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Abstract—This paper presents a O(n log n) message dis-
tributed snapshot algorithm for a system with non-FIFO chan-
nels, where n is the number of processors. The algorithm finds
applications for checkpointing in large scale supercomputers
and distributed systems that have a fully connected logical
topology over a large number of processors. Each processor sends
log n messages in the algorithm. The sizes of the messages are
geometrically distributed, and the sum of the sizes of the messages
sent by any processor is n. The response time of the algorithm
is O(log n). The algorithm is fully distributed and the role of
each processor is symmetric, unlike tree-based, ring-based, and
centralized algorithms.

I. INTRODUCTION AND PROBLEM DEFINITION

Consider a distributed system that is modeled as a directed

graph (N,L), where N is the set of processors and L is

the set of non-FIFO links connecting the processors in a

logical application layer overlay. Let n = |N |. The logical

overlay is typically fully connected, hence the all-to-all logical

overlay gives n(n− 1)/2 logical channels. Typically, the rich

interconnectivity of the underlying graph (such as a torus,

hypercube, and other regular topologies) allows for multiple

logical paths among any pair of processors. Such a logical

path can be modeled as a non-FIFO channel in the overlay.

A snapshot of a distributed system represents a consis-

tent global state of the system [3]. A snapshot consists of

〈⋃i{LSi},
⋃

i,j{SCi,j}〉, where LSi is the local state of

processor Pi and SCi,j is the state of channel Ci,j . In a system

with non-FIFO channels, SCi,j = {messages sent up to LSi

} \ {messages received up to LSj}. Recording distributed

snapshots of an execution is a fundamental problem in asyn-

chronous distributed systems [3], and is used for observing

various properties of interest [6].

The seminal algorithm by Chandy and Lamport [3] requires

sending a special control message called the marker message

on each of the logical channels in the system. In the typical

case where there exists a fully connected overlay on the

network graph, this amounts to a O(n2) message overhead.

Many variants of the Chandy-Lamport algorithm have been

proposed. However, in the traditional literature, the best known

bound on the number of messages in a distributed algorithm in

systems assuming either FIFO or non-FIFO channels is O(n2)
because a marker is sent on each logical channel.

Present day supercomputing machines based on the MIMD

architecture have hundreds of thousands of processors [11].

Examples of such machines include the BlueGene supercom-

puter. Such machines are distributed systems as they are often

used for solving complex tasks and communicate by message

passing. Checkpointing (or recording global snapshots) is

therefore an important problem in such systems [1], [2], [4],

[5], [7], [10]. A message overhead of O(n2) messages per

snapshot becomes too expensive and is not scalable as the

number of processors increases. Recent work has focused on

reducing the snapshot complexity in such systems [5].

In this paper, we give a distributed snapshot algorithm with

message complexity O(n log n) messages. Each processor

sends log n messages. The sizes of the messages are geo-

metrically distributed, and the sum of the message sizes sent

by any processor is O(n). The response time of the algorithm

is log n. The role of each processor in the algorithm is fully
symmetric. We compare this algorithm with the literature in

Section III.

The Chandy-Lamport algorithm for a FIFO system, and its

variant by Mattern for a non-FIFO system [9], use a marker

per logical channel. The role of a marker is three-fold.

1) To inform processors that some processor has initiated

the snapshot execution.

2) To distinguish white (prerecording) messages from red

(postrecording) messages.

3) To mark the end of the white messages. In a system

with non-FIFO channels, the computation messages

are explicitly colored. To determine the number of

white messages to be expected, Mattern’s variant of

the Chandy-Lamport algorithm works as follows [9]. It

piggybacks the number of white messages sent along

the channel on the corresponding marker sent on that

channel. This allows the receiver to know how many

white messages to expect before termination. We name

this algorithm as piggyback, in contrast to the deficiency
counting and vector counter algorithms also introduced

by Mattern [9].

II. SNAPSHOT ALGORITHM

We assume a hypercube overlay topology on the distributed

system. Let n = 2d. A hypercube overlay has a one-time cost,

and can be easily implemented. For convenience, we assume

a pre-established spanning tree, which can be set up at a one-

time cost of O(n log n). We also assume that a single process

runs at each processor as part of the distributed application.
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Logically, a process can be in one of two states: white

(prerecording) or red (postrecording). All processes are ini-

tially white. Application messages sent by a white process are

colored white (prerecording messages). When some process

records its local state, the algorithm is initiated. To inform

other processes of this, a broadcast is done using RECORD

control messages on a precomputed spanning tree. On receiv-

ing a RECORD message or a red computation message, a

(white) process atomically records its local state (if it has not

already done so) and turns red. Application messages sent by

a red process are colored red (postrecording messages). The

use of RECORD and red messages fulfills the first role of the

marker. The coloring of messages fulfills the second role of

the marker.
The third role of the marker is fulfilled by letting each

process know the number of white messages sent to it. Rather

than using a marker, this is achieved indirectly based on

the following observation [9]: it is sufficient to know the

total number of white messages sent to a process by all

other processes. This number can be conveyed to a process

using less than n messages, i.e., by not requiring a dedicated

message from every other process. The proposed distributed

algorithm can achieve this in n log n messages, wherein

each process sends log n messages. Specifically, we use the

hypercube overlay and perform n reductions concurrently in

log n iterations.
There are three steps in the algorithm which is shown in

Figure 1.

1) Snapshot initiation: The snapshot initiator triggers a

one-to-all broadcast of RECORD control messages. The

RECORD messages can be sent along a pre-established

spanning tree.

2) On receiving the RECORD message or a red colored

message, the process records the local state and turns

from white to red. It initializes the states of all the

incoming channels to the empty set. (Henceforth, a red

process sends red-labeled computation messages.) The

algorithm then conveys the sum of the number of all

white messages sent by all the processes to x, to that x,

for every process x. The symmetrical manner in which

this is achieved is the main innovation in this paper.

Each process Pi maintains white senti[1..n] to count

the number of white messages it sent to Pj .

SENTi[1..n] is initialized to white senti[1..n]. Using

a hypercube overlay, the algorithm performs n all-to-

one reductions concurrently in log n iterations. Each

concurrent reduction is an in-network aggregation of

the number of messages sent to a particular destination

Pi. The in-network aggregation for Pi happens on a

logical convergecast tree rooted at Pi and based on the

order of the dimensions in the hypercube, from the MSB

dimension to the LSB dimension. With respect to any

destination Pi, the partial sum of the count of white mes-

sages sent to Pi exists in a hypercube that keeps halving

in size in each of the log n iterations. In iteration count,
where count ranges from d−1 to 0, Pi communicates to

Pi⊕2count the entries SENTi[j], for all j satisfying the

following. Process j lies in the half-hypercube where

j’s label differs from i’s label in the (count + 1)th
LSB and the d − count − 1 MSBs match those of i’s
label. At the end of log n iterations, the sum of the

number of white messages sent to Pi is accumulated

in SENTi[i], i.e.,
∑

j∈N white sentj [i] = SENTi[i].
If white recdi = SENTi[i], the algorithm terminates

locally.

Observe that the processes are implicitly synchronized

across the for loop of the variable count. Also observe

that a white process can receive a message of the form

SENT∗. For simplicity and ease of exposition, this

message is kept in the buffer and not processed while

the process is white.

3) Recording channel states: When a white message is

received from Pj by a red process Pi, it is added to the

state of channel Cj,i and the count white recdi is incre-

mented. When step (2) is completed and white recdi

equals SENTi[i], all white messages have been re-

ceived, and the algorithm can terminate locally.

Optionally, if the snapshot needs to be assembled, a con-

vergecast on a spanning tree can be performed after the

termination of the local snapshot recording at each process.

For checkpointing in large-scale systems, the checkpoints may

be stored locally.

A. Correctness

The correctness of the local state recording is evident

because we adapt Mattern’s algorithm [9]. We only need to

show that the channel states correctly record the in-transit

white messages. For all j ∈ N , consider the n initial entries

white sentj [i] and the logical convergecast tree rooted at

Pi. The sum of these n initial entries represents the number

of white messages sent to process Pi. In iteration count
(0 ≤ count ≤ d − 1) of the main loop of step (2), 2count

entries of this form get added concurrently at various processes

along the convergecast tree rooted at Pi. The total number of

additions after all the rounds is

d−1∑
0

2count = 2d − 1 = n− 1,

yielding the desired sum of the n numbers.
∑

j white sentj [i]
is thus correctly computed. The channel recording terminates

when
∑

j white sentj [i] = white recdi.

III. DISCUSSION

This paper presented the first n log n message distributed

snapshot algorithm for a system with non-FIFO channels. The

algorithm finds direct application in large scale distributed

systems such as the MIMD supercomputers which have a fully

connected topology of a large number of processors.

Table I compares the proposed algorithm, denoted as the

hypercube algorithm, with other non-inhibitory algorithms

for non-FIFO channels. We compare the deficiency counting,
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int white recdi;

int white senti[1..n], SENTi[1..n];
state LSi;

set of messages SCj,i for all j;

(1) When a white process Pi wants to initiate snapshot recording:

Broadcast a RECORD control message along a pre-established spanning tree and to Pi itself.

(2) When a white process Pi receives a RECORD control message or a red computation message:

turn red;

if a RECORD control message was received then
propagate the RECORD control message along the spanning tree;

record local state LSi;

white recdi is number of (white) messages received until now;

for j = 1 to n do
SENTi[j] ←− white senti[j];

initialize SCj,i (for all j ∈ N ) to ∅;
for count = d− 1 down to 0 do

send SENTi[j] to Pi⊕2count , for all j such that

j = d− count− 1 MSBs of i · (count + 1)th LSB of i · ∗ ∗ . . . ∗︸ ︷︷ ︸
count LSB bits

;

receive 2count entries of the form SENT∗[k] from Pi⊕2count ;

for all received entries of the form SENT∗[k] do
SENTi[k] = SENTi[k] + SENT∗[k];

if white recdi = SENTi[i] then
local snapshot recording is complete.

(3) When a red process Pi receives a white message M along Cj,i:

record M in SCj,i as SCj,i ←− SCj,i ∪ {M};
white recdi + +;

if white recdi = SENTi[i] and Step (2) is completed then
local snapshot recording is complete.

Fig. 1. Snapshot recording algorithm at processor Pi. ⊕ is the XOR operator.

vector counter, and piggyback algorithms [9], and the two-

dimensional grid-based, tree-based, and centralized algorithms

by Garg et al. [5]. We also compare the following two

algorithms: Simple Ring and Simple Tree.

Simple Ring: The processes are arranged in a logical ring,

with P0 as the initiator process. P0 circulates a token around

the ring once. The receipt of the token triggers recording the

local snapshot and turning red. The token also carries the

accumulated count of the vector white sent, and is initialized

to the vector white sent0. When Pi (i > 0) receives the

token, it adds its vector to the vector in the token. When P0

receives the token back, white sent[j] in the token contains

the count of white messages sent to process Pj . A second

pass of the token around the ring distributes the values of

white sent to the processes.

Simple Tree: The processes are arranged in a logical tree. A

tree broadcast initiates the recording of local states and turning

red. After the broadcast completes, a convergecast (initiated by

the leaves) accumulates the vector white sentj , for all j, at

the root. After the convergecast completes, a tree broadcast

initiated by the root distributes the accumulated values of

white sent to the processes.

All the algorithms are compared against the following met-

rics: number of messages, total message space, local storage,

whether the roles of the processes are symmetrical, response

time (or latency), and parallel communication time. We define

the roles of the processes to be symmetrical if the processes

execute identical code. In a symmetrical algorithm, there is

perfectly uniform distribution of workload, no bandwidth and

processing bottlenecks, and greater elegance. Response time
is defined as the net parallel time of the control messages

(to record the local states and enable detection of in-transit

messages) in the parallel algorithm, counting the processing

time for a message as one unit. An alternate version of

the response time metric is the parallel communication time.

Here, the time for a message is ts + twx, where ts is the

local processing overhead per message (at the sender and the

receiver), tw is the transmission time per word, and x is the

number of words in the message. The parallel communication
time is the net parallel message time in the parallel algorithm.
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TABLE I
COMPARISON OF NON-INHIBITORY SNAPSHOT ALGORITHMS FOR NON-FIFO CHANNELS.

Algorithm Number of messages Total message Local storage Symm- Response time Parallel
space etric Communication Time

Lai-Yang [8] O(n2) unbounded unbounded No O(n) (n)ts + tw(n)
Deficiency O(n(n + m)) O(n(n + m)) O(1) No O(n + m) (n + nm)ts + tw(n + nm)
counting [9]

Vector 2n O(n2) O(n) No 2n (2n)ts + tw(2n2)
counter [9]

Piggyback [9] O(n2) O(n2) O(n) Yes O(n) (n)ts + tw(n)
Grid-based [5] O(n1.5) O(n2) O(n) No O(

√
n) O((3

√
n + 1)ts + tw(2n + 2

√
n))

Tree-based [5] O(n log n log m) O(n log n log m) O(1) No O(n log n log m) O((n log n log m)(ts + tw))
Centralized [5] O(n log m) O(n log m) O(1) No O(n log m) O((n log m)ts + tw(n log m))
Simple Ring 2n O(n2) O(n) No 2n (2n)ts + tw(2n2)
Simple Tree 3(n− 1) O(n2) O(n) No 4 log n (4 log n)ts + tw(n log n)
Hypercube n log n + n− 1 O(n2) O(n) Yes log n (log n)ts + tw(n)

n is the total number of processes. m is the average number of messages in transit to each process (on its incident channels) in the snapshot. ts is the local
startup time and local reception time per message. tw is the transmission time per word. Constants can vary depending on implementation.

The tree-based, grid-based, and the centralized algorithms

[5] all have varying degrees of asymmetry among the pro-

cesses. Specifically, the grid-based algorithm performs accu-

mulation of the white sent vectors along the grid diagonal,

and the diagonal elements then distribute the values to non-

diagonal elements. The tree algorithms (Simple Tree and tree-

based) have asymmetrical roles among leaf nodes, internal

nodes, and the root node. Note that in vector counter and

Simple Ring, the initiator plays the additional role of changing

the phases of the algorithm; hence we classify them as being

asymmetric. The only distributed algorithms that have per-

fectly symmetric roles for the processes are the piggyback and

hypercube algorithms. Observe from Table I that the proposed

hypercube algorithm has the lowest number of messages from

among algorithms in which the roles of all the processes are

completely symmetrical. Note however, that the vector counter
algorithm, Simple Ring, and Simple Tree use fewer messages

than the hypercube algorithm.

Notwithstanding the asymmetry of roles in the grid-based

and tree-based algorithms [5], the hypercube algorithm is also

superior to the grid-based and tree-based algorithms in terms

of the number of messages and in terms of response time. As

the system scales up in terms of the number of processors,

the number of messages becomes very important. It is more

efficient to send few large messages than more small messages.

The response time of the hypercube algorithm is log n
because the messages in step (2) are immediately pipelined

after the RECORD messages. Hence there is no latency for

the initiation phase. Compared to the Simple Ring algorithm,

the hypercube algorithm has lower response time. Simple Ring
is asymmetric, as it requires a leader process to change

the phases of the algorithm. Compared to the Simple Tree
algorithm, the hypercube algorithm has lower response time:

log n, as against 4 log n for the sequential convergecast and

broadcast that follow the initiation phase in Simple Tree.

Simple Tree is asymmetric as it requires different roles to be

played by leaf nodes, internal nodes, and the root node.

The response time and parallel communication time of the

hypercube are lowest among all algorithms.

We make the following conjectures, based on the properties

of the hypercube architecture.

Conjecture 1: Among distributed snapshot recording algo-

rithms that are perfectly symmetrical, i.e., identical code is

executed by the processes, the hypercube algorithm in Figure 1

is optimal in terms of the number of messages used and in

terms of response time and parallel communication time.

Conjecture 2: Among distributed snapshot recording algo-

rithms, the hypercube algorithm in Figure 1 is optimal in terms

of response time and parallel communication time.

Note, however, that the hypercube overlay may contain mul-

tiple edges compared to the tree and ring overlays; this may

impact the response time and parallel communication time.
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