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Abstract. The dispersion problem on graphs asks k ≤ n robots placed ini-
tially arbitrarily on the nodes of an n-node anonymous graph to reposition
autonomously to reach a configuration in which each robot is on a distinct node
of the graph. This problem is of significant interest due to its relationship to other
fundamental robot coordination problems, such as exploration, scattering, load
balancing, and relocation of self-driven electric cars (robots) to recharge stations
(nodes). In this paper, we provide a novel deterministic algorithm for dispersion
in arbitrary graphs in a synchronous setting where all robots perform their actions
in every time step. Our algorithm has O(min(m, kΔ) · log k) steps runtime using
O(log n) bits of memory at each robot, where m is the number of edges and Δ
is the maximum degree of the graph. This is a significant improvement over the
O(mk) steps best previously known algorithm that uses logarithmic memory at
each robot. In particular, the runtime of our algorithm is optimal (up to aO(log k)
factor) in constant-degree arbitrary graphs.

1 Introduction

The dispersion of autonomous mobile robots to spread them out evenly in a region is
a problem of significant interest in distributed robotics, e.g., see [14,15]. Recently, this
problem has been formulated by Augustine and Moses Jr. [1] in the context of graphs.
They defined the problem as follows: Given any arbitrary initial configuration of k ≤ n
robots positioned on the nodes of an n-node graph, the robots reposition autonomously
to reach a configuration where each robot is positioned on a distinct node of the graph
(which we call the DISPERSION problem). This problem has many practical applica-
tions, for example, in relocating self-driven electric cars (robots) to recharge stations
(nodes), assuming that the cars have smart devices to communicate with each other
to find a free/empty charging station [1,16]. This problem is also important due to its
relationship to many other well-studied autonomous robot coordination problems, such
as exploration, scattering, load balancing, covering, and self-deployment [1,16]. One
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of the key aspects of mobile-robot research is to understand how to use the resource-
limited robots to accomplish some large task in a distributed manner [10,11]. In this
paper, we study trade-off between memory requirement and time to solve DISPERSION.

Augustine and Moses Jr. [1] studied DISPERSION assuming k = n. They proved a
memory lower bound of Ω(log n) bits at each robot and a time lower bound of Ω(D)
(Ω(n) in arbitrary graphs) for any deterministic algorithm in any graph, where D is the
diameter of the graph. They then provided deterministic algorithms using O(log n) bits
at each robot to solve DISPERSION on lines, rings, and trees in O(n) time. For arbitrary
graphs, they provided two algorithms, one usingO(log n) bits at each robot withO(mn)
time and another using O(n log n) bits at each robot with O(m) time, where m is the
number of edges in the graph. Recently, Kshemkalyani and Ali [16] provided an Ω(k)
time lower bound for arbitrary graphs for k ≤ n. They then provided three deterministic
algorithms for DISPERSION in arbitrary graphs: (i) The first algorithm usingO(k logΔ)
bits at each robot with O(m) time, (ii) The second algorithm using O(D logΔ) bits at
each robot with O(ΔD) time, and (iii) The third algorithm using O(log(max(k,Δ)))
bits at each robot with O(mk) time, where Δ is the maximum degree of the graph.
Randomized algorithms are presented in [18] to solve DISPERSION where the random
bits are mainly used to reduce the memory requirement at each robot.

In this paper, we provide a new deterministic algorithm for solving DISPERSION

in arbitrary graphs. Our algorithm improves significantly on the runtime of the best
previously known algorithm with logarithmic memory at each robot; see Table 1.

Overview of the Model and Results. We consider the same model as in Augustine
and Moses Jr. [1] and Kshemkalyani and Ali [16] where a system of k ≤ n robots
are operating on an n-node anonymous graph G. The robots are distinguishable, i.e.,
they have unique IDs in the range [1, k]. The robots have no visibility; but they can
communicate with each other only when they are at the same node of G. The graph
G is assumed to be connected and undirected. The nodes of G are indistinguishable
(G is anonymous) but the ports (leading to incident edges) at each node have unique
labels from [1, δ], where δ is the degree of that node. It is assumed that the robots know
m,n,Δ, k1. Similar assumptions are made in the previous work in DISPERSION [1].
The nodes of G do not have memory and the robots have memory. Synchronous setting
is considered as in [1] where all robots are activated in a round and they perform their
operations simultaneously in synchronized rounds. Runtime is measured in rounds (or
steps). We establish the following theorem in an arbitrary graph.

Theorem 1. Given any initial configuration of k ≤ n mobile robots in an arbitrary,
anonymous n-node graph G having m edges and maximum degree Δ, DISPERSION

can be solved in O(min(m, kΔ) · log k) time with O(log n) bits at each robot.

Theorem 1 improves significantly over the O(mk) time algorithm of [16] with log-
arithmic memory (Table 1). Notice that, when Δ ≤ k, the runtime depends only on k,

1 In fact, it is enough to know only m, Δ and k to accomplish the results. Without robots know-
ing m, Theorem 1 achieves DISPERSION in O(kΔ · log k) time with O(log(max(k, Δ))) bits
memory at each robot, which is better in terms of memory of O(log n) bits in Theorem 1 but
not the time O(min(m, kΔ) · log k) when m < kΔ.
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i.e., O(k2 log k). For constant-degree arbitrary graphs (i.e., when Δ = O(1)), the time
becomes near-optimal – only a O(log k) factor away from the time lower bound Ω(k).

Table 1. The results on DISPERSION for k ≤ n robots on n-node arbitrary graphs with m edges,
D diameter, and Δ maximum degree.

Algorithm Memory per robot (in bits) Time (in rounds)

Lower bound Ω(log(max(k, Δ))) Ω(k)

First algorithm of [1]a O(log n) O(mn)

Second algorithm of [1] O(n logn) O(m)

First algorithm of [16] O(k logΔ) O(m)

Second algorithm of [16] O(D logΔ) O(ΔD)

Third algorithm of [16] O(log(max(k, Δ))) O(mk)

Theorem 1 O(log n) O(min(m, kΔ) · log k)
aThe results in [1] are only for k = n.

Challenges and Techniques. The well-known Depth First Search (DFS) traversal
approach [5] was used in the previous papers to solve DISPERSION [1,16]. If all k
robots are positioned initially on a single node of G, then the DFS traversal finishes
in min(4m − 2n + 2, kΔ) rounds solving DISPERSION. If k robots are initially on k
different nodes of G, then DISPERSION is solved by doing nothing. However, if not all
of them are on a single node initially, then the robots on nodes with multiple robots
need to reposition (except one) to reach to free nodes and settle. The natural approach
is to run DFS traversals in parallel to minimize time.

The challenge arises when two or more DFS traversals meet before all robots settle.
When this happens, the robots that have not settled yet need to find free nodes. For this,
they may need to re-traverse the already traversed part of the graph by the DFS traversal.
Care is needed here otherwise they may re-traverse sequentially and the total time for
the DFS traversal increases by a factor of k to min(4m − 2n + 2, kΔ) · k rounds, in
the worst-case. This is in fact the case in the previous algorithms of [1,16]. We design
a smarter way to synchronize the parallel DFS traversals so that the total time increases
only by a factor of log k to min(4m − 2n + 2, kΔ) · log k rounds, in the worst-case.
This approach is a non-trivial extension and requires overcoming many challenges on
synchronizing the parallel DFS traversals efficiently.

Related Work. One problem closely related to DISPERSION is the graph exploration.
The exploration problem has been heavily studied in the literature for specific as well
as arbitrary graphs, e.g., [2,4,8,13,17]. It was shown that a robot can explore an anony-
mous graph using Θ(D logΔ)-bits memory; the runtime of the algorithm is O(ΔD+1)
[13]. In the model where graph nodes also have memory, Cohen et al. [4] gave two
algorithms: The first algorithm uses O(1)-bits at the robot and 2 bits at each node, and
the second algorithm uses O(logΔ) bits at the robot and 1 bit at each node. The runtime
of both algorithms is O(m) with preprocessing time of O(mD). The trade-off between
exploration time and number of robots is studied in [17]. The collective exploration by
a team of robots is studied in [12] for trees. Another problem related to DISPERSION
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is the scattering of k robots in graphs. This problem has been studied for rings [9,20]
and grids [3]. Recently, Poudel and Sharma [19] provided a Θ(

√
n)-time algorithm for

uniform scattering in a grid [7]. Furthermore, DISPERSION is related to the load balanc-
ing problem, where a given load at the nodes has to be (re-)distributed among several
processors (nodes). This problem has been studied quite heavily in graphs, e.g., [6,21].
We refer readers to [10,11] for other recent developments in these topics.
Paper Organization.We discuss details of the model and some preliminaries in Sect. 2.
We discuss the DFS traversal of a graph in Sect. 3. We present an algorithm for arbitrary
graphs in Sect. 4. Finally, we conclude in Sect. 5 with a short discussion.

2 Model Details and Preliminaries

Graph. We consider the same graph model as in [1,16]. Let G = (V,E) be an n-node
m-edge graph, i.e., |V | = n and |E| = m. G is assumed to be connected, unweighted,
and undirected. G is anonymous, i.e., nodes do not have identifiers but, at any node,
its incident edges are uniquely identified by a label (aka port number) in the range
[1, δ], where δ is the degree of that node. The maximum degree of G is Δ, which is the
maximum among the degree δ of the nodes in G. We assume that there is no correlation
between two port numbers of an edge. Any number of robots are allowed to move along
an edge at any time. The graph nodes do not have memory.

Robots.We also consider the same robot model as in [1,16]. Let R = {r1, r2, . . . , rk}
be a set of k ≤ n robots residing on the nodes of G. For simplicity, we sometime use i
to denote robot ri. No robot can reside on the edges of G, but one or more robots can
occupy the same node of G. Each robot has a unique �log k�-bit ID taken from [1, k].
Robot has no visibility and hence a robot can only communicate with other robots
present on the same node. Following [1,16], it is assumed that when a robot moves
from node u to node v in G, it is aware of the port of u it used to leave u and the port of
v it used to enter v. Furthermore, it is assumed that each robot is equipped with memory
to store information, which may also be read and modified by other robots on the same
node. Each robot is assumed to know parameters m,n,Δ, k. Such assumptions are also
made in the previous work on DISPERSION [1].

Time Cycle. At any time a robot ri ∈ R could be active or inactive. When a robot
ri becomes active, it performs the “Communicate-Compute-Move” (CCM) cycle as
follows: (i) Communicate: For each robot rj ∈ R that is at node vi where ri is, ri can
observe the memory of rj . Robot ri can also observe its own memory; (ii) Compute:
ri may perform an arbitrary computation using the information observed during the
“communicate” portion of that cycle. This includes determination of a (possibly) port
to use to exit vi and the information to store in the robot rj that is at vi; and (iii)Move:
At the end of the cycle, ri writes new information (if any) in the memory of rj at vi,
and exits vi using the computed port to reach to a neighbor of vi.

Time and Memory Complexity. We consider the synchronous setting where every
robot is active in every CCM cycle and they perform the cycle in synchrony. Therefore,
time is measured in rounds or steps (a cycle is a round or step). Another important
parameter is memory. Memory comes from the number of bits stored at each robot.
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Mobile Robot Dispersion. The DISPERSION problem can be defined as follows.

Definition 1 (DISPERSION). Given any n-node anonymous graph G = (V,E) having
k ≤ n robots positioned initially arbitrarily on the nodes of G, the robots reposition
autonomously to reach a configuration where each robot is on a distinct node of G.

The goal is to solve DISPERSION optimizing two performance metrics: (i) Time –
the number of rounds, and (ii)Memory – the number of bits stored at each robot.

Table 2. Description of the variables used in Sects. 3 and 4. These variables are maintained by
each robot and may be read/updated by other robots (at the same node).

Symbol Description

round The counter that indicates the current round. Initially, round ← 0

pass The counter that indicates the current pass. Initially, pass ← 0

parent The port from which robot entered a node in forward phase. Initially,
parent ← 0

child The smallest port (except parent port) that was not taken yet. Initially,
child ← 0

treelabel The label of a DFS tree. Initially, treelabel ← �
settled A boolean flag that stores either 0 (false) or 1 (true). Initially, settled ← 0

mult The number of robots at a node at the start of Stage 2. Initially, mult ← 1

home The lowest ID unsettled robot at a node at the start of Stage 2 sets this to the ID
of the settled robot at that node. Initially, home ← �

3 DFS Traversal of a Graph

Consider an n-node arbitrary anonymous graph G. Let Cinit be the initial configuration
of k ≤ n robots positioned on a single node, say v, of G. Let the robots on v be
represented as N(v) = {r1, . . . , rk}, where ri is the robot with ID i. We describe here
a DFS traversal algorithm, DFS(k), that disperses the robots in N(v) to the k nodes
of G guaranteeing exactly one robot per node. DFS(k) will be used in Sect. 4.

Each robot ri stores in its memory four variables ri.parent (initially assigned 0),
ri.child (initially assigned 0), ri.treelabel (initially assigned �), and ri.settled (ini-
tially assigned 0). DFS(k) executes in two phases, forward and backtrack [5]. Vari-
able ri.treelabel stores the ID of the smallest ID robot. Variable ri.parent stores the
port from which ri entered the node where it is currently positioned in the forward
phase. Variable ri.child stores the smallest port of the node it is currently positioned
at that has not been taken yet (while entering/exiting the node). Let P (x) be the set of
ports at any node x ∈ G.

We are now ready to describeDFS(k). In round 1, the maximum ID robot rk writes
rk.treelabel ← 1 (the ID of the smallest robot in N(v), which is 1), rk.child ← 1 (the
smallest port at v among P (v)), and rk.settled ← 1. The robots N(v)\{rk} exit v
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following port rk.child; rk stays (settles) at v. In the beginning of round 2, the robots
N(w) = N(v)\{rk} reach a neighbor node w of v. Suppose the robots entered w
using port pw ∈ P (w). As w is free, robot rk−1 ∈ N(w) writes rk−1.parent ← pw,
rk−1.treelabel ← 1 (the ID of the smallest robot in N(w)), and rk−1.settled ← 1. If
rk−1.child ≤ δw, rk−1 writes rk−1.child ← rk−1.child + 1 if port rk−1.child + 1 	=
pw and rk−1.child + 1 ≤ δw, otherwise rk−1.child ← rk−1.child + 2. The robots
N(w)\{rk−1} decide to continue DFS in forward/backtrack phase as described below.

– (forward phase) if (pw = rk−1.parent or pw = old value of rk−1.child) and (there
is (at least) a port at w that has not been taken yet). The robots N(w)\{rk−1} exit
w through port rk−1.child.

– (backtrack phase) if (pw = rk−1.parent or pw = old value of rk−1.child) and (all
the ports of w have been taken already). The robots N(w)\{rk−1} exit w through
port rk−1.parent.

Assume that in round 2, the robots decide to proceed in forward phase. In the begin-
ning of round 3, N(u) = N(w)\{rk−1} robots reach some other node u (neighbor of
w) of G. The robot rk−2 stays at u writing necessary information in its variables. In
the forward phase in round 3, the robots N(u)\{rk−2} exit u through port rk−2.child.
However, in the backtrack phase in round 3, rk−2 stays at u and robots N(u)\{rk−2}
exit u through port rk−2.parent. This takes robots N(u)\{rk−2} back to node w along
rk−1.child. Since rk−1 is already at w, rk−1 updates rk−1.child with the next port to
take. Depending on whether ri.child ≤ δw or not, the robots {r1, . . . , rk−3} exit w
using either rk−1.child (forward phase) or rk−1.parent (backtrack phase).

There is another condition, denoting the onset of a cycle, under which choosing
backtrack phase is in order. When robots enter x through px and robot r is settled at x,

– (backtrack phase) if (px 	= r.parent and px 	= old value of r.child). The robots
exit x through port px and no variables of r are altered.

This process then continues for DFS(k) until at some node y ∈ G, N(y) = {r1}. The
robot r1 then stays at y and DFS(k) finishes.

Lemma 1. Algorithm DFS(k) correctly solves DISPERSION for k ≤ n robots initially
positioned on a single node of a n-node arbitrary graph G in min(4m − 2n + 2, kΔ)
rounds using O(log(max(k,Δ))) bits at each robot.

Proof. We first show that DISPERSION is achieved by DFS(k). Because every robot
starts at the same node and follows the same path as other not-yet-settled robots until
it is assigned to a node, DFS(k) resembles the DFS traversal of an anonymous port-
numbered graph [1] with all robots starting from the same node. Therefore, DFS(k)
visits k different nodes where each robot is settled.

We now prove time and memory bounds. In kΔ rounds, DFS(k) visits at least k
different nodes of G. If 4m−2n+2 < kΔ, DFS(k) visits all n nodes of G. Therefore,
it is clear that the runtime of DFS(k) is min(4m − 2n + 2, kΔ) rounds. Regarding
memory, variable treelabel takes O(log k) bits, settled takes O(1) bits, and parent
and child take O(logΔ) bits. The k robots can be distinguished through O(log k) bits
since their IDs are in the range [1, k]. Thus, each robot requires O(log(max(k,Δ)))
bits. 
�
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4 Algorithm

We present and analyze an algorithm, Graph Disperse(k), that solves DISPERSION of
k ≤ n robots on an arbitrary n-node graph inO(min(m, kΔ)·log k) time withO(log n)
bits of memory at each robot. This algorithm significantly improves the O(mk) time of
the best previously known algorithm [16] for arbitrary graphs (Table 1).

4.1 High Level Overview of the Algorithm

Algorithm Graph Disperse(k) runs in passes and each pass is divided into two stages.
Each pass runs for O(min(m, kΔ)) rounds and there will be total O(log k) passes until
DISPERSION is solved. The algorithm uses O(log n) bits memory at each robot. To
be able to run passes and stages in the algorithm, we assume following [1] that robots
know n,m, k, and Δ. At their core, each of the two stages uses a modified version of
the DFS traversal by robots (Algorithm DFS(k)) described in Sect. 3.

At the start of stage 1, there may be multiple nodes, each with more than one robot
(top left of Fig. 1). The (unsettled) robots at each such node begin a DFS in parallel,
each such DFS instance akin to DFS(k) described in Sect. 3. Each such concurrently
initiated DFS induces a DFS tree where the treelabel of the robots that settle is com-
mon, and the same as the ID of the robot with the smallest ID in the group.

Unlike DFS(k), here a DFS traversal may reach a node where there is a settled
robot belonging to another (concurrently initiated) DFS instance. As the settled robot
cannot track variables (treelabel, parent, child) for the multiple DFS trees owing to
its limited memory, it tracks only one DFS tree instance and the other DFS instance(s)
is/are stopped. Thus, some DFS instances may not run to completion and some of their
robots may not be settled by the end of stage 1. Thus, groups of stopped robots exist at
different nodes at the end of stage 1 (top right of Fig. 1).

In stage 2, all the groups of stopped robots at different nodes in the same connected
component of nodes with settled robots are gathered together into one group at a sin-
gle node in that connected component (bottom left of Fig. 1). Since stopped robots in
a group do not know whether there are other groups of stopped robots, and if so, how
many and where, one robot from each such group initiates a DFS traversal of its con-
nected component of nodes with settled robots, to gather all the stopped robots at its
starting node. The challenge is that due to such parallel initiations of DFS traversals,
robots may be in the process of movement and gathering in different parts of the con-
nected component of settled nodes. The algorithm ensures that despite the unknown
number of concurrent initiations of the DFS traversals for gathering, all stopped robots
in a connected component of settled robots get collected at a single node in that com-
ponent at the end of stage 2. Our algorithm has the property that the number of nodes
with such gathered (unsettled) robots in the entire graph at the end of stage 2 is at most
half the number of nodes with more than one robot at the start of stage 1 (of the same
pass). This implies the sufficiency of log k passes, each comprised of these two stages,
to collect all graph-wide unsettled robots at one node. In the first stage of the last pass,
DISPERSION is achieved (bottom right of Fig. 1).
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Fig. 1. An illustration of the two stages in a pass of Algorithm 1 for k = 14 robots in an 15-node
graph G. (top left) shows Cinit with one or more robots at 5 nodes of G; the rest of the nodes
of G are empty. (top right) shows the configuration after Stage 1 finishes for DFS(.) started
by 4 nodes with multiple robots on them; the respective DFS trees formed are shown through
colored edges (the same colored edges belong to the same DFS tree). A single robot (14) at a
node settles there. (bottom left) shows the configuration after Stage 2 finishes for DFS((., .))
started by two nodes with more than one robot (see top right) on them when Stage 1 finishes. The
robots 3,4,6 are collected at the node of G where robot 10 is settled since DFS((3, 4)) started
from there has higher lexico-priority than DFS((2, 3)) started from the node of G where 5 is
settled. (bottom right) shows the configuration after Stage 1 of the next pass in which all k robot
settle on k different nodes of G. There is only one DFS tree DFS(3) started from the node of
G (where 10 is settled and all robots are collected in Stage 2) that traverses G until all 3, 4, 6
are settled reaching the empty nodes of G. The nodes where they are settled are shown inside a
circle. (Color figure online)
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4.2 Detailed Description of the Algorithm

The pseudocode of the algorithm is given in Algorithm 1. The variables used by each
robot are described in Table 2. We now describe the two stages of the algorithm; Fig. 1
illustrates the working principle of the stages.

Stage 1. We first introduce some terminology. A settled/unsettled robot i is one for
which i.settled = 1/0. For brevity, we say a node is settled if it has a settled robot.
At the start of stage 1, there may be multiple (≥ 1) unsettled robots at some of the
nodes. Let Us1/Ue1/Ue2 be the set of unsettled robots at a node at the start of stage
1/end of stage 1/end of stage 2. In general, we define a U -set to be the (non-empty) set
of unsettled robots at a node. Let the lowest robot ID among Us1 at a node be Us1

min.
We use r to denote a settled robot.

In stage 1, the unsettled robots at a node beginDFS(|Us1|), following the lowest ID
(= Us1

min) robot among them. Each instance of the DFS algorithm, begun concurrently
by differentUs1-sets from different nodes, induces a DFS tree in which the settled nodes
have robots with the same treelabel, which is equal to the corresponding Us1

min. During
this DFS traversal, the robots visit nodes, at each of which there are four possibilities.

The node may be free, or may have a settled robot r, where r.treelabel is less than,
equals, or is greater than x.ID, where x is the visiting robot with the lowest ID. The
second and fourth possibilities indicate that two DFS trees, corresponding to different
treelabels meet. As each robot is allowed only O(log n) bits memory, it can track the
variables for only one DFS tree. We deal with these possibilities as described below.

1. If the node is free (line 6), the logic of DFS(k) described in Sect. 3 is followed.
Specifically, the highest ID robot from the visiting robots (call it r) settles, and sets
r.settled to 1 and r.treelabel to x.ID. Robot x continues its DFS, after setting
r.parent, r.child and r.phase for its own DFS as per the logic ofDFS(k) described
in Sect. 3; and other visiting robots follow x.

2. If r.treelabel < x.ID (line 11), all visiting robots stop at this node and discontinue
growing their DFS tree.

3. If r.treelabel = x.ID (line 13), robot x’s traversal is part of the same DFS tree
as that of robot r. Robot x continues its DFS traversal and takes along with it all
unsettled (including stopped) robots from this node, after updating r.child if needed
as per the logic of DFS(k) described in Sect. 3.

4. If r.treelabel > x.ID (line 16), robot x continues growing its DFS tree and takes
along all unsettled robots from this node with it. To continue growing its DFS tree, x
overwrites robot r’s variables set for r’s old DFS tree by including this node and r in
its own DFS tree. Specifically, r.treelabel ← x.ID, r.parent is set to the port from
which x entered this node, and r.child is set as per the logic described for DFS(k)
in Sect. 3.

Note that if the robots stop at a node where r.treelabel < x.ID, they will start
moving again if a robot x′ arrives such that x′.ID ≤ r.treelabel. At the end of stage
1, either all the robots from any Us1 are settled or some subset of them are stopped at
some node where r.treelabel < Us1

min.
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Algorithm 1: Algorithm Graph Disperse(k) to solve DISPERSION.

1 if i is alone at node then
2 i.settled ← 1; do not set i.treelabel

3 for pass = 1, log k do
4 Stage 1 (Graph DFS: for group dispersion of unsettled robots)

5 for round = 0,min(4m − 2n + 2, kΔ) do
6 if visited node is free then
7 highest ID robot r settles; r.treelabel ← x.ID, where x is robot with lowest

ID
8 x continues its DFS after r sets its parent, child for DFS of x
9 other visitors follow x

10 else if visited node has a settled robot r then
11 if r.treelabel < x.ID for visitors x then
12 all visiting robots: stop until ordered to move

13 else if r.treelabel ≤ y.ID for visitors y and r.treelabel = x.ID for some
visitor x then

14 x continues its DFS after r updates child if needed
15 all other unsettled robots follow x

16 else if visitor x(x �= r) has lowest ID and lower than r.treelabel then
17 r.treelabel ← x.ID
18 x continues its DFS after r sets its parent, child for DFS of x
19 all other unsettled robots follow x

20 All settled robots: reset parent, child
21 Stage 2 (Connected Component DFS Traversal: for gathering unsettled robots)

22 All robots: mult ← count of local robots
23 if i has the lowest ID among unsettled robots at its node then
24 i.home ← r.ID, r.treelabel ← i.ID, where r is the settled robot at that node
25 i initiates DFS traversal of connected component of nodes with settled robots

26 for round = 0,min(4m − 2n + 2, 2kΔ) do
27 if visited node is free then
28 ignore the node; all visitors backtrack, i.e., retrace their step

29 else if visited node has a settled robot r then
30 if lexico-priority of r is highest and greater than that of all visitors then
31 all visiting robots: stop until ordered to move

32 else if lexico-priority of r is highest but equal to that of some visitor x then
33 x continues its DFS traversal after r updates child if needed (until

x.home = r.ID and all ports at the node where r is settled are explored)
34 all other unsettled robots: follow x if x.home �= r.ID

35 else if visitor x(x �= r) has highest lexico-priority and higher than that of r
then

36 r.treelabel ← x.ID, r.mult ← x.mult
37 x continues its DFS traversal after r sets parent, child for DFS of x
38 all other unsettled robots follow x

39 reset parent, child, treelabel, mult, home
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Lemma 2. For any Us1-set, at the end of stage 1, either (i) all the robots in Us1 are
settled or (ii) the unsettled robots among Us1 are present all together along with robot
with ID Us1

min (and possibly along with other robots outside of Us1) at a single node
with a settled robot r having r.treelabel < Us1

min.

Proof. The DFS traversal of the graph can complete in 4m − 2n + 2 steps as each tree
edge gets traversed twice, and each back edge, i.e., non-tree edge of the DFS tree, gets
traversed 4 times (twice in the forward direction and twice in the backward direction)
if the conditions in lines (6), (13), or (16) hold. The DFS traversal of the graph required
to settle k robots and hence discover k new nodes, can also complete in kΔ steps as a
node may be visited multiple times (at most its degree which is at most Δ times). As
k ≥ |Us1|, possibility (i) is evident.

In the DFS traversal, if condition in line (11) holds, the unsettled robots remaining
in Us1, including that with ID Us1

min, stop together at a node with a settled robot r
′ such

that r′.treelabel < Us1
min. They may move again together (lines (15) or (19)) if visited

by a robot with ID U ′
min equal to or lower than r′.treelabel (lines (13) or (16)), and

may either get settled (possibility (i)), or stop (the unsettled ones together) at another
node with a settled robot r′′ such that r′′.treelabel < U ′

min. This may happen up to
k − 1 times. However, the remaining unsettled robots from Us1 never get separated
from each other. If the robot with ID Us1

min is settled at the end of stage 1, so are all
the others in Us1. If Us1

min robot is not settled at the end of stage 1, the remaining
unsettled robots from Us1 have always moved and stopped along with Us1

min robot. This
is because, if the robot with ID Us1

min stops at a node with settled robot r′′′ (line 12),
r′′′.treelabel < Us1

min and hence r′′′.treelabel is also less than the IDs of the remaining
unsettled robots from Us1. If the stopped robot with ID Us1

min begins to move (line 15
or 19), so do the other stopped (unsettled) robots from Us1 because they are at the same
node as the robot with ID Us1

min. Hence, (ii) follows. 
�
Let us introduce some more terminology. Let Us1 be the set of all Us1. Let Us1

min be
minUs1∈Us1(Us1

min). The set of robots in that Us1 having Us1
min = Us1

min are dispersed
at the end of stage 1 because the DFS traversal of the robots in that Us1 is not stopped at
any node by a settled robot having a lower treelabel than thatUs1

min. Let u
s1
p , ue1

p = us2
p ,

and ue2
p denote the number of nodes with unsettled robots at the start of stage 1, at the

end of stage 1(or at the start of stage 2), and at the end of stage 2 respectively, all for a
pass p of the algorithm. Thus, us1

p (= |Us1
p |) is the number of U -sets at the start of stage

1 of pass p. Analogously, for ue1
p = us2

p , and ue2
p .

We now have the following corollary to Lemma 2.

Corollary 1. ue1
p ≤ us1

p − 1.

In stage 1, each set of unsettled robots Us1 induces a partial DFS tree, where the
treelabel of settled robots is Us1

min. This identifies a sub-component SCUs1
min

. Note that
some subset of Us1 may be stopped at a node outside SCUs1

min
, where the treelabel <

Us1
min.

Definition 2. A sub-component SCα is the set of all settled nodes having treelabel =
α. SC is used to denote the set of all SCs at the end of stage 1.
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Theorem 2. There is a one-to-one mapping from the set of sub-components SC to the
set of unsettled robots Us1. The mapping is given by: SCα → Us1, where α = Us1

min.

Proof. From Definition 2, each SCα corresponds to a treelabel = α. The treelabel
is set to the lowest ID among visiting robots, and this corresponds to a unique set of
unsettled robots Us1 whose minimum ID robot has ID α, i.e., Us1

min = α. 
�
Lemma 3. Sub-component SCα is a connected sub-component of settled nodes, i.e.,
for any a, b ∈ SCα, there exists a path (a, b) in G such that each node on the path has
a settled robot.

Proof. For any nodes a and b in SCα, the robot with ID Umin (= α) has visited a and
b. Thus there is some path from a to b in G that it has traversed. On that path, if there
was a free node, a remaining unsettled robot from U (there is at least the robot with ID
Umin that is unsettled) would have settled there. Thus there cannot exist a free node on
that path and the lemma follows. 
�

Within a sub-component, there may be stopped robots belonging to one or more
different sets Us1 (having a higher Us1

min than the treelabel at the node where they
stop). There may be multiple sub-components that are adjacent in the sense that they
are separated by a common edge. Together, these sub-components form a connected
component of settled nodes.

Definition 3. A connected component of settled nodes (CCSN) is a set of settled nodes
such that for any a, b ∈ CCSN , there exists a path (a, b) in G with each node on the
path having a settled robot.

Lemma 4. If not all the robots of Us1 are settled by the end of stage 1, then SCUs1
min

is
part of a CCSN containing nodes from at least two sub-components.

Proof. Let the unsettled robots in Us1 begin from node a. The unsettled robots of Us1

stopped (line 12), and possibly moved again (line 15 or 19) only to be stopped again
(line 12), c times, where |Us1| > c ≥ 1.

Consider the first time the robots arriving along edge (u, v) were stopped at some
node v. Us1

min > r.treelabel, where robot r is settled at v. Henceforth till the end
of stage 1, r.treelabel is monotonically non-increasing, i.e., it may only decrease if
a visitor arrives with a lower ID (line 16). The path traced from a to u must have all
settled nodes, each belonging to possibly more than one sub-component, i.e., possibly
in addition to SCUs1

min
, at the end of stage 1, which together form one or more adjacent

sub-components. In any case, these sub-components are necessarily adjacent to the sub-
component SCα, where α = r.treelabel. Thus, at least two sub-components including
SCUs1

min
and SCα are (possibly transitively) adjacent and form part of a CCSN.

Extending this reasoning to each of the c times the robots stopped, it follows that
there are at least c + 1 sub-components in the resulting CCSN.(Additionally, (1) unset-
tled robots from the sub-component that stopped the unsettled robots of Us1 for the
c-th time may be (transitively) stopped by robots in yet other sub-components, (2)
other groups of unsettled robots may (transitively or independently) be stopped at
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nodes in the above identified sub-components, (3) other sub-components correspond-
ing to even lower treelabels may join the already identified sub-components, (4) other
sub-components may have a node which is adjacent to one of the nodes in an above-
identified sub-component. This only results in more sub-components, each having dis-
tinct treelabels (Definition 2) and corresponding to as many distinct U -sets (Theo-
rem 2), being adjacent in the resulting CCSN.) 
�
Theorem 3. For any Us1 at a, its unsettled robots (if any) belong to a single Ue1 at b,
where a and b belong to the same connected component of settled nodes (CCSN).

Proof. From Lemma 2, it follows that the unsettled robots from Us1 (at a) end up at a
single node b in the set Ue1. It follows that there must exist a path from a to b that these
unsettled robots traversed. On this path, if there was a free node, a robot that belongs to
Us1 and Ue1 would have settled. Thus, there cannot exist such a free node. It follows
that a and b belong to the same CCSN. 
�

Using the reasoning of Lemma 2 and Corollary 1, if there are s sub-components
within a CCSN, there may be stopped (unsettled) robots at at most s−1 nodes. In stage
2, all such unsettled robots within a CCSN are collected at a single node within that
component.

Stage 2. Stage 2 begins with each robot setting variable mult to the count of robots at
its node. The lowest ID unsettled robot x at each node (having mult > 1) concurrently
initiates a DFS traversal of the CCSN after setting x.home to the ID of the settled robot
r and setting the r.treelabel of the settled robot to its ID, x.ID. The DFS traversal is
initiated by a single unsettled robot at a node rather than all unsettled robots at a node.

In the DFS traversal of the CCSN, there are four possibilities, akin to those in stage
1. If a visited node is free (line 27), the robot ignores that node and backtracks. This
is because neither the free node nor any paths via the free node need to be explored to
complete a DFS traversal of the CCSN.

If a visited node has a settled robot, the visiting robots may need to stop for two
reasons. (i) Only the highest “priority” unsettled robot should be allowed to complete
its DFS traversal while collecting all other unsettled robots. Other concurrently initiated
DFS traversals for gathering unsettled robots should be stopped so that only one traver-
sal for gathering succeeds. (ii) With the limited memory of O(log n) at each robot, only
one DFS traversal can be enabled at each settled robot r in its r.treelabel, r.parent,
and r.child. That is, the settled robot can record in its data structures, only the details
for one DFS tree that is induced by one DFS traversal. The decision to continue the
DFS or stop is based, not by comparing treelabel of the settled robot with the visiting
robot ID, but by using a lexico-priority, defined next.

Definition 4. The lexico-priority is defined by a tuple, (mult, treelabel/ID). A higher
value of mult is a higher priority; if mult is the same, a lower value of treelabel or ID
has the higher priority.

The lexico-priority of a settled robot r that is visited, (r.mult, r.treelabel), is com-
pared with (x.mult, x.ID) of the visiting robots x. The lexico-priority is a total order.
There are three possibilities, as shown in lines (30), (32), and (35).
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– (line 30): Lexico-priority of r > lexico-priority of all visitors: All visiting robots stop
(until ordered later to move) because they have a lower lexico-priority than r. The
DFS traversal of the unsettled robot x′ corresponding to x′.ID = r.treelabel kills
the DFS traversal of the visitors.

– (line 32): The visiting robot x having the highest lexico-priority among the visiting
robots, and having the same lexico-priority as r continues the DFS traversal because
it is part of the same DFS tree as r. r updates r.child if needed as per the logic of
DFS(k) described in Sect. 3. This DFS search of x continues unless x is back at its
home node from where it began its search and all ports at the home node have been
explored. As x continues its DFS traversal, it takes along with it all unsettled robots
at r.

– (line 35): The visiting robot x having the highest lexico-priority that is also higher
than that of r overrides the treelabel and mult of r. It kills the DFS traversal and
corresponding DFS tree that r is currently storing the data structures for. Robot x
includes r in its own DFS traversal by setting r.treelabel ← x.ID, r.mult ←
x.mult, and r.parent to the port from which x entered this node; r.child is set as
per the logic of DFS(k) described in Sect. 3. Robot x continues its DFS traversal
and all other unsettled robots follow it.

The reason we use the lexico-priority defined on the tuple rather than on just the
treelabel/ID is that the sub-component with the lowest treelabel may have no unset-
tled robots, but yet some node(s) in it are adjacent to those in other sub-components,
thus being part of the same CCSN. The nodes in the sub-component with the low-
est treelabel would then stop other traversing robots originating from other sub-
components, but no robot from that sub-component would initiate the DFS traversal.

Lemma 5. Within a connected component of settled nodes (CCSN), let x be the unset-
tled robot with the highest lexico-priority at the start of Stage 2.

1. x returns to its home node from where it begins the DFS traversal of the component,
at the end of Stage 2.

2. All settled nodes in the connected component have the same lexico-priority as x at
the end of Stage 2.

Proof. (Part 1): Robot x encounters case in line (35) for the first visit to each node in
its CCSN and includes that node in its own DFS traversal, and on subsequent visits
to that node, encounters the case in line (32) and continues its DFS traversal. Within
min(4m − 2n + 2, 2kΔ) steps, it can complete its DFS traversal of the CCSN and
return to its home node. This is because it can visit all the nodes of the graph within
4m − 2n + 2 steps. The robot can also visit the at most k settled nodes in 2kΔ steps;
kΔ steps may be required in the worst case to visit the k settled nodes in its CCSN and
another at most kΔ steps to backtrack from adjacent visited nodes that are free.

(Part 2): When x visits a node with a settled robot r for the first time (line 35),
the lexico-priority of r is changed to that of x (line 36). Henceforth, if other unsettled
robots y visit r, r will not change its lexico-priority (line 30) because its lexico-priority
is now highest. 
�
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Analogous to stage 1, unsettled robots beginning from different nodes may move
and then stop (on reaching a higher lexico-priority lp node), and then resume movement
again (when visited by a robot with lexico-priority lp or higher). This may happen up to
s − 1 times, where s is the number of sub-components in the CCSN. We show that,
despite the concurrently initiated DFS traversals and these concurrent movements of
unsettled robots, they all gather at the end of stage 2, at the home node of the unsettled
robot having the highest lexico-priority (in the CCSN) at the start of stage 2.

Lemma 6. Within a connected component of settled nodes (CCSN), let x be the unset-
tled robot with the highest lexico-priority at the start of Stage 2. All the unsettled robots
in the component gather at the home node of x at the end of Stage 2.

Proof. Let y be any unsettled robot at the start of the stage. At time step t, let y be at
a node denoted by v(t). Let τ be the earliest time step at which y is at a node with the
highest lexico-priority that it encounters in Stage 2. We have the following cases.

1. lexico-priority(settled robot at v(τ)) < lexico-priority(x): We have a contradiction
because at t = min(4m − 2n + 2, 2kΔ), settled robots at all nodes have lexico-
priority that of x, which is highest.

2. lexico-priority(settled robot at v(τ)) > lexico-priority(x): This contradicts the defi-
nition of x.

3. lexico-priority(settled robot at v(τ)) = lexico-priority(x).
(a) v(τ) = x.home: Robot y will not move from x.home (line 32) and the lemma

stands proved.
(b) v(τ) 	= x.home: y ends up at another node with lexico-priority that of x at time

step τ . It will not move from node v(τ) unless robot x visits v(τ) at or after τ ,
in which case y will accompany x to x.home and the lemma stands proved.
We need to analyze the possibility that x does not visit v(τ) at or after τ .

That is, the last visit by x to v(τ) was before τ . By definition of τ , lexico-
priority(settled robot at v(τ − 1)) < lexico-priority(settled robot at v(τ)) (=
lexico-priority of x in this case). By Lemma 5, x is yet to visit v(τ − 1), so the
first visit of x to v(τ − 1) is after τ − 1. As v(τ − 1) and v(τ) are neighbors
and x is doing a DFS, x will visit v(τ) at or after τ +1. This contradicts that the
last visit by x to v(τ) was before τ and therefore rules out the possibility that x
does not visit v(τ) at or after τ .


�
4.3 Correctness of the Algorithm

Having proved the properties of stage 1 and stage 2, we now prove the correctness of
the algorithm.

Lemma 7. ue2
p = us1

p+1 ≤ 1
2 · us1

p

Proof. From Lemma 2, for any Us1 at the end of stage 1, (i) a set of unsettled robots
Us1 is fully dispersed, or (ii) a subset of Us1 of unsettled robots is stopped and present
together at at most one node with a settled robot r such that r.treelabel < Us1

min.
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In case (i), there are two possibilities. (i.a) There is no group of unsettled robots
stopped at nodes in the CCSN where the robots of U have settled. In this case, this
Us1-set does not have its robots in any Ue1-set. (i.b) z(≥ 1) groups of unsettled robots
are stopped at nodes in the CCSN where the robots of U have settled. These groups
correspond to at least z+1 unique U -sets and at least z+1 sub-components that form a
CCSN (by using reasoning similar to that in the proof of Lemma 4). In case (ii), at least
two sub-components, each having distinct treelabels and corresponding to as many
distinct U -sets (Theorem 2), are adjacent in the CCSN (Lemma 4).

From Lemma 2, we also have that any Us1-set cannot have unsettled robots in more
than one Ue1. Each robot in each Us1-set in the CCSN, that remains unsettled at the end
of stage 1, belongs to some Ue1-set that also belongs to the same CCSN (Theorem 3).
From Lemma 6 for stage 2, all the unsettled robots in these Ue1-sets in the CCSN, are
gathered at one node in that CCSN. Thus, each unsettled robot from each Us1-set in
the same CCSN is collected at a single node as a Ue2-set in the same CCSN. Thus,
in cases (i-b) and (ii) above, two or more sub-components, each corresponding to a
distinct treelabel and a distinct Us1-set (Theorem 2), combine into a single CCSN
(Lemma 4) and in stage 2, there is a single node with unsettled robots from all the Us1-
sets belonging to the same CCSN, i.e., a single Ue2-set, or a single Us1-set for the next
round. Note that each sub-component SCα is a connected sub-component (Lemma 3)
and hence belongs to the same CCSN; thus when sub-components merge, i.e., their
corresponding Us1-sets merge, and we have a single Ue2-set in the CCSN, there is no
double-counting of the same SCα and of its corresponding Us1-set in different CCSNs.
Thus, ue2

p (= us1
p+1), the number of U -sets after stage 2, is ≤ 1

2 · us1
p , where us1

p is the
number of U -sets before stage 1. 
�
Theorem 4. DISPERSION is solved in log k passes in Algorithm 1.

Proof. us1
1 ≤ k/2. From Lemma 7, it will take at most log k − 1 passes for there to

be a single U -set. In the first stage of the log k-th pass, there will be a single U -set. By
Lemma 2, case (i) holds and all robots in the U -set get settled. (Case (ii) will not hold
because there is no node with a treelabel < Umin as all treelabels of settled nodes are
reset to � (the highest value) at the end of stage 2 of the previous pass and all singleton
robots before the first pass settle with treelabel = � (line 2)). Thus, DISPERSION will
be achieved by the end of stage 1 of pass log k. 
�

Note that the DFS traversal of stage 2 is independent of the DFS traversal of stage
1 within a pass (but the treelabels are not erased), and the DFS traversal of stage 1 of
the next pass is independent of the DFS traversal of stage 2 of the current pass.

Proof of Theorem 1 : Theorem 4 proved that DISPERSION is achieved by Algorithm 1.
The time complexity is evident due to the two loops of O(min(4m−2n+2, 2Δk)) for
the two stages nested within the outer loop of O(log k) passes. The space complexity is
evident from the size of the variables: treelabel (log k bits), parent (logΔ bits), child
(logΔ bits), settled (1 bit), mult (log k bits), home (log k bits), pass (log log k bits),
round (O(log n) bits to maintain the value O(min(m, kΔ) for each pass). 
�

We have the following corollary to Theorem 1 when Δ ≤ k.
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Corollary 2. Given k ≤ n robots in an n-node arbitrary graph G with maximum
degree Δ ≤ k, Algorithm Graph Disperse(k) solves DISPERSION in O(min(m, k2) ·
log k) rounds with O(log n) bits at each robot.

We also have the following corollary to Theorem 1 when Δ = O(1).

Corollary 3. Given k ≤ n robots in an n-node arbitrary graph G with maxi-
mum degree Δ = O(1), algorithm Graph Disperse(k) solves DISPERSION in
O(min(m, k) · log k) rounds with O(log n) bits at each robot.

5 Concluding Remarks

We have presented a deterministic algorithm for solving DISPERSION of k ≤ n robots
on n-node arbitrary graphs. Our result significantly improves the O(mk) runtime of
the best previously known algorithm with logarithmic memory at each robot [16] to
O(min(m, kΔ) · log k) with logarithmic memory at each robot. For future work, it will
be interesting to solve DISPERSION on arbitrary graphs with time O(k) or improve the
existing time lower bound of Ω(k) to Ω(min(m, kΔ)). Another interesting direction
is to remove the log k factor from the time bound in Theorem 1. Furthermore, it will
be interesting to achieve Theorem 1 without each robot knowing parameters m,Δ,
and k. Finally, another interesting direction will be to extend our algorithms to solve
DISPERSION in semi-synchronous and asynchronous settings.
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