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Abstract—Asynchronous geo-replication for data resources is
used to provide high availability and lower latency in modern
cloud store systems. Convergent causal consistency is the corner-
stone to provide useful semantics for online human interaction
services. Compared to full replication, partial replication has
potential benefit of lower message counts in social network
systems. However, static replication is ineffective for time-varying
workloads. We propose a causal+ consistency protocol, CaDRoP,
to support dynamic replication, and ensure the convergence
property for all comments following a post and the causal order-
ing between posts with explicit causality. We evaluate CaDRoP
protocol with realistic workloads by different PUT rates in terms
of the practical price of Amazon AWS. The results show that
CaDRoP incurs much lower cost than the statically replicated
data store in another causal+ algorithm. We further evaluate
CaDRoP by comparing it with a clairvoyant optimal replication
solution. The findings indicate that with cache, CaDRoP incurs
only around 6% ∼ 16% extra cost. Without cache, CaDRoP
brings around 2% ∼ 4.5% extra cost in steady states.

Index Terms—causal consistency, partial replication, social
networks

I. INTRODUCTION

Modern cloud storage services are hugely popular and
increasingly used by businesses and enterprises to manage
their data, including mission-driven services such as database
queries or resource usage [1]–[5]. Data geo-replication is a
critical component of these services and a widely adopted
technique to improve the availability and performance for
massive scale. It is the process of maintaining copies of data
at geographically dispersed stores closer to the users. Thus,
the latency between end-users and the store servers can be
effectively reduced, in addition to offering improvements in
system scalability.

In data replication strategies, partial replication is an effec-
tive measure to avoid propagating unnecessary resources to
improve storage utilization and reduce network transmission
costs. Data objects only replicate to a subset of the system
store nodes and their updates are propagated to fewer replicas
with respect to full replication. Thus, this allows replicas
of different data objects to handle independent parts of the
workload.

Replication brings about the problem of data consistency
across different replicas. While linearizability is the strongest
consistency and the most desirable property from users’ per-
spective, several known cloud store services are satisfied with
weaker consistency models to provide lower latency [5]–[8].

Causal consistency (CC) has gained significant attention as an
attractive consistency for geo-replicated cloud storage systems
[5]–[7], [9]–[20], since it supports the ordering of operations
with respect to program and read-from order across data
store nodes. Furthermore, it not only avoids the unpredictable
execution status allowed by weaker consistency (e.g., eventual
consistency), but provides lower latency than strong consis-
tency models, such as linearizability. CC preserves intuitive
causal ascription, crucial in social networks (e.g., privacy
policies). It improves user experience because, with it, events
appear to each user in the correct order. For example, this
stream of comments under a landscape image: (c1) “My
parents have been living there for 20 years.” (c2) “It’s too
long.” Without CC, the temporal coherence degrades if only
(c2) below the image shows up on someone else’s screen.

Moreover, reputed cloud storage providers, such as Ama-
zon Web Service (AWS), offer a variety of storage classes
and charge customers for use of their storage and network
resources in different prices. The diversity of the storage
and network prices reflects the performance appraisal like
availability, utilization, etc. Thus, the monetary cost optimiza-
tion on cloud-based storage services is a critical factor for
application providers.

Contributions:. This paper presents CaDRoP (Causal Con-
sistency under Dynamic Replication Protocol) [21], a new
cost-optimized protocol that ensures causal+ consistency
(CC+) in a partially geo-replicated platform. CC+ protocol
requires that data replicas converge to the same state under
concurrent updates. Existing approaches [5], [9]–[19] main-
tain CC+ in standard key-value storage configuration. Most
of them are based on full replication, whereas some CC+
protocols [11], [16], [18], [19] support partial replication.
There are some limitations when applying the current CC+
protocols to social media platforms. When users have access
to a post (e.g., an image), all the replying comments return.
Each comment corresponds to an update operation to a post.
The existing CC+ protocols treat the post and its following
comments as values to a variable. However, none of these
CC+ approaches can achieve the convergence property for the
values corresponding to the same post. Since they use the last-
writer-wins reconciliation [22], only the value from the latest
writer is kept around. Moreover, the current CC+ protocols
rely on static underlying replication (i.e., data replication
placement is predetermined). However, static replication of
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data resources in dynamic environments with time-varying
workloads is ineffective for cost management. CaDRoP is
the first protocol to achieve CC+ for all replying comments
(update operations) corresponding to an object (a post) with
a unique key or for different objects with explicit happens-
before relationships in social applications based on a key-
values store system. Users from different replica stores can
observe the same global causal ordering of all the text replies
to a post. CaDRoP is adapted to dynamic data replication.
CaDRoP also integrates CC+ across storage layer replicas and
caches to reduce network transmission costs.

We conduct an evaluation of the cost-effectiveness of
the CaDRoP algorithm via trace-driven CloudSim simulator
toolkit and realistic workload traces from Twitter in terms of
the prices set on AWS as of 2019. Results show that the total
system cost can be highly reduced by CaDRoP in a dynamic
replication strategy [23] in comparison to the same protocol
without caches and CoCaCo [16] in different static replication
models. We further evaluate CaDRoP by comparing it with a
clairvoyant optimal replication solution. The findings indicate
that with cache, CaDRoP incurs only around 6% ∼ 16% extra
cost. Without cache, CaDRoP brings around 2% ∼ 4.5% extra
cost in steady states.

This paper is organized as follows. Section II gives the
design model of CaDRoP. Section III describes our pro-
posed approach along with the details of CaDRoP algorithm.
Section IV reports the simulation experiments along with
the cost effectiveness evaluation of our approach. It also
evaluates CaDRoP with respect to the same algorithm run in
the clairvoyant optimal placement strategy and illustrates the
trade-off between them. Section V summarizes our work.

II. DEFINITIONS AND SYSTEM MODEL

A. Causal consistency (CC)
A CC system requires that clients observe the results

returned from the data repository servers, consistent with the
causality order. Causality is the happen-before relationship
between two events [24], [25]. The two events must be visible
to all clients in the same order, when they are causally related.
In other words, when users in client A observe that event M1
happens before M2, other users in client B can perceive that
the effects of M1 occurring are visible to M2. Otherwise, a
(potential) causality violation has occurred. When a series of
access operations occur on a single thread, they are serialized
as a local history h. The set of local histories from all threads
forms the global history H . For potential causality [24], if
there are two operations o1 and o2 in OH , we say that o2
causally depends on o1, denoted as o1 ≺co o2, if and only if
one of the following conditions holds:

1) o1 precedes another local operation o2 in a single thread
of execution (program order).

2) o1 is a write operation and o2 is a read operation that
returns a value written by o1, even if o1 and o2 are
performed at distinct threads (read-from order).

3) there is some other operation o3 in OH such that o1 ≺co

o3 and o3 ≺co o2 (transitive closure).

Especially, the causality order defines a strict partial order
on the set of operations OH . For a CC system, all the write
operations that can be related by the potential causality have
to be observed by each thread in the order defined by the
causality order.
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Data Node Server

Data Node Server Data Node Server

Web Server

Web 
Server
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Fig. 1. The system architecture.

B. System Design

CaDRoP runs in a distributed key-[values] data store that
manages a set of data objects. Thus, CaDRoP implements a
multiversion data store in social networks. [values] is a list
of values corresponding to an item key. In our system, one
post, such as a picture on Instagram, is viewed as an object
and is assigned a global unique number as the item key. The
post object is saved in the head of [values], denoted as v0.
Afterwards, when a comment (e.g., a list of strings) is posted
out under a post, this comment text, denoted as vi (i > 0; i
is the index of [values]), will be inserted to [values]. CaDRoP
treats the value of each update operation as an immutable
version of the access object. When users request access to
a data object, [values] (i.e., a list of version values) is the
result returned. Each entry in [values] corresponds to one
update operation. In order to track causality, each version
value needs to be associated with some metadata. [values]
is also a causal list. For example, consider two entries vi
and vj in [values] and i < j. Assume that vi and vj are
created by update operations oa and ob, respectively. CaDRoP
can guarantee that ob ⊀co oa. Although the potential causality
allows to prevent any causal anomalies, it leads to higher costs
to maintain many dependencies among different posts without
any semantic coherency in social networks. For example, there
is a cute dog photo posted in the morning and a blue sky image
uploaded at noon. Tracking explicit causal order offers a more
flexible solution. Under explicit causality, each application can
have its own happens-before relationships between operations
[26]. Because it tracks only customized relevant dependencies,
explicit causality decreases the number of dependencies per
modification and lowers metadata overhead. We have modeled
a hybrid causality based on a column-based model. Our system
maintains two types of columns:
• key columns: they are used to store data item keys.
• value columns: each value column contains a [values]

corresponding to a data item key.
CaDRoP supports the explicit causality in key columns and
implements the potential causality for each value column.
Explicit causality can be captured through application user
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interface. For example, user Bob can click @ symbol on
Facebook to post an image content to reply a post done by
user Alice before. Thus, the client program can capture the
causal dependency between the two posts, even if they are
realized by different users. Otherwise, the causal relationship
between different object keys will be ignored in CaDRoP.

The whole framework is a hierarchical geo-distributed cloud
store system composed of multiple geographical DCs (see
Fig. 1). All the DCs are fully connected by WANs with higher
network access cost. They are deployed and dispersed across
the world. In each DC, there are multiple web servers, each of
which serves the data access demands from one geographical
region and connects to its own data node server, which is
called the host server of that connected web server. Data can
be replicated asynchronously between different data servers
within the same DC or in different DCs. When a data server
sr stores an object with key k, sr is called a replica server of
object ok. Otherwise, sr is a non-replica server. When a DCr

includes at least one replica server of object ok, DCr is called
a replica DC of object ok. Otherwise, DCr is a non-replica
DC. CaDRoP supports partial replication of data. Each data
object is replicated in a subset of DCs.

CaDRoP consists of the client layer and the data store layer.
They communicate with each other through the client library.
The client layer implemented in web servers is responsible for
storing or retrieving information to or from data node servers
and presenting information to the application users. Note that
the client layer has to wait for the corresponding response
to the current request before sending the next access request.
The underlying store layer controls the physical storage in data
store servers and the data propagation between them. CaDRoP
provides the following operations to the clients:
• POST(key, object): A POST operation assigns an object

item ok (e.g., a picture or a clip) with an item key.
• PUT(key, value): A PUT operation assigns a text value

(string) to an item key. Then, a new version value will
be created. Note that if an object is visible to clients, the
corresponding key always exists, unless the data object
of an item key is removed from the whole system.

• [ values] ← GET(key): The GET operation returns [val-
ues] corresponding to an item key in causality order.

C. Convergent conflict handling

CC does not establish a global order for operations in OH .
Therefore, there exist some causally independent operations,
which are characterized as concurrent. Formally, two oper-
ations o1 and o2 in OH are concurrent if o1 ⊀co o2 and
o2 ⊀co o1. Concurrent write operations applied to the same
data object very likely lead to inconsistent data states. Those
are said to be in “conflict”. Essentially, conflicts do not
result in causal violation. However, when different concurrent
versions of a data object are replicated to remote stores,
this potentially leads to divergent undesired results to clients.
Multiple concurrent versions of an object could be present in
the system at the same time. In this work, CaDRoP uses the
timestamp and the local data node identification to order the

TABLE I
Definition of symbols and parameters used in the model.

Term Meaning
si The data node server i
DC A datacenter including multiple data node servers
dmc Dependency meta-data depm set at client c
ok An object with a unique key k
cvl〈k〉 A causal version list of data object k (ok)
IOset The invisible object set
TS the local Lamport timestamp for update operations
d An item tuple 〈 k, v, dm 〉
Dests A set of replica store servers
V Vi The version vector of data node si
V (k) The size of data object k
∆t Time slot interval
th The h-th time slot
GNth [k][i] Number of Gets for ok from si in time slot th
PNth [k][i] Number of Puts for ok from si in time slot th
ANth [k][i] The sum of GNth [k][i] and PNth [k][i]

list of version values. This can achieve a global consistent state
for different data replica nodes. Thus, CaDRoP can provide
causal consistency with the convergence property.

III. ALGORITHM

CaDRoP is adapted from Opt-Track protocol [20], [27],
which aims at reducing the dependency metadata size and
storage cost for causal ordering in a partially replicated shared
memory system. Though Opt-Track achieves CC with non-full
replication across geo-distributed servers, it does not support
DC-level partial replication and storage cache. We now give
the formal CaDRoP algorithm in Algorithms 1 ∼ 5. CaDRoP
is designed to achieve CC+ within and across DCs.

A. The client layer

The client library maintains for its session a depen-
dency metadata, denoted as dmc. dmc consists of a set of
〈rid,TS,Dests〉 tuples, each of which indicates an update
operation (POST or PUT) initiated by data node server rid
at clock time TS in the causal past. Dests includes replica
data node servers for that update operation. Only necessary
replica node information is stored.

When PUT() or POST() is invoked, the client library
retrieves the local dmc and assigns POSTREQ or PUTREQ
attribute to propagate a new object or a new value with dmc

to its host data node server. The host server is in charge of
distributing requests to other replica node servers, handling
responses from others, and returning feedback to the client.
Although PUT and POST operations are very similar in the
client layer, their corresponding functions in the storage layer
are different. POST needs to implement CC for different
objects, whereas PUT needs to enforce CC+ for the comments
to an object. When GET() is invoked, the client library assigns
GETREQ attribute to propagate an access request to its host
data node. Function MERGE() in Algorithms 1 and 4 merges
the piggybacked dependency metadata of the corresponding
updates to an object key with the local client dmc. Function
PURGE() in Algorithms 1 and 4 removes old records
with empty Dests, based on Implicit Tracking in Opt-Track
protocol [20], [27]. In this function, some new additional
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Algorithm 1: Client operations at client ci
POST(object key k, object ok, dep dmc):

1 send 〈POSTREQ k, ok , dmc〉 to host data server si;
2 receive 〈POSTREPLY dmr〉;
3 dmc ← dmr;
4 insert k into object name list;

PUT(object key k, text v, dep dmc):
5 send 〈PUTREQ k, v, dmc〉 to data server si;
6 receive 〈PUTREPLY dmr〉;
7 dmc ← dmr;

GET(object name k):
8 send 〈GETREQ k〉 to host data server si;
9 receive 〈GETREPLY cvl〈k〉〉;

10 for each d ∈ cvl〈k〉 do
11 MERGE(DMc, d.dmd);

12 DMc ← PURGE(DMc);
13 return cvl〈k〉.values;

Upon receive f(k):
14 insert k into the object booking table;

dependencies get added to dmc and some old existing depen-
dencies in dmc are deleted. The merging process implements
the optimality techniques in terms of Implicit Tracking in Opt-
Track protocol and makes the client aware of the necessary
causal dependency information of update operations. When
the client receives f (k), it updates the object booking table to
make users aware of what posts exist in a social network.

B. The storage layer

The data storage layer is composed of multiple data node
servers. Each data object can be replicated to one or more
data node servers. As mentioned before, the CaDRoP data
store layer exposes three main functions to the client library:
• 〈POSTREPLY dmr〉 ← 〈POSTREQ k, ok, dmc〉.
• 〈PUTREPLY dmr〉 ← 〈PUTREQ k, v, dmc〉
• 〈GETREPLY cvl〈k〉〉 ← 〈GETREQ k〉
Note that dm denotes a dependency meatadata set and dmr

indicates a returned dm. In Algorithm 2, for a POSTREQ
operation in a host data node server, it needs to update the local
Lamport timestamp TS (line 1). Then, the metadata per data
node server is tailored by REDUCE() in line 3 to minimize
its space overhead. It is denoted as dms. If sj is a replica
node server, four elements (dms, the set of replicas, TS, ok)
are encapsulated into a package d. Line 4 propagates d to
each other replica server sj . If sj is not a replica server, ok is
replaced with the key id k. The four elements are encapsulated
into a package f . Line 5 propagates f to each non-replica
server.

Lines 12-13 prune the Dests information, based on the
propagation condition in Opt-Track protocol. In the PURGE(),
entries with empty Dests are kept as long as they are the most
recent update from the source node server. In CaDRoP, we
assume that the host server for the client initiating a post ok
is always a replica of object ok. Lines 14-16 store the source
server (rid) and the timestamp(TS) of a POST operation as
an entry (denoted as dm(h)) at the head of dm and create a
data element d to save ok and the associated metadata dm.
Then, d is inserted to the head of cvl〈k〉. Line 18 updates

the version vector for the host server si. Line 19 updates the
booking information for object ok.

Social network systems have access to data objects with
much larger space overheads. Thus, CaDRoP implements a
relay mechanism to reduce the data communication cost across
different DCs. If there are multiple replica servers in a remote
datacenter DCx, lines 7-9 will select a relay replica server sr
and propagate a package d to sr. Once sr receives d, it invokes
REDUCE() to modify the dmc from the source data node and
then relays an updated d to other data nodes servers in the
same DCx. If there is no replica server in a remote datacenter
DCy , lines 10-11 implements the similar process as lines 5,8-9
to propagate a package f to a non-replica server snr.

Lines 37-48 handle the process, when d for a POST
operation is received by a replica server. The determination
ATP() realizes an activation predicate of a safe protocol to
stop the visibility of any update operation that arrives out of
order with respect to ≺co. Lines 49-55 deal with the process,
when f for a POST operation is received by a non-replica
server. After receiving d in a replica server, a copy of the
object posted and the replica placement list (replicas) are
stored. When receiving f in a non-replica server, it only needs
to save replicas. Line 50 is required to maintain an explicit
dependency between two POST operations.

The function for a PUTREQ operation is similar to that for
a POST operation. Instead of replicating an object, PUTREQ
propagates a text value in the package d. Note that when a data
node server implementing function PUTREQ is a non-replica
server, d would not be saved.

In Algorithm 3, lines 1-17 run in the case when a replica
server in a remote DCx receives a package d for a POST
operation. Lines 18-28 handle the process when a non-replica
server in a remote DCy receives a package f for a POST
operation. Lines 29-37 or 38-50 deal with the case when
a replica server within the same DC or in a remote DCx

receives a package d for a PUT operation. When a data server
si receives a d (for an object ok or a text value v) or a f (for
an object notification), ATP() is used to check if the d or f
is visible to clients. If the received item is not visible, it will
be temporarily stored in IOset until the ATP() test becomes
true.

For a GETREQ operation to a key k in si, if si is a replica
server of object ok, cvl〈k〉 returns to the client. If si is a non-
replica server of object ok, si needs to fetch cvl〈k〉 from a
replica server. However, if cvl〈k〉 is fetched from a different
data server, CaDRoP uses ATP() to check if each value is
causally visible. LINK() is used to insert a d with an updated
value into cvl〈k〉 in causality order, when an update value is
visible. Since cvl〈k〉 is a causal list of values, the following
condition must be satisfied: ∀d′ ∈ cvl〈 k〉 :

(d′.dm(h).rid, d′.dm(h).TS) 6= (d.dm(h).rid, d.dm(h).TS)
(1)

However, some entries in cvl〈 k〉 are concurrent with d.
CaDRoP can sort those concurrent entries by their TS and
rid, in ascending order. Thus, the text values of cvl〈k〉
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Fig. 2. An example with the convergence property.

saved in different data servers can be present in the same
convergent order. As shown in Figure 2, when two users
retrieve the cvl〈k〉 from s1 and s2, respectively, they can obtain
a consistent result in causality order.
C. Dynamic Replication Model

The space overheads of data objects in geo-replicated stor-
age systems are composed of the size of dependency meta-
data (dm) and that of payload data (V ). In social network
systems, V is substantially larger than dm [20]. Therefore,
the replication model in cloud-based data store systems plays
a vital role in the cost optimization. Most of the existing
CC protocols are based on static replication models in geo-
replicated data stores. In other words, the numbers of replicas
for a variety of data objects are predetermined. All replication
decisions are made before the system is operational and replica
configuration is not changed during operation. However, static
replication of data resources in dynamic environments hosting
time-varying workloads is obviously ineffective for optimizing
system utilization, especially in social network systems. Dy-
namic replication strategies have been widely used as means
of increasing the data availability of large-scale cloud store
systems. CORP model, a proactive dynamic data replication
strategy, has been proposed in [23] to effectively improve the
total system cost in a social network system. According to
the current data resource allocation and historical changes
in workload patterns, CORP employs the autoregressive
integrated moving average (ARIMA) model to predict data
object access frequency in the near future. In order to optimize
system cost, we incorporate CORP model as the underlying
replication mechanism into CaDRoP protocol. Based on the
requirement of CORP, a time slot system is required to
realize the data migration process in CaDRoP. Each data server
is equipped with a physical clock, which generates monotoni-
cally increasing timestamps. Physical clocks are synchronized
by a time synchronization protocol, such as NTP. The cor-
rectness of the CaDRoP is independent of the synchronization
precision.

CORP strategy runs at the end of each time slot and outputs
a set of replicas for each data object. Then, the home server for
that object triggers the migration process, based on the replica
placement at the current time slot and that at the next time slot.
It is noted that the regular CORP runs the ARIMA prediction
model by an equal time interval. At runtime, the prediction
is constantly updated. When new access requests arrive in
the current time slot, they are getting involved into the time
series and the information in the oldest time slot is removed
from the time series. However, when a data object is created,

Algorithm 2: Operations at data node si in DCi (part1)

Upon receive〈POSTREQ ok , dmc〉
1 TS ← LamportTimestamp.increaseAndGet();
2 for each data node sj in the local DCi do
3 dms ← REDUCE(dmc.clone, L, sj );
4 if sj ∈ k.replicas then

send d(ok, k.replicas, TS, dms) to sj ;
5 else send f(k, k.replicas, TS, dms) to sj ;

6 for each DCj 6= DCi do
7 if DCj is a replica DC of ok then
8 select a replica server sr in DCj ;
9 send d(ok, k.replicas, TS, dmc) to sr ;

10 else
select a data node snr in DCj ;

11 send f(k, k.replicas, TS, dmc) to snr ;

12 for each o ∈ dmc do
13 o.Dests := \L;

14 dmc := ∪{〈rid = si, TS, L\{si}〉};
15 dm← PURGE(dmc);
16 create d(ok, dm) and cvl〈k〉;
17 LINK(cvl〈k〉,d) : insert d to cvl〈k〉;
18 V Vi[i].increment;
19 OBJTABLEUPDATE(k,replicas);
20 return 〈POSTREPLY dmr = dm〉 to the request client;

Upon receive〈PUTREQ k, v, dmc〉
21 TS ← LamportTimestamp.increaseAndGet();
22 for each sj ∈ k.replicas, in the local DCi do
23 dms ← REDUCE(dmc.clone, ok.replicas, sj );
24 send d(k = v, rid = si, TS, dms) to sj ;

25 for each replica DCj 6= DCi do
26 select a replica server sr in DCj ;
27 send d(k = v, rid = si, TS, dmc) to sr ;

28 for each o ∈ dmc do
29 o.Dests := \k.replicas;

30 dmc := ∪{〈rid = si, TS, k.replicas\{si}〉};
31 dm← PURGE(dmc);
32 if si ∈ ok.replicas then
33 create d(k = v, dm);
34 LINK(cvl〈k〉,d) : insert d to cvl〈k〉;
35 V Vi[i].increment;

36 return 〈PUTREPLY dmr = dm〉 to the request client;
Upon receive d(ok, replicas, TS, dms) from DCi

37 rid ← replicas.getF irst();
38 if ATP(dms,V Vi,si)=true then
39 dms := ∪{〈 rid, TS, replicas〉};
40 for each o ∈ dms do
41 o.Dests := \si;
42 create d′(ok, dms) and cvl〈k〉;
43 insert d′ to cvl〈k〉;
44 V Vi[rid] ← TS;
45 update IOset;
46 send f(k) to the local client ci;

47 else insert d into IOset;
48 OBJTABLEUPDATE(k,replicas);

Upon receive f(k, replicas, TS, dms) from DCi

49 rid ← replicas.getF irst();
50 if ATP(dms, V Vi, si)=true then
51 V Vi[rid] ← TS;
52 update IOset;
53 send f(k) to the local client ci;

54 else insert d into IOset;
55 OBJTABLEUPDATE(k,replicas);

there is not sufficient data in the time series initially (i.e., the
training data set is not enough). Therefore, CaDRoP adopts
cache mechanism, based on a PUSH model, to reduce the
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Algorithm 3: Operations at data node si in DCi (part2)

Upon receive d(ok, replicas, TS, dmc) from DCs 6= DCi

1 for each data node sj(6= si) in DCi do
2 dms ← REDUCE(dmc.clone, replicas, sj );
3 if sj is a replica node of ok then send

d(ok, k.replicas, TS, dms) to sj ;
4 else send f(k, k.replicas, TS, dms) to sj ;

5 REDUCE(dmc, replicas, si);
6 rid ← replicas.getF irst();
7 if ATP(dmc,V Vi,si)=true then
8 dmc := ∪{〈 rid, TS, replicas〉};
9 for each o ∈ dmc do

10 o.Dests := \si;
11 create d′(ok, dmc) and cvl〈k〉;
12 insert d′ to cvl〈k〉;
13 V Vi[rid] ← TS;
14 update IOset;
15 send f(k) to the local client ci;

16 else insert d into IOset;
17 OBJTABLEUPDATE(k,replicas);

Upon receive f(k, replicas, TS, dmc) from DCs 6= DCi

18 for each data node sj(6= si) in DCi do
19 dms ← REDUCE(dmc.clone, replicas, sj );
20 send f(k = v, replicas,TS, dms) to sj ;

21 REDUCE(dmc, L, si);
22 rid ← replicas.getF irst();
23 if ATP(dmc, V Vi, si)=true then
24 V Vi[rid] ← TS;
25 update IOset;
26 send f(k) to the local client ci;

27 else insert d into invisible object list;
28 OBJTABLEUPDATE(k,replicas);

Upon receive d(k = v, rid = sj , TS, dms) from DCi

29 if ATP(dms, V Vi, si)=true then
30 dms := ∪{〈 rid, TS, replicas〉};
31 for each o ∈ dms do
32 o.Dests := \si;
33 create d′(k = v, dms);
34 insert d′ to cvl〈k〉;
35 V Vi[rid] ← TS;
36 update IOset;

37 else insert d into IOset;

Upon receive d(k = v, rid, TS, dmc) from DCs 6= DCi

38 for each replica data node sj(6= si) in DCi do
39 dms ←REDUCE(dmc.clone, replicas, sj );
40 send d(ok, k.replicas, TS, dms) to sj ;

41 REDUCE(dmc, replicas, si);
42 if ATP(dmc, si)=true then
43 dmc := ∪{〈 rid, TS, replicas〉};
44 for each o ∈ dmc do
45 o.Dests := \si;
46 create d′(k = v, dmc);
47 insert d′ to cvl〈k〉;
48 V Vi[rid] ← TS;
49 update IOset;

50 else insert d into IOset;

Upon receive〈GETREQ k〉
51 if si /∈ k.replicas then
52 send〈REQUEST k〉 to a replica node in DCi or a remote DC;
53 receive 〈RREQ cvl〈k〉〉;
54 for each d ∈ cvl〈k〉 do
55 if (ATP (dmd, V Vi, si)=false) then
56 remove d from cvl〈k〉 ;

57 else fetch cvl〈k〉;
58 send〈GETREPLY cvl〈k〉〉;

Upon receive〈REQUEST k〉
59 fetch cvl〈k〉 and return 〈PREQ cvl〈k〉〉;

Algorithm 4: Functions used in Algorithm 1, 2, and 3

boolean ATP(depm dm, int[] V Vsi , node si):
1 for each o ∈ dm do
2 if si ∈ oz,ts.Dests then
3 if ts > V Vi[z] then return false;

4 return true;

REDUCE(depm dm,node list replicas, node sn):
5 for each o ∈ dm do
6 if sn ∈ o.Dests then o.Dests = \replicas;
7 else o.Dests := \replicas ∪ sn;
8 if oz .Dests = ∅ ∧ (∃o′z ∈ dm|oz .ts < o′z .ts) then dm \ oz ;

9 return dm;

PURGE(dm):
10 for each o ∈ dm do
11 if oz .Dests = ∅ ∧ (∃o′z ∈ dm|oz .ts < o′z .ts) then dm \ oz ;

12 return dmc;

MERGE(dmc, dmd):
13 for all oz,tz ∈ dmd and os,ts ∈ dmc and s = z do
14 if tz < ts ∧ os,tz 6∈ dmc then mark oz,tz ;
15 if ts < tz ∧ oz,ts 6∈ dmd then mark os,ts ;
16 delete marked entries;
17 if tz = ts then
18 os,ts.Dests := ∩oz,ts.Dests;
19 delete oz,t from dmd;

20 dmc := dmc ∪ dmd;

OBJTABLEUPDATE(object id k, node list replicas):
21 ObjectTable〈k〉 = replicas;

Algorithm 5: Cache operations at data server si
Upon receive〈PUTREQ k, v, dmc〉 in a replica master node

1 for each slave caching node sa of object ok do
2 fetch seq by object key k and node id sa;
3 seq.increase();
4 send 〈CACHE d(k = v, seq, dmr)〉 to sa;

Upon receive〈CACHE d(k = v, seq, dmr)〉 in a cache node
5 waituntil (d.seq = k.seq + 1);
6 k.seq.increase();
7 insert d(k = v, dmr) to cvl〈k〉;

Upon receive〈REQUEST k〉 from a non-replica node sj
8 insert 〈sj ,seq=0〉 to a cache seq map for object key k;
9 fetch cvl〈k〉 and return 〈PREQ cvl〈k〉〉;

Upon receive〈GETREQ k〉 in a non-replica node
10 send〈REQUEST k〉 to a replica node in DCi or a remote DC;
11 receive 〈RREQ cvl〈k〉〉;
12 for each d ∈ cvl〈k〉 do
13 if ATP (dmd, V Vi, si)=false then
14 move d from cvl〈k〉 to invisible list of object k;

15 save cvl〈k〉 in si and set k.seq to ‘0’;
16 send〈GETREPLY cvl〈k〉〉;

network transmission cost, especially in the initial time slot(s).
Algorithm 5 presents the cache functions used in CaDRoP.
When a non-replica si receives a requesting data package with
key k by fetching cvl from another replica server sr, cvl〈 k〉
may be cached in si (line 16) with a sequence number seq
assigned by sr. For object ok, si becomes a slave server of
sr. Afterwards, whenever sr receives an update value (lines
1-4), sr relays the update value to si with a seq (increasing
by one per PUT). Based on the seq, si can maintain a visible
cvl〈 k〉 in causality order. Algorithm 6 presents the migration
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processes in CaDRoP. When the migration process initiates,
CORP outputs a new set of replicas of a key k (denoted
as k.replicas′) for the next time slot th to the home server
si. Based on different replica distributions, si will send the
replicas′ (lines 2-7) or replicate cvl〈 k〉 + replicas′ (line 8)
to the other servers within the same DC. Similar to POST
or PUT operations, the migration process utilizes the relay
mechanism to reduce the network transmission cost across
DCs. The home si may just send k.replicas′ to DCj in the
following three cases: 1) DCj is not a replica DC in th (lines
10-12). 2) DCj was a replica DC or included a cache server in
th−1, and is a replica DC in th (lines 13-18). 3) DCj was not
a replica DC in th−1, but will be a replica DC in th (lines 19-
21). After receiving k.replicas′ or k.replicas + cvl〈k〉 from
other DCs, it needs to update the replica placement and store
cvl〈k〉 (if received), and then to relay them to other servers
within the same DC (lines 25-32 and 37-43).

IV. PERFORMANCE EVALUATION

We evaluate the proposed CaDRoP protocol by real traces
of requests to the web servers from Twitter workload [28] and
the CloudSim discrete event simulator [29]. These realistic
traces contain a mixture of temporal and spatial information
for each http request. The number of http requests received
for each of the target data objects (e.g., photo images) is
aggregated in 1000-secs intervals based on the dataset used
in [23]. By implementing our approaches on the Amazon
cloud provider, it allows us to evaluate the cost-effectiveness
of request transaction, data store, and network transmission,
and to explore the impact of workload characteristics. We also
evaluate CaDRoP by a clairvoyant Optimal Placement (OPT)
Solution, proposed in [23], based on the time slot system and
object access patterns known in advance.

A. Data Object Workload

Our work focuses on the data store framework on image-
based sharing in social media networks, where applications
have geographically dispersed users who PUT and GET data,
and fit straightforwardly into a key-[values] model. We use
actual Twitter traces as a representation of the real world. PUT
or POST, denoted as Put, to a timeline occurs when users post
a tweet, retweet, or reply messages. We crawl the real Twitter
traces as the evaluation input data. Since the Twitter traces do
not contain information of reading the tweets (i.e., the records
of Gets), we set five different ratios of Put/Get (Prate: Put
rate), where the patterns of Gets on the workloads follow
Longtail distribution model [30]. The simulation workload
contains several Tweet objects. The volume V of each target
tweet in the workload is 2 MB. The simulation is performed
for a period of three weeks. The results for each object show
that they have similar tendency.

The experiment has been performed via simulation using
the CloudSim toolkit [29] to evaluate the proposed system.
CloudSim is a JAVA-based toolkit that contains a discrete event
simulator and classes that allow users to model distributed
cloud environments, from providers and their system resources

Algorithm 6: Migration operations at si for ok in DCi at th−1

1 for each sj(6= si) in DCi do
2 if sj /∈ k.replicas′ then
3 send f(k, k.replicas′) to sj ;

4 else if sj ∈ k.replicas′ and sj ∈ k.replicas then
5 send f(k, k.replicas′) to sj ;
6 else if sj ∈ k.replicas′ and sj is a caching server then
7 send f(k, k.replicas′) to sj ;
8 else send〈MIGR k, k.replicas′, cvl〈 k〉〉 to sj ;

9 for each DCj 6= DCi do
10 if R(DCj) = false in th then
11 select sj with the largest ANth from DCj ;
12 send f(k, k.replicas′) to sj ;

13 else if R(DCj) = true in th−1 then
14 select a replica sj from DCj ;
15 send f(k, k.replicas′) to sj ;
16 else if DCj includes one caching server in th−1 then
17 select a caching server sj from DCj ;
18 send f(k, k.replicas′) to sj ;
19 else
20 select sj with the largest AN from DCj ;
21 send〈MIGRB k, k.replicas′, cvl〈 k〉〉 to sj ;

Upon receive f(k, k.replicas′) from DCi

22 if si /∈ k.replicas′ & si ∈ k.replicas then
23 remove cvl〈 k〉;
24 OBJTABLEUPDATE(k,replicas′);

Upon receive f(k, k.replicas′) from DCj (j 6= i)
25 for each sj(6= si) in DCi do
26 if sj /∈ k.replicas′ then
27 send f(k, k.replicas′) to sj ;

28 else
fetch cvl〈 k〉〉;

29 send〈MIGR k, k.replicas′, cvl〈 k〉〉 to sj

30 if si /∈ k.replicas′ & si ∈ k.replicas then
31 remove cvl〈 k〉;
32 OBJTABLEUPDATE(k,replicas′);

Upon receive 〈MIGR k, k.replicas′, cvl〈 k〉〉
33 for each d ∈ cvl〈k〉 do
34 if (ATP (dmd, V Vi, si)=false) then
35 move d from cvl〈k〉 to the invisible list of ok;

36 OBJTABLEUPDATE(k,replicas′);

Upon receive 〈MIGRB k, k.replicas′, cvl〈 k〉〉 from DCj (j 6= i)
37 for each sj(6= si) in DCi do
38 if sj ∈ k.replicas′ then
39 send〈MIGR k, k.replicas′, cvl〈 k〉〉 to sj

40 for each d ∈ cvl〈k〉 do
41 if (ATP (dmd, V Vi, si)=false) then
42 move d from cvl〈k〉 to the invisible list of ok;

43 OBJTABLEUPDATE(k,replicas′);

(e.g., physical machines and networking) to customers and ac-
cess requests. CloudSim can be easily developed by extending
the classes, with customized changes to the CloudSim core.
We figure out our own classes for simulation of the proposed
framework and model 9 DCs in CloudSim simulator. Each
DC is composed of 4 pairs of web servers and data servers.
Each data server incorporates a 50GB storage space and each
web server is in charge of user’s query processing from one
(or a few) states in US or one country in Asia and in Europe.
The price of the storage classes and network services are set
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TABLE II
Cost improvement rates in different Put rates and RF values.

Prate 0.05 0.1 0.2 0.5 0.8
RF=9 3.46% 2.87% 5.24% 4.41% 4.16%
RF=5 72.62% 58.88% 55.05% 21.35% 6.74%
RF=2 79.46% 69.49% 56.33% 29.08% 11.95%

in terms of Amazon Web Service (AWS) as of 2019.

B. Results and Discussion

The performance metrics we use are based on the monetary
cost and the cost improvement rates under varying Prate.
In order to evaluate our proposed algorithm, we compare
it to different replication factors (RF ). RF is the number
of replica DC, where it is randomly pre-selected and each
replica DC includes one replica data server. More specifically,
when RF is constant and the replica placement for each
key is predetermined, CaDRoP is simplified to ‘CaS’, which
proceeds only by Algorithms 1 ∼ 5, without CORP. Cost is
represented by the total system cost, which is composed of
transaction cost (TC), network transmission cost (NTC), and
storage cost (SC). We use the term ‘transaction’ to denote data
query operations, such as Put or Get. NTC depends on the
size of the packet (e.g., a d packet) transmitted. SC includes
the costs of storing data items (including the dm data) and the
bookkeeping management of data replication information.

1) CaS′ Vs. CaS: To evaluate the effectiveness of the cache
component, we examine the system performance with the
comparisons between CaS′ (CaS w/o cache) and CaS on cost
improvement rate with respect to different RF, which is defined
as:

cost(CaS′)− cost(CaS)

cost(CaS′)
(2)

Table II shows the cache effectiveness of different RF modes
for different Put rates increases as RF decreases. As Put
rate decreases, the cost improvement of CaS becomes higher
except for full DC replication (RF=9).

2) CaS Vs. CaDRoP: We now evaluate the cost effec-
tiveness of CaDRoP by comparing it with CaS. By running
the same workloads as before, Figure 3 presents the TCs
of various RF models in different Put rates. Lowering the
number of transactions to fetch objects from remote data
servers increases throughput in cloud environments, while
an increased number of transactions would lead to an over-
utilization of the underlying systems. Thus, the total TC is
completely subject to the number of transactions. The results
show that CaDRoP can achieve the best performance for TC
under the same cache capacity, although it needs to bring
additional transactions for the migration process. Figure 4
presents the NTC of CaDRoP in comparison with various
RF models in different Put rates. The smaller the NTC, the
lower the network bandwidth consumption. Although NTC of
CaDRoP is slightly higher than that of the full DC replication,
it is much lower than others’ NTCs. Figure 5 shows the results
of SC of CaDRoP in comparison with other alternatives. It is
noteworthy that the SC of CaDRoP falls in between the SCs
of the replication models with RF=9 and RF=2. This implies

that the proper number of replicas for CaDRoP is able to
decrease TC and NTC. Figure 6 presents the total system costs
(TSC) for CaDRoP and CaS+cache in different RF values. It
illustrates that CaDRoP can reduce TC and NTC at the slight
cost of SC.
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Fig. 5. The Storage Space Cost

3) CaDRoP VS. CaDRoP′ (w/o cache): CaDRoP integrates
cache functionality to improve the system costs. Thus, in
this section we present experiments aimed at evaluating how
the total costs are improved by CaDRoP against CaDRoP′.
Table III presents the results of the cost saving ratio (∆saving)
for different Put rates. ∆saving is defined as

cost(CaDRoP ′)− cost(CaDRoP )

cost(CaDRoP ′)
(3)

Since the evaluation data come from the social network, each
individual data object brings a lot of requests in the initial
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TABLE III
∆saving : The cost improvement results for different Put rates show that

caching has taken an important step to improve the total system costs.
∆inc: The performance evaluation of CaDRoP compared to CaDRoP+OPT.

∆inc′ : The performance evaluation of CaDRoP′ compared to
CaDRoP′+OPT′ in steady states.

Prate 0.05 0.1 0.2 0.5 0.8
∆saving 91.95% 85.01% 75.14% 57.84% 49.02%

∆inc 16.08% 13.17% 10.21% 9.02% 6.17%
∆inc′ 1.72% 2.62% 1.6% 4.51% 3.31%

time slots. It can be observed that the results indicate that the
lower the Prate (Get-intensive), the better the ∆saving is.

4) CaDRoP evaluation: In order to evaluate the effective-
ness of CaDRoP, we also implemented the Optimal Placement
Solution (OPT) proposed in [23] as the clairvoyant replication
strategy. As mentioned in Sec. III-C, CORP runs on the
underlying replication layer of CaDRoP. Compared to CORP,
OPT knows the exact temporal and spatial data object access
patterns. OPT can figure out the optimal object placement
for each time slot. CaDRoP+OPT means that the underlying
layer of CaDRoP implements OPT rather than CORP. ∆inc is
defined as

cost(CaDRoP )− cost(CaDRoP + OPT )

cost(CaDRoP )
(4)

∆inc in Table III presents the comparisons between CaDRoP
and CaDRoP+OPT for different Put rates. It is evident that
CaDRoP only increases 6% ∼ 16% of total system cost
compared to CaDRoP+OPT.

In order to measure the cost effectiveness of CaDRoP
in steady states (including enough training time slots), we
also compare the cost of CaDRoP′ (w/o cache) to that of
CaDRoP′+OPT′ (w/o cache) in steady states. ∆inc′ in Table
III gives the cost increase ratios (∆inc′ ) of CORP compared
to OPT for different Put rates. We notice that ∆inc′ rates are
around 2% ∼ 4.5%. ∆inc′ is defined as

cost(CaDRoP ′)− cost(CaDRoP ′ + OPT ′)

cost(CaDRoP ′)
(5)

5) CoCaCo VS. CaDRoP: In order to empirically evaluate
the effectiveness of our approach, we compare it to another
CC+ protocol, CoCaCo proposed in [16], for the following
reasons. 1) It can be applied to partially replicated systems.
2) It also realizes multi-version storage systems to preserve

all the updated values. 3) The architecture of CoCaCo is
highly similar to that of CaDRoP. 4) CoCaCo implements
CC+ both within and across DCs. Note that CoCaCo cannot
achieve the convergence property for all replying comments
(update operations) corresponding to an object post. Table IV
demonstrates the simulation results for CoCaCo and CaDRoP
by running the workloads used in the above experiments in
various Put rates. As the RF value decreases, the overheads
of storing dm decrease in terms of the SC results, but the
volume of transmitting dm over networks increases in terms
of the NTC results. For CoCaCo, the TC costs are apparently
higher that those of CaDRoP, since CoCaCo invokes more
acknowledgement messages and implements access requests.
The SC costs of CoCaCo are lower than those of CaDRoP
in the lower RF values, while CoCaCo’s SC is higher in the
higher RF value.

V. CONCLUSION

We proposed CaDRoP to ensure CC+ between posts and
for the comments under each post in social network systems.
CaDRoP is adapted to a proposed dynamic replication algo-
rithm CORP, which proactively deploys required data replicas
in geo-replicated datastores. We presented an evaluation of
the effect of CaDRoP in terms of cost improvement via trace-
driven CloudSim toolkit and realistic workload traces from
Twitter. Simulations show that, with caching, as RF increases,
the TSC decreases. CaDRoP is around 55 ∼ 70% lower than
CaS+cache in different predetermined RF models. We com-
pared CaDRoP to an OPT replication solution based on known
temporal and spatial access patterns. CaDRoP increases only
6 ∼ 16% of TSC of CaDRoP+OPT. Without cache, simulation
results show that the TSC of CaDRoP′ is slighly higher than
that of CaDRoP′+OPT′ in a steady state. In other words, by
proactively allocating data resources where and when users
need them, our approach is capable of being effective in cost
saving, even without cache. The simulation results also showed
that the TSC of CaDRoP is usually improved better in lower
Prate. It implies that CaDRoP is cost-effective for most social
applications with Get-intensive workloads.
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