
Multi-root, Multi-Query Processing in Sensor
Networks�

Zhiguo Zhang, Ajay Kshemkalyani, and Sol M. Shatz

Department of Computer Science, University of Illinois at Chicago,
Chicago, Illinois 60607

Abstract. Sensor networks can be viewed as large distributed databases,
and SQL-like high-level declarative languages can be used for data and in-
formation retrieval. Energy constraints make optimizing query processing
particularly important. This paper addresses for the first time, multi-root,
multi-query optimization for long duration aggregation queries. The pa-
per formulates three algorithms - naive algorithm (NMQ), which does not
exploit any query result sharing, and two proposed new algorithms: an op-
timal algorithm (OMQ) and a heuristic (zone-based) algorithm (ZMQ).
The heuristic algorithm is based on sharing the partially aggregated re-
sults of pre-configured geographic regions and exploits the novel idea of
applying a grouping technique by using the location attribute of sensor
nodes as the grouping criterion. Extensive simulations indicate that the
proposed algorithms provide significant energy savings under a wide range
of sensor network deployments and query region options.

1 Introduction

One way to extract sensor data from a distributed sensor network is by using mo-
bile agents that selectively visit the sensors and incrementally fuse appropriate
measurement data [12]. Another technique, which is the subject of this paper, is
to inject queries into the network, treating the sensors as a distributed database
[4]. To reduce energy use associated with communication while gathering data,
in-network aggregation [8] can be used, in addition to special network routing
to minimize messages needed for query processing [1,6]. For example, we previ-
ously proposed a grouping technique based on query-informed routing to make
in-network aggregation more energy efficient [13]. The sensors are programmed
through declarative queries in a variant of SQL. The following is an example
query for monitoring the radiation in a nuclear power plant:

SELECT room, AVG(radiation) FROM sensordb WHERE building =
ERF GROUP BY room HAVING AVG(radiation) > 100 DURATION
30 days EVERY 1 minute

� This material is based upon work supported by the U.S. Army Research Office under
grant number W911NF-05-1-0573.

S. Nikoletseas et al. (Eds.): DCOSS 2008, LNCS 5067, pp. 432–450, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multi-root, Multi-Query Processing in Sensor Networks 433

Most previous research on query processing in sensor networks has focused
on the processing of a single long-running aggregation query (see, for example
[8,13]). As an extension to this line of research, Trigoni et al. [11] and Emekci
et al. [3] considered the case of reducing message transmission by sharing sensor
readings for multiple queries, where queries are represented by particular query
regions. A query region is the geographical region a query is interested in retriev-
ing information from. For example, for the query SELECT AVG(temperature)
FROM sensorDB where position.X ≥ 25 and position.X ≤ 75 and position.Y ≥
25 and position.Y ≤ 75 DURATION 1 day EVERY 1 minute, the region (25,
25)(75, 75) is the query region.

These existing multi-query processing techniques work for centralized environ-
ments only, and they require that the queries arrive at a common root node. In
this case, since all query regions are known by one root node, intersection regions
(the intersection areas among query regions) can be computed at the root node,
making it possible to share partially aggregated results of intersection regions.
Since these methods use centralized computation of intersection regions at the
root node, they are not directly suitable for multiple queries injected from dif-
ferent root nodes. In addition, although existing methods attempt to share the
sensor value readings of intersection regions, they do not account for the effect
of the routing structure on the efficiency of aggregation, and do not address the
problem of how to group sensor nodes according to query regions. As a result,
many intermediate nodes need to unnecessarily wake up and transfer messages
for sensor value readings of nodes that lie in the same query region but belong to
different queries. As pointed out in [13], the routing tree structure of sensor net-
works can have significant impact on the aggregation efficiency of data retrieval
in sensor networks. Therefore, using query information in the construction of a
routing tree can provide improvement by reducing message transmission.

In this paper, we formulate and address for the first time the problem of multi-
root, multi-query processing for long duration aggregation queries. This problem
arises in many applications where loosely-coupled, or independent, stakeholders
want to gather information from a common (shared) sensor network. As a specific
example, consider a case of environmental monitoring, where scientists studying
wildlife migration and climatologists studying pollution patterns are operating
from different locations, but both need to monitor average rainfall volumes as-
sociated with different regions in a forest-based sensor field. Another example
arises in a battlefield situation, where two remotely located battalions want to
monitor enemy troop movements in different but partially overlapping battlefield
sectors.

We consider the most general case, where multiple queries are injected asyn-
chronously into the network at different root nodes. Since there is no global
knowledge of the different queries, completely distributed solutions are required.
We formulate, and compare, three algorithms: a naive algorithm (NMQ), an
optimal algorithm (OMQ), and a heuristic algorithm (ZMQ). ZMQ is based on
sharing partially aggregated results of pre-configured geographic regions (called
zones [7]), and exploits the novel idea of applying a grouping technique for

434 Z. Zhang, A. Kshemkalyani, and S.M. Shatz

optimization of multi-root, multi-query processing, by using the location at-
tribute of sensor nodes as the grouping criterion. This optimization aims to
maximally share the reading and transmission of sensor node values belonging
to multiple queries. Once sensors are deployed, the sensor field can be viewed as
being divided into zones, and a logical data aggregation tree is established to hi-
erarchically represent the zones. The idea of using such a recursive tree for query
dissemination and data retrieval is not a new idea; authors in [7] use a similar
so-called quad-tree structure for handling spatial aggregation queries in sensor
networks. In [5], the authors use this kind of quad-tree structure for optimizing
queries that have frequently changing aggregation groups. Since the goal of our
heuristic approach is to share the sensor readings and data transmission among
different queries if their query regions intersect, we group together sensor nodes
in the same zone, so that sensor nodes in the intersection region of multiple
queries only need to send their sensed value once, independent of the number of
queries. In a distributed and asynchronous manner, a query taps into the data
aggregation tree at the lowest possible tree node such that the zone represented
by that node’s sub-tree contains the geographic area of its query coverage. Our
approach becomes more effective as the regions associated with multiple queries
increasingly overlap.

We performed extensive simulations on the proposed OMQ, NMQ, and ZMQ
algorithms. The NMQ algorithm treats queries independently and does not do
any sharing of the aggregated data for sharing of message transmission. Our sim-
ulation studies indicate that the OMQ and ZMQ algorithms provide significant
reduction in messages (and thus energy saving) under a wide range of network
conditions and query region options.

2 Background

2.1 Assumptions and Challenges

We make the following assumptions regarding the sensor network system model
and solution framework:

1. All queries of interest are querying the same type of sensor data, like the
temperature of the environment.

2. Each node in the network knows its geographical position and the scale of
the sensor field. Since the use of GPS in each sensor node incurs a high
cost and high power consumption, it may not be practical to have GPS on
all sensor nodes. However, GPS-free localization techniques [9,10] make our
assumption still reasonable.

3. A query is characterized by a rectangular query region, like in the example
in Section 1. An arbitrarily shaped query region can be split into rectangular
regions to get approximate results since there is typically a high degree of
redundancy in sensor networks.

4. Either all queries use the same sampling rate, or the effective sampling rate
is set as the highest of the individual sampling rates. As noted in [3], this way

Multi-root, Multi-Query Processing in Sensor Networks 435

of handling different sampling rates is based on the observation that those
sensor readings with higher sampling rate can give a better approximation
of the environment.

5. Queries are first injected into the sensor network via root nodes, which are
regular sensor nodes of the network. Users can inject different queries into
the sensor network from different root nodes of their choice.

Our approach to multi-root, multi-query processing in sensor networks is mo-
tivated by the goal of sharing sensor readings and data transmission among
different queries if the query regions of different queries intersect. In designing
a distributed solution for optimization of multi-root, multi-query processing, we
identify two challenges:

Challenge One (C1): How to determine the intersection regions of multiple
queries, especially if those queries are injected at different sensor nodes.

Challenge Two (C2): How to make nodes in different query regions group
together for aggregation efficiency.

To address challenge C1 we use the notion of zones [7] to represent query re-
gions. A zone is a subdivision of the geographical extent of a sensor field, and
each sensor node can compute the zones according to the scale of the sensor
field independently. We will give more detail about the definition of zones in
Section 2.3. Since zones are predefined when the network is deployed, intersec-
tion zones are easy to decide even though the queries are input at different root
nodes. To address challenge C2, we apply a grouping technique to group sensor
nodes in the same zone to form an aggregation efficient tree topology for multi-
ple queries. Grouping sensor nodes in the same zone together in a sub-tree not
only increases the aggregation efficiency, but also makes possible the sharing of
partially aggregated results of zones. The grouping technique is reviewed next.

2.2 A Grouping Technique for Query-Informed Routing

Query processing in sensor networks typically proceeds in three phases: (i) dis-
seminating queries into the network, (ii) sensing data, and (iii) retrieving data
from the network. For phases (i) and (iii), a tree topology is formed using some
variants of the broadcast and convergecast techniques (e.g., [2] presents an op-
timized broadcast protocol using an adaptive-geometric approach). Here, each
node performs two actions: 1) according to the messages it receives, each node
decides its own level and selects a parent node with respect to the tree topology
being created, and 2) the node broadcasts its own id and tree level. Once all
nodes in the network have established their tree levels and parent nodes, the
tree topology is defined.

In previous methods [8], sensor nodes select their parents using only tree levels.
The grouping technique used in [13] is motivated by the fact that it is common
for queries in a sensor network to be aggregation queries (such as COUNT, MAX,
MIN, AVERAGE, etc.) using GROUP BY or WHERE. Such queries can form
aggregation groups according to a specific attribute of the sensor nodes, and

436 Z. Zhang, A. Kshemkalyani, and S.M. Shatz

there are situations where such queries must remain active over long durations.
The basic idea of the grouping technique is to try to force those sensor nodes
with the same specific attribute, used in the GROUP BY or WHERE clause, to
be logically close to each other when forming the tree topology.

Consider the query: SELECT SUM(value) FROM sensordb WHERE color
=blue. Figure 1 illustrates the main idea. B represents blue node. The aggrega-
tion is completed at node S3,3 if the tree topology, as shown in Fig 1a, is formed
by using the grouping technique. However, if sensor nodes select parent nodes
non-deterministically, we may end up with a tree topology as in Fig 1b.

Fig. 1. An example for queries using WHERE clause

2.3 Sensor Field Division Using Zones

Zones for sensor networks have been used in the context of range queries [7].
Zones are a subdivision of the geographic extent of a sensor field. A zone is
defined by the following constructive procedure. Consider a rectangle R on the
x-y plane. Intuitively, R is the bounding rectangle that contains all sensors within
the network. We call a sub-rectangle Z of R a zone, if Z is obtained by dividing
R k times, k ≥ 0, using a procedure that satisfies the following property: After
the i-th division, 0 ≤ i ≤ k, R is partitioned into 2i equal sized rectangles. If i is
odd (even), the i-th division is along the values of the y-axis (x-axis). Thus, the
bounding rectangle R is first sub-divided into two zones at level 1 by a vertical
line that splits R into two equal pieces. Each of these sub-zones is split into two
zones at level 2 by a horizontal line, and so on. The integer k is the level of zone
Z, i.e., level(Z) = k.

A zone can be identified either by a zone code code(Z) or by an address
addr(Z). The code code(Z) is a bit string of length level(Z), and is defined as
follows. If Z lies in the left half of R, the first (from the left) bit of code(Z) is 0,
else 1. If Z lies in the bottom half of R, the second bit of code(Z) is 0, else 1. The
remaining bits of code(Z) are recursively defined on each of the four quadrants of
R. This definition of the zone code matches the definition of zones given above,
encoding divisions of the sensor field geography by bit strings.

Multi-root, Multi-Query Processing in Sensor Networks 437

Fig. 2. Zone codes and boundaries

Figure 2 shows a deployed sensor network, and the zone code for each zone.
The zone in the top right corner of R has a zone code of 1111, and its level
is 4. The address of a zone Z, addr(Z), is defined to be the rectangle defined
by Z. Each representation of a zone (its code and its address) can be computed
from the other.

The zone with code 1111 represents the region [75, 100]×[75, 100] in sensor
network space [0, 100]×[0, 100], where space [xmin, xmax]×[ymin, ymax] rep-
resents the rectangular region with the left bottom at (xmin, ymin) and right
top at (xmax, ymax). Similarly, given a region [25, 75]×[50, 100], we can know
that it contains zones 011 and 110. We use the same prefix of zones to represent
a bigger zone that contains those zones. For example, zone with code 11 in-
cludes zones 1100, 1101, 1110, and 1111. Let Prefix(codea, codeb) be the longest
common prefix of codea and codeb. For e.g., Prefix(1110, 11) equals 11.

As each node knows its position and the scale of the sensor field, these ge-
ographic zones are predefined once the network is deployed. Each sensor node
knows its own zone code and the scale of the sensor field; hence it knows the
geographical region that any zone code represents. Given a query represented
by a query region, all sensor nodes identify the same set of zones that represent
the region. This allows the distributed computing of intersection regions.

3 Multi-Query Modeling

3.1 The Naive Method for Multi-root, Multi-Query Processing
(NMQ)

In Figure 3, Q1 and Q2 are injected from two different nodes R1 and R2. The
different rectangles represent the different query regions. The NMQ algorithm
sets up different tree structures for Q1 and Q2 separately. This naive algorithm
does not share any sensor readings. The grey nodes, which are the nodes in the
intersection region for query regions Q1 and Q2, need to send the same readings
to different parent nodes twice, once for Q1 and once for Q2. Figure 3 shows the
tree structures for Q1 and Q2 separately. A better algorithm would allow Q1
and Q2 to share the readings and messages of the grey nodes.

438 Z. Zhang, A. Kshemkalyani, and S.M. Shatz

Fig. 3. NMQ for multi-root multiple query

3.2 Optimal Multi-root, Multi-Query Processing (OMQ)

To lower the cost of multi-query processing, we can share the readings of sensor
nodes in the intersection region. Here, the two challenges C1 and C2 need to
be solved.

To solve C1, reading-sharing methods need to know the identity of the nodes
in the intersection regions. Consider Figure 3. Since Q1 is known only to R1
and Q2 is known only to R2, one option is to let the network first construct
the tree structure for Q1 and then adjust the tree structure in the intersection
region when Q2 is propagated in the network. This readjustment in the middle
of processing Q1 would be problem-prone and energy consuming. The optimal
algorithm (OMQ) pre-constructs the sub-trees for the intersection regions and
the other regions of queries. Here, one and only one sub-tree is constructed for
each region, and then the paths from R1 and R2 to those sub-trees are pre-
setup, as in Figure 4. However, since the regions are known only after all queries
are injected, this method is of limited use even for common-root multi-query
processing. It is applicable to multi-root, multi-query processing only in the
static case, where the regions of Q1 and Q2 are known in advance and do not
change. Still, it can serve as a benchmark.

If we can know the regions, i.e., if C1 is solved, we can use the grouping
technique to solve C2 -by grouping nodes in the same region into one sub-tree.

3.3 Zone-Based Multi-root, Multi-Query Processing (ZMQ)

To increase the sharing of data provided by sensor nodes in the presence of
dynamically arriving queries, a practical way is to predefine a set of globally
known regions in the network, and then represent query regions as pre-defined
regions. This gives different nodes the same view of the field and lets them use
the same known regions to represent the same query region.

Figure 5 shows an example of such pre-defined globally known regions, repre-
sented as a tree. Each node in the tree represents a globally known region. For

Multi-root, Multi-Query Processing in Sensor Networks 439

Fig. 4. OMQ method for multi-query processing

example, the network [0, X]×[0, Y] is one globally known region, as is the re-
gion represented by [0, X/2]×[0, Y/2]. In the tree structure, the globally known
region represented by a parent node consists of the globally known regions repre-
sented by the children nodes. Since a node cannot know ahead of time what the
intersection regions might be, it is not practical to pre-setup exactly one region
for each intersection region. So, we use pre-defined globally known regions to
represent all possible query regions, and an intersection region is represented by
one or more such globally known regions. Each time a query is injected into the
network, the root node computes the globally known regions that can be used
to represent the query region, and sets up paths from itself to the root nodes
of those globally known regions. Queries can share the partially aggregated re-
sults of globally known regions if they have globally known regions in common.
Although the roots cannot know the intersection regions ahead of knowing the
queries, all roots can use identical views of the globally known regions to repre-
sent query regions. The intersection regions for any set of queries would then be
a set of globally known regions.

Fig. 5. Examples of predefined globally known regions

The framework of globally known regions solves challenge (C1). This frame-
work is implemented using zones (Section 2.3). To solve challenge (C2), the ZMQ
algorithm uses the grouping technique, reviewed in Section 2.3, to group nodes
in each zone into one sub-tree. All those zone sub-trees form a globally pre-setup
tree. Furthermore, the representing globally known regions are easy to compute
given a query region. Given the size of the sensor field and a zone code, a node
can easily compute the region represented by this zone. Therefore, intersection
regions are very easy to determine even in a distributed environment.

440 Z. Zhang, A. Kshemkalyani, and S.M. Shatz

4 Algorithm ZMQ (Zone-Based Multi-root, Multi-Query
Processing)

4.1 Zone Setup

The system model assumes that each sensor node knows its location and the scale
of the network region (see Section 2). Each node learns the locations of neighbors
within radio range through direct-broadcast communication. Upon hearing any
neighbor node, the node, say node A, calls an algorithm BUILD ZONE to build
its zone code and boundaries accordingly. The first split of the whole sensor field
creates two sub-zones, 0 and 1.

On finding a new neighbor, a sensor node uses algorithm BUILD ZONE to
split its current zone either vertically or horizontally into two sub-zones, and then
adjusts its zone code. Using the BUILD ZONE algorithm, each node knows its
own zone code. These zones form the zone-tree structure, See Figure 6. The
parent-child relations in Figure 6 represent containment, where the parent zone
is comprised of child zones. Each node in the zone tree is a zone; the path from
the root node to the current node is the zone code of the zone represented by
the current node.

Fig. 6. The zone tree for all zones

The rectangular region represented by each zone is decided once the construc-
tion of zone codes is complete. For example, zone 1011 represents the region
[3X/4, X]×[Y/4, Y/2]. After computing their zone codes, sensor nodes in the
same zone automatically form groups based on the computed zone codes.

4.2 Sensor Node Grouping in Zones

In the algorithm GROUPING ZONE, A is the sensor node executing the algo-
rithm, ZA is the zone represented by A, and code(ZA) is the zone code of ZA.
B is any neighbor node of A. Zone code ES (empty string) represents the whole
sensor field zone. Operator ”� n” eliminates the last n characters of a string;
e.g., 110011 � 1 is 11001.

Each node executes this algorithm after it detects that all its neighbor nodes
have decided their zones. The idea is that a node A first searches neighbor nodes
in its immediate parent zone (the smallest zone contains ZA), to find a node with
minimum zone code. If such a node B exists, and its zone code is smaller than

Multi-root, Multi-Query Processing in Sensor Networks 441

A’s zone code, then A selects B as its grouping parent. Otherwise, A searches
neighbor nodes in the parent zone of its immediate parent zone, and so on, until
it finds a parent. Consider Figure 7. Node 1111 has three neighbors, 1100, 1101,
and 1110. This node first searches the direct parent zone of zone 1111, which is
zone 111, and finds node 1110, which has smaller zone code than itself. Therefore,
node 1111 selects node 1110 as its grouping parent node. The root node of zone
111 is node 1110. Similarly, node 1110 also has three neighbors. This node first
searches its direct parent zone 111, and finds node 1111, which has bigger zone
code than itself. So node 1110 searches zone 111’s parent zone which is zone 11,
and it finds that node 1100’s zone code is the smallest one. Node 1110 would
select 1100 as its grouping parent node.

Definition 1. Zone links for the grouping-tree network are the parent-child links
formed using the GROUPING ZONE algorithm. A node’s zone link is the link
from the node to its parent.

All the links in Figure 7 are zone links. Zone links are pre-constructed once a
network is deployed. Each node has a unique zone link. The zone-link tree formed
by zone links has the property that nodes in the same zone are in one sub-tree.
This achieves the method of grouping by zone. When queries are received, the
routing network only needs to be adjusted to include paths from the root nodes
of zones to the root nodes of queries. These paths are established by ”forward
links”; see Section 4.3.

Note that for unevenly distributed networks, or if nodes fail, the algorithm
GROUPING ZONE may form several tree structures in a network. Consider
Figure 7. If node 100 is absent, then node 101 cannot communicate with node
00, and two tree structures get formed - one rooted at 00 and the other at 101.

442 Z. Zhang, A. Kshemkalyani, and S.M. Shatz

Fig. 7. A Grouping-tree example

However, the routing-tree construction algorithm of ZMQ would still form one
routing tree for each query.

4.3 Query Handling

Definition 2. Forward links are the parent-child links that connect root nodes
of zones to root nodes of queries. While a node only has one zone link, it can
have multiple forward links, one for each different query.

Forward links are created in the grouping-tree in response to queries being in-
jected to root nodes (see Section 4.3.2). These links transfer partially aggregated
value of zones to the root nodes of queries during query processing. During query
processing, forward links are all active, while zone links may be in an active or
inactive state (i.e., some zone links may not be used to process some queries and
thus they are not a part of the final routing topology).

Figure 8 shows an example of active zone links, inactive zone links and forward
links. Two queries, Q1, with query region [0,75]×[50, 100], and Q2, with query
region [25, 100]×[50, 100], are injected at different root nodes. After the queries
have been propagated into the network, a routing topology is created. The dashed
arcs illustrate the forward links, which form the paths from roots of zones to root
nodes of queries. The dotted arcs illustrate inactive zone links, while the solid
arcs illustrate active zone links, which form the sub-trees for queried zones.

4.3.1 Region Representation

Observation 1. A region R (of a query Q) can be uniquely represented by a set
of zones S = {Z1, Z2, . . . }, where (i) zones in S do not overlap with each other
(i.e., no node in Zi ∈ S is in Zj ∈ S, for Zi �= Zj), and (ii) no two zones in S
can be siblings.

Observation 1 is the basis for data sharing of intersection regions in our multi-
root, multi-query processing. Once sensor nodes are deployed, they first use

Multi-root, Multi-Query Processing in Sensor Networks 443

Fig. 8. Example routing structure for query processing

BUILD ZONE to compute individual zone codes, and then use GROUPING
ZONE to group nodes in zones into sub-trees and thus form a complete zone-link
tree. This was the pre-setup process. Now we address the process of handling
queries, which requires an algorithm for setting up paths from root nodes of
queries to root nodes of zones for queries, and algorithms for data retrieval
using the paths.

4.3.2 Routing and Data Retrieval
In the tree built by the algorithm GROUPING ZONE, each zone can compute
its partial aggregation result in the zones root node in every sampling epoch.
The processing for a query Q needs to set up paths from the root node of Q to
each of the root nodes of the zones that belong to Q’s zone representation. This
is handled by an algorithm called BUILD ROUTING TOPOLOGY.

The algorithm BUILD ROUTING TOPOLOGY constructs routing tree to-
pologies for data retrieval. The algorithm implements two features: 1) it uses a
special forward-link notification message, FL Notify, to build forward links from
root nodes of zones to root node of queries; 2) it changes inactive zone links to
active zone links based on whether a node is in a zone that is a representing
zone of a query.

Each node in the network maintains a neighbor table recording status infor-
mation of its neighbors, such as id, tree level, etc. Once a node receives a new
query Q that has been injected into the network, this node sets its tree level (for
Q) as 1 because it is the root. Then, this root node broadcasts a Query Broad-
cast (QB) message, containing its own id, tree level, the query information, and
the zone representation of the query. The broadcast is across one hop, so only
immediate neighbors of the sender receive the QB. On receiving such a QB mes-
sage from some node Z, a node A updates its own neighbor table, specifically
the data about neighbor Z (including Z’s tree level for Q).

Each node A periodically executes the BUILD ROUTING TOPOLOGY al-
gorithm. The algorithm is executed independently for each query Q. Consider
any query Q for which some query broadcasts QB have been received. Node A
first tests if it has already selected a routing-tree parent node for this query. If

444 Z. Zhang, A. Kshemkalyani, and S.M. Shatz

node A has not selected such a parent node, A checks its neighbor table to find
a neighbor node M with minimum tree level for query Q. A then selects M as
its routing-tree parent node for query Q, and sets its own tree level for Q as
M’s tree level for Q plus 1. A then broadcasts its id, tree level, and Q’s query
information in a QB message using a 1-hop broadcast. Then, if A is a root node
of a representing zone of query Q, A sets M as its forward link parent for Q, and
sends a FL Notify message for Q to M. Else, if A is in a representing zone of the
query but not a root node of that zone, A sets its own inactive zone link to be
an active zone link.

Consider the case where A has previously selected a parent node M for query
Q, and it has also received a FL Notify message for Q from some child node. This
can happen if one of A’s child nodes is a root node of a zone representation for
query Q, or one of A’s child nodes received a FL Notify message for Q from one
of the childs children nodes. Node A constructs a forward link for Q by setting
the routing-tree parent node as the forward-link parent node for Q and sending
a FL Notify message for Q to this forward link parent. Otherwise, node A has
not received the FL Notify message for Q from any child, implying that A might
not be in a tree path from root nodes of zones to the root node of query Q and
A might not need to be in the active state in the data retrieval phase. Hence, A
exits the algorithm.

Since the zone link of each node is unique (pre-setup by the algorithm GROUP-
ING ZONE), if two queries have a common zone in their zone sets, they both
actually change the status of the same zone links in the zone from inactive to ac-
tive. Hence, that sub-tree of the routing tree for both queries is common. Only the
root node of that common zone may construct different forward links for different
queries - the partially aggregated value of the zone will be sent separately by the
root node of the zone to the different root nodes of queries along different paths.

In the BUILD ROUTING TOPOLOGY algorithm, for any node A, its for-
ward-link parent is initially null. Nodes having forward links or active zone links
(as established by the above algorithm) would be in the active state, meaning
that these nodes can transmit data messages during query processing. Other
nodes may enter a sleep state to save energy. Nodes engaged in query processing
do so by executing the algorithm DATA RETRIEVAL. Using Figure 7 as an
example, node 1111 would send the tuple (1111, value) to its parent node 1110,
while node 1110 would create an aggregated value for zone 111 and then send the

Multi-root, Multi-Query Processing in Sensor Networks 445

tuple (111, aggregated-value) to its parent node 1100. For node 101, it receives
(11, value) from node 1100. It cannot aggregate its zone 101 with zone 11, so it
would send a two-tuple message ((101, its own value), (11, value)) to its parent
node 100; and so on.

5 Experimental Evaluation

We performed simulation experiments to compare and analyze the algorithms,
NMQ, OMQ, and ZMQ.

– NMQ constructs a different routing tree for each query, thereby using a
different tree for each query region.

– ZMQ is implemented based on the details in Section 4.
– Based on the position data for ZMQ, we can compute the intersection regions

for OMQ. Then the grouping technique is used to group nodes in the same
intersection regions together in the same sub-tree to compute the results for
OMQ. As OMQ assumes that the multiple query regions are known before
the query processing, it forms one sub-tree for each intersection region.

Deployment: We use a 256 × 256 cell matrix, where a sensor can be placed at the
center of a cell. The length of each side of a cell is 1. Each node, except the nodes
in the border cells, can communicate directly with its eight direct neighbors in
the matrix. By default, each cell has a sensor placed in it. Input parameters:

N: The number of queries (Each query defines a query region).
D: The network density, defined as the number of sensors per cell of the
sensor field matrix. To be consistent with the system model, the highest
value of D is 1. This is also the default value.
QR: The query region representing a query.
OP: Overlap percentage, which we define as(∑

I sizeof(I)∗(numberof(I)−1)∑
Q sizeof(Q)

)(
N

N−1

)
, where

– I is an intersection region, defined as the largest region in which all
the nodes are queried by the same set of queries.

– sizeof(I) is the number of nodes in the intersection region I,
– numberof(I) is the number of queries that each node in I receives,
– N is the total number of query regions, and
– N

N−1 is a scale factor for normalization.

Metric: Average number of messages (ANM) per node per epoch, is defined as
the total number of messages used in each retrieving epoch divided by the total
number of nodes in the query regions. Nodes in intersection regions are counted
separately for each query, i.e., nodes in intersection regions are counted multiple
times. Formally,

ANM = (
total number of messages∑

Q sizeof(Q)
)

446 Z. Zhang, A. Kshemkalyani, and S.M. Shatz

5.1 Impact of Overlap Percentage(OP)

In this experiment, we show the impact of the overlap percentage on the per-
formance of the three algorithms. We hold constant the input parameters QR
and N, but vary the position of different query regions to change the overlap
percentage for all queries. As seen in Figure 9, we can observe that ZMQ out-
performs NMQ as the percentage of overlapping increases, and ZMQ has nearly
the same performance as OMQ. The reason that the number of messages used
by ZMQ and OMQ decreases is because these algorithms share the readings
of sensor nodes in the intersection regions. As the overlapping increases, more
sharing is possible, and fewer messages are needed. Notice that ZMQ uses more
messages than NMQ when there is no overlap between the two query regions.
This is because ZMQ slightly decreases the aggregation extent and increases the
number of messages needed if a query region contains more than one pre-setup
zones. However, we can also see from Figure 9 that if there is an overlap be-
tween the query regions, the number of messages reduced by sharing readings
and transmissions exceeds the number of messages increased by such a decrease
in the aggregation extent.

Fig. 9. Impact of OP on number of messages

The difference between ZMQ and OMQ is because each intersection region in
ZMQ may consist of more than one zone, i.e., more than one sub-tree, while each
intersection region in OMQ consists of just one sub-tree. The aggregation extent
for intersection regions for ZMQ is slightly less than the aggregation extent for
OMQ. This causes ZMQ to use more messages than OMQ.

5.2 Impact of Network Density (D)

In this experiment, we show the effect of the density of the sensor network on the
performance of the three algorithms. We hold QR, N, and OP fixed, and vary
the density of the sensor field. The average number of messages transmitted, as a
function of density is shown in Figure 10. The density in Figure 10 is computed as
the number of sensor nodes divided by the size of the sensor field. For example,
for a 256 × 256 sensor field, the density 1/4 means that there are 128 × 128
sensor nodes evenly spread in the sensor field.

Multi-root, Multi-Query Processing in Sensor Networks 447

Fig. 10. Impact of density on number of messages

Observe that for all algorithms, as density decreases, the ANM increases. This
is because when density decreases, the nodes become further apart, and more
messages are needed to collect the readings. This can also be seen from the def-
inition of ANM, viz., total number of messages∑

Q sizeof(Q) . As D decreases, the denominator
decreases proportionately to D but the numerator does not change as rapidly.
Observe that even if the query regions have significant overlap, ZMQ may per-
form worse than NMQ when the density is low enough. The reason is that as the
density becomes lower, the number of nodes in the intersection area decreases,
and the data and transmission sharing also decreases. At some threshold, the
number of messages added because of the decrease in aggregation extent may
exceed the number of messages decreased by data sharing.

5.3 Impact of Query Region Size (QR)

Figure 11 shows the relationship between size of query regions and the average
number of messages transmitted in each epoch for the three algorithms. Observe
that as QR increases, the ANM (= total number of messages∑

Q sizeof(Q)) for NMQ approaches.
In addition, as QR increases, ANM of ZMQ approaches the ANM of OMQ. This
implies that ZMQ performs better when the sizes of query regions are large.

Fig. 11. Effect of QR on the algorithms

448 Z. Zhang, A. Kshemkalyani, and S.M. Shatz

Figure 11 also shows that for all the algorithms, as the size of the query region
increases, the average number of messages for each node first decreases and then
becomes stable. This is due to two factors.

– Consider the ratio X:Y, where X is the number of messages used from the
root nodes of each region to the root nodes of queries, and Y is the total num-
ber of sensor nodes in the query regions. This ratio represents an amortized
overhead to reach the query root from the region roots. As QR increases,
the numerator tends to decrease somewhat, and the denominator increases;
thereby decreasing this overhead. As QR continues to increase, the value of
this overhead becomes relatively small.

– With increasing QR, the predominant factor becomes the degree of node
overlap and the sharing of sensor readings among regions. As QR increases,
this also tends to have a saturation effect. In our example, this sets in around
regions of size 48×48.

ZMQ is better than NMQ, irrespective of the query region size when the overlap
percentage is not very low.

5.4 Impact of Number of Queries (N) Using Controlled Overlap
Percentage

This experiment studies the effect of the number of queries on the performance
of the three algorithms. We set OP and QR, and change the number of queries
injected into the sensor field. Observe from Figure 12 that as the number of
queries increases, the ANM for OMQ and ZMQ decreases, while it remains al-
most stable for NMQ. We also can find the answer from the definition of ANM
as follows. Let:

– S be the number of nodes that can share reading and transmission,
– SN be the total number of sensor nodes in query regions (i.e.,

∑
Q sizeof(Q)),

– E be the extra messages needed to send data from root nodes of sub-trees
to root nodes of queries.

ANM (= total number of messages∑
Q sizeof(Q)) = (SN-S+E)/SN = 1-S/SN + E/SN. For NMQ,

S is always 0, so ANM of NMQ is alwaysmore than 1 and decreases as SN increases.

Fig. 12. Effect of N on algorithms, with fixed OP

Multi-root, Multi-Query Processing in Sensor Networks 449

As the number of queries increases, SN and S both increase, while E stays almost
stable. Therefore, the overhead for OMQ and ZMQ approaches the value 1-S/SN
as the number of queries increases.

6 Conclusion

This paper identified for the first time, multi-root, multi-query optimization for
long duration aggregation queries. The paper then formulated two algorithms -
an optimal algorithm (OMQ) and a heuristic algorithm (ZMQ) based on sharing
the partially aggregated results of pre configured geographic regions. Simulations
on OMQ and ZMQ, as well as the naive algorithm (NMQ) that does not do any
sharing, indicate that the proposed algorithms provide significant energy savings
under a wide range of network conditions and query region options. We found
that OMQ always performs best, as expected. Furthermore, ZMQ performs gen-
erally better than NMQ when the sizes of the query regions are big, the density
of the sensor field is high, and there are large overlaps among queries. ZMQ per-
forms increasingly better than NMQ as the sizes of query regions become larger,
the sensor field density increases, and overlap among query regions increases.

Dynamic Aggregation Energy Time Space initialization Latency
queries extent efficient complexity complexity

NMQ Yes Very good Good O(1) O(1) No Small
ZMQ Yes Good Very good O(1) O(1) Yes, O(n) Moderate
OMQ No Very good Best O(1) O(1) No Small

Recommendation: The most applicable situation for ZMQ is when there are
big query regions, big overlap among queries, and high network density. Oth-
erwise, if the application requires dynamic query processing, NMQ is a good
algorithm. If the queries are known a priori (before any processing), and no
new queries come in during processing, OMQ is the best algorithm. ZMQ is a
practical and energy efficient algorithm for multi-root, multi-query processing.

References

1. Dasgupta, K., Kalpakis, K., Namjoshi, P.: Improving the Lifetime of Sensor Net-
works via Intelligent Selection of Data Aggregation Trees. In: Proceedings of the
Communication Networks and Distributed Systems Modeling and Simulation Con-
ference (2003)

2. Durresi, A., Paruchuri, V., Iyengar, S.S., Kannan, R.: Optimized Broadcast Proto-
col for Sensor Networks. IEEE Transactions on Computers 54(8), 1013–1024 (2005)

3. Emekci, F., Yu, H., Agrawal, D., Abbadi, A.E.: Energy-Conscious Data Aggrega-
tion Over Large-Scale Sensor Networks, UCSB Technical report (2003)

4. Estrin, D., Srivastava, M.B., Sayeed, A.: Tutorial on Wireless Sensor Networks.
In: ACM International Conference on Mobile Computing and Networking (MOBI-
COM) (2002)

450 Z. Zhang, A. Kshemkalyani, and S.M. Shatz

5. Jia, L., Noubir, G., et al.: GIST: Group-Independent Spanning Tree for Data Ag-
gregation in Dense Sensor Networks. In: International Conference on Distributed
Computing on Sensor Systems (DCOSS) (2006)

6. Kannan, R., Sarangi, S., Iyengar, S.S.: Sensor-Centric Energy-Constrained Reliable
Query Routing for Wireless Sensor Networks. Journal of Parallel and Distributed
Computing 64(7), 839–852 (2004)

7. Li, X., Kim, Y.J., Govindan, R., Hong, W.: Multi-dimensional Range Queries in
Sensor Networks. In: ACM Conference on Embedded Networked Sensor Systems
(Sensys 2003), pp. 63–75 (2003)

8. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A Tiny Aggregation
Service for Ad-hoc Sensor Networks. In: 5th Symposium on Operating Systems
Design and Implementation, pp. 131–146 (2002)

9. Roumeliotis, S.I., Berkey, G.A.: Collective Localization: a Distributed Kalman Fil-
ter Approach to Localization of Groups of Mobile Robots. In: Proc. IEEE Intl
Conf. on Robotics and Automation (ICRA), (2000)

10. Savvides, A., Han, C.-C., Srivastava, M.B.: Dynamic Fine-Grained Localization in
Ad-Hoc Networks of Sensors. In: ACM SIGMOBILE (2001)

11. Trigoni, N., Yao, Y., Demers, A., Gehrke, J., Rajaraman, R.: Multi-Query Opti-
mization for Sensor Networks. In: International Conference on Distributed Com-
puting on Sensor Systems (DCOSS), pp. 307–321 (2005)

12. Wu, Q., Rao, N.S.V., Barhen, J., Iyengar, S.S., Vaishnavi, V.K., Qi, H.,
Chakrabarty, K.: On Computing Mobile Agent Routes for Data Fusion in Dis-
tributed Sensor Networks. IEEE Transactions on Knowledge and Data Engineer-
ing 16(6), 740–753 (2004)

13. Zhang, Z., Shatz, S.M.: A Technique for Power-Aware Query-Informed Routing in
Support of Long-Duration Queries for Sensor Networks. In: International Confer-
ence on Sensing, Networking and Control (ICNSC 2006) (2006)

	Multi-root, Multi-Query Processing in Sensor Networks
	Introduction
	Background
	Assumptions and Challenges
	A Grouping Technique for Query-Informed Routing
	Sensor Field Division Using Zones

	Multi-Query Modeling
	The Naive Method for Multi-root, Multi-Query Processing (NMQ)
	Optimal Multi-root, Multi-Query Processing (OMQ)
	Zone-Based Multi-root, Multi-Query Processing (ZMQ)

	Algorithm ZMQ (Zone-Based Multi-root, Multi-Query Processing)
	Zone Setup
	Sensor Node Grouping in Zones
	Query Handling

	Experimental Evaluation
	Impact of Overlap Percentage(OP)
	Impact of Network Density (D)
	Impact of Query Region Size (QR)
	Impact of Number of Queries (N) Using Controlled Overlap Percentage

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

