
Global State Detection Based on Peer-to-Peer
Interactions

Punit Chandra and Ajay D. Kshemkalyani

Computer Science Department, Univ. of Illinois at Chicago,
Chicago, IL 60607, USA

{pchandra, ajayk}@cs.uic.edu

Abstract. This paper presents an algorithm for global state detection
based on peer-to-peer interactions. The interactions in distributed sys-
tems can be analyzed in terms of the peer-to-peer pairwise interactions
of intervals between processes. This paper examines the problem: “If a
global state of interest to an application is specified in terms of the pair-
wise interaction types between each pair of peer processes, how can such
a global state be detected?” Devising an efficient algorithm is a challenge
because of the overhead of having to track the intervals at different pro-
cesses. We devise a distributed on-line algorithm to efficiently manage
the distributed data structures and solve this problem. We prove the
correctness of the algorithm and analyze its complexity.

1 Introduction

The pairwise interaction between processes is an important way of information
exchange even in pervasive systems and large distributed systems such as peer-
to-peer networks [12, 13] that do collaborative computing. We observe that the
pairwise interactions of processes form a basic building block for information ex-
change. This paper advances the state-of-the-art in analyzing this building block
by integrating it into the analysis of the dynamics of (i) global information ex-
change, and (ii) the resulting global states of a distributed system [5]. The study
of global states and their observations, first elegantly formalized by Chandy and
Lamport [5], is a fundamental problem in distributed computing [5, 9].

Many applications in a distributed peer-to-peer system inherently identify lo-
cal durations or intervals at processes during which certain application-specific
local predicates defined on local variables are true in a system execution [1].
Hence, we require a way to specify how durations at different processes are re-
lated to one another, and also a way to detect whether the specified relationships
hold in an execution. The formalism and axiom system formulated in [7] iden-
tified a complete orthogonal set � of 40 causality-based fine-grained temporal
interactions (or relationships) between a pair of intervals to specify how dura-
tions at two peer processes are related to one another. The following problem
DOOR for the Detection of Orthogonal Relations was formulated and addressed
in [1]. “Given a relation ri,j from � for each pair of processes i and j, devise

L.T. Yang et al. (Eds.): EUC 2005, LNCS 3824, pp. 560–571, 2005.
c© IFIP International Federation for Information Processing 2005

Global State Detection Based on Peer-to-Peer Interactions 561

Table 1. Space, message and time complexities. Note: M = maximum queue length
at P0, the central server. p ≥ M , as all the intervals may not be sent to P0.

Centralized Average time Total number of Space at P0 Average space at Pi,
algorithm complexity at P0 messages (= total message space) i ∈ [1, n]
Fine Rel O(n2M) or O(min(4m, np)) O(min[(4n − 2)np, O(n)

[3, 4] O(n[min(4m, np)]) 10nm])
Distributed Average time Total number Total average Total
Algorithms complexity/proc. of messages message space space
Algorithm O(min(np, 4mn)) O(n · min(np, 4mn)) O(n2 · min(np, 4mn)) O(min(2np(2n − 1),

[1] 10n2m))
this O(min(np, 4mn)) O(min(np, 4mn)) O(n2 · min(np, 4mn)) O(min(2np(2n − 1),

algorithm 10n2m))

a distributed on-line algorithm to identify the intervals, if they exist, one from
each process, such that each relation ri,j is satisfied by the (i, j) process pair.”

A solution satisfying the set of relations {ri,j(∀i, j)} identifies a global state
of the system [5]. Thus, the problem can be viewed as one of detecting a global
state that satisfies the specified interval-based conditions per pair of peers.

Devising an efficient on-line algorithm to solve problem DOOR is a challenge
because of the overhead of having to track the intervals at different processes. A
distributed on-line algorithm to solve this problem was outlined in [1] without
any formal discussion, without any analysis of its theoretical basis, and without
any correctness proofs. A centralized but on-line algorithm was given in [3, 4]. In
this paper, we devise a more efficient distributed on-line algorithm to solve this
problem, and then prove its correctness. The algorithm uses O(min(np, 4mn))
number of messages, where n is the number of processes, m is the maximum
number of messages sent by any process, and p is the maximum number of
intervals at any process. The total space complexity across all the processes
is min(4n2p − 2np, 10n2m), and the average time complexity at a process is
O(min(np, 4mn)). The performance of the centralized algorithm [3, 4] and the
algorithm in [1] are compared with the performance of the algorithm in this
paper, in Table 1. The proposed algorithm uses an order of magnitude O(n)
messages fewer than the earlier algorithm [1], although that comes at the cost
of somewhat larger messages.

2 System Model and Preliminaries

We assume an asynchronous distributed peer-to-peer system in which n pro-
cesses communicate solely by reliable message passing over logical FIFO chan-
nels. (E, ≺), where ≺ is an irreflexive partial ordering representing the causality
or the “happens before” relation [10] on the event set E, is used as the model
for a distributed system execution. E is partitioned into local executions at each
process. Each Ei is a linearly ordered set of events executed by process Pi. We
use N to denote the set of all processes.

We assume vector clocks [6, 11]. The durations of interest at each process can
be the durations during which some local predicate of interest is true. Such a

562 P. Chandra and A.D. Kshemkalyani

Table 2. Dependent relations for interactions between intervals are given in the first
two columns [7]. Tests for the relations are given in the third column.

Relation r Expression for r(X, Y) Test for r(X, Y)

R1 ∀x ∈ X∀y ∈ Y, x ≺ y V −
y [x] > V +

x [x]
R2 ∀x ∈ X∃y ∈ Y, x ≺ y V +

y [x] > V +
x [x]

R3 ∃x ∈ X∀y ∈ Y, x ≺ y V −
y [x] > V −

x [x]
R4 ∃x ∈ X∃y ∈ Y, x ≺ y V +

y [x] > V −
x [x]

S1 ∃x ∈ X∀y ∈ Y, x �� y
�

y �� x ∃x0 ∈ X: V −
y [y] �≤ V x0

x [y] ∧ V x0
x [x] �≤ V +

y [x]

S2 ∃x1, x2 ∈ X∃y ∈ Y, x1 ≺ y ≺ x2 ∃y0 ∈ Y : V +
x [y] �< V y0

y [y] ∧ V y0
y [x] �< V −

x [x]

Table 3. The 40 orthogonal relations in � [7]. The upper part gives the 29 relations
assuming dense time. The lower part gives 11 additional relations for nondense time.

Interaction Relation r(X, Y) Relation r(Y, X)
Type R1 R2 R3 R4 S1 S2 R1 R2 R3 R4 S1 S2

IA(= IQ−1) 1 1 1 1 0 0 0 0 0 0 0 0
IB(= IR−1) 0 1 1 1 0 0 0 0 0 0 0 0
IC(= IV −1) 0 0 1 1 1 0 0 0 0 0 0 0
ID(= IX−1) 0 0 1 1 1 1 0 1 0 1 0 0
ID′(= IU−1) 0 0 1 1 0 1 0 1 0 1 0 1
IE(= IW −1) 0 0 1 1 1 1 0 0 0 1 0 0
IE′(= IT −1) 0 0 1 1 0 1 0 0 0 1 0 1
IF (= IS−1) 0 1 1 1 0 1 0 0 0 1 0 1
IG(= IG−1) 0 0 0 0 1 0 0 0 0 0 1 0
IH(= IK−1) 0 0 0 1 1 0 0 0 0 0 1 0
II(= IJ−1) 0 1 0 1 0 0 0 0 0 0 1 0
IL(= IO−1) 0 0 0 1 1 1 0 1 0 1 0 0
IL′(= IP −1) 0 0 0 1 0 1 0 1 0 1 0 1
IM(= IM−1) 0 0 0 1 1 0 0 0 0 1 1 0
IN(= IM ′−1) 0 0 0 1 1 1 0 0 0 1 0 0
IN ′(= IN ′−1) 0 0 0 1 0 1 0 0 0 1 0 1

ID′′(= (IUX)−1) 0 0 1 1 0 1 0 1 0 1 0 0
IE′′(= (ITW)−1) 0 0 1 1 0 1 0 0 0 1 0 0
IL′′(= (IOP)−1) 0 0 0 1 0 1 0 1 0 1 0 0

IM ′′(= (IMN)−1) 0 0 0 1 0 0 0 0 0 1 1 0
IN ′′(= (IMN ′)−1) 0 0 0 1 0 1 0 0 0 1 0 0

IMN ′′(= (IMN ′′)−1) 0 0 0 1 0 0 0 0 0 1 0 0

duration, also termed as an interval, at process Pi is identified by the corre-
sponding events within Ei. Each interval can be viewed as defining an event of
higher granularity at that process [8], as far as the local predicate is concerned.
Such higher-level events, one from each process, can be used to identify a global
state. Intervals are denoted using X and Y . An interval X at Pi is denoted by
Xi.

It was shown in [7] that there are 29 or 40 causality-based mutually orthogonal
ways in which any two durations can be related to each other, depending on
whether dense or nondense time is assumed. These orthogonal interaction types
were identified by using the six relations given in the first two columns of Table 2.
Relations R1 (strong precedence), R2 (partially strong precedence), R3 (partially
weak precedence), R4 (weak precedence) define causality conditions. S1 and S2
define coupling conditions. The set of 40 relations is denoted as �.

Global State Detection Based on Peer-to-Peer Interactions 563

Given a set of orthogonal relations, one between each pair of processes, that
need to be detected, each of the 29 (40) possible independent relations in the
dense (nondense) model of time can be tested for using the bit-patterns for the
dependent relations, as given in Table 3 [7]. The tests for the relations R1 – R4,
S1, and S2 using vector timestamps are given in the third column of Table 2.
V −

i and V +
i denote the vector timestamp at process Pi at the start and at the

end of an interval, respectively. V x
i denotes the vector timestamp of event xi at

process Pi. When the process is not specified explicitly, we assume that interval
X occurs at Pi and interval Y occurs at Pj . For any two intervals X and X ′ that
occur at the same process, if R1(X, X ′), then we say that X is a predecessor of
X ′ and X ′ is a successor of X .

Our goal is to efficiently apply the tests in Table 2 in a distributed manner
across all the processes. Each process Pi, 1 ≤ i ≤ n, maintains information
about the timestamps of the start and end of its local intervals, and certain
other local information, in a local queue Qi. The n processes collectively run
some distributed algorithm to process the information in the local queues and
solve problem DOOR. In order for distributed algorithms to process the queued
intervals efficiently, we first give some results about when two given intervals may
potentially satisfy a given interaction type we want to detect.

3 Conditions for Satisfying Given Interaction Types

The discussion in this section is based on [1, 3, 4] which gave other (less efficient)
solutions to solve problem DOOR.

Definition 1. Prohibition function H : � → 2� is defined as H(ri,j) = {R ∈
� | if R(X, Y) is true then ri,j(X, Y ′) is false for all Y ′ that succeed Y }.
Definition 2. The “allows” relation � is a relation on �×� such that R′ � R′′

if the following holds. If R′(X, Y) is true then R′′(X, Y ′) can be true for some
Y ′ that succeeds Y .

Lemma 1. If R ∈ H(ri,j) then R �� ri,j else if R �∈ H(ri,j) then R � ri,j.

Proof If R ∈ H(ri,j), using Definition 1, it can be inferred that ri,j is false
for all Y ′ that succeed Y . This does not satisfy Definition 2. Hence R �� ri,j . If
R �∈ H(ri,j), it follows that ri,j can be true for some Y ′ that succeeds Y . This
satisfies Definition 2 and hence R � ri,j . �	

Table 4 gives H(ri,j) for each of the 40 interaction types in �.

Theorem 1. For R′, R′′ ∈ � and R′ �= R′′, if R′ � R′′ then R′−1 �� R′′−1.

Lemma 2. If the relationship R(X, Y) between intervals X and Y (belonging
to process Pi and Pj, resp.) is contained in the set H(ri,j), and ri,j �= R, then
interval X can be removed from the queue Qi.

Proof: From the definition of H(ri,j), we get that ri,j(X, Y ′) cannot exist, where
Y ′ is any successor interval of Y . Further, ri,j �= R. So we have that X can never
be a part of a solution and can be deleted from the queue. �	

:

564 P. Chandra and A.D. Kshemkalyani

Table 4. H(ri,j) for the 40 orthogonal relations in �. The upper part is for 29 relations
under dense time. The lower part is for 11 additional relations under nondense time.

Interaction H(ri,j) H(rj,i)
Type ri,j

IA (= IQ−1) φ � − {IQ}
IB (= IR−1) {IA, IB, IF, II, IP, IO, IU, IX, IUX, IOP } � − {IQ}
IC (= IV −1) {IA, IB, IF, II, IP, IO, IU, IX, IUX, IOP } � − {IQ}
ID (= IX−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
ID′ (= IU−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IE (= IW−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IE′ (= IT −1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IF (= IS−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IG (= IG−1) � − {IQ, IR, IJ, IV, IK, IG} � − {IQ, IR, IJ, IV, IK, IG}
IH (= IK−1) � − {IQ, IR, IJ, IV, IK, IG} � − {IQ, IR, IJ}
II (= IJ−1) � − {IQ, IR, IJ, IV, IK, IG} � − {IQ, IR, IJ}
IL (= IO−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IL′ (= IP −1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IM (= IM−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IN (= IM′−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IN′ (= IN′−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

ID′′ (= (IUX)−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IE′′ (= (IT W)−1) � − {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′} � − {IQ}
IL′′ (= (IOP)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

IM′′ (= (IMN)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}
IN′′ (= (IMN′)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

IMN′′ (= (IMN′′)−1) � − {IQ, IR, IJ} � − {IQ, IR, IJ}

Lemma 3. If the relationship between a pair of intervals X and Y (belonging to
processes Pi and Pj respectively) is not equal to ri,j, then interval X or interval
Y is removed from its queue Qi or Qj, respectively.

Proof: We use contradiction. Assume relation R(X, Y) (�= ri,j(X, Y)) is true for
intervals X and Y . From Lemma 2, the only time neither X nor Y will be deleted
is when R �∈ H(ri,j) and R−1 �∈ H(rj,i). From Lemma 1, it can be inferred that
R � ri,j and R−1 � rj,i. As r−1

i,j = rj,i, we get R � ri,j and R−1 � r−1
i,j .

This is a contradiction as by Theorem 1, R being unequal to ri,j , R � ri,j ⇒
R−1 �� r−1

i,j . Hence R ∈ H(ri,j) or R−1 ∈ H(rj,i), and thus at least one of the
intervals will be deleted.

4 A Distributed Peer-to-Peer Algorithm

Each process Pi, where 1 ≤ i ≤ n, maintains the following data structures. (1)
Vi : array[1..n] of integer. This is the V ector Clock [6, 11]. (2) Ii : array[1..n]
of integer. This is a Interval Clock [1, 3, 4] which tracks the latest intervals at

1. When an internal event or send event occurs at process Pi, Vi[i] = Vi[i] + 1.
2. Every message contains the vector clock and Interval Clock of its send event.
3. When process Pi receives a message msg, then ∀ j do,

if (j == i) then Vi[i] = Vi[i] + 1,
else Vi[j] = max(Vi[j], msg.V [j]).

4. When an interval starts at Pi (local predicate φi becomes true), Ii[i] = Vi[i].
5. When process Pi receives a message msg, then ∀ j do,

Ii[j] = max(Ii[j], msg.I[j])

Fig. 1. The protocol for maintaining vector clock and Interval Clock

Global State Detection Based on Peer-to-Peer Interactions 565

type Event Interval = record type Log = record
interval id : integer; start: array[1..n] of integer;
local event: integer; end: array[1..n] of integer;

end p log: array[1..n] of Process Log;
end

type Process Log = record
event interval queue: queue of Event Interval;

end
Start of an interval:
Logi.start = V −

i .
On receiving a message during an interval:
if (change in Ii) then

for each k such that Ii[k] was changed
insert (Ii[k], Vi[i]) in Logi.p log[k].event interval queue

End of interval:
Logi.end = V +

i
if (a receive or send occurs between start of previous and end of present interval) then

Enqueue Logi on to the local queue Qi.

Fig. 2. The data structures and the protocol for constructing Log at Pi (1 ≤ i ≤ n)

For S2(X, Y):

1. (1a) for each event interval ∈ Logj .p log[i].event interval queue
(1b) if (event interval.interval id < Logi.start[i])
(1c) then remove event interval

2. (2a) temp = ∞
(2b) if (Logj .start[i] ≥ Logi.start[i]) then temp = Logj.start[j]
(2c) else for each event interval ∈ Logj .p log[i].event interval queue
(2d) temp = min(temp, event interval.local event)

3. if (Logi.end[j] ≥ temp) then S2(X, Y) is true.

For S1(Y, X):

1. Same as step 1 of scheme to determine S2(X, Y).
2. Same as step 2 of scheme to determine S2(X, Y).
3. if (Logi.end[j] < temp) and (temp > Logj.start[j]) then S1(Y, X) is true.

Fig. 3. The protocol to test for S1(X, Y) and S2(Y, X)

processes. Ii[j] is the timestamp Vj [j] when the predicate φj of interest at Pj

last became true, as known to Pi. (3) Logi: contains the information about an
interval, needed to compare it with other intervals. Fig. 1 shows how to update
the vector clock and Interval Clock.

Logi is constructed and stored on the local queue Qi using the data structures
and protocol shown in Fig. 2. The Log is used to determine the relationship
between two intervals. The tests in Table 2 are used to find which of R1 – R4,
S1, and S2 are true. Fig. 3 shows how to implement the tests for S1 and S2.
The data structures in Fig. 2, 3 were proposed and used in the design of the
previous algorithms [1, 3, 4] to address problem DOOR. However, the algorithm
in this paper is fully distributed and more efficient.

The algorithm identifies a set of intervals I, if they exist, one interval Ii from
each process Pi, such that the relation ri,j(Ii, Ij) is satisfied by each (i, j) process
pair. If no such set of intervals exists, the algorithm does not return any interval
set. The algorithm uses a token T . The data structure for the token (T) is given
in Figure 4. T.log[i] contains the Log corresponding to the interval at the head of

566 P. Chandra and A.D. Kshemkalyani

type T = token
log: array [1..n] of Log;

//Contains the Logs of the intervals (at the queue heads) which may be in soln.
C: array [1..n] of boolean;

//C[i] is true if and only if Log[i] at the head of Qi can be a part of soln.
end

(1) Initial state for process Pi

(1a) Qi has a dummy interval

(2) Initial state for the token
(2a) ∀i : T.C[i] = false
(2b) T does not contain any Log
(2c) A randomly elected process Pi holds the token

(3) On receiving token T at Pi

(3a) while (T.C[i] = false)
(3b) Delete head of the queue Qi

(3c) if (Qi is empty) then wait until Qi is non-empty
(3d) T.C[i] = true
(3e) X = head of Qi

(3f) for j = 1 to n
(3g) if (T.C[j] = true) then
(3h) Y = T.log[j]
(3i) Determine R(X, Y) using the tests given in Fig. 3 and Table 2
(3j) if (ri,j �= R(X, Y)) and (R(X, Y) ∈ H(ri,j)) then T.C[i] = false
(3k) if (rj,i �= R(Y,X)) and (R(Y, X) ∈ H(rj,i)) then
(3l) T.C[j] = false
(3m) T.log[j] =⊥
(3n) T.log[i] = Logi

(3o) if (∀k : T.C[k] = true) then
(3p) solution found. T has the solution Logs.
(3q) else
(3r) k = i + 1
(3s) while (T.C[k] �= false)
(3t) k = (k + 1) mod n
(3u) Send T to Pk

Fig. 4. Distributed algorithm to solve problem DOOR

queue Qi. T.C[i] = true implies that the interval at the head of queue Qi may be
a part of the final solution and the corresponding log Logi is stored in the token.
If T.C[i] = false then the interval at the head of queue Qi is not a part of the
solution, its corresponding log is not contained in the token, and the interval can
be deleted. The algorithm is given in Figure 4. The process (Pi) receives a token
only if T.C[i] = false, which means the interval at the head of queue Qi is not
a part of the solution and hence is deleted. The next interval X on the queue
Qi is then compared with each other interval Y whose log Logj is contained
in T.log[j] (in which case T.C[j] = true, lines 3e-3i). According to Lemma 3,

Global State Detection Based on Peer-to-Peer Interactions 567

the comparison between intervals X and Y can result in three cases. (1) ri,j is
satisfied. (2) ri,j is not satisfied and interval X can be removed from the queue
Qi. (3) ri,j is not satisfied and interval Y can be removed from the queue Qj . In
the third case, the log Logj corresponding to interval Y is deleted and T.C[j] is
set to false (lines 3l-3m). In the second case, T.C[i] is set to false (line 3j) so that
in the next iteration of the while loop, the interval X is deleted (lines 3a-3b).
Note that both cases (2) and (3) can be true as a result of a comparison. The
above process is repeated until the interval at the head of the queue Qi satisfies
the required relationships with each of the interval Logs remaining in the token
(T). The process (Pi) then adds the log Logi corresponding to the interval at the
head of queue Qi to the token T.Log[i] and sets T.C[i] equal to true. A solution
is detected when T.C[k] is true for all indices k (lines 3n-3p), and is given by all
the n log entries of all the processes, T.Log[1, . . . , n]. If the above condition (line
3o) is not satisfied then the token is sent to some process Pj whose log Logj is
not contained in the token T.Log[j] (in which case T.C[j] = false, lines 3r-3u).
Note that the wait in (line 3c) can be made non-blocking by restructuring the
code using an interrupt-based approach.

5 Correctness Proof

Lemma 4. After Pi executes the loop in lines (3f-3m), if T.C[i] = true then
the relationship ri,j is satisfied for interval Xi at the head of queue Qi and each
interval Yj at the head of queue Qj satisfying T.C[j] = true.

Proof: The body of the loop (lines 3j-l) implements Lemma 2 by testing for
R(Xi, Yj) ∈ H(ri,j) and R(Yj , Xi) ∈ H(rj,i), when R is not equal to ri,j . If ri,j

is not satisfied between interval X and interval Y then by Lemma 3, X or Y is
deleted, i.e., (line 3j) or (lines 3k, 3l) is executed and hence T.C[i] or T.C[j] is
set to false. This implies if both T.C[i] and T.C[j] are true then the relationship
ri,j(X, Y) is true.

It remains to show that for all j for which T.C[j] is true when the loop in
(3f-3m) completes, Yj which is in T.Log[j] is the same as head(Qj). This follows
by observing that (i) T.Log[j] was the same as head(Qj) when the token last
visited and left Pj , and (ii) head(Qj) is deleted only when T.C[j] is false and
hence the token visits Pj . �	

Theorem 2. When a solution I is detected by the algorithm in Figure 4, the
solution is correct, i.e., for each i, j ∈ N and Ii, Ij ∈ I, the intervals Ii =
head(Qi) and Ij = head(Qj) are such that ri,j(Ii, Ij).

Proof: It is sufficient to prove that for the solution detected, which happens at
the time T.C[k] = true for all k (lines 3o,p), (i) ri,j(Ii, Ij) is satisfied for all pairs
(i, j), and (ii) none of the queues is empty. To prove (i) and (ii), note that at this
time, the token must have visited each process at least once because only the
token-holder Pi can set T.C[i] to true. Consider the latest time ti when process Pi

was last visited by the token (and T.C[i] was set to true and T.Log[i] was set to

568 P. Chandra and A.D. Kshemkalyani

head(Qi)). Since ti until the solution is detected, T.C[i] remains true, otherwise
the token would revisit Pi again (lines 3s-u) – leading to a contradiction. Linearly
order the process indices in array V isit[1, . . . , n] according to the increasing order
of the times of the last visit of the token. Then for k from 2 to n, we have that
when the token was at PV isit[k], the intervals corresponding to T.Log[k] and
T.Log[m], for all 1 ≤ m < k, were tested successfully for relation rk,m and
T.C[k] and T.C[m] were true after this test. This shows that the intervals from
every pair of processes got tested, and by Lemma 4, that rk,m(Xk, Ym) was
satisfied for Xk = head(Qk) and Ym = head(Qm) at the time of comparison.

As shown above, since tk until the solution is detected, T.C[k] remains true
and the token does not revisit Pk. Hence, from tk until the solution is detected,
none of the intervals tested at tk using T.Log got dequeued from their respective
queues and rk,m(Xk, Ym) continues to be satisfied for Xk = head(Qk) and Ym =
head(Qm) when the solution is detected. �	

Let I(h) denote the set of intervals at the head of each queue, that are com-
pared during the processing triggered by hop h of the token. Each I(h) identifies
a system state (not necessarily consistent). Observe that for any I(h) and I(h+1)
and any Pi, interval Ii(h + 1) in I(h + 1) is equal to or an immediate successor
of interval Ii(h) in I(h). We thus say that all the I are linearly ordered, and
I(h) precedes I(h′), for all h′ > h. Let I(S) denote the set of intervals that form
the first solution, assuming it exists. Let I(b) denote the first value of I(h) that
contains one (or more) of the intervals belonging to I(S). Let I(init) denote the
initial set of intervals. Clearly, I(init) precedes I(b) which precedes I(S).

Lemma 5. In any hop h of the token, no interval Xi ∈ I(S) gets deleted.

Proof: This can be shown by considering two possibilities.

1. An interval Xi in I(S) get compared with some interval Yj that is also in
I(S). In this case, both conditions are false in lines 3j and 3k as ri,j(Xi, Yj)
is satisfied, and this comparison does not cause either of the intervals to be
deleted from T.Log[]. Also, T.C[i] and T.C[j] remain true.

2. An interval Xi gets compared with some Yj ∈ I(h) \ I(S). Observe that
Yj is a predecessor of the interval Y ′

j at Pj such that Y ′
j ∈ I(S) and thus

ri,j(Xi, Y
′
j) holds. We have that R(Xi, Yj) �= ri,j . We now show that Yj gets

deleted and Xi does not get deleted.
– Applying Theorem 1, we have R(Xi, Yj) � ri,j(Xi, Y

′
j) which implies

R−1 �� rj,i. From Lemma 1, we conclude that R−1 ∈ H(rj,i). There
are two cases to consider. (a) The token is at Pi. By Lemma 2 which is
implemented in lines 3k-m, the comparison results in Yj being deleted
from T.Log and subsequently from Qj (line 3b when the token reaches
Pj). (b) The token is at Pj . By Lemma 2 which is implemented in lines
3j and 3a-3e, the comparison results in Yj being deleted from Qj.

– As R � ri,j therefore from Lemma 1, we conclude that R �∈ H(ri,j).
By Lemma 2 which is implemented in lines 3j and 3k-m (depending on
whether Pi or Pj has the token), this comparison does not result in Xi

being deleted. �	

Global State Detection Based on Peer-to-Peer Interactions 569

Lemma 6. In any hop h of the token, at least one interval Yj ∈ I(h) \ I(S)
gets deleted.

Proof: Line 3b deletes interval (head(Qi)) when the token arrives at Pi. �	

Theorem 3. If a solution I exists, i.e., for each i, j ∈ N , the intervals Ii, Ij

belonging to I are such that ri,j(Ii, Ij), then the solution is detected by the algo-
rithm in Figure 4.

Proof: From state I(init) in which T.Log was initialized to contain no log,
onwards until state I(b), Lemma 6 is true. Hence, in each hop of the token,
the interval at the head of the queue of some process must get replaced by the
immediate successor interval at that process. This guarantees progress and that
state I(b) is reached.

From state I(b) onwards until state I(S), both Lemmas 5 and 6 apply.
Lemma 6 guarantees progress (some interval not belonging to I(S) gets replaced
by its immediate successor interval at every hop). Lemma 5 guarantees that no
interval belonging to the solution set of I(S) gets deleted. Once T.Log contains
all the intervals of I(S) and hence T.C[k] is true for all k, the solution is detected.

�	
Thus, Theorems 2 and 3 show that the algorithm detects a solution if and

only if it exists.

6 Complexity Analysis

The complexity analysis sketched below and summarized in Table 1 is in terms
of two parameters – the maximum number of messages sent per process (m) and
the maximum number of intervals per process (p). Details are given in [2].

Space complexity at P1 to Pn:

1. In terms of m: It is necessary to store Log for four intervals for every message
– two for the send event and two for the receive event. Refer [2, 3, 4] for the
reasoning. As there are a total of nm number of messages exchanged between
all processes, a total of 4nm interval Logs are stored across all the queues,
though not necessarily at the same time.
– The total space overhead across all processes is 2.mn.n + 4mn.2n =

10mn2. The term 2.mn.n arises because for each of the mn messages sent,
each of the other n processes eventually (due to transitive propagation of
Interval Clock) may need to insert a Event Interval tuple (size 2) in its
Log. This can generate 2.mn.n overhead in Logs across the n processes.
The term 4mn.2n arises because the vector timestamp at the start and
at the end of each interval is also stored in each Log. It now follows that
the average number of Logs per process is 4m and the average space
overhead per process is 10mn. Also note that the average size of a Log
is O(n).

570 P. Chandra and A.D. Kshemkalyani

– For a process, the worst case occurs when it receives m messages from
each of the other n−1 processes. Assuming the process sends m messages,
a total of m(n− 1)+m messages are sent or received by this process. In
this case, the number of Logs stored on the process queue is 2mn, two
Logs for each receive event or send event (see [2, 3, 4] for justification).
The total space required at the process is 2mn.2n+2m(n−1) = O(mn2).
The term 2mn.2n arises from the fact that each Log contains two vector
timestamps and there are a total of 2mn Logs stored on the process
queue. The term 2m(n − 1) arises because an Event Interval is added
for each receive and there are a total of m(n − 1) messages received on
the process.

Note that the worst case just discussed is for a single process; the total space
overhead always remains O(mn2) and on an average, the space complexity
for each process is O(nm).

2. In terms of p: The total number of Logs stored at each process is p because
in the worst case, the Log for each interval may need to be stored. The total
number of Logs stored at all the processes is np. Consider the cumulative
space requirement for Log over all the intervals at a single process.
– Each Log stores the start (V −) and the end (V +) of an interval, which

requires a maximum of 2np integers over all Logs per process.
– Additionally, an Event Interval is added to the Log for every component

of Interval Clock which is modified due to the receive of a message. Since
a change in a component of Interval Clock implies the start of a new
interval on another process, the total number of times the component of
Interval Clock can change is equal to the number of intervals on all the
processes. Thus the total number of Event Interval which can be added
to the Log of a single process is (n − 1)p. This gives a total of 2(n − 1)p
integers (corresponding to Event Intervals) at each process.

The total space required for Logs corresponding to all p intervals on a single
process is 2(n − 1)p + 2np. So the total space is 4n2p − 2np = O(n2p).

Thus, the total number of Logs stored on all the processes is min(np, 4mn) and
the total space overhead for all the processes is min(4n2p − 2np, 10n2m).

Time Complexity: The time complexity is the product of the number of steps
required to determine an orthogonal relationship from � between a pair of in-
tervals, and the number of interval pairs considered.
– The first part of the product on average takes O(1) time (to determine a

relationship [2, 3, 4]). Note this part does not depend on the algorithm being
centralized or distributed.

– To analyze the second part of the product, consider Figure 4. The maximum
number of times an interval at the head of its queue is compared locally
with intervals contained in the token is (n − 1). The reason being that when
an interval comes to the head of a queue (Qi), it may be compared with
n − 1 other intervals (contained in the token), one corresponding to each
other process, but the next time that token reaches the process (Pi) is when
C[i] = false and hence the interval is dequeued. Thus the total number of

Global State Detection Based on Peer-to-Peer Interactions 571

interval pairs compared is (n−1) times the total number of Logs over all the
queues. The total number of Logs over all the queues was shown above to be
equal to min(np, 4mn), hence the total number of interval pairs compared is
(n − 1)min(np, 4mn).

As on average it takes O(1) time to determine a relationship, the average time
complexity of the algorithm is equal to O(n · min(np, 4mn)). Hence the average
time complexity per process is O(min(np, 4mn)).

Message Complexity: The token is sent to Pj whenever C[j] is false, and C[j]
is false if the interval at the head of the queue Qj has to be deleted. Thus, the
maximum number of times the token is sent is equal to the total number of
intervals across all the queues, which is equal to min(np, 4nm). Hence, the total
number of messages sent is min(np, 4nm). The maximum number of Logs stored
on a token in n − 1 and the size of each Log on the average can be seen to be
O(n). Thus, the total message space overhead is O(n2 min(np, 4mn)).

References

1. P. Chandra, A. D. Kshemkalyani, Detection of orthogonal interval relations. Proc.
9th Intl. High Performance Computing Conference (HiPC), LNCS 2552, Springer,
323-333, 2002.

2. P. Chandra, A. D. Kshemkalyani, Distributed detection of temporal interactions.
Tech. Report UIC-ECE-02-07, Univ. of Illinois at Chicago, May 2002.

3. P. Chandra, A. D. Kshemkalyani, Detecting global predicates under fine-grained
modalities. Proc. 8th Asian Computing Conference (ASIAN), LNCS 2896,
Springer-Verlag, 91-109, December 2003.

4. P. Chandra, A. D. Kshemkalyani, Causality-based predicate detection across space
and time. IEEE Transactions on Computers, 54(11): 1438-1453, November 2005.

5. K. M. Chandy, L. Lamport, Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1): 63-75, 1985.

6. C. J. Fidge, Timestamps in message-passing systems that preserve partial ordering.
Australian Computer Science Communications, 10(1): 56-66, February 1988.

7. A. D. Kshemkalyani, Temporal interactions of intervals in distributed systems.
Journal of Computer and System Sciences, 52(2): 287-298, April 1996.

8. A. D. Kshemkalyani, A framework for viewing atomic events in distributed com-
putations. Theoretical Computer Science, 196(1-2), 45-70, April 1998.

9. A. D. Kshemkalyani, M. Raynal, M. Singhal, An introduction to global snapshots
of a distributed system. IEE/IOP Distributed Systems Engineering Journal, 2(4):
224-233, December 1995.

10. L. Lamport, Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7): 558-565, July 1978.

11. F. Mattern, Virtual time and global states of distributed systems. Parallel and
Distributed Algorithms, North-Holland, 215-226, 1989.

12. D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S.
Rollins, Z. Xu, Peer-to-peer computing. Hewlett Packard Technical Report HPL-
2002-57, 2002.

13. J. Rissom, T. Moors, Survey of research towards robust peer-to-peer networks:
Search methods. Technical Report UNSW-EE-P2P-1-1, Univ. of New South Wales,
2004.

	Introduction
	System Model and Preliminaries
	Conditions for Satisfying Given Interaction Types
	A Distributed Peer-to-Peer Algorithm
	Correctness Proof
	Complexity Analysis

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

