
Orthogonal Relations for Reasoning about
Abstract Events

Ajay Kshemkalyani1 and Roshan Kamath2

1 EECS Department, University of Illinois at Chicago, Chicago, IL 60607-7053, USA.
ajayk@eecs.uic.edu

2 Motorola Inc. 1501 W. Shure Drive, IL27-1L20, Arlington Heights, IL 60004, USA.
Roshan.Kamath@motorola.com

Abstract. As systems become increasingly complex, event abstraction
becomes an important issue in order to represent interactions and reason
at the right level of abstraction. Abstract events are collections of more
elementary events, that provide a view of the system execution at an
appropriate level of granularity. Understanding how two abstract events
relate to each other is a fundamental problem for knowledge represen-
tation and reasoning in a complex system. In this paper, we study how
two abstract events in a distributed system are related to each other
in terms of the more elementary causality relation. Specifically, we ana-
lyze the ways in which two abstract events can be related to each other
orthogonally, that is, identify all the possible mutually independent re-
lations by which two such events could be related to each other. Such
an analysis is important because all possible relationships between two
abstract events that can exist in the face of uncertain knowledge can be
expressed in terms of the irreducible orthogonal relationships.

1 Introduction

As systems become increasingly complex, event abstraction becomes an impor-
tant issue in order to represent interactions and reason at the right level of
abstraction. Abstract events are collections of more elementary events, that pro-
vide a view of the system execution at an appropriate level of granularity. Under-
standing how two abstract events relate to each other is a fundamental problem
for knowledge representation and reasoning in such a complex distributed sys-
tem. This problem is of interest across philosophy, physics, artificial intelligence,
computer science, and psychology [2].

Hamblin [10] and Allen [2] have shown that two linear time durations or
intervals that are colocated can be related in one of 13 possible ways. These 13
relations form an orthogonal set of relations, i.e., the intervals must be related
by one and only one of these relations, implying that the conjunction of any two
relations is the empty relation. Orthogonal relations are important because they
identify all possible mutually exclusive relations that can possibly hold between
any given pair of intervals and because all possible relationships between two
intervals that can exist in the face of uncertain knowledge can be expressed

S. Benferhat and P. Besnard (Eds.): ECSQARU 2001, LNAI 2143, pp. 726–735, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Orthogonal Relations for Reasoning about Abstract Events 727

in terms of the irreducible orthogonal relationships. The set of 13 orthogonal
relations between a pair of colocated linear intervals has been used extensively
in the literature on artificial intelligence. For example, [8] developed a theory
of temporal reasoning using semi-intervals which arise when there is uncertain
and imprecise knowledge of intervals, using the 13 orthogonal relations of Allen.
Examples of other uses of the 13 orthogonal relations between colocated linear
intervals include [3,4,5,9,14,15,16].

The literature surveyed above considered the interactions and relative place-
ment of time intervals, each of which can be viewed as a linearly ordered set
of time instants. An additional assumption was that time was continuous, and
hence the time intervals satisfy the density axiom (refer van Benthem [6] for the
formal definitions and a detailed discussion of continuity and density).

Our objective is to study how two abstract events in a distributed system are
related to each other in terms of the causality relation. The relativistic space-time
model is an appropriate model of a distributed system execution for this study.
We analyze the ways in which two abstract events can be related to each other
orthogonally, that is, identify all the possible mutually independent relations by
which two such events could be related to each other. The results of this paper
differ from the work surveyed above in the following aspects. Each of the abstract
events we consider is a partial order of more elementary events, unlike the time
intervals which linearly order the component time instants. Additionally, the
system model explicitly models individual events/actions/statement executions
that occur at different processes in the execution of a complex distributed system,
and hence models discrete events explicitly.

The work is motivated by the fact that in a distributed system, abstract
events, wherein at least some of the component elementary events of the ab-
stract event occur concurrently, are of great interest in simplifying the reason-
ing about distributed executions [12,13]. Henceforth, we also term such abstract
events as poset (partially ordered set) events. Such poset events accurately model
collaborative activity among multiple CPU subsystems in a distributed system,
for various applications like navigation, planning, robotics, mobile computing,
coordination among multiple participants in a virtual reality environment, and
agent-based distributed cooperating programs. As a specific example, multiple
autonomous robots need to cooperate to jointly solve a task such as to focus laser
beams on a target so that the beams arrive at the target at a fixed moment. As
another example, multiple roving mobile agents that can communicate only by
message passing need to synchronize their actions in an adversarial environment.
Causality between poset events has been studied in [12] wherein a spectrum of
fine-grained causality relations between poset events was presented, along with
an axiom system to reason with such relations. These relations provide a pre-
cise handle to express and represent a naturally occurring or enforce a desired
fine-grained level of causality or synchronization among the cooperating agents.
However, these relations are not orthogonal relations. In this paper, we present
a methodology for deriving orthogonal relations between poset events. Section 2
gives the system model. Section 3 gives the main results. Section 4 concludes.

728 A. Kshemkalyani and R. Kamath

2 System Model and Preliminaries

A poset event structure model (E,≺), where ≺ is an irreflexive partial ordering
representing the causality relation on the possibly infinite event set E, is used as
the space-time model for a system execution, as in [12]. (E,≺) can follow either
the discreteness or the density axioms [6]. E is partitioned into local executions
at coordinates in the space dimensions. Each Ei is a linearly ordered set of
events in partition i and corresponds to the execution of events by a distinct
process i. An event e in partition i is denoted ei. The causality relation on E is
the transitive closure of the local ordering relation on each Ei and the ordering
imposed by message send events and message receive events. In [11,12], poset
events are defined as follows. Let E denote the power set of E. Let A (6= ∅)
⊆ (E − ∅). A is the set of all those sets that represent a higher level grouping of
the events of E of interest to an application. Each element A of A is a subset of
E, and is termed an abstract event or a poset event.

Table 1. The six basic relations, see [11,12].

Relation r Expression for r(X, Y)
R1 ∀x ∈ X∀y ∈ Y, x ≺ y

(= ∀y ∈ Y ∀x ∈ X, x ≺ y)
R2 ∀x ∈ X∃y ∈ Y, x ≺ y
R2′ ∃y ∈ Y ∀x ∈ X, x ≺ y

R3 ∃x ∈ X∀y ∈ Y, x ≺ y
R3′ ∀y ∈ Y ∃x ∈ X, x ≺ y

R4 ∃x ∈ X∃y ∈ Y, x ≺ y
(= ∃y ∈ Y ∃x ∈ X, x ≺ y)

The causality relations between a pair of poset events were formulated in [12]
using the notion of proxies. Each poset event X was defined to have two proxies
– the set of its least elements LX , and the set of its greatest elements UX . These
proxies were the equivalents of the beginning and end instants of the linearly
ordered interval. Two alternate definitions of proxies were given:

– Definition 4 [12], viz., LX = {ei ∈ X | ∀e′
i ∈ X, ei � e′

i} and UX = {ei ∈
X | ∀e′

i ∈ X, ei � e′
i}, and

– Definition 5 [12], viz., LX = {e ∈ X | ∀e′ ∈ X, e 6� e′} and UX = {e ∈
X | ∀e′ ∈ X, e 6≺ e′}

Figure 1 depicts the proxies of X and shows the difference between the two
definitions. In the figure, the time axis goes from left to right, and the lines
with arrows denote the messages that impose causality across different processes
(points in space). Depending on the problem domain, an application chooses and
consistently uses one definition of proxy. For example, for events in a distributed
sensor/robot system, where the various sensors/robots cooperate to perform
loosely synchronized actions, the former definition is more suitable to represent

Orthogonal Relations for Reasoning about Abstract Events 729

the start and end of interactions. When different mobile agents invoke services
offered by other agents/servers in a nested Remote Procedure Call (RPC) form,
the latter definition is more suitable to represent the start and end of interactions.

proxy formed by grouping local min. or max. events

proxy formed by grouping of anti-chains of min. or max. events

LX

X

message between processes

space

time

XU

elementary event

Fig. 1. Poset event X and its proxies LX and UX . The proxies defined by Definition 4
are shown by the closely spaced dashed lines. The proxies defined by Definition 5 are
shown by dotted lines.

The causality relations in [12] were defined using the following two aspects of
specifying the relations, based on the concept of proxies. (i) As there is a choice
of two proxies of X and a choice of two proxies of Y , there are four combinations
between the proxies. (ii) The six causality relations in Table 1 can be specified
for each combination, thus yielding 24 relations between X and Y . The set of
these causality relations is denoted R. The following nomenclature was adopted
to name the relations in R. Relation R?#(X, Y) was such that R? was a value
from {R1, R2, R3, R4} and indicated the choice of proxies of X and Y , whereas
indicated how the chosen proxies were related to each other, and took a value
from { a, b, b′, c, c′, d }, where R1, R2, R2′, R3, R3′, R4 were renamed a, b, b′, c,
c′, d, respectively, to avoid confusion with the previous usage of the relations R1
- R4. The set of relations R between poset events was complete using first-order
predicate logic and only the ≺ relation between elementary events. The relation
algebra given in [12] can be viewed as a power algebra [7].

In this paper, the label R is used to denote the set of the above relations
when the discussion is common to the relations defined using either definition of
proxies, viz., Definition 4 or 5 [12]. If the distinction matters, the notations R≺i

and R≺ are used to denote the sets of relations that result when Definition 4 and
5 of proxies, respectively, are used. Intuitively, R≺i indicates the set of relations
resulting when the proxies are defined using the ≺ relation on each Ei, and R≺

730 A. Kshemkalyani and R. Kamath

indicates the set of relations resulting when the proxies are defined using the ≺
relation on E. Each of R≺ and R≺i forms a hierarchy of dependent relations as
shown in Figure 2. The relative hierarchy among relations in R≺ and relations
in R≺i is given in [12].

A set of axioms to reason with the relations in R≺ was given in [12]. The
set of axioms was complete in the sense that (i) given any R(X, Y), the axioms
gave all enumerations of valid relations r(X, Y) and r′(Y, X), for r, r′, R ∈ R≺,
and (ii) given r1(X, Y) ∧ r2(Y, Z), the axioms gave all relations r(X, Z) (and
from (i), all r′(Z, X)), for r, r′, r1, r2 ∈ R≺. Hence, the axioms could be used to
derive all possible implications from any given predicates on relations in R≺.

Fig. 2. Hierarchy of causality relations, ordered by “is a subrelation of” [12]. An edge
from r1 to r2 indicates that r1 is a subrelation of r2.

In the next section, we give a methodology to enumerate the set of orthogonal
relations for R. The results of implementing this methodology for R≺ using the
axioms of [12] are then given. In this paper, we also modify the axiom system to
make it applicable to R≺i . We then apply the above methodology to enumerate
the set of orthogonal relations for R≺i and give the results.

3 Orthogonal Relations

We now propose a method to derive and enumerate the orthogonal relations
between any pair of poset events, using the set of dependent relations R. We
also present the numerical results of enumerating the orthogonal relations for
R≺ and R≺i based on the appropriate axiom system. Specifically, for R≺, we

Orthogonal Relations for Reasoning about Abstract Events 731

use axioms XP1-XP14 given in [12]. For R≺i , we use axioms XP1-XP6 and eight
new axioms XP7≺i-XP14≺i . The results of the two enumerations were obtained
by implementing the methodology in XSB Prolog.

The algorithm proposed here has the following two steps to create a (complete
and mutually independent) set of orthogonal relations from the set of dependent
relations R.

1. Identify all possible combinations of relations r(X, Y) ∈ R that can hold
simultaneously for a given X and Y .

2. For each of the identified combinations of relations r(X, Y), identify all com-
binations of r(Y, X) that can simultaneously hold for the same X and Y .

3.1 Step 1: All Possible Relations r(X, Y)

As a first step, we identify all the combinations of relations r(X, Y), for r ∈
R, that hold between poset events X and Y . Note that by construction, (R,v),
where v is the relation “is a subrelation of”, is a lattice as illustrated in Figure 2.
For a given pair of posets X and Y , it may be the case that a combination of
the relations in R may hold. Specifically, if R(X, Y) holds, then ∀R′ | R v R′,
R′(X, Y) holds. Thus, if R(X, Y) holds, then for each R′ in the upward-closed
subset1 of R, R′(X, Y) holds. In the partial order (R,v), all upward-closed
subsets of R correspond exactly to the combinations of relations in R that can
hold concurrently for a given pair of poset events. It follows from the result on
page 400 [1] that there is a 1-1 correspondence between the set of all upward-
closed subsets of a partial order and the set of antichains2 in the partial order.
Therefore, an enumeration of the antichains in (R,v) gives an enumeration of
the upward-closed subsets of (R,v), which corresponds to all the combinations
of the relations in R that can hold for a pair of poset events. Let RAC be the
set of all such antichains. A member of RAC, denoted rac(X, Y), is an antichain
of R and can be expressed as the conjunction of the members of the antichain,
each of which is a member of R, i.e., rac(X, Y) can be viewed as

∧
r∈rac(X,Y)

r(X, Y). The number of antichains in RAC was computed by the implementation
of axioms XP1-XP6 (given below), to be as follows. There are 1, 24, 147, 350,
341, 168, 44, 2, and 0 antichains of size 0 through 8, respectively, giving a total
of 1077 antichains. The antichain of size 0 denotes the empty-set upward-closed
subset of R, equivalent to R4d(X, Y), where R4d(X, Y) denotes that R4d(X, Y)
is false. Observe from Figure 2 that the size of the largest antichain is 7.

The axioms XP1 - XP6 from [12] are reproduced here. The relation ||(r1, r2)
stands for 6v (r1, r2) ∧ 6v (r2, r1). V1 denotes the set {1, 2, 3, 4} and V2 denotes
the set {a, b, b′, c, c′, d}.

XP1. R1? v R2? v R4?, where ? is instantiated from V2
XP2. R1? v R3? v R4?, where ? is instantiated from V2
XP3. R2?||R3#, where ? and # are separately instantiated from V2

1 A set < ⊆ R is upward-closed iff for every r, r′ ∈ R, (r ∈ < ∧
r v r′) =⇒ r′ ∈ <.

2 A set < is an anti-chain iff for every r and r′ in <, r 6v r′ ∧ r′ 6v r.

732 A. Kshemkalyani and R. Kamath

XP4. R?a v R?b′ v R?b v R?d, where ? is instantiated from V1
XP5. R?a v R?c v R?c′ v R?d, where ? is instantiated from V1
XP6. R?b||R?c′, R?b′||R?c′, R?b||R?c, R?b′||R?c, where ? is instantiated from

V1

3.2 Step 2: Relations r(Y, X), Given That Certain r(X, Y) Hold

The computed combinations of relations in R, viz., antichains in (R,v), are
useful to determine all the orthogonal relations that can exist between any two
poset events. For each of the |RAC| antichains that hold between X and Y ,
there are potentially |RAC| antichains that hold between Y and X, thus leading
to a potential |RAC|2 orthogonal relations between X and Y . Several of these
relations will be illegal because they contradict the relations r(X, Y). The ob-
jective is to determine exactly all the orthogonal relations that are admissible
by the axiom system. For each rac1(X, Y), where rac1 ∈ RAC, determine which
rac2(Y, X) can hold, where rac2 ∈ RAC, using the axiom system which allows
the derivation of all r′(Y, X) from any r(X, Y), where r, r′ ∈ R. Then each
conjunction of an antichain rac1(X, Y) and a compatible antichain rac2(Y, X)
is orthogonal from every other such conjunction; denote this set of conjunctions
as RO, which then represents all the possible orthogonal relations between two
posets, based on the ≺ relation among elementary events.

Let us denote the sets of orthogonal relations obtained for relations in R≺

and R≺i by RO≺ and RO≺i , respectively.

Table 2. Number of orthogonal relations in RO≺, classified based on size of antichains.
Size/Number Number of antichains rac(Y, X) of size s = 0 . . . 7
of rac(X, Y)

∑7
s=0 cols

antichains s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7
0 / 1 1 24 147 350 341 168 44 2 1077
1 / 24 24 261 898 1285 822 264 34 1 3589
2 / 147 147 898 1911 1683 642 130 4 0 5415
3 / 350 350 1285 1683 937 180 8 0 0 4443
4 / 341 341 822 642 180 18 0 0 0 2003
5 / 168 168 264 130 8 0 0 0 0 570
6 / 44 44 34 4 0 0 0 0 0 82
7 / 2 2 1 0 0 0 0 0 0 3

Relations RO≺. Axioms XP7-XP14 along with XP1-XP6 were used to deter-
mine all the orthogonal relations RO≺, counted in Table 2. Axioms XP7-XP14
are reproduced below with labels XP7≺ - XP14≺, respectively.

XP7≺. R1a(X, Y)
∨

R1b(X, Y)
∨

R1b′(X, Y)
∨

R1c(X, Y)
∨

R1c′(X, Y) =⇒
R4d(Y, X).

XP8≺. R1d(X, Y) =⇒ R4b(Y, X)
∧

R4c′(Y, X).
XP9≺. R2a(X, Y)

∨
R2b(X, Y)

∨
R2b′(X, Y)

∨
R2c(X, Y)

∨
R2c′(X, Y) =⇒

R2d(Y, X).

Orthogonal Relations for Reasoning about Abstract Events 733

XP10≺. R2d(X, Y) =⇒ R2b(Y, X)
∧

R2c′(Y, X).
XP11≺. R3a(X, Y)

∨
R3b(X, Y)

∨
R3b′(X, Y)

∨
R3c(X, Y)

∨
R3c′(X, Y)

=⇒ R3d(Y, X).
XP12≺. R3d(X, Y) =⇒ R3b(Y, X)

∧
R3c′(Y, X).

XP13≺. R4a(X, Y)
∨

R4b(X, Y)
∨

R4b′(X, Y)
∨

R4c(X, Y)
∨

R4c′(X, Y)
=⇒ R1d(Y, X).

XP14≺. R4d(X, Y) =⇒ R1b(Y, X)
∧

R1c′(Y, X).

Table 2 consists of three parts, separated by vertical double-lines. The first
part categorizes the |RAC(X, Y)| antichains of Figure 2, based on size which
ranges from 0 to 7. Each row i, i ∈ [0 . . . 7], in the entire table is used to compute
the orthogonal relations in which antichains rac(X, Y) have size i. Consider any
row i. For each antichain rac(X, Y) of size i, the number of the corresponding
legal (as per XP7≺–XP14≺) antichains rac(Y, X) of size s, s ∈ [0, . . . , 7], are
added to column s in the second part of the table. The entry in row i in the last
part of the table sums up the row entires of columns s = 0 through s = 7 of
that row, and gives the total number of orthogonal relations in which antichains
rac(X, Y) have size i. The sum of the last column is 17,185 = |RO≺|.

Note that RAC needs to consider all the antichains in R, not just the
maximal antichains, because even a subset of a maximal antichain identifies a
different upward-closed subset of R than does the maximal antichain, indicating
a different set of relations that hold. Also note that for any rac1(X, Y), all rela-
tions in the upward-closed subset of R hold and those not in the upward-closed
subset do not hold. Thus, for any rac1(X, Y), there is a bit-vector of size 24
where each bit corresponds to a relation in R, such that there is a “1” for each
relation in the upward-closed subset of rac1(X, Y) and a “0” for each relation
not in the upward-closed subset of rac1(X, Y). Analogously, for any rac2(Y, X)
that is compatible with rac1(X, Y) as per the axioms, there is a bit-vector of
size 24 where each bit corresponds to a relation in R, such that there is a “1”
for each relation in the upward-closed subset of rac2(Y, X) and a “0” for each
relation not in the upward-closed subset of rac2(Y, X). Each orthogonal relation
can thus be represented by a 48-bit vector.

Example: For the rac1(X, Y) antichain R2b(X, Y)
∧

R2c(X, Y)
∧

R3a(X, Y)
of size three, the axioms XP7≺-XP14≺ give R2d(Y, X)

∧
R3d(Y, X). The only

possible antichains rac2(Y, X) can be from the set of relations { R4*(Y, X) } –
this gives 11 possible antichains rac2(Y, X), counting the antichain of size 0, that
are compatible with rac1(X, Y). Each of these 11 combinations of rac2(Y, X)
with rac1(X, Y) yields a unique 48-bit vector.

Relations RO≺i . Observe that the axioms XP7-XP14 given in [12] are ap-
plicable only to relations in R≺ which use Definition 5 of proxies [12], and not
to relations in R≺i which use Definition 4 of proxies [12]. If proxies are defined
by Definition 4 and not Definition 5, then the axioms XP7-XP14 need to be
replaced by the following axioms XP7≺i–XP14≺i to obtain all the orthogonal
relations RO≺i .

734 A. Kshemkalyani and R. Kamath

XP7≺i . R1a(X, Y) =⇒ R4d(Y, X);
R1b(X, Y)

∨
R1b′(X, Y) =⇒ R4b(Y, X);

R1c(X, Y)
∨

R1c′(X, Y) =⇒ R4c′(Y, X).
XP8≺i . R1d(X, Y) =⇒ R4a(Y, X).
XP9≺i . R2a(X, Y) =⇒ R2d(Y, X);

R2b(X, Y)
∨

R2b′(X, Y) =⇒ R2b(Y, X);
R2c(X, Y)

∨
R2c′(X, Y) =⇒ R2c′(Y, X).

XP10≺i . R2d(X, Y) =⇒ R2a(Y, X).
XP11≺i . R3a(X, Y) =⇒ R3d(Y, X);

R3b(X, Y)
∨

R3b′(X, Y) =⇒ R3b(Y, X);
R3c(X, Y)

∨
R3c′(X, Y) =⇒ R3c′(Y, X).

XP12≺i . R3d(X, Y) =⇒ R3a(Y, X).
XP13≺i . R4a(X, Y) =⇒ R1d(Y, X);

R4b(X, Y)
∨

R4b′(X, Y) =⇒ R1b(Y, X);
R4c(X, Y)

∨
R4c′(X, Y) =⇒ R1c′(Y, X).

XP14≺i . R4d(X, Y) =⇒ R1a(Y, X).

Axioms XP1-XP6 and XP7≺i-XP14≺i are used to derive the orthogonal re-
lations RO≺i , instead of axioms XP1-XP6 and XP7≺-XP14≺ that were used to
obtain RO≺. Results analogous to those in Table 2 for RO≺ are obtained for
RO≺i and shown in Table 3. The sum of the last column is 123,474 = |RO≺i |.

Table 3. Number of orthogonal relations in RO≺i , classified based on size of antichains.

Size/Number Number of antichains rac(Y, X) of size s = 0 . . . 7
of rac(X, Y)

∑7
s=0 cols

antichains s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7
0 / 1 1 24 147 350 341 168 44 2 1077
1 / 24 24 405 1926 3695 3084 1326 293 11 10764
2 / 147 147 1926 7097 11493 7963 2768 527 18 31939
3 / 350 350 3695 11493 16469 9406 2654 469 16 44552
4 / 341 341 3084 7963 9406 4158 802 132 4 25890
5 / 168 168 1326 2768 2654 802 18 0 0 7736
6 / 44 44 293 527 469 132 0 0 0 1465
7 / 2 2 11 18 16 4 0 0 0 51

4 Conclusions

Orthogonal relations between events provide an understanding of all possible
mutually exclusive relations that can hold between the events when complete
and precise knowledge is available. These form the basis of relation algebras,
and allow the derivation of relations to represent knowledge when imprecise and
incomplete information is available. Abstract events, each of which is a partially
ordered collection of elementary events, are important when reasoning and repre-
senting actions in complex distributed systems. We derived orthogonal relations
RO between abstract events using the space-time model for a distributed system

Orthogonal Relations for Reasoning about Abstract Events 735

execution. Relations in RO are analogous to the 13 orthogonal relations between
linear intervals at a point in space [2]. Relations in RO are also analogous to the
following sets of orthogonal relations based on the elementary causality relation:
(i) the three orthogonal relations between two points in space-time (a ≺ b, b ≺
a, a 6≺ b ∧ b 6≺ a), (ii) the six orthogonal relations between a linear interval and
a point in space-time [11], (iii) the 29 orthogonal relations between two linear
intervals in space-time using the dense model of time [11], and (iv) the 40 or-
thogonal relations between two linear intervals in space-time using the nondense
model of time [11]. We expect that as distributed agent-based programs and
applications become more common, specific uses for these orthogonal relations
between abstract events will emerge, similar to the uses of the 13 orthogonal
relations between colocated linear intervals.

Acknowledgements. This work was supported by the U.S. National Science
Foundation grants CCR-9875617 and EIA-9871345.

References

1. M. Aigner, Combinatorial Theory, Springer-Verlag, 1979.
2. J. Allen, Maintaining knowledge about temporal intervals, Communications of the

ACM, 26(11):832-843, 1983.
3. J. Allen, Towards a general theory of action and time, Artificial Intelligence, 23:123-

154, 1984.
4. P. van Beek, Reasoning about qualitative temporal information, Artificial Intelli-

gence, 58:297-326, 1992.
5. P. van Beek, R. Cohen, Exact and approximate reasoning about temporal relations,

Computational Intelligence, 6:132-144, 1990.
6. J. van Benthem, The Logic of Time, Kluwer Academic Publishers, (1ed. 1983),

2ed. 1991.
7. C. Brink, Power structures, Algebra Universalis, Vol. 30, 177-216, 1993.
8. C. Freksa, Temporal reasoning based on semi-intervals, Artificial Intelligence, 54:

199-227, 1992.
9. A. Gerevini, L. Schubert, Efficient algorithms for qualitative reasoning about time,

Artificial Intelligence, 74: 207-248, 1995.
10. C. L. Hamblin, Instants and intervals, In The Study of Time, pp. 324-332, Springer-

Verlag, 1972.
11. A. Kshemkalyani, Temporal interactions of intervals in distributed systems, Jour-

nal of Computer and System Sciences, 52(2), 287-298, April 1996.
12. A. Kshemkalyani, Reasoning about causality between distributed nonatomic

events, Artificial Intelligence, 92(2): 301-315, May 1997.
13. L. Lamport, On interprocess communication, Part I: Basic formalism, Distributed

Computing, 1:77-85, 1986.
14. B. Nebel, H. -J. Buerckert, Reasoning about temporal relations: A maximal

tractable subclass of Allen’s interval algebra, Journal of the ACM, 42(1): 43-66,
Jan. 1995.

15. R. Rodriguez, F. Anger, K. Ford, Temporal reasoning: a relativistic model, Inter-
national Journal of Intelligent Systems, 11: 237-254, 1991.

16. P. Terenziani, P. Torasso, Time, action-types, and causation, Computational Intel-
ligence, 11(3):529-552, 1995.

	Introduction
	System Model and Preliminaries
	Orthogonal Relations
	Step 1: All Possible Relations $r(X,Y)$
	Step 2: Relations $r(Y,X)$, Given That Certain $r(X,Y)$ Hold

	Conclusions

