i) Definitely(φ), (ii) ¬Definitely-
(φ) ∧ Possibly(φ), (iii) ¬Possibly(φ).

Global Predicate Detection under Fine-Grained Modalities 95

Table 4. Refinement mapping [10]. The upper part shows the 29 mappings when
the dense time model is assumed. With the nondense time model, the 11 additional
mappings in the lower part also apply.

Definitely(φ) Possibly(φ) ∧ ¬Definitely(φ) ¬Possibly(φ)
ID and IX IB and IR IA and IQ
ID′ and IU IC and IV
IE and IW IG
IE′ and IT IH and IK
IF and IS II and IJ
IO and IL
IP and IL′

IM
IM′ and IN

IN′

ID′′ and IUX IM′′ and IMN
IE′′ and ITW IMN′′

IL′′ and IOP
IN′′ and IMN′

Conjunctive predicates form an important class of predicates and have been
studied extensively [2,6,7,8]. Based on the definitions of the orthogonal tempo-
ral interactions [9], the 3 orthogonal relational possibilities based on the Pos-
sibly/Definitely definitions were refined into the exhaustive set of 40 possibili-
ties [10]. Table 4 shows this refinement mapping, assuming that the conjunc-
tive predicate is defined on two processes. When conjunctive predicate φ is de-
fined over variables that are local to n > 2 processes, one can still express the
three possibilities (i) Definitely(φ), (ii) ¬Definitely(φ) ∧ Possibly(φ), and
(iii) ¬Possibly(φ), in terms of the fine-grained 40 independent relations between
Cn

2 pairs of intervals. Note that not all 40Cn
2 combinations will be valid – the

combinations have to satisfy the axiom system given in [9].
For n > 2 processes, the refinement mappings of the Possibly and Definitely

modalities are given by Theorem 1 [10].

Theorem 1. [10] Consider a conjunctive predicate φ = ∧iφi. The following
results are implicitly qualified over a set of intervals, containing one interval per
process.

– Definitely(φ) holds if and only if
∧

(∀i∈N)(∀j∈N) [Definitely(φi ∧ φj)]
– ¬Definitely(φ) ∧ Possibly(φ) holds if and only if

• (∃i ∈ N)(∃j ∈ N)¬Definitely(φi∧φj)
∧

(
∧

(∀i∈N)(∀j∈N) [Possibly(φi∧
φj)])

– ¬Possibly(φ) holds if and only if (∃i ∈ N)(∃j ∈ N)¬Possibly(φi ∧ φj)

Consider the following example (from [10]) of the extra information provided
by the fine-grained modalities. Let φ be ai = 2 ∧ bj = 3 ∧ ck = 5. Let ai, bj ,
and ck be 2, 3, 5 respectively, in intervals Xi, Yj , and Zk, respectively, and

96 Punit Chandra and Ajay D. Kshemkalyani

X

Y

Z

ID(X,Y), IX(Y,X)

IV(Y,Z), IC(Z,Y)

IN(Z,X), IM (X,Z)

min(X) max(X) min(X)

max(Z)

min(Y) max(Y)

min(Z) max(Z)

min(X) max(X)

max(X)
max(Y)min(Y) min(Y) max(Y)

time

min(Z)

’

Fig. 1. Example [10] to show fine-grained relations across n > 2 processes.

let ID(Xi, Yj), IV (Yj , Zk), and IN(Zk, Xi) be true. This is shown in Figure 1.
Then by Theorem 1, we have (i) Definitely(ai = 2 ∧ bj = 3), (ii) Possibly(bj =
3 ∧ ck = 5) and ¬Definitely(bj = 3 ∧ ck = 5), and (iii) Definitely(ai =
2∧ck = 5). By Theorem 1, we have the modality Possibly(φ)∧¬Definitely(φ).
Conversely, if Possibly(φ) ∧ ¬Definitely(φ) is known in the classical course-
grained classification, the fine-grained classification gives the added information:
ID(Xi, Yj), IV (Yj , Zk), and IN(Zk, Xi).

2.4 Objective

Our objective is to solve Fine Poss and Fine Def , i.e., to detect Possibly(φ)
and Definitely(φ), for conjunctive predicates, with the added information of
the exact interaction type between each pair of intervals (one at each process)
when Possibly(φ) and Definitely(φ) are true. The extra information about
the pairwise interaction type is useful, as shown in [10] by considering various
applications. Another use of the extra information is in multi-player distributed
games. The overheads of our algorithms are the same as those of the earlier
algorithms, [GW94] [6] for Possibly(φ) and [GW96] [7] for Definitely(φ), that
can detect only whether Possibly(φ) is true and whether Definitely(φ) is true.
Tables 1 compares all the performance metrics.

3 Detecting Predicates: Framework and Data Structures

Given a conjunctive predicate, for each pair of intervals belonging to different
processes, each of the 29 (40) possible independent relations in the dense (non-
dense) model of time can be tested for using the bit-patterns for the dependent

Global Predicate Detection under Fine-Grained Modalities 97

1. When an internal event or send event occurs at process Pi, Vi[i] = Vi[i] + 1.
2. Every message contains the vector clock and Interval Clock of its send event.
3. When process Pi receives a message msg, then ∀ j do,

if (j == i) then Vi[i] = Vi[i] + 1,
else Vi[j] = max(Vi[j], msg.V [j]).

4. When an interval starts at Pi (local predicate φi becomes true), Ii[i] = Vi[i].
5. When process Pi receives a message msg, then ∀ j do,

Ii[j] = max(Ii[j], msg.I[j]).

Fig. 2. The vector clock and Interval Clock.

relations, as given in Table 3. The tests for the relations R1, R2, R3, R4, S1, and
S2 are given in the third column of Table 2 using vector timestamps. Recall that
the interval at a process is used to identify the period when some local property
(using which the predicate φ is defined) holds. V −

i and V +
i denote the vector

timestamps at process Pi at the start of an interval and the end of an interval,
respectively. V x

i denotes the vector timestamp of event xi at Pi.
The tests in Table 2 can be run by a central server along the lines of the

algorithms in [4,6,7,8,14]. Processes P1, P2,, Pn send the timestamps of their
intervals and certain other local information to the server P0, which maintains
queues Q1, Q2, ,Qn for each of the processes. We require that the central
server P0 receive the updates from each Pi, 1 ≤ i ≤ n, in FIFO order. For each
of the problems to be solved, the server runs different algorithms to process the
interval information in the queues. We assume that interval X occurs at Pi and
interval Y occurs at Pj . For any two intervals X and X ′ that occur at the same
process, if R1(X, X ′), then we say that X is a predecessor of X ′ and X ′ is a
successor of X. Also, there are a maximum of p intervals at any process.

The operations and data structures required by the algorithms to solve Prob-
lems Fine Poss and Fine Def can be divided into two parts. The first, common
to all the algorithms, runs on each of the n processes P1 to Pn, and is given in
this section. The second part of each algorithm runs on the central process P0
and is presented in later sections.

3.1 Log Operations

Each process Pi, where 1 ≤ i ≤ n, maintains the following data structures. (1)
Vi : array[1..n] of integer. This is the V ector Clock. (2) Ii : array[1..n] of integer.
This is a Interval Clock which tracks the latest intervals at processes. Ii[j] is the
timestamp Vj [j] when φj last became true. (3) Logi: Contains the information
to be sent to the central process. Figure 2 shows how to maintain the vector
clock and Interval Clock.

To maintain Logi, the required data structures and operations are defined in
Figure 3. Logi is constructed and sent to the central process using the protocol
shown. The central process uses the Log to determine the relationship between
two intervals.

98 Punit Chandra and Ajay D. Kshemkalyani

type Event Interval = record type Log = record
interval id : integer; start: array[1..n] of integer;
local event: integer; end: array[1..n] of integer;

end p log: array[1..n] of Process Log;
end

type Process Log = record
event interval queue: queue of Event Interval;

end

Start of an interval:
Logi.start = V −

i . //Store the timestamp V −
i of the starting of the interval.

On receiving a message during an interval:
if (change in Ii) then //Store local component of vector clock and interval id

for each k such that Ii[k] was changed //which caused the change in Ii

insert (Ii[k], Vi[i]) in Logi.p log[k].event interval queue.
End of interval:

Logi.end = V +
i //Store the timestamp V +

i of the end of the interval.
if (a receive or send event occurs between start of previous interval and end of
current interval) then

Send Logi to central process.

Fig. 3. Data structures and operations to construct Log at Pi (1 ≤ i ≤ n).

3.2 Complexity Analysis at Pi (1 ≤ i ≤ n)

Space complexity of Log. Each Log stores the start (V −) and the end (V +)
of an interval, which requires a maximum of 2np integers per process. Consider
the construction algorithm for Log. Besides the start and the end of each in-
terval, an Event Interval is added to the Log for every component of Interval
Clock which is modified due to the receive of a message. As a change in a
component of Interval Clock implies the start of a new interval on another pro-
cess, the total number of times the component of Interval Clock can change is
equal to the number of intervals on all the processes. Thus the total number of
Event Interval which can be added to the Log of a single process is (n − 1)p.
This takes 2(n − 1)p integers per process. The total space needed for Logs cor-
responding to all p intervals on a single process is 2(n− 1)p+2np. This gives an
average of 4n−2 integers per Log. As only one Log exists at a time, the average
space requirement at a process Pi (1 ≤ i ≤ n) at any time is the sum of space
required by vector clock, Interval Clock, and Log, which is 6n − 2 integers.

Message complexity of control messages sent to the central process P0

by processes P1 to Pn. This can be determined in two ways. As one message is
sent per interval, the number of messages is O(p) for each Pi (i 	= 0). This gives
a total message complexity of O(np). On the average, the size of each message is
4n−2 as each message contains the Log. The total message space overhead for a
particular process is the sum of all the Logs for that process, which was shown to
be 4np − 2p. Hence the total message space complexity is 4n2p − 2np = O(n2p).

Global Predicate Detection under Fine-Grained Modalities 99

An optimization of message size. The Log corresponding to an interval is
sent to the central process only if the relationship between the interval and all
other intervals (at other processes) is different from the relationship which its
predecessor interval had with all the other intervals (at other processes). Two
successive intervals Y and Y ′ on process Pj will have the same relationship if no
message is sent or received by Pj between the start of Y and the end of Y ′. For
each message exchanged between processes, a maximum of four interval Logs
need to be sent to the central process, because two successive intervals (Y and
Y ′) will have different relationships if a receive or a send occurs between the
start of Y and end of Y ′. This makes it necessary to send two interval Logs
for a send event and two for a receive event. Hence if there are ms number of
messages exchanged between all processes, then a total of 4ms intervals need to
be sent to the central process in 4ms control messages, while the total message
space overhead is 2ms.n + 4ms.2n = 10msn. The term 2ms.n arises because for
every message sent, each other process eventually (due to transitive propagation
of Interval Clock) may need to insert a Event Interval tuple in its Log. This
can generate 2nms overhead in Logs across the n processes. The term 4ms.2n
arises because the vector clock at the start and end of each interval is sent with
each message.

Hence, the total number of control messages sent to the central process and
the total message space overhead is the lesser of when either four intervals are
sent for each message exchanged or when all the intervals are sent. Thus the
total number of messages sent is O(min(4ms, np)) and the total message space
overhead is O(min(4n2p − 2np, 10msn)).

4 Algorithm Fine Rel: Detecting Fine-Grained Relations

To solve Problems Fine Poss and Fine Def, we first state and solve an interme-
diate problem.
Problem Fine Rel Statement: Given a relation ri,j from � for each pair of
processes Pi and Pj, determine on-line the intervals (if they exist), one from
each process, such that each relation ri,j is satisfied by the (Pi, Pj) pair.

Note that the given relations {ri,j , ∀i, j} need to satisfy the axioms on �
[9] for a solution to potentially exist. A distributed and more complex method
to solve Fine Rel, using the data structures of Figure 3 and Theorem 2 below,
without proofs or a complexity analysis, is presented in [3].
Algorithm Overview: The algorithm detects a set of intervals, one on each
process, such that each pair of intervals satisfies the relationship specified for
that pair of processes. If no such set of intervals exists, the algorithm does not
return any interval set. The central process P0 maintains n queues, one for Logs
from each process and determines which orthogonal relation holds between pairs
of intervals. The queues are processed using “pruning”, described later. If there
exists an interval at the head of each queue and these intervals cannot be pruned,
then these intervals satisfy ri,j ∀ i, j, where i 	= j and 1 ≤ i, j ≤ n, and hence
these intervals form a solution set.

100 Punit Chandra and Ajay D. Kshemkalyani

For S2(X, Y)

1. // Eliminate from Log of interval Y (on Pj), all receives of messages
//which were sent by Pi before the start of interval X (on Pi).

(1a) for each event interval ∈ Logj .p log[i].event interval queue
(1b) if (event interval.interval id < Logi.start[i]) then
(1c) delete event interval.

2. // Select from the pruned Log, the earliest message sent from interval X to Y .

(2a) temp = ∞
(2b) if (Logj .start[i] ≥ Logi.start[i]) then temp = Logj .start[j]
(2c) else
(2d) for each event interval ∈ Logj .p log[i].event interval queue
(2e) temp = min(temp, event interval.local event).

3. if (Logi.end[j] ≥ temp) then S2(X, Y) is true.

For S1(Y, X)

1. Same as step 1 of the algorithm to determine S2(X, Y).
2. Same as step 2 of the algorithm to determine S2(X, Y).
3. if (Logi.end[j] < temp) and (temp > Logj .start[j]) then S1(Y, X) is true.

Fig. 4. Tests for coupling relations S1(X, Y) and S2(Y, X) at P0.

We first define the function S(ri,j) and the relation �. Recall that X and Y
are intervals on Pi and Pj , respectively, and Y ′ is any interval that succeeds Y .

Definition 2. Function S : � → 2� is defined to be S(ri,j) = {R ∈ � | R 	=
ri,j∧ if R(X, Y) is true then ri,j(X, Y ′) is false for all Y ′ that succeed Y }.

Intuitively, for each ri,j ∈ �, we define a prohibition function S(ri,j) as the
set of all relations R such that if R(X, Y) is true, then ri,j(X, Y ′) can never be
true for some successor Y ′ of Y . S(ri,j) is the set of relations that prohibit ri,j

from being true in the future.
Two relations R′ and R′′ in � are related by the allows relation � if the

occurrence of R′(X, Y) does not prohibit R′′(X, Y ′) for some successor Y ′ of Y .

Definition 3. � is a relation on � × � such that R′ � R′′ if (1) R′ 	= R′′, and
(2) if R′(X, Y) is true then R′′(X, Y ′) can be true for some Y ′ that succeeds Y .

For example, IC � IB because (1) IC 	= IB and, (2) if IC(X, Y) is true,
then there is a possibility that IB(X, Y ′) is also true, where Y ′ succeeds Y .

Lemma 1. If R ∈ S(ri,j) then R 	� ri,j else if R 	∈ S(ri,j) then R � ri,j.

Proof. If R ∈ S(ri,j), using Definition 2, it can be inferred that ri,j is false
for all Y ′ that succeed Y . This does not satisfy the second part of Definition 3.

Global Predicate Detection under Fine-Grained Modalities 101

Table 5. S(ri,j) for the 40 independent relations in
. The upper part of the table
gives the function S on 29 relations assuming dense time. The lower part of the table
gives function S for the 11 additional relations assuming non-dense time.

Interaction S(ri,j) S(rj,i)
Type ri,j

IA (= IQ−1) φ � − {IQ}
IB (= IR−1) {IA, IF, II, IP, IO, IU, IX, IUX, IOP } � − {IQ, IR}
IC (= IV −1) {IA, IB, IF, II, IP, IO, IU, IX, IUX, IOP } � − {IQ, IV }
ID (= IX−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ, IX}
ID′ (= IU−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ, IU}
IE (= IW −1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′, IE} � − {IQ, IW }
IE′ (= IT −1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′, IE′} � − {IQ, IT }
IF (= IS−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′, IF } � − {IQ, IS}
IG (= IG−1) � − {IQ, IR, IJ, IV, IK, IG} � − {IQ, IR, IJ, IV, IK, IG}
IH (= IK−1) � − {IQ, IR, IJ, IV, IK, IG, IH} � − {IQ, IR, IJ, IK}
II (= IJ−1) � − {IQ, IR, IJ, IV, IK, IG, II} � − {IQ, IR, IJ}
IL (= IO−1) � − {IQ, IR, IJ, IL} � − {IQ, IR, IJ, IO}
IL′ (= IP −1) � − {IQ, IR, IJ, IL′} � − {IQ, IR, IJ, IP }
IM (= IM−1) � − {IQ, IR, IJ, IM} � − {IQ, IR, IJ, IM}
IN (= IM′−1) � − {IQ, IR, IJ, IN} � − {IQ, IR, IJ, IM′}
IN′ (= IN′−1) � − {IQ, IR, IJ, IN′} � − {IQ, IR, IJ, IN′}

ID′′ (= (IUX)−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ, IUX}
IE′′ (= (IT W)−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′, IE′′} � − {IQ, IT W }
IL′′ (= (IOP)−1) � − {IQ, IR, IJ, IL′′} � − {IQ, IR, IJ, IOP }

IM′′ (= (IMN)−1) � − {IQ, IR, IJ, IM′′} � − {IQ, IR, IJ, IMN}
IN′′ (= (IMN′)−1) � − {IQ, IR, IJ, IN′′} � − {IQ, IR, IJ, IMN′}

IMN′′ (= (IMN′′)−1) � − {IQ, IR, IJ, IMN′′} � − {IQ, IR, IJ, IMN′′}

Hence R 	� ri,j . If R 	∈ S(ri,j) and R 	= ri,j , it follows that ri,j can be true for
some Y ′ that succeeds Y . This satisfies Definition 3 and hence R � ri,j . ��

Table 5 gives S(ri,j) for each of the 40 interaction types in �. The table is
constructed by analyzing each interaction pair in �. We now state an important
result between any two relations in � that satisfy the “allows” relation, and the
existence of the “allows” relation between their respective inverses. Specifically,
if R′ allows R′′, then Theorem 2 states that R′−1 necessarily does not allow
relation R′′−1. The theorem can be observed to be true from Lemma 1 and
Table 5 by a case-by-case analysis.

Theorem 2. For R′, R′′ ∈ �, if R′ � R′′ then R′−1 	� R′′−1.

Taking the same example, IC � IB ⇒ IV (= IC−1) 	� IR(= IB−1), which
is indeed true. Note that R′ 	= R′′ in the definition of relation � is necessary;
otherwise R′ � R′ will become true and from Theorem 2, we get R′−1 	� R′−1

which leads to a contradiction.

Lemma 2. If the relationship R(X, Y) between intervals X and Y (belonging
to process Pi and Pj, resp.) is contained in the set S(ri,j), then interval X can
be removed from the queue Qi.

Proof. From the definition of S(ri,j), we get that ri,j(X, Y ′) cannot exist, where
Y ′ is any successor interval of Y . Hence interval X can never be a part of the
solution and can be deleted from the queue. ��
Lemma 3. If the relationship between a pair of intervals X and Y (belonging to
processes Pi and Pj resp.) is not equal to ri,j, then either interval X or interval
Y is removed from the queue.

102 Punit Chandra and Ajay D. Kshemkalyani

Proof. We use contradiction. Assume relation R(X, Y) (= ri,j(X, Y)) is true
for intervals X and Y . From Lemma 2, the only time neither X nor Y will be
deleted is when R 	∈ S(ri,j) and R−1 	∈ S(rj,i). From Lemma 1, it can be inferred
that R � ri,j and R−1 � rj,i. As r−1

i,j = rj,i, we get R � ri,j and R−1 � r−1
i,j . This

is a contradiction as by Theorem 2, R � ri,j ⇒ R−1 	� r−1
i,j . Hence R ∈ S(ri,j) or

R−1 ∈ S(rj,i) or both, and thus at least one of the intervals can be deleted. ��

Theorem 3. Algorithm Fine Rel run by P0 in Figure 5 solves Problem Fine Rel.

Proof. Lemma 2 which allows queues to be pruned correctly is implemented
in the algorithm at P0. The algorithm deletes interval X as soon as R(X, Y) ∈
S(ri,j) (lines 13-17). Similarly, Y is deleted if R(Y, X) ∈ S(rj,i) (lines 15-17).
Thus, an interval gets deleted only if it cannot be part of the solution. Also
clearly, each interval gets processed unless a solution is found using a predeces-
sor interval from the same process. Lemma 3 gives the unique property that if
R(X, Y) 	= ri,j , then either interval X or interval Y is deleted. A consequence
of this property is that if every queue is non-empty and their heads cannot be
pruned, then a solution exists and the set of intervals at the head of each queue
forms a solution.

The set updatedQueues stores the indices of all the queues whose heads got
updated. In each iteration of the while loop, the indices of all the queues whose
head satisfy Lemma 2 are stored in set newUpdatedQueues (lines (13)-(16)). In
lines (17) and (18), the heads of all these queues are deleted and indices of the
updated queues are stored in the set updatedQueues. Observe that only interval
pairs which were not compared earlier are compared in subsequent iterations
of the while loop. The loop runs until no more queues can be updated. If at
this stage all the queues are non-empty, then a solution is found (follows from
Lemma 3). If a solution is found, then for the intervals X (at Pi) and Y (at Pj)
stored at the heads of these queues, we have R(X, Y) = ri,j . ��

For processes P1 to Pn, the space complexity was shown in Section 3.2 to be
on average O(n) at each process. Using the optimization in Section 3.2, the total
number of messages sent is equal to O(min(4ms, pn)) and the total message
space complexity is O(min((4n − 2)np, 10nms)).

Theorem 4. Algorithm Fine Rel has the following complexities.

– The total message space complexity is O(min((4n − 2)np, 10nms)).
– The total space complexity at process P0 is O(min((4n − 2)np, 10nms)).
– The average time complexity at P0 is O((n−1)min(4ms, pn)). This is equiv-

alent to O(n2M), where M is maximum number of entries in a queue.

Proof. For the central process P0, the total space required is O(min((4n−2)np,-
10nms)) because the total space overhead at P0 is equal to the total message
space complexity, which was computed in Section 3.2.

The time complexity is the product of the number of steps required to de-
termine a relationship and the number of relations determined.

Consider the first part of the product.

Global Predicate Detection under Fine-Grained Modalities 103

queue of Log: Q1, Q2, . . . Qn =⊥
set of int: updatedQueues, newUpdatedQueues = {}
On receiving interval from process Pz at P0

(1) Enqueue the interval onto queue Qz

(2) if (number of intervals on Qz is 1) then
(3) updatedQueues = {z}
(4) while (updatedQueues is not empty)
(5) newUpdatedQueues={}
(6) for each i ∈ updatedQueues
(7) if (Qi is non-empty) then
(8) X = head of Qi

(9) for j = 1 to n
(10) if (Qj is non-empty) then
(11) Y = head of Qj

(12) Test for R(X, Y) using the tests in Fig. 4 and Tab. 2
(13) if (R(X, Y) ∈ S(ri,j)) then
(14) newUpdatedQueues = {i} ∪ newUpdatedQueues
(15) if (R(Y, X) ∈ S(rj,i)) then
(16) newUpdatedQueues = {j} ∪ newUpdatedQueues
(17) Delete heads of all Qk where k ∈ newUpdatedQueues
(18) updatedQueues = newUpdatedQueues
(19) if (all queues are non-empty) then
(20) solution found. Heads of queues identify intervals that form the solution.

Fig. 5. On-line algorithm Fine Rel at P0.

– The total number of interval pairs between any two processes Pi and Pj is
p2. To determine R1(X, Y) to R4(X, Y) and R1(Y, X) to R4(Y, X), as eight
comparisons are needed for each interval pair, a total of 8p2 comparisons are
necessary for any pair of processes.

– To determine the number of comparisons required by S1 and S2, consider the
maximum number of Event Intervals stored in Logj .p log[i] that are sent
over the execution lifetime to the central process as part of the Logs. This
is the maximum number of Event Intervals corresponding to Pi stored in
Qj over Pj ’s execution lifetime. An Event Interval is added to Logj .p log[i]
only when there is a change in the ith component of Interval Clock at the
receive of a message. As the ith component of Interval Clock changes only
when a new interval starts, the total number of times the ith component
of Interval Clock changes is at most equal to p, the maximum number of
intervals occurring on the other process Pi. From Figure 4, it can be observed
that for each Event Interval, there is one comparison. Thus, to determine
the relationship between an interval on Pi and all other intervals on Pj , the
number of comparisons is equal to p. As there are p intervals on Pi, a total of
p2 comparisons are required to determine S1 or S2. Hence the total number
of comparisons to determine S1(X, Y), S2(X, Y), S1(Y, X), and S2(Y, X)
is 4p2.

104 Punit Chandra and Ajay D. Kshemkalyani

This gives a total of 8p2 +4p2 = O(p2) comparisons to determine the relation
between each pair of intervals on a pair of processes. As there are a total of
p2 intervals pairs between two processes, the average number of comparisons
required to determine a relationship is O(1).

To analyse the second part of the product, consider Figure 5. For each in-
terval considered from one of the queues in updatedQueues (lines (6)-(12)), the
number of relations determined is n − 1. Thus the number of relations deter-
mined for each iteration of the while loop is (n − 1)|updatedQueues|, where
|updatedQueues| denotes the number of entries in updatedQueues. The cumu-
lative

∑
|updatedQueues| over all iterations of the while loop is less than the

total number of intervals over all the queues. Thus, the total number of relations
determined is less than (n − 1)min(4ms, pn), where min(4ms, np) is the upper
bound on the total number of intervals over all the queues. As the average time
required to determine a relationship is O(1), the average time complexity of the
algorithm is equal to O((n − 1)min(4ms, pn)).

The average time complexity can be equivalently expressed using M , the
maximum number of entries in a queue, as follows. The total number of intervals
over all the queues is O(nM). As the total number of relations determined is (n−
1)

∑
|updatedQueues| over all the iterations of the while loop, this is equivalent

to (n − 1).nM = O(n2M). This is also the average time complexity because it
takes O(1) time on the average to determine a relationship. ��

Table 1 compares the complexities of Fine Rel with those of GW94 [6] and
GW96 [7]. GW94 and GW96 computed their time complexity at P0 as only
O(n2M), not in terms of ms or p. They did not give the space complexity at P0.
As each control message in GW94 and GW96 carries a fixed size O(n) message
overhead and a control message is sent to P0 for every message send/receive
event, we have computed their total space complexity and average time com-
plexity at P0 as O(nms). This enables a direct comparison with the complexities
of our algorithm. Further, we have also computed our average time complexity
using M , as O(n2M). In our algorithm, note that M ≤ p; M = p if the message
overhead optimization is not used. We do not express the total space at P0 in
terms of M because the queue entries are of variable size, with an average size
of (4n − 2) integers.

5 Algorithms Fine Poss and Fine Def

By leveraging Theorem 1 and the mapping of fine-grained modalities to Possibly
and Definitely modalities, as given in Table 4, we address the problems of de-
termining whether Possibly(φ) and Definitely(φ) hold. If either of these two
coarse-grained modalities holds, we can also determine the exact fine-grained
orthogonal relation/modality between each pair of processes, unlike any previ-
ous algorithm. Further, the time, space, and message complexities of the pro-
posed on-line (centralized) detection algorithms (Algorithms Fine Poss and
Fine Def) to detect Possibly and Definitely in terms of the fine-grained
modalities per pair of processes, are the same as those of the earlier on-line

Global Predicate Detection under Fine-Grained Modalities 105

(centralized) algorithms [6,7] that can detect only whether the Possibly and
Definitely modalities hold.

Recall that � is a set of orthogonal relations and hence one and only one
relation from � must hold between any pair of intervals. Consider the case where,
for each pair of processes (Pi, Pj), we are given a set r∗

i,j ⊆ � such that we are
satisfied if some relation in r∗

i,j holds. Now consider the objective where we need
to identify one interval per process such that for each process pair (Pi, Pj), some
relation in r∗

i,j holds for that (Pi, Pj). Such an objective would be useful if we can
leverage the coarse-to-fine mapping of modalities, given in Table 4. We formalize
such an objective by generalizing the detection problem Fine Rel to problem
Fine Rel′, as follows.
Problem Fine Rel′ Statement: Given a set of relations r∗

i,j ⊆ � for each
pair of processes Pi and Pj, determine on-line the intervals, if they exist, one
from each process, such that any one of the relations in r∗

i,j is satisfied (by the
intervals) for each (Pi, Pj) pair. If a solution exists, identify the fine-grained
interaction from � for each pair of processes in the first solution.

To solve Fine Rel′, given an arbitrary r∗
i,j , a solution based on algorithm

Fine Rel (Figure 5) will not work because in the crucial tests in lines (13)-(14),
neither interval may be removable, and yet none of the relations from r∗

i,j might
hold between the two intervals. This leads to deadlock! To see this further,
let r1, r2 ∈ r∗

i,j and let R(X, Y) hold, where R 	∈ r∗
i,j . Now let R ∈ S(r1),

R−1 	∈ S(r1−1), R 	∈ S(r2), R−1 ∈ S(r2−1). Interval X cannot be deleted
because r2(X, Y ′) may be true for a successor Y ′. Interval Y cannot be deleted
because r1−1(Y, X ′) may be true for a successor X ′. Therefore, a solution based
on Algorithm Fine Rel will deadlock, and a more elaborate (and presumably
expensive) solution will be needed.

We now identify and define a special property, termed CONVEXIT Y, on r∗
i,j

such that the deadlock is prevented. Informally, this property says that there is
no relation R outside r∗

i,j such that for any r1, r2 ∈ r∗
i,j , R � r1 and R−1 � r2−1.

This property guarantees that when intervals X and Y are compared for r∗
i,j and

R(X, Y) holds, either X or Y or both get deleted, and hence there is progress.
The sets r∗

i,j , derived from Table 4, that need to be detected to solve Problems
Fine Poss and Fine Def satisfy this property. We therefore observe that prob-
lems Fine Poss and Fine Def are special cases of Problem Fine Rel′ in which
the property CONVEXIT Y on r∗

i,j is necessarily satisfied. To solve Problems
Fine Poss and Fine Def , we then use the generalizations of Lemmas 2 and 3,
as given in Lemmas 4 and 5, respectively, to first solve Fine Rel′.

Definition 4.

CONVEXIT Y : ∀R 	∈r∗
i,j : (∀ri,j ∈ r∗

i,j , R ∈ S(ri,j)
∨

∀rj,i ∈ r∗
j,i, R

−1 ∈ S(rj,i))

Lemma 4. If the relationship R(X, Y) between intervals X and Y (belonging to
processes Pi and Pj, respectively) is contained in the set

⋂
ri,j∈r∗

i,j
S(ri,j), then

interval X can be removed from the queue Qi.

106 Punit Chandra and Ajay D. Kshemkalyani

(13) if (R(X, Y) ∈
⋂

ri,j∈r∗
i,j

S(ri,j)) then

(14) newUpdatedQueues = {i} ∪ newUpdatedQueues
(15) if (R(Y, X) ∈

⋂
rj,i∈r∗

j,i
S(rj,i)) then

(16) newUpdatedQueues = {j} ∪ newUpdatedQueues

Fig. 6. Algorithm Fine Rel′: Changes to algorithm Fine Rel are listed, assuming r∗
i,j

satisfies property CONVEXIT Y.

Proof. From the definition of S(ri,j), we infer that no relation ri,j(X, Y ′), where
ri,j ∈ r∗

i,j and Y ′ is any successor interval of Y on Pj , can be true. Hence interval
X can never be a part of the solution and can be deleted from the queue. ��

Lemma 5. If the relationship R(X, Y) between a pair of intervals X and Y
(belonging to processes Pi and Pj, respectively) does not belong to the set r∗

i,j,
where r∗

i,j satisfies property CONVEXIT Y, then either interval X or interval
Y is removed from the queue.

Proof. We use contradiction. Assume relation R(X, Y) (∈ r∗
i,j(X, Y)) is true

for intervals X and Y . From Lemma 4, the only time neither X nor Y will be
deleted is when both R 	∈

⋂
ri,j∈r∗

i,j
S(ri,j), and R−1 	∈

⋂
rj,i∈r∗

j,i
S(rj,i). However,

as r∗
i,j satisfies property CONVEXIT Y, we have that R ∈

⋂
ri,j∈r∗

i,j
S(ri,j) or

R−1 ∈
⋂

rj,i∈r∗
j,i

S(rj,i) must be true. Thus at least one of the intervals can be
deleted by an application of Lemma 4. ��

The proof of the following theorem is similar to the proof of Theorem 3.

Theorem 5. If the set r∗
i,j satisfies property CONVEXIT Y, then Problem

Fine Rel′ is solved by replacing lines (13) and (15) in algorithm Fine Rel in
Figure 5 by the lines (13) and (15) in Figure 6.

Proof. Analogous to the proof of Theorem 3. Use Lemmas 4 and 5 instead of
Lemmas 2 and 3, respectively, and reason with r∗

i,j instead of with ri,j . ��

Corollary 1. The time, space, and message complexities of Algorithm Fine
Rel′ are the same as those of Algorithm Fine Rel, which were stated in Theo-
rem 4.

Proof. The only changes to Algorithm Fine Rel are in lines (13) and (15). In
Algorithm Fine Rel′, instead of checking R(X, Y) for membership in S(ri,j) in
line (13), R(X, Y) is checked for membership in

⋂
ri,j∈r∗

i,j
S(ri,j). Both S(ri,j)

and
⋂

ri,j∈r∗
i,j

S(ri,j) are sets of size between 0 and 40. An analogous observation
holds for the change on line (15). Hence, the time, space, and message complex-
ities of Fine Rel are unaffected in Fine Rel′. ��

To detect Possibly(φ), r∗
i,j is set to the union of the orthogonal interac-

tions in the first two columns of Table 4. We can verify (by case-by-case enu-
meration) that r∗

i,j does satisfy property CONVEXIT Y. Similarly, to detect

Global Predicate Detection under Fine-Grained Modalities 107

Definitely(φ), r∗
i,j is set to the union of the orthogonal interactions in the first

column of Table 4. We can verify (by case-by-case enumeration) that r∗
i,j does

satisfy property CONVEXIT Y.
The following two theorems about using algorithm Fine Rel′ (Figure 6) to

solve Problems Fine Poss and Fine Def can be readily proved by using The-
orem 1, the refinement mapping of Table 4, and Theorem 5. The two resulting
algorithms are named Fine Poss and Fine Def , respectively.

Theorem 6. Algorithm Fine Rel modified to algorithm Fine Rel′ (Figure 6)
solves Problem Fine Poss (about Possibly(φ)) when r∗

i,j is set to the union of
the relations in the first and second columns of Table 4.

Proof. From Theorem 1, Possibly(φ) is true if and only if (∀i ∈ N)(∀j ∈
N)Possibly(φi ∧ φj). For any i and j, Possibly(φi ∧ φj) is true if and only
if R(Xi, Yj) is any of the temporal relations given in the first two columns of
Table 4. When r∗

i,j is set to the union of the relations in these two columns,
we can verify (by case-by-case enumeration) that r∗

i,j satisfies CONVEXIT Y.
As Algorithm Fine Rel′ is correct (by Theorem 6), when its r∗

i,j is instantiated
with the set above to get Algorithm Fine Poss, we have that Fine Poss is also
correct. ��
Theorem 7. Algorithm Fine Rel modified to algorithm Fine Rel′ (Figure 6)
solves Problem Fine Def (about Definitely(φ)) when r∗

i,j is set to the union of
the relations in the first column of Table 4.

Proof. From Theorem 1, Definitely(φ) is true if and only if (∀i ∈ N)(∀j ∈
N)Definitely(φi ∧ φj). For any i and j, Definitely(φi ∧ φj) is true if and only
if R(Xi, Yj) is any of the temporal relations given in the first column of Table 4.
When r∗

i,j is set to the relations in this column, we can verify (by case-by-
case enumeration) that r∗

i,j satisfies CONVEXIT Y. As Algorithm Fine Rel′ is
correct (by Theorem 6), when its r∗

i,j is instantiated with the set above to get
Algorithm Fine Def , we have that Fine Def is also correct. ��

In algorithm Fine Rel′, when r∗
i,j is set to the values as specified in Theo-

rems 6 and 7 to detect Possibly and Definitely, respectively, set
⋂

ri,j∈r∗
i,j

S(ri,j)
used in line (13) of the algorithm becomes {IA} and {IA, IB, IC, IG, IH, II},
respectively. An identical change occurs to the set

⋂
rj,i∈r∗

j,i
S(rj,i) on line (15).

Corollary 2. The time, space, and message complexities of Algorithms Fine -
Poss and Fine Def are the same as those of Algorithm Fine Rel (stated in
Theorem 4) and of Algorithm Fine Rel′ (stated in Corollary 1).

Proof. Follows from Corollary 1 and the fact that r∗
i,j for Fine Poss and

Fine Def satisfy CONVEXIT Y and are instantiations of r∗
i,j in Fine Rel′. ��

6 Discussion & Conclusions

This paper presented algorithms to detect conjunctive predicates under fine-
grained modalities. Algorithms Fine Poss and Fine Def not only detect Poss-
ibly(φ) and Definitely(φ), respectively, but also (unlike previous algorithms)

108 Punit Chandra and Ajay D. Kshemkalyani

return the pairwise fine-grained relations which exist between all the intervals
in the solution set. The space, message, and computational complexities of the
previous works for conjunctive predicate detection, GW94 [6] and GW96 [7], for
detection of only Possibly(φ) and Definitely(φ), respectively, is compared with
our algorithms in Table 1. All the complexity measures for algorithms Fine Poss
and Fine Def are the same as those for GW94 [6] and GW96 [7]. Thus with
the same overhead, Algorithms Fine Poss and Fine Def do the extra work of
finding the fine-grained relations which exist between the intervals contained in
the solution set for Possibly and Definitely.

A detailed version of these results appears in [1]. Distributed algorithms can
be devised for Fine Poss and Fine Def based on the distributed algorithm
given in [3] to solve Fine Rel. A discussion of how intervals might be identified
when trying to use the fine-grained modalities on nonconjunctive predicates, i.e.,
general relational predicates, is given in [11].

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. CCR-9875617.

References

1. Chandra, P., Kshemkalyani, A.D.: Algorithms for Detecting Global Predicates un-
der Fine-grained Modalities, Technical Report UIC-ECE-02-05, University of Illi-
nois at Chicago, April 2002.

2. Chandra, P., Kshemkalyani, A.D.: Distributed Algorithm to Detect Strong Con-
junctive Predicates, Information Processing Letters, 87(5): 243-249, September
2003.

3. Chandra, P., Kshemkalyani, A.D.: Detection of Orthogonal Interval Relations,
Proc. High-Performance Computing Conference, 323-333, LNCS 2552, Springer,
2002.

4. Cooper, R., Marzullo, K.: Consistent Detection of Global Predicates, Proc.
ACM/ONR Workshop on Parallel & Distributed Debugging, 163-173, May 1991.

5. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems Concepts and De-
sign, Addison-Wesley, 3rd edition, 2001.

6. Garg, V.K., Waldecker, B.: Detection of Weak Unstable Predicates in Distributed
Programs, IEEE Trans. Parallel & Distributed Systems, 5(3), 299-307, Mar. 1994.

7. Garg, V.K., Waldecker, B.: Detection of Strong Unstable Predicates in Distributed
Programs, IEEE Trans. Parallel & Distributed Systems, 7(12):1323-1333, Dec.
1996.

8. Hurfin, M., Mizuno, M., Raynal, M., Singhal, M.: Efficient Distributed Detection
of Conjunctions of Local Predicates, IEEE Trans. Software Engg., 24(8): 664-677,
1998.

9. Kshemkalyani, A.D.: Temporal Interactions of Intervals in Distributed Systems,
Journal of Computer and System Sciences, 52(2): 287-298, April 1996.

10. Kshemkalyani, A.D.: A Fine-Grained Modality Classification for Global Predicates,
IEEE Trans. Parallel & Distributed Systems, 14(8): 807-816, August 2003.

Global Predicate Detection under Fine-Grained Modalities 109

11. Kshemkalyani, A.D.: A Note on Fine-grained Modalities for Nonconjunctive Pred-
icates, 5th Workshop on Distributed Computing, LNCS, Springer, Dec. 2003.

12. Kshemkalyani, A.D.: A Framework for Viewing Atomic Events in Distributed Com-
putations, Theoretical Computer Science, 196(1-2), 45-70, April 1998.

13. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System,
Communications of the ACM, 558-565, 21(7), July 1978.

14. Marzullo, K., Neiger, G.: Detection of Global State Predicates, Proc. 5th Workshop
on Distributed Algorithms, LNCS 579, Springer-Verlag, 254-272, October 1991.

15. Mullender, S.: Distributed Systems, 2nd Edition, ACM Press, 1994.
16. Stoller, S., Schneider, F.: Faster Possibility Detection by Combining Two Ap-

proaches, Proc. 9th Workshop on Distributed Algorithms, 318-332, LNCS 972,
Springer-Verlag, 1995.

17. Venkatesan, S., Dathan, B.: Testing and Debugging Distributed Programs Using
Global Predicates, IEEE Trans. Software Engg., 21(2), 163-177, Feb. 1995.

	1 Introduction
	2 System Model, Background, and Objectives
	2.1 System Model
	2.2 Pairwise Interactions
	2.3 Modalities for Global Predicates
	2.4 Objective

	3 Detecting Predicates: Framework and Data Structures
	3.1 Log Operations
	3.2 Complexity Analysis at P_i $(1leq ileq n)$

	4 Algorithm $Fine_Rel$: Detecting Fine-Grained Relations
	5 Algorithms $Fine_Poss$ and $Fine_Def$
	6 Discussion & Conclusions
	References

