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Abstract—One of the major advantages of cloud spot instances
in cloud computing is to allow stakeholders to economically
deploy their applications at much lower costs than that of
other types of cloud instances. In exchange, spot instances
are often exposed to revocations (i.e., terminations) by cloud
providers. With spot instances becoming pervasive, terminations
have become a part of the normal behavior of cloud-based
applications; thus, these applications may be left in an incorrect
state leading to certain bugs. Unfortunately, these applications
are not designed or tested to deal with this behavior in the
cloud environment, and as a result, the advantages of cloud
spot instances could be significantly minimized or even entirely
negated. We propose a novel solution to automatically find these
bugs and locate their causes in the source code. We evaluate our
solution using 10 popular open-source applications. The results
show that our solution not only finds more instances and different
types of these bugs compared to the random approach, but it also
locates the causes of these bugs to help developers to improve
the design of the shutdown process for cloud-based applications.

Index Terms—cloud computing; spot instances; shutdown
bugs; application bugs; kernel modules; irregular terminations
of cloud-based applications; spot instance revocations

I. INTRODUCTION

With spot instances becoming pervasive, irregular termina-

tions have become a part of the normal behavior of cloud-

based applications. Bugs of cloud-based Applications resulting
from Spot Instance Revocations (BASIR) result from errors

in the implementation of the shutdown instructions of these

applications that occur only during spot instance revocations.

When these applications are being irregularly terminated, they

might lose their states that lead to BASIR, such as data loss,

inconsistent states, performance bottlenecks, hangs, crashes,

deadlocks, locked resources, or these applications that cannot

restart/terminate. Cloud-based applications that run in spot

instances (also known as spot virtual machines (VMs)) are

not designed or tested to deal with this behavior in the

cloud environment. The shutdown sequence of a cloud-based

application is often left untested because developers often

assume that a cloud-based application is properly terminated

as long as its processes are terminated. It is very difficult to

find BASIR because a termination signal can be initiated at

every execution state of a cloud-based application, leading

to a significantly larger search space of application states.

Unfortunately, the absence of testing the effect of spot instance

revocations on cloud-based applications will likely lead to

a large number of BASIR. As a result, the advantages of

cloud spot instances could be significantly minimized or even

entirely negated.

In general, terminations could be seen as regular when

an application receives a termination signal in the context of

predefined protocols, or irregular when an application receives

a termination signal without using any context of predefined

protocols. Hence, the revocations of spot instances often lead

to irregular terminations of cloud-based applications. Note that

an application can be irregularly terminated in two modes. We

assume that the reason for executing an application is to run an

algorithm that implements the requirements of this application

to provide the required results. First, an application could be

irregularly terminated during the execution of the application’s

algorithm. Second, an application could be irregularly termi-

nated during the execution of the shutdown sequence of the

application when the execution of the application’s algorithm

is completed. Moreover, irregular terminations do not affect

stateless applications but often affect stateful applications

relying on the results of ongoing calculation by applications

under irregular terminations. These stateful applications might

change to incorrect states when they are terminated before

their shutdown sequences are entirely executed. In general,

resources utilized by an application under irregular termination

can be called Resources Affected by Termination (RAT). When

an application (A) encounters irregular terminations while

interacting with another application (B), B is considered RAT

because it might be left in an incorrect state until it identifies

that A is already terminated.

We propose a novel solution to automatically find BASIR

and locate their causes in the source code of cloud-based

applications. We develop our solution for Testing for BASIR
(T-BASIR) that uses kernel modules (KMs) [1] to find these

bugs and generate traces of their causes in the source code.

These bugs and traces can be analyzed by developers, who

look for fixes of these bugs to reduce or even eliminate the

number of these bugs when cloud-based applications encounter

irregular terminations. Our paper makes the following note-

worthy contributions:

• We address a new and challenging problem for cloud-

based applications that results from irregular terminations

due to spot instance revocations.

• To the best of our knowledge, T-BASIR is the first

automated solution to find and fix bugs of cloud-based

applications resulting from spot instance revocations.

• We evaluate T-BASIR using 10 popular open-source

applications. Our results show that T-BASIR not only
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Fig. 1: An illustrative example of BASIR.

finds more instances and different types of BASIR (e.g.,

performance bottlenecks, data loss, locked resources, and

applications that cannot restart) compared to the random

approach, but it also locates the causes of BASIR to help

developers to improve the design of the shutdown process

for cloud-based applications.

• T-BASIR’s code and our experimental results are pub-

licly available [2].

II. PROBLEM STATEMENT

In this section, we discuss sources of BASIR, illustrate the

BASIR problem, and formulate the problem statement.

A. Sources of BASIR

There are two primary sources of BASIR. The first one is

spot instance revocations. The revocations of spot instances

are based on price fluctuations that happen based on demand

of spot instances from many cloud customers. The cloud

providers often revoke spot instances when the demand in-

creases and the number of available spot instances that can

be supported by a finite number of physical resources in a

data center of cloud providers decreases. It is very difficult

to determine in advance spot instance revocations that depend

on the varying demands of cloud customers. Doing so requires

cloud customers (i.e., application’s owners) to understand how

the demands of the spot instances change, how the costs of the

allocated spot instances change, and how to make trade-offs

between the demands and these costs [3]. As a result, price

fluctuations that depend on the demand have a high influence

on the number of spot instance revocations.

The other source is shutdown bugs of applications. The

shutdown bugs of applications often result from errors in the

implementation of a cleanup process of these applications

that occurs only during their shutdowns. It is very difficult

to analyze irregular terminations, even for a single execution

path of an application for certain inputs since termination

signals can be initiated at every point during the execution

of the path resulting in deviations from the execution path.

For example, termination signals that are initiated during the

execution of the third-party’s instructions could change the

application state, resulting in BASIR. Also, it is very difficult

to specify in which sequence instructions should be executed

during the shutdown of an application. Doing so requires the

knowledge of the execution state of an application at any

point when this application receives a termination signal. Fur-

thermore, multiple termination signals can be initiated during

the execution of the shutdown instructions of an application,

leading to a significantly larger search space.

B. Illustrative Example

The BASIR problem with a cloud-based application is illus-

trated in Fig. 1. As discussed in Section II-A, BASIR results

from two primary sources: shutdown bugs of applications and

spot instance revocations. We show an instance of BASIR

that arises from the interactions between a shutdown bug of

an application, which comes from a real shutdown bug [4],

and the revocation of a spot VM that represents the normal

behavior of spot VMs. Our illustrative example shows a typ-

ical cloud-based application where a cloud-based application

and its artifacts are often replicated across multiple VMs to

improve its fault tolerance and reduce its network latency. The

cloud-based application and its artifacts are deployed on three

spot VMs, where spot VM 1 contains an Oracle shutdown

script that reflects a routine script for databases in production,

spot VM 2 contains a transaction script that uploads a video

file with a large size (e.g., 10GB), and spot VM 3 contains an

Oracle database.

Suppose that the Oracle shutdown script in spot VM 1

that runs on a particular process (Process 1) is executed to

terminate the Oracle database that runs in spot VM 3 at

the same time another process (Process 2) in spot VM 2

is holding the lock on this Oracle database to perform the

transaction. Hence, Process 1 will be waiting until Process 2

releases the lock from the Oracle database. However, consider

what happens when spot VM 2 is revoked as a part of the

normal behavior of spot VMs while the transaction that is

executed by Process 2 is still ongoing. Since Process 2 does

not release the lock before the revocation of spot VM 2, the

Oracle database will hang and consume needlessly resources

until Process 1 determines that Process 2 is gone. The Oracle

database prevents users from performing other operations (see

the error message in the middle of Fig. 1), since the database

is waiting for active calls to be finished (see the log on

the left side of Fig. 1). Furthermore, if the spot VM 3 that

contains the database is also revoked, this revocation (i.e., an

irregular termination of the database) may not only produce

an inconsistent state of various data or an incorrect state of

artifacts in the database but also may affect the execution of

subsequent instances of the database.

C. The Problem Statement

With spot instances becoming pervasive, bugs of cloud-

based applications resulting from spot instance revocations

have become a very important concern for cloud customers

(i.e., application’s owners). In this paper, we address a new

and challenging problem of testing the effect of spot instance

revocations on cloud-based applications – how to find and fix
bugs of cloud-based applications that result from spot instance
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revocations. The root of this major problem is that cloud-based

applications that are exposed to irregular terminations are not

designed or tested to deal with this behavior in the cloud

environment. Thus, when cloud-based applications are being

irregularly terminated, their current state might be lost, which

leads to certain bugs, such as data loss, inconsistent states,

performance bottlenecks, hangs, crashes, deadlocks, or locked

resources. On top of poor user experience from seeing these

bugs, other bugs result in situations where cloud-based appli-

cations could not be restarted without manual interventions.

As a result, the advantages of cloud spot instances could be

significantly minimized or even entirely negated. To the best

of our knowledge, there is no automated solution to find and

fix bugs of cloud-based applications that result from irregular

terminations due to spot instance revocations.

III. SOLUTION

In this section, we introduce KMs, explain why we use KMs

and describe how we utilize KMs in T-BASIR.

A. Why We Use Kernel Modules in T-BASIR

A KM is a mechanism for (un)loading some codes into

an operating system at runtime without rebooting the oper-

ating system to extend its functionalities [1]. KMs facilitate

modifying the flow of executions, handling the interruption of

termination signals, and accessing the information of kernel

space functions. There are three main reasons for using KMs

rather than modules in the user space. First, using modules in

the user space, it is very difficult to synchronize between a

process of a cloud-based application that performs a specific

operation (e.g., write) on certain resources and a process that

sends a termination signal to this application. Second, it is very

difficult to time the execution of a particular instruction of a

cloud-based application in the user space because an operating

system that runs in the kernel space determines the schedule

of executing this instruction. Third, some termination signals

(e.g., SIGKILL) often invoke the signal handlers in the kernel

space instead of the signal handler in the user space (i.e., a

signal handler that is defined in the source code of a cloud-

based application). In contrast, KMs have complete control

over the execution in the kernel space at runtime. As a result,

T-BASIR uses KMs to ensure termination signals are sent to

certain points in the execution of a cloud-based application

and to measure the impact on the state of RAT at these points

of the execution in order to find BASIR.

B. Automating BASIR Detection Using Kernel Modules

In T-BASIR, our terminator KM specifies when we send a

termination signal during the execution of cloud-based appli-

cations that mimics the irregular terminations, as discussed in

Section I. An essential goal is to identify which instructions

of cloud-based applications are more likely to lead to BASIR

in order to send termination signals during the executions

of these instructions. Given that BASIRs are more likely

to be exposed when instructions use resources to perform

certain operations (e.g., write) that are often accessed when

specific system calls (e.g., acquire-lock) are invoked, we favor

instructions whose executions access these resources. Our

terminator KM sends a termination signal during the execution

of these system calls, which correspond to specific instructions

in the source code. Our terminator KM uses the number of a

system call with KProbe and JProbe interfaces [1] to intercept

the execution of these system calls and, hence, ensures that a

termination signal is sent to certain points of the execution.

In summary, our terminator KM sends termination signals

only during the execution of these instructions to increase

the degree of precision for finding BASIR. In the RANDOM

approach, a termination signal is sent to any point in the

execution of a cloud-based application. Our hypothesis is that

our terminator KM is more effective than randomly sending

termination signals to any instructions because determining to

which instruction a termination signal should be sent is highly

correlated to the probability of finding BASIR. We verify our

hypothesis with the experimental data in Section V.

In T-BASIR, our detector KM determines when irregular

terminations lead to BASIR. We use the values of RAT (e.g.,

variables and artifacts) for cloud-based applications to identify

the presence of BASIR. Initially, we randomly select a set of

system calls of a cloud-based application. Then, we use our

identifier KM to record the values of RAT that are used by

these system calls when a cloud-based application is regularly

terminated. For each system call, we run this application to

collect the values of the RAT when this application is irregu-

larly terminated. Our detector KM uses Eq. (2) to measure

the difference between the value of RAT when the cloud-

based application is regularly terminated and the value of the

same RAT when the cloud-based application is irregularly

terminated during the execution of the same system call.

We use the difference operation to evaluate the presence of

BASIR by analyzing executions between irregular and regular

terminations, since we assume that running a single execution

path of a cloud-based application for certain inputs multiple

times leads to the same values of the RAT in different runs.

When the value of the RAT after irregular terminations varies

from the expected value of the RAT at the same point in the

execution after regular terminations, it indicates a potential

instance of BASIR. Hence, once a difference is found, the

detector KM uses Eq. (1) to add this difference to the total

number of potential BASIR and collects the traces of this

BASIR, as discussed in Section III-C. As a result, developers

can analyze the found instances of BASIR and their traces to

improve the design of the shutdown process for applications.

B(T, T ′) =
n∑

i=1

m∑
j=1

D(tij , t
′
ij) where t ∈ T, t′ ∈ T ′

(1)

D
(
tij , t

′
ij

)
=

{
0 tij = t′ij
1 tij �= t′ij

(2)

Here, T is a matrix of size n × m, n and m designate

the total number of system calls and RAT, respectively, for
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Algorithm 1 T-BASIR’s algorithm for finding BASIR and

locating their causes.

1: Inputs: KM Configuration Ω, Application A
2: LoadIdentifierKMs(Ω)

3: while A ¬ Terminate do
4: T ← IdentifySyscallRAT(A, Ω)

5: end while
6: UnloadIdentifierKMs(Ω)

7: LoadTerminatorDetectorKMs(Ω)

8: for each system call i in T do
9: for each RAT j in T do

10: t’ij ← MeasureSyscallRAT(A, Ω)

11: if tij �= t’ij then
12: B ← B + 1

13: C ← CollectTraces(t’ij)

14: end if
15: RestoreAppInitialState(A)

16: end for
17: end for
18: UnloadTerminatorDetectorKMs(Ω)

19: return B, C

regular terminations of a cloud-based application, tij is the

value of RAT j during the execution of a system call i when

a cloud-based application is regularly terminated. T ′ is another

matrix of size n×m for irregular terminations of a cloud-based

application, t′ij is the value of RAT j during the execution of

a system call i when a cloud-based application is irregularly

terminated. D is the delta function that evaluates the presence

of BASIR by comparing the difference between the value of

RAT when a cloud-based application is regularly terminated

and the value of the same RAT when this application is

irregularly terminated during the execution of the same system

call. B is the summation function that computes the total

number of BASIR by analyzing executions between irregular

and regular terminations of a cloud-based application for m
RAT and n system calls.

T-BASIR is illustrated in Algorithm 1 that contains the

following main phases: (i) send termination signals to certain

system calls of a cloud-based application, and (ii) measure the

impacts on the state of RAT when the cloud-based application

is irregularly terminated during the execution of these system

calls. The algorithm for T-BASIR takes in the entire set of

inputs for the cloud-based application, its snapshot, and the

KM configurations Ω, containing the identifier, terminator and

detector KMs. Starting from Step 2, the algorithm loads the

identifier KM into an operating system. In T-BASIR, we use

lock system calls, where a thread locks certain resources to

perform read or write operations. In Steps 3-5, the identifier

KM randomly selects a set of system calls and records the

values of RAT that are used by these system calls when the

cloud-based application is regularly terminated. In Step 6, the

identifier KM is unloaded from the operating system. In Step

7, the terminator and the detector KMs are loaded into the

operating system. In Steps 8-17, for each system call and RAT,

the algorithm repeatedly runs the snapshot of the cloud-based

application, and then the terminator KM sends a termination

signal to the cloud-based application during the execution of

this system call. For each run, the detector KM uses Eq. (2)

to measure the difference between the value of RAT when

the cloud-based application is regularly terminated and the

value of the same RAT when this application is irregularly

terminated during the execution of the same system call. Once

a difference is found, the detector KM uses Eq. (1) to add this

difference to the total number of potential BASIR and collects

its traces, as discussed in Section III-C. The cycle of Steps 8-

17 repeats until the set of system calls is completed. Finally,

in Step 18, the terminator and the detector KMs are unloaded

from the operating system. The found instances of BASIR and

their traces are returned in Step 19 as the algorithm ends.

C. Identifying the Causes of BASIR

Our goal is to automatically determine specific instructions

in the source code of cloud-based applications that lead to

BASIR when these applications encounter irregular termina-

tions. In order to contrast instructions that lead to BASIR,

we rely on the stack trace approach that can be used to

collect execution traces from the stack in the memory when

a cloud-based application is irregularly terminated. The stack

traces contain a sequence of method calls with corresponding

instructions, which often represents the current point in the

execution path. These traces are often difficult to capture

because termination signals can be initiated at every point

in the execution of a cloud-based application, leading to a

significantly larger search space. Hence, existing tracing tools

are not applicable to T-BASIR because the stack traces of

cloud-based applications are gone as soon as these applications

are terminated. However, our tracer KM in T-BASIR can

intercept a termination signal before this signal is delivered

to a cloud-based application because this application runs

inside our tracer KM (i.e., this application runs on a child

process of the tracer/parent process). Then, our tracer KM

first generates and prints the stack traces of a cloud-based

application and then delivers this signal to terminate this

application. As a result, developers can use these traces to

identify corresponding instructions in the source code that lead

to instances of BASIR.

IV. EMPIRICAL EVALUATION

In this evaluation section, we state our Research Questions
(RQs), illustrate subject applications, describe our methodol-

ogy to evaluate T-BASIR, and outline threats to its validity.

RQ1: How effective is T-BASIR compared to the random

approach in finding more instances of BASIR?

RQ2: How effective is T-BASIR in finding different types

of BASIR?

RQ3: Is T-BASIR more effective than the random ap-

proach in causing more impacts on the application

behaviors?
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TABLE I: Overview of the applications: their names followed

by the versions of the applications, and the total number of

accessed futexes and their system calls when these applications

restart after regular terminations.

Application Version Futexes Syscalls

MySQL v5.7.25 58 132

Cassandra v3.0.17 35 138

PostgreSQL v10.6 3 5

CouchDB v2.3.0 25 11920

MongoDB v3.0.6 61 1201

Hbase v2.1.2 53 808

Docker v18.09.0 45 1583

Hadoop v3.0.3 34 1716

ZooKeeper v3.4.12 35 910

Hive v2.1.1 32 874

A. Subject Applications

We evaluated T-BASIR on 10 open-source subject appli-

cations. An overview of the subject applications is shown

in Table I. These applications are multithreaded, have high

popularity indexes, come from different domains, and are

written by different programmers. The synchronization mech-

anism of these applications relies on a futex system call [5],

which is a fast user-space synchronization method that puts

specific threads to sleep/wait or wakes waiting threads when

specific conditions become true. Each critical section in these

applications often uses certain futex variables that are stored in

particular memory addresses and are used by multiple threads

to access this critical section through futex system calls.

B. Methodology

For each application, we first use the Strace tool [6] to en-

sure that its synchronization mechanism relies on futex system

calls. As discussed in Section III-B, T-BASIR analyzes the

values of the RAT between regular and irregular terminations

at the same point in the execution to identify BASIR. RATs

are the logs of the subject applications, the logs of the Linux

kernel, the number of accessed futexes, and the number of

futex system calls. An application is irregularly terminated

using the RANDOM approach, where a termination signal is

sent to any point in the execution of this application, and in

T-BASIR, where a termination signal is sent to specific points

in the execution of this application (i.e., during the executions

of futex system calls). T-BASIR uses the logs to identify

different types of BASIRs that lead to different effects on the

behaviors of applications to answer RQ1 and RQ2. T-BASIR
also identifies other cases of BASIR when the logs do not

contain error messages. For example, T-BASIR identifies

when applications cannot restart without manual interventions

using the process status tool [7]. Also, we measure the impacts

on the behaviors of the subject applications to answer RQ3.

When an application restarts after irregular terminations, we

check if values for the total number of accessed futexes and

their system calls vary from the expected values when this

application restarts after regular terminations for 20 seconds,

which is set experimentally. Once a significant change is

identified, as discussed in Section III-B, T-BASIR adds this

change to the total number of potential BASIR and collects

its traces. T-BASIR is implemented using KMs, KProbe,

and JProbe interfaces [1]. The experiments for the subject

applications were carried out using 10 virtual machines. Each

subject application was deployed on Ubuntu 18.04 LTS VM

with 4 GB of memory and 4 GHz CPU. For each application,

we created a snapshot to ensure a similar state of the test

environment after irregular terminations.

C. Threats to Validity

Our implementation of T-BASIR deals with only futex

system calls, whereas other applications may use different

synchronization mechanisms (e.g., semaphore system calls).

While this is a potential threat, it is unlikely a major threat,

since T-BASIR can be adjusted to support other types of

synchronization mechanisms. In order to use T-BASIR with

other applications, the developer can change only the system

call type in the KMs so that T-BASIR identifies other types

of system calls.

We experimented with only synchronization system calls,

whereas other types of system calls (e.g., information flow,

creation, preparatory, and termination) could also result in

different effects on the behaviors of applications when these

applications are terminated during the execution of other

types of system calls. In contrast, understanding the effect

of different types of system calls on the behavior of the

applications is beyond the scope of this empirical study and

shall be considered in future studies.

V. EMPIRICAL RESULTS

In this section, we discuss the experimental results to answer

the RQs listed in Section IV.

A. Finding more instances of BASIR

The experimental results to answer RQ1 are shown in

Table II and summarize the found instances of BASIR when

the subject applications encounter irregular terminations us-

ing T-BASIR and RANDOM approaches. We focus on

determining whether these applications restart without man-

ual interventions after they are irregularly terminated using

T-BASIR and RANDOM. The experimental results show

that T-BASIR causes MySQL, CouchDB, MongoDB, HBase,

Hadoop, and ZooKeeper not to restart without manual in-

terventions, whereas the RANDOM approach causes only

CouchDB to not restart without manual interventions. Our

explanation is that the RANDOM approach was able to cause

CouchDB not to restart without manual interventions, since

CouchDB uses an extremely high number of futex system

calls, as shown in Table I. Hence, the RANDOM approach

may accidentally hit these futex system calls, resulting in an

instance of BASIR.

On the other hand, T-BASIR was not able to cause Post-

greSQL, Cassandra, Docker, and Hive not to restart without
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TABLE II: The comparison of the results of BASIR for

T-BASIR and RANDOM. The first column specifies the name

of the subject applications followed by columns for T-BASIR
and RANDOM, and the cells indicate whether irregular ter-

minations using these approaches lead to BASIR (i.e., an

application cannot restart without manual interventions).

Application T-BASIR RANDOM

MySQL � �

Cassandra � �

PostgreSQL � �

CouchDB � �

MongoDB � �

Hbase � �

Docker � �

Hadoop � �

ZooKeeper � �

Hive � �

manual interventions. Our explanation is that PostgreSQL uses

an extremely low number of futex system calls as shown

in Table I. This situation puts T-BASIR at a disadvantage

to find BASIRs since causing BASIR often requires more

interactions among threads that often occur when a large

number of futex system calls are executed. Cassandra runs

on Java processes using a Java Virtual Machine (JVM), and

T-BASIR uses Java processes instead of the application name

processes (i.e., Cassandra) to specify the desired process of

an application for receiving termination signals. Subsequently,

JVM may play some roles in reducing the effect on Cassandra

since Cassandra receives termination signals through the JVM.

Docker uses the resource isolation features for the kernel

[1]. T-BASIR uses KMs to send termination signals to the

process of the subject applications. Hence, these features

may play some roles in reducing the effect on Docker when

Docker receives termination signals. Even though the Hive

server restarts after irregular terminations using T-BASIR, its

HCatalog component fails to restart. This observation allows

us to conclude that even though irregular terminations may not

show an impact on the restart state of an application, it does

not mean that the other components of this application have

no impacts too. In summary, our results show that T-BASIR
causes six subject applications not to restart without manual

intervention, whereas the RANDOM approach causes only one

subject application not to restart without manual intervention,

thus positively addressing RQ1.

B. Finding different types of BASIR

When we investigate RQ2, we observe that unlike the RAN-

DOM approach, T-BASIR leads to other types of BASIR.

Since we are more familiar with the MySQL components, we

further analyze and discuss the effects of other types of BASIR

for MySQL. We observe that the logs of MySQL report the

following message. [Note] InnoDB: page_cleaner:
1000ms intended loop took 848417ms [2]. The

Co
uc
hD
B

Fig. 2: Comparing the total number of accessed futexes when

the subject applications restart after regular and irregular

terminations using T-BASIR and RANDOM approaches.

message shows that the page_cleaner method that is

responsible for writing data from memory into the disk takes

a very long time from 1 second, which is expected, to 848

seconds (∼14 minutes). This result demonstrates a major

problem, since it results in not only performance bottlenecks

but also data loss. We analyze the effect of data loss by

creating a virtual machine with 1 GB of memory, and we

use MySQLlap client to perform large write operations

(e.g., inserting hundreds of records) using multiple threads.

We then load T-BASIR into the operating system to send

the termination signals during the execution of these system

calls. Interestingly, we observed that once MySQL restarts,

the recently written data is lost. This bug is also reported

on the following web page [8]. Also, we observed the fol-

lowing error message: [ERROR] InnoDB: Unable to
lock ./ibdata1 error: 11 [2]. The error message

shows that T-BASIR prevents MySQL from performing a

clean shutdown and hence results in locked ibdata1, which

is a file that includes the shared tablespace containing the

internal data of InnoDB. Unlike the RANDOM approach,

T-BASIR also leads to other types of BASIR, such as

performance bottlenecks, data loss, and locked resources. This

result confirms that T-BASIR also results in different types of

BASIR, compared to the RANDOM approach, thus positively
addressing RQ2. As a result, when irregular terminations

result in BASIR, T-BASIR collects the traces that contain

a sequence of method calls with corresponding instructions,

as discussed in Section III-C. Hence, developers can use these

traces to improve the design of the shutdown process for the

subject applications.

C. Impact of T-BASIR on the behaviors of applications

The results of the experiments are presented in the his-

togram plot in Fig. 2 that summarizes the number of accessed

futexes for the subject applications when these applications

restart after regular and irregular terminations using T-BASIR
and RANDOM approaches. These futexes often control the

access of shared resources in critical sections across various

threads/processes of an application. Different futexes often

correspond to different execution paths since these futexes

control the access of critical sections in different methods
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of an application. We observe that the number of accessed

futexes varies between regular and irregular terminations us-

ing T-BASIR and RANDOM approaches. This observation

suggests that the execution paths between regular and irregular

terminations of an application change where newly accessed

futexes (i.e., extra futexes) may have been accessed in the

recovery execution paths, or other futexes that are often

used during the execution of the application startup may not

have been accessed (i.e., missing futexes). We observe that,

except for Docker, most numbers of accessed futexes when

applications are irregularly terminated using T-BASIR are

lower than the number of accessed futexes when applica-

tions are regularly terminated or irregularly terminated using

the RANDOM approach. A higher change in the number

of accessed futexes often indicates a higher change in the

execution paths when an application restarts after regular

and irregular terminations. Further details about the results

for all applications are shown in Fig. 3, where the number

of extra and missing futexes are provided. Interestingly, we

observe that there is a change in the number of accessed

futexes between T-BASIR and RANDOM approaches, which

suggests when an application encounters irregular terminations

using different approaches, it often leads to different execution

paths for the application. Hence, this observation confirms

that the change in the execution paths not only indicates the

recovery execution paths but also indicates other execution

paths that may result in instances of BASIR. As a result,

these experimental results demonstrate that when applications

encounter irregular terminations using different approaches,

it often leads to different execution paths, which result in

different impacts on the behaviors of these applications.

To investigate RQ3 further, we present the change in the

number of futex system calls for CouchDB in Table III when

this application restarts after regular and irregular terminations

using T-BASIR and RANDOM. Due to page limitations, we

only present the results for CouchDB. The experimental results

for other applications can be found in the online appendix

[2]. We observe that the number of futex system calls when

CouchDB is irregularly terminated using BASIR, except for a

few futexes, is greater than the number of futex system calls

when CouchDB is regularly terminated or irregularly termi-

nated using the RANDOM approach. This result suggests that

irregular terminations that are initiated by T-BASIR often lead

to more impacts on the behaviors of applications compared to

the RANDOM approach, since the higher number of futex

system calls indicates not only more thread contentions but

also a higher chance of locked resources. Interestingly, we

observe that a futex with the memory address 0x0610 has a

significant decrease in the number of its futex system calls

between regular and irregular terminations, which suggests

some threads that use this futex may be prevented (i.e.,

locked) from reaching this point in the execution. In summary,

these experimental results demonstrate that T-BASIR not

only results in different impacts on the behaviors of these

applications but also leads to more impacts on the behaviors of

these applications compared to the RANDOM approach, thus

TABLE III: The comparison of the total number of futex

system calls for CouchDB after regular and irregular termi-

nations. The first column designates the last four digits of the

memory address for a futex. The following columns designate

REGULAR, RANDOM, and T-BASIR, respectively.

Address REGULAR RANDOM T-BASIR

0x12c8 3 0 0

0x0190 400 512 522

0x01d0 417 516 528

0x0210 396 518 526

0x0250 409 506 518

0x0290 414 522 530

0x02d0 412 512 528

0x0310 397 526 534

0x0350 402 518 528

0x0390 449 578 584

0x03d0 403 520 532

0x0410 405 522 538

0x0450 392 523 530

0x0490 563 705 686

0x04d0 396 520 528

0x0510 391 506 507

0x0550 382 514 522

0x0590 6 8 10

0x05d0 11 15 13

0x0610 5245 3402 3315

0xdf78 3 3 0

0xf7f8 3 6 3

0x95c8 19 5 9

0x95cc 1 1 1

0x9660 1 1 1

positively addressing RQ3. As a result, when certain futexes

result in significant changes in the behavior of applications,

the traces of these futexes can be reviewed by developers to

analyze how the changes of these futexes and their traces may

lead to instances of BASIR.

VI. RELATED WORK

To the best of our knowledge, T-BASIR is the first

automated solution for testing the effect of spot instance

revocations on cloud-based applications. Most of the prior

works focused on reducing the effect of spot instance revo-

cations using fault-tolerance methods, such as replication [9]–

[11], checkpointing [12]–[14], and VM migration [15], [16].

Voorsluys et al. [9] proposed a fault-aware resource allocation

approach that applies the price of spot instances, runtime

estimation of applications, and task duplication mechanisms

to economically run batch jobs in spot instances. Yi et al. [13]

proposed checkpointing schemes to reduce the computation

price of spot instances and the completion time of tasks.

Shastri et al. [16] proposed a resource container that enables

applications to self-migrate to new spot VMs in a way that

optimizes cost-efficiency as the spot prices change.
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Fig. 3: The change in the total number of accessed futexes

between regular and irregular terminations using T-BASIR
and RANDOM approaches for the subject applications. The

plus and minus symbols specify extra and missing futexes,

respectively. The horizontal stripes, diagonal stripes, and dot-

ted bars represent the change of accessed futexes between

RANDOM and REGULAR, T-BASIR and REGULAR, and

T-BASIR and RANDOM approaches, respectively.

In addition, other researchers worked on modeling spot

markets to reduce the spot instance cost and the performance

penalty that results from a high number of revocations, by

designing optimal bidding strategies [17]–[20] and developing

prediction schemes [21]–[23]. Song et al. [17] proposed an

adaptive bidding approach that leverages the spot price history

information to choose the bid strategy that increases the

profit for brokers of the cloud service. Javadi et al. [22]

proposed a statistical approach to analyze changes in spot price

variations and the time between price variations to explore

characterization of spot instances that are required to design

fault-tolerant algorithms for applications deployed on cloud

spot instances.

VII. CONCLUSION

We addressed a new and challenging problem for cloud-

based applications that results from spot instance revocations.

We proposed a novel solution to automatically find Bugs

of cloud-based Applications that result from Spot instance

Revocations (BASIR) and to locate their causes in the source

code. We developed our solution for Testing the BASIR

(T-BASIR), and we evaluated it using 10 popular open-

source applications. The results show that T-BASIR finds

more instances of BASIR and different types of BASIR, such

as performance bottlenecks, data loss and locked resources,

and applications that cannot restart, compared to the Random

approach. With T-BASIR, developers can analyze the traces

of BASIR to improve the design of the shutdown process for

cloud-based applications and, hence, to gain the advantage of

cloud spot instances in the cloud. This enables stakeholders

to economically deploy their applications on the cloud spot

instances. To the best of our knowledge, T-BASIR is the

first automated solution to find and fix bugs of cloud-based

applications resulting from spot instance revocations.
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