
Fully Self-Organized Key Agreement for Ad-Hoc
Wireless Networks

Bartlomiej Sieka
Computer Science Department

University of Illinois at Chicago
bsieka@cs.uic.edu

Ajay D. Kshemkalyani
Computer Science Department

University of Illinois at Chicago
ajayk@cs.uic.edu

Abstract— This paper proposes a self-organizing bootstrap-
ping protocol for establishing authenticated channels as well
as secure identifiers in peer-to-peer networks. Specifically, the
paper makes the following contributions. (1) It proposes a
fully self-organized protocol that establishes an authenticated
communication channel between nodes of a wireless ad-hoc
network. This authenticated channel can then be used to establish
a secret communication channel between nodes. This is the
main contribution. (2) The protocol design also provides a
secure identifier framework that is resilient to impersonation.
The authentic identifiers it establishes can be used to associate
network (and upper) layer identifiers to prevent spoofing. They
can also serve as a reliable basis for reputation management
protocols. The self-organized bootstrapping is a useful feature
for designing autonomic systems.

I. INTRODUCTION

A. Motivation

Creating a secure communication channel between two
nodes in an ad-hoc network is an important problem because it
forms the basis of all secure protocols in a distributed system.
A secure channel is a channel that has the following properties.

• (secrecy): the channel is immune to eavesdropping,
• (integrity): the messages passed can not be altered with-

out that being noticed by their respective receivers, and
the communication parties are mutually authenticated,

• (availability): a malicious entity can not disrupt the op-
erations of the channel.

i.e., on channel secrecy and channel authentication. It is worth
noting that the problem of providing an authenticated channel
underlies the problem of providing a secret channel. In most
practical scenarios, channel secrecy is provided by symmetric
cryptography. This approach requires that the two communi-
cating parties share a common secret (the secret key). Thus
some method of providing the secret key is needed – that is
the purpose of key establishment protocols. Key establishment
can be performed as key transport or key agreement.

• Key transport. Here, one entity generates the key and
transports it securely to the other party, which makes it
clearly not a viable solution for ad-hoc networks.

• Key agreement. Here, both parties wishing to establish
a shared secret key contribute to the computation and
communication.

Note that agreement protocols rely on the existence of a small-
size authenticated channel ([1]). Consider a scenario where
public key cryptography is used. Here, the authenticity of the
public key must be verified by some out-of-band communi-
cation channel. Even though the size of that prerequisite out-
of-band authenticated channel is very small compared to the
size of the authenticated (and possibly secure) channel that
results from the use of cryptographic methods, observe that
the out-of-band channel must itself be authenticated. The main
purpose of the out-of-band communication is to authenticate
the identifier of the communication party, i.e., to know the
identity of the sender. It is clear then, that we need to provide
an authenticated channel before we can think about other
services and protocols.

B. Related Work

The existence of secure communication channels is crucial
to many aspects of an ad-hoc network operation, probably
the most important one being secure routing. The problem of
securing ad-hoc networks is an active area of research. The
proposed schemes fall into three categories.

1) Trusted third party protocols. These protocols rely on
the existence of a trusted third party (TTP). The role
of the TTP can be played by a Certificate Authority, a
base station, a selected node, etc. This approach implies
centralization of vital network services and thus does
not seem well suited for the ad-hoc scenario.

2) Protocols using prior context. It appears that it is easier
to secure ad-hoc networks once we assume that the
nodes share some prior context before the network
operation begins. A prominent family of methods using
this approach are the protocols that assume an off-line
secret key pre-distribution phase. Such methods have
received a lot of research attention recently, especially
in the sensor networks context ([2], [3], [4], [5]). Note
that this approach requires that the nodes have a shared
prior context before the deployment. This is not always
practical and we seek to provide a solution that is free
of this limitation (i.e., it is fully self-organized).

3) Self-organizing protocols using out-of-band channels.
The most natural approach to take for ad-hoc networks is
self-organization. In this approach, there are no special
nodes, no infrastructure, no centralized configuration

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2006 proceedings.

In this work we will focus only on the two first properties,

801-4244-0086-4/06/$20.00 ©2006 IEEE.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:51:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Network service layers.

point, no shared prior context. There has been a lot of
research in this area, but unfortunately many proposals
have a limiting assumption, that there exists an out-of-
band authenticated communication channel ([6], [7], [8],
[9], [10], [11], [12]).

C. Contribution

It should be clear by now, that methods for establishing
authenticated communication channels are important in the ad-
hoc peer-to-peer scenario.

• An authenticated channel is a necessary prerequisite for
key establishment protocols, that are used to build secure
communication channels.

• The authenticated channel can also be used as a building
block for a secure routing algorithm. Once we have a
secure routing in place, we can implement any other
network services we wish.

The main contribution of this paper is the self-organized
protocol to establish authenticated channels in a peer-to-peer
ad-hoc network. This protocol has none of the drawbacks of
the three categories of protocols (1)–(3) above, and exhibits
the following key properties.

1) No trusted third party.
2) No requirement to share a prior context.
3) No out-of-band authenticated channels, no privileged

side channels, no prior security associations, no prior
bootstrapping of authenticated identifiers, no a priori
known public master key, no tamper-proof hardware.

Let us underline two important aspects of this work. One
is that the proposed method stresses on the self-organization
principle. Second is that the protocol’s goal is to provide secure
communication. Both these aspects are important for designing
autonomic systems.

Although the protocol is simple, its importance stems from
the fact that it is the first general protocol to satisfy the
above key properties, and it can serve as the base for the
development of further protocols exhibiting all the above
properties. The protocol to implement the authenticated com-
munication channel uses an unsecure communication medium,
as depicted in Fig. 1. Any network service, including secure
routing and forwarding, can use the authenticated channel.
However, even with authenticated channels, the authenticity
of communicating parties must be considered in the context
of their identities. Therefore, as part of our solution, we
also address the issue of the identity model of the network,

proposing the use of secure identifiers. This is the second
contribution. Thus, while establishing authenticated channels,
our solution inherently provides a solution to the problem of
providing secure identifiers. We propose to use the hash of
the public key for the identifier of a node. Although this idea
has been used before (e.g., [13], [14]), we remark that the
use of the hash of the public key as a secure identifier has
always been used in the context of a specific protocol. For
example, [13] employs a very similar method to secure binding
update messages in the mobile IPv6. However that proposal is
very closely tied to a very particular application. On the other
hand, our approach does not make strict assumptions about
the properties of adjacent protocol layers, thus being suitable
for incorporation in many contexts. We solve the problem of
providing secure identifiers in a protocol-independent manner.
Any higher layer protocol (see Fig. 1), including routing
and forwarding, can use these secure identifiers. Note again,
that we make no assumptions as to the available network
services. We consider the scenario where we must work with
an unsecure and untrusted communication medium.

We now describe a result that formulates our problem in a
very similar way. Bobba et al. in [15] start by presenting the
cyclic dependency between the secure routing and security
services. This cyclic dependency is depicted in Fig. 2.

Fig. 2. Dependency cycle between secure routing and security services.
Figure is adapted from [15] to reflect our approach of removing dependency
(2) to break the cycle.

Then they propose a self-organized approach for bootstrap-
ping security for the routing layer. They break the cyclic
dependency by proposing a secure routing protocol that does
not depend on any security services. Thus, they remove
dependency edge (1) to remove the cyclic dependency. Their
solution is embedded in the routing protocol and does not
establish secure identifiers for the higher layers. We take

81

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:51:00 UTC from IEEE Xplore. Restrictions apply.

a complementary route to breaking the cyclic dependency:
we aim at removing dependency edge (2) in Fig. 2, by
showing how to implement security services without relying
on the routing. Bobba et al. [15] had stated that “Removing
dependency (2) would be impractical because it would require
that the nodes implementing security services be reachable
by all other nodes in the network by a fixed set of routes.”
However, our approach does remove dependency (2) because
we do not rely on the existence of a routing protocol in our
approach; hence the nodes need not be reachable by a set of
routes.

II. PROBLEM STATEMENT

We are interested in devising a means for authenticated
communication within a peer-to-peer ad-hoc network. As the
authenticity of communication is very closely related to the
identity of communicating parties, we also aim at a method
for providing network identifiers.

The problem we solve is defined as follows. Given a set of
nodes, we want them to be able to establish an authenticated
network (AN for short). More formally, for any given node j
in the AN we want the following property.

Key Property : ∀i ∈ AN,PKj
i = PKi

i (1)

PKj
i is the public key of node i as known by node j. Note that

PKi
i can be seen as the authentic public key of node i. In other

words, the above property states that all nodes in the AN know
the authentic public keys of all other nodes in the AN. The
authenticity of the public key must be considered in the context
of the entity that is in the possession of the corresponding
private key. Hence we define PK to be an authentic public key
of node i if and only if (a) node i possesses the corresponding
private key and (b) the identity of node i can be verified to be
bound to that key. Note that we do not require that the node
i generates both the public and private keys. In case they are
generated by some other party, we implicitly assume that there
exists a trust relationship between the key generator and that
node. It should be noted that this assumption is very subtle and
should be carefully verified when considering a larger context.

Observe that the problem stated above is in its essence
the problem of bootstrapping the network. We assume that
network layer functions are not available yet, i.e., nodes do not
forward packets and do not implement any routing algorithm.
Thus the only communication means that can be used is the
radio broadcast in a wireless network or communication with
neighbors using the incident links in a point-to-point network.

III. SOLUTION

Let us begin with a description of the identity model we
use. In this context, we would like to emphasize a quote from
[12]: “in an ad-hoc network there may be no a priori reason
to distinguish between the different nodes” (Section 2.2, last
sentence). In this spirit we propose that the identifiers are
self-appointed. We start by assuming that every node has a
(private, public) key pair. Following a method as in [13], [14],
we propose that the node identifier be a hash of the node’s

public key. For example, for node i we have idi = hash(PKi)
where idi is the assumed identifier of the node, and PKi is
its public key.

Observe that if the Key Property (Equation 1) holds, then
all the nodes in the AN know each others’ identifiers.

Let us now turn to the description of our protocol. The
notation we use to describe protocol messages is as follows.
When the contents of the message are relevant, we use
MSG(contents) to denote the message, where contents lists
the actual fields of the message. When we want to refer to
a given message more generally, we use the shorter TYPE
notation, where TYPE is a place-holder for the type of message
in question (e.g., JOIN or ACCEPT or UPDATE). The type of
message is usually the first field of its contents – it can be an
integer number or a string and must be unique across different
message types. PKi and SKi are used for node i’s public
and private key, respectively. To indicate that the integrity of
the message M is protected by a digital signature, we use
the notation SSK(M), where SK is the private key used for
signing. When describing the flow of messages in the protocol,
we use the ⇀↽ symbol to denote radio broadcast.

The following data structures are used. Every node main-
tains a key table containing the mapping between the identi-
fiers and public keys, as well as some additional information.
For every node i in the network, the following data are
maintained for each node j.

• idi: Node identifier. In our approach, the identifier is
a hash value of the public key of the node, i.e., id =
hash(PK). Note that the node identifier is a fixed-length
sequence of bits.

• PKi: Public key of the node.
• seqi: An integer that gives the sequence number copied

from the last JOIN message from i.
• timei: An integer that gives the local time when the most

recent message from node idi was seen.

Node j initializes its key table with one row containing its
identifier and public key. Note that both the seqj and timej

are not relevant in this case. Table I illustrates the format of
a node’s key table. The number of entries in the key table of
node j is denoted as Nj .

node id PK seq time

1 id1 PK1 seq1 time1

2 id2 PK2 seq2 time2

.
j idj PKj seqj timej

.
Nj idNj

PKNj
seqNj

timeNj

TABLE I

A KEY TABLE MAINTAINED BY A NODE j .

We introduce the following terms: KeyTablej and
KeyTableDeltaj . KeyTablej denotes two columns of node
j’s key table: the PK column and the seq column.
KeyTableDeltaj denotes the set of (PK, seq) entries from

82

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:51:00 UTC from IEEE Xplore. Restrictions apply.

j’s key table, that have been modified since the last time a
UPDATE message was sent by node j.

The proposed protocol to build an AN is outlined in Table II,
and is organized around two main scenarios.

• Node Join: A node outside of an AN wants to join AN.
This node may or may not be a member of some other
AN . If it is a member of another AN , then the joining
scenario is equivalent to a merge of two networks. The
entire network AN can be viewed as having been formed
from a succession of subnetwork merges. In each merge,
one node initiates the protocol for the joining of two (or
more) sub-networks by sending a JOIN message. The
nodes that receive a JOIN respond with an ACCEPT
message. A single JOIN may trigger more than one
ACCEPT, one from each node within radio coverage.
Note that the nodes that send the ACCEPT messages in
response may belong to different ANs in the general case.
Let the sub-network of the node that initiates the JOIN
be denoted as ANjoin, and let the sub-network(s) that
accept this initiated merge be denoted as ANaccept. When
|ANjoin| = 1, we have the special case when a single
node wants to join an existing AN on awakening or
recovering.

• Key Update: The contents of the key table change over
time. Entries can be added as a result of receiving the
JOIN, the ACCEPT, or the UPDATE message. Upon a
change in the key table, the node should notify others
by broadcasting the UPDATE message itself. For node j
the following message should be used.
j ⇀↽ MSG(UPDATE,KeyTableDeltaj ,-
SSKj

(UPDATE,KeyTableDeltaj))
We now discuss the details of the protocol, distinguishing

the following events.

1) Send JOIN: This event pertains to a node in ANjoin.
When a node i wants to join another AN, it should
generate a pair of keys (PKi, SKi), where PKi is the
public key and SKi is the corresponding secret key and
then broadcast the JOIN message. (If it has already
generated this pair before, but is now joining a new
AN due to mobility or other reasons, it does not have
to regenerate a different key pair). The seqi field of the
message is a sequence number that is guaranteed to be
increasing with time for a given node and the PKi is
the public key generated.

2) Receive JOIN: This event pertains to a node that is
not a member of ANjoin. When a node j receives a
JOIN message, it should first verify the validity of
the digital signature of the message. If the signature
is invalid, the message should be discarded and no
further action should be taken. If the signature is valid,
j should compute the hash value of the public key
idi = hash(PKi) and check if there exists an entry
with idi for node i in its (i.e. j’s) key table.

a) If the idi entry does not exist, then the new
entry should be added with the computed idi and

both PKi and seqi values copied from the JOIN
message. The timei field should be set to node
j’s local time. The node should then broadcast the
ACCEPT message, and also broadcast the UPDATE
message (see step 5).

b) If the idi entry does exist, let k be the index of
that entry in the key table; hence idi = idk. Also
the corresponding public key and sequence number
are denoted by PKk and seqk, respectively. Let us
now consider three cases.

i) PKi �= PKk: There is a collision in the
hash function. The JOIN message should be
discarded. Dealing with collisions is discussed
in Section IV.

ii) PKi = PKk and seqi < seqk: This might
indicate an attempt to mount a reply attack.
(Note that the JOIN messages are not subject
to the regular network routing and forwarding,
hence this case does not indicate routing loops
or other network-layer problems.) This can
also mean that node i sequence counter has
wrapped around. The JOIN message should be
discarded.

iii) PKi = PKk and seqi ≥ seqk: This may
indicate that the node i is sending spurious
JOIN messages. The sequence number seqk

should be updated to seqi, the ACCEPT mes-
sage should be broadcast, and then the UPDATE
message should be broadcast (see step 5).

3) Send ACCEPT: This event pertains to a node that is not a
member of ANjoin. On receiving a JOIN message from
node i (Step (2)), when a member node j determines that
i can be admitted to its AN without an identifier conflict,
it broadcasts the ACCEPT message. The KeyTablej

field of the message should contain all the (PK, seq)
pairs from the key table of node j.

4) Receive ACCEPT: This event pertains to the specific
node in ANjoin that sent the JOIN message. After
broadcasting the JOIN message, when the node receives
a corresponding ACCEPT message, it is considered to
be a member of the ANjoin+accept network. The node
should check the signature of the message and drop the
message if the check fails. If the signature is valid, the
node should add entries from the KeyTable field of
the ACCEPT message to its key table. Then the node
broadcasts an UPDATE message so that any other AN
also within its range can learn of ANaccept (see step 5).
A node that did not send the JOIN message should drop
any ACCEPT message received.

5) Send UPDATE: This event pertains to a node that is a
member of the ANjoin or ANaccept. New entries are
added to the node’s key table in the following cases.

• Step 2a: node in ANaccept sends UPDATE.
• Step 2(b)iii: node in ANaccept sends UPDATE.
• Step 4: node in ANjoin sends UPDATE.

83

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:51:00 UTC from IEEE Xplore. Restrictions apply.

(1) When node i wants to join another AN, it broadcasts the JOIN message:
i ⇀↽ MSG(JOIN, seqi, KeyTablei, SSKi

(JOIN, seqi, KeyTablei)).

(2,3,5)
When node j, a member of the AN, receives the JOIN message from node i and determines that node i can join the AN, it
enters i’s data into its key table and broadcasts the ACCEPT message:
j ⇀↽ MSG(ACCEPT, idj , seqi, PKi, KeyTablej , SSKj

(ACCEPT, idj , seqi, PKi, KeyTablej)).
Then node j broadcasts the UPDATE message:
j ⇀↽ MSG(UPDATE, KeyTableDeltaj , SSKj

(UPDATE, KeyTableDeltaj)).
(4,5) When a node i that has sent a JOIN receives the corresponding ACCEPT message, it updates its key table.

Then the node broadcasts an UPDATE message:
i ⇀↽ MSG(UPDATE, KeyTableDeltai, SSKi

(UPDATE, KeyTableDeltai)).

(6,5)
When a node j inside the AN receives a UPDATE message, it updates its key table using KeyTableDelta. If new entries
are added to its key table, the node broadcasts the UPDATE message:
j ⇀↽ MSG(UPDATE, KeyTableDeltaj , SSKj

(UPDATE, KeyTableDeltaj)).

TABLE II

OUTLINE OF PROTOCOL TO ESTABLISH AUTHENTICATED CHANNELS.

• Step 6: node in ANjoin or ANaccept sends
UPDATE.

When new entries are added to the node’s key table,
the node should broadcast the UPDATE message. The
KeyTableDelta field of the message should contain all
the (PK, seq) pairs that have been updated since the
last time the UPDATE message was sent.

6) Receive UPDATE: This event pertains to a node that is a
member of ANjoin or ANaccept. When a node receives
the UPDATE message, it should check the signature
of the message. The message should be dropped and
no further action should be taken if the signature is
invalid, otherwise the node should add entries from the
KeyTableDelta field to its key table. It then executes
step (5). A node outside of the AN should drop the
UPDATE message.

7) Key Timeout: Every node should maintain a timestamp
associated with every entry in its key table (field time
in the key table). Node i should update the timestamp
to its current time for entry j every time it receives a
message sent by node j. Note that the message need not
be addressed to node i. An entry should be deleted from
the key table if the timestamp is older than a specified
threshold value. The default can be set to a high value
to minimize overhead under normal operation.

IV. SECURITY ANALYSIS

Let us now focus on the security of the proposed solution.
Recall that we assume no prior context shared between nodes
and still want them to be able to perform some mutually de-
sired interaction. This is somewhat akin to a real-life situation
in which we meet a complete stranger with whom we want
to interact in some way. Note that in general all we can know
about a person comes from that person himself, e.g., we can
learn the identity of that person from him saying “Hello, I am
John Smith”. It is of course prudent not to completely trust a
stranger, but to build the trust over time instead, associating
its level, as well as other attributes, with the name John Smith.
If after some time all the interactions allow us to achieve our
goals, and the person has been well-behaving so far, we do not
really care if that person’s name is John Smith, or something

else. All that is important is that initial communication phase
and the subsequent process of associating trust.

This parallel is useful in understanding of our proposed
scheme. We observe that in the absence of prior context and
lack of infrastructure, we cannot really do better that to trust
the other communication party with what he says. In our
protocol, the initial trust is restricted to the identity (and the
public key), as communicated by the other party. Under this
assumption, a man-in-the-middle attack looses its meaning.
Consider a malicious node that is in between us and some other
node and just relays that node’s communications to and from
us. Since all the messages are signed, the attacker has no other
choice than to use his own private key and the corresponding
public key as the identifier (otherwise messages we receive
would fail the integrity check). Note that from our point of
view, all the messages appear as coming from the attacker,
since his identity can be bound to the message by checking
of the message signature. Observe that if such interactions are
satisfactory to us, then it is really irrelevant who the sender of
the message is.

In our identity model, impersonating a node is equivalent
to being able to generate a signature using that node’s private
key. The facts that each message carries a digital signature,
and that a node’s identity is bound to its public key, make
impersonation attacks impossible. Further, the replay and
reflection attacks against the joining phase are thwarted by
the use of sequence numbers.

It is conceivable that two nodes will generate the same
public key. However, the probability of such an event is
extremely small, i.e. 1/21536, assuming a 1536-bit public key.
Furthermore, even if public keys are different, a collision in
the hash function is still possible. However – by the birthday
paradox – if we assume 32-bit identifiers, then there would
have to be an average of 1.2 ∗ 216, i.e. about 7.86 ∗ 104 nodes
in the network for the probability of collision to exceed 1/2.
If we assume 64-bit identifiers, then about 5.15 ∗ 109 nodes
are required for the probability of a collision to exceed 1/2.

It should be noted that all practical applications will re-
quire the identifier to be bound to some other, higher-level
information (a name of the person, an IP number, a MAC

84

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:51:00 UTC from IEEE Xplore. Restrictions apply.

address, an organization name, etc). Note that the existence of
an authenticated channel provided by our protocol allows for
those higher-level associations to be established in a secure
manner using cryptographic techniques (both symmetric and
public key schemes can be used). Let us address the Sybil
attack in the context of that higher-level information. On
the low level, there is nothing that would prevent an entity
from generating multiple (public, private) key-pairs and thus
assuming multiple identities. This is due to the assumed char-
acteristics of the communication medium, i.e., its unreliability
and its broadcast nature. Thus, mechanisms on higher levels
must be used to address the Sybil attack threat, for example,
reputation management approaches mentioned below.

One specific example of a higher level data that can be
associated with the identify of the node is the reputation.
There exists a large body of research pertaining to managing
reputations of nodes in peer-to-peer and ad-hoc networks ([16],
[17], [18], [19]). These approaches can be combined with our
protocol to provide a mechanisms to increase (or decrease) the
trust level between nodes. A crucial observation here is that,
to our knowledge, the reputation management schemes rely
on the existence of a secure outside communication channel,
which our scheme provides.

We would like to stress the fact that our protocol is fully
self-organized. In that respect it differs from the family of
identity-based cryptosystems, where a trusted third party is
required to compute the private key in the setup phase.

V. CONCLUSIONS AND FUTURE WORK

The contribution of this paper is two-fold. We propose a
fully self-organized protocol that establishes an authenticated
communication channel between nodes of a wireless ad-hoc
network. The protocol does not rely on the existence of a
Trusted Third Party, the nodes do not need to share a prior
common context, and no out-of-band communication channel
is required. The scheme is independent of the upper layer
protocols, in particular, it is not an extension to any existing
routing protocol. The resulting authenticated channel can be
further used to establish a secret communication channel
between nodes. The protocol also provides a secure identifier
framework that is resilient to impersonation. Our authentic
identifiers can be used to associate network (and upper) layer
identifiers to prevent spoofing. They can also serve as a
reliable basis for reputation management protocols. Although
the protocol presented is for an ad-hoc wireless network which
is a peer-to-peer broadcast network, it can be easily adapted to
all other ad-hoc networks that communicate via point-to-point
channels.

The future research directions are to extend the protocol so
that it can handle multiple independent authenticated networks.
This would be useful in a scenario where more than one ANs
need to share the same bandwidth. It also allows for one

node to be the member of multiple ANs. This is useful not
only from the application point of view, but also facilitates
the implementation of some network functions, for example,
tunneling between different AN’s and firewalling.

REFERENCES

[1] S. Blake-Wilson and A. Menezes, “Authenticated Diffie-Hellman key
agreement protocols.” in Selected Areas in Cryptography, ser. Lecture
Notes in Computer Science, S. E. Tavares and H. Meijer, Eds., vol.
1556. Springer, 1998, pp. 339–361.

[2] L. Eschenauer and V. D. Gligor, “A key-management scheme for
distributed sensor networks.” in ACM Conference on Computer and
Communications Security, V. Atluri, Ed. ACM, 2002, pp. 41–47.

[3] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney, “A key
management scheme for wireless sensor networks using deployment
knowledge.” in INFOCOM, 2004, pp. 587–597.

[4] D. Liu, P. Ning, and R. Li, “Establishing pairwise keys in distributed
sensor networks,” ACM Trans. Inf. Syst. Secur., vol. 8, no. 1, pp. 41–77,
2005.

[5] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A. Khalili,
“A pairwise key predistribution scheme for wireless sensor networks.”
ACM Trans. Inf. Syst. Secur., vol. 8, no. 2, pp. 228–258, 2005.

[6] F. Stajano and R. J. Anderson, “The resurrecting duckling: Security
issues for ad-hoc wireless networks.” in Security Protocols Workshop,
ser. Lecture Notes in Computer Science, B. Christianson, B. Crispo, J. A.
Malcolm, and M. Roe, Eds., vol. 1796. Springer, 1999, pp. 172–194.

[7] D. Balfanz, D. Smetters, P. Stewart, and H. Wong, “Talking to strangers:
Authentication in adhoc wireless networks,” in Symposium on Network
and Distributed Systems Security (NDSS ’02), San Diego, California,
USA, February 2002.

[8] J.-P. Hubaux, L. Buttyán, and S. Capkun, “The quest for security in
mobile ad hoc networks.” in MobiHoc. ACM, 2001, pp. 146–155.

[9] S. Capkun, L. Buttyán, and J.-P. Hubaux, “Self-organized public-key
management for mobile ad hoc networks.” IEEE Trans. Mob. Comput.,
vol. 2, no. 1, pp. 52–64, 2003.

[10] S. Capkun, J.-P. Hubaux, and L. Buttyán, “Mobility helps security in ad
hoc networks.” in MobiHoc. ACM, 2003, pp. 46–56.

[11] H. Deng and D. P. Agrawal, “TIDS: threshold and identity-based security
scheme for wireless ad hoc networks,” Ad Hoc Networks, vol. 2, no. 3,
pp. 291–307, July 2004.

[12] A. Khalili, J. Katz, and W. A. Arbaugh, “Toward secure key distribution
in truly ad-hoc networks,” in IEEE Workshop on Security and Assurance
in Ad-Hoc Networks, 2003. Proceedings, 2003, pp. 342–346.

[13] G. O’Shea and M. Roe, “Child-proof authentication for MIPv6 (CAM),”
SIGCOMM Comput. Commun. Rev., vol. 31, no. 2, pp. 4–8, 2001.

[14] G. Montenegro and C. Castelluccia, “Crypto-based identifiers (CBIDs):
Concepts and applications,” ACM Trans. Inf. Syst. Secur., vol. 7, no. 1,
pp. 97–127, 2004.

[15] R. B. Bobba, L. Eschenauer, V. Gligor, and W. Arbaugh, “Bootstrap-
ping security associations for routing in mobile ad-hoc networks,” in
GLOBECOM’03, IEEE Global Communications Conference, December
1-5, 2003, San Francisco, USA, vol. 3, December 2003, pp. 1511–1515.

[16] K. Aberer and Z. Despotovic, “Managing trust in a peer-to-peer infor-
mation system,” in Proceedings of the 10th International Conference
on Information and Knowledge Management, Atlanta, Georgia, USA,
November 2001, 2001, pp. 310–317.

[17] S. Braynov and T. Sandholm, “Incentive compatible mechanism for
trust revelation,” in Proceedings of the 1st International Conference on
Autonomous Agents and Multiagent Systems, Bologna, Italy, July 2002,
2002, pp. 310–311.

[18] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-
peer networks,” in Proceedings of the 13th International Workshop on
Network and Operating Systems Support for Digital Audio and Video,
Monterey, California, USA, June 2003, 2003, pp. 144–152.

[19] B. Yu and M. Singh, “An evidential model of distributed reputation
management,” in Proceedings of the 1st International Conference on
Autonomous Agents and Multiagent Systems, Bologna, Italy, July 2002,
2002, pp. 294–301.

85

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:51:00 UTC from IEEE Xplore. Restrictions apply.

