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Abstract. This paper gives an efficient algorithm for recording con-
sistent snapshots of an asynchronous distributed system execution. The
nonintrusive algorithm requires 6(n−1) control messages, where n is the
number of processes. The algorithm has the following properties. (P1)
The application messages do not require any changes, not even the use
of timestamps. (P2) The application program requires no changes, and
in particular, no inhibition is required. (P3) Any process can initiate the
snapshot. (P4) The algorithm does not use the message history. A simple
and elegant three-phase strategy of uncoordinated observation of local
states is used to give a consistent distributed snapshot. Two versions of
the algorithm are presented. The first version records consistent process
states without requiring FIFO channels. The second version records pro-
cess states and channel states consistently but requires FIFO channels.
The algorithm also gives an efficient way to detect any stable property,
which was an unsolved problem under assumptions (P1)-(P4).

1 Problem Definition

A distributed system is modeled as a directed graph (N, L), where N is the set
of processes and L is the set of links connecting the processes. Let n = |N | and
l = |L|. A distributed snapshot represents a consistent global state of the system.
Recording distributed snapshots of an execution is a fundamental problem in
asynchronous message-passing systems. Since the seminal algorithm of Chandy
and Lamport [3] which is a non-inhibitory algorithm that requires FIFO channels
and 2l messages to record a snapshot, plus additional messages to assemble the
snapshot, several algorithms have been proposed. A survey is given in [8].

This paper gives an efficient nonintrusive non-inhibitory algorithm for record-
ing consistent snapshots of an asynchronous distributed system execution. The
algorithm requires 6(n − 1) control messages and has the following properties.

P1. The application messages require no changes, not even timestamps.
P2. The application program requires no changes, implying no inhibition.
P3. Any process can initiate the snapshot.
P4. The algorithm does not require the log of the message history.

These properties are important for ubiquitous and pervasive computing. A
simple and elegant three-phase strategy of uncoordinated observation of local
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Table 1. Comparison of global snapshot algorithms. The acronym p.b. denotes that
control information is piggybacked on the application messages.

Algorithm Channels Non- Application Number of Snapshot Message
required inhib- messages control collection history

itory unmodified messages not needed not used
Chandy-Lamport [3] FIFO Y Y O(n2) N Y
Spezialetti-Kearns [16] FIFO Y Y O(n2) N Y
Venkatesan [17] FIFO Y Y O(n2) N Y
Helary [5] (wave sync.) FIFO N Y O(n2) N Y
Helary [5] (wave sync.) non-FIFO N Y O(n2) N Y
Lai-Yang [10] non-FIFO Y N (p.b.) O(n2) N N
LRV [12] non-FIFO Y N (p.b.) O(n2) N N
Mattern [14] non-FIFO Y N (p.b.) O(n) N Y
Acharya-Badrinath [1] CO Y Y 2n Y Y
Alagar-Venkatesan [2] CO Y Y 3n Y Y
Proposed snapshot FIFO Y Y 6n Y Y
Proposed snapshot non-FIFO Y Y 6n Y Y
(w/o channel states)

states gives a consistent distributed snapshot. Two versions of the algorithm are
presented: the first version records consistent process states without requiring
FIFO channels and without using any form of message send/receive or event
counters, whereas the second version records process states and channel states
consistently but requires FIFO channels. Critchlow and Taylor have shown that
for a system with non-FIFO channels, a snapshot algorithm must either use pig-
gybacking or use inhibition [4]. Hence, the second version of the algorithm cannot
be improved upon to also record channel states while retaining the properties of
no inhibition and no piggybacking while using non-FIFO channels.

Table 1 compares the proposed algorithms with the existing algorithms. Be-
sides serving as a general-purpose snapshot algorithm, the proposed algorithm
can detect any arbitrary stable predicate [3], which was an unsolved problem
under the assumptions P1-P4. While many specialized algorithms are tailored
to specific stable properties, such as deadlock, termination, and garbage, the
following algorithms detect general stable predicates.

– The Marzullo-Sabel algorithm [13] can detect only locally stable predicates.
– The Schiper-Sandoz algorithm [15] can detect only strong stable predicates.
– Kshemkalyani-Singhal’s two-phase algorithm [9], based on Ho-Ramamoort-

hy’s algorithm [6], showed how to correctly detect deadlocks. A general
method to detect stable properties was then outlined [9]. In essence, if a
property does not change between the two serial phases of uncoordinated ob-
servations, the property must hold at some instant between the two phases.
If it is stable, it must hold henceforth. While locally stable predicates can
be detected satisfying assumptions (P1)-(P4) and without assuming FIFO
channels, details of detecting arbitrary stable predicates are not given.
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Neither Marzullo and Sabel [13] nor Schiper and Sandoz [15] showed any rela-
tionship between the classes of strong stable and locally stable properties. These
existing algorithms can only detect some subclass of stable predicates, and do
not satisfy (P1)-(P4). The proposed algorithm can detect any stable predicate.

Summary of Main Contributions:

1. The snapshot algorithms we propose for FIFO channels and for non-FIFO
channels are linear in the number of messages, and satisfy (P1)-(P4).

2. The non-FIFO version of our snapshot algorithm can be used to detect locally
stable predicates, under assumptions (P1)-(P4).

3. The FIFO version of our snapshot algorithm can be used to detect any stable
predicate, under assumptions (P1) to (P4).

System Model:
An asynchronous execution in a distributed system is modeled as (E, ≺), where ≺
is the causality relation [11] on the set of events E in the execution. E =

⋃
i∈N Ei,

where Ei is the totally ordered chain of event at process Pi. An event executed
by Pi is denoted ei. A cut C is a subset of E such that the events of a cut are
downward-closed within each Ei. A consistent cut is a downward-closed subset
of E. The system state after the events in a cut is a global state; if the cut is
consistent, the corresponding system state is termed a consistent global state.
An execution slice is defined as the difference of two cuts D \ C, where C ⊆ D.
The slice is also referred to as a suffix of C with respect to D. When D is not
explicitly specified, its default value is the execution E.

The execution history at a process Pi is a sequence of alternating states and
local events, 〈s0

i , e
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i , . . .〉. Events and messages of the snapshot

algorithm form a superimposed control execution. Among the application events
and messages, those that are relevant to the predicate of interest are the relevant
events and messages, respectively. We assume that all events, variables, and
messages recorded or logged are the relevant ones.

2 The Three-Phase Uncoordinated Snapshot Algorithm

The proposed algorithm is inspired by the two-phase deadlock detection algo-
rithm [9]. The main idea of our algorithm is as follows. The algorithm takes
three serial uncoordinated ‘snapshots’ that may be inconsistent. A consistent
global state that lies between the first and the second inconsistent ‘snapshots’ is
computed with the help of the third ‘snapshot’ and some local processing.

Any process can initiate the algorithm which consists of three phases that
are serially executed. The algorithm involves some local processing by the ini-
tiator. Each phase involves the initiator sending a request to each other process,
and then the processes replying to the initiator. The initiator can communicate
directly to/from the various processes, or a wave algorithm [5] can be used in
conjunction with a superimposed topology such as a ring or a tree. The snapshot
algorithm is independent of this detail.
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Fig. 1. Three-phase uncoordinated recording of a global snapshot. The initiator could
be any of the processes.

Phase I: The initiator requests the processes to begin recording an execution
slice. The global state from which processes begin recording is denoted Z,
and is represented by the array Z[1 . . . n] at the initiator. The local states
recorded in Z are not coordinated and may be inconsistent.

Phase II: The initiator then collects the slice of each process execution since
the time each process began recording its slice and reported its local state in
Phase I, until the time each process chooses to reply to the Phase II request.
The local slice of each process that is reported to the initiator is stored by
the initiator in array Slice A[1 . . . n]. Each process begins to record the next
slice, denoted Slice B, after replying to the Phase II request.

Phase III: The initiator then collects the slice of each process execution since
the time each process reported its local state in Phase II, until the time
each process chooses to reply to the Phase III request. The local slice of
each process that is reported to the initiator is stored by the initiator in
array Slice B[1 . . . n]. Based on Slice A and Slice B, the initiator computes
a consistent global state.
Slice B is used in two different ways, depending on whether channel states
are to be recorded.
– If channel states are not to be recorded and the channels are non-FIFO,

Slice B is used to identify a consistent state within Slice A by helping to
eliminate states in Slice A that are inconsistent.

– If channel states are also to be recorded and FIFO channels are assumed,
then Slice B is also useful to capture the channel states. In this case, the
recording within Slice B completes at each process when the messages
sent by other processes to that process in (and before) Slice A have
been received. This condition is detectable using the control information
distributively sent to the initiator in the Phase II reply messages and
then conveyed on the Phase III request received from the initiator.
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Fig. 2. Six types of events in Slice A

The possibly inconsistent states collected by the initiator in Z, Slice A, and
Slice B are illustrated in Figure 1. The initiator computes a consistent global
state S, such that Z ⊆ S ⊆ A using Slice A and Slice B. Specifically, observe
that Z may be inconsistent because messages sent in Slice A may have been
received in Z. Also observe that due to the existence of global time instant
tA which is any time instant between the last recording of Phase I and the first
recording of Phase II, no message sent in Slice B could have been received before
tA. There exists at least one consistent cut in Slice A, namely the cut at physical
time tA. However, as the application execution including its messages cannot be
modified, and as timestamps are also not used in the algorithm, computing a
consistent state S such that Z ⊆ S ⊆ A is tricky. In Slice A, there are six types
of events (see Figure 2):

1. send event, for a message that gets delivered in Z
2. send event, for a message that gets delivered in Slice A
3. send event, for a message that gets delivered after Slice A
4. receive event, for a message that was sent in Z
5. receive event, for a message that was sent in Slice A
6. receive event, for a message that was sent after Slice A

To make Z consistent, we need to add that prefix from Slice A that contains
(i) all events of type (1) and no events of type (6), and (ii) the local states of
processes are mutually consistent. Alternately, as A is also not consistent, A
can be made consistent by subtracting that suffix that contains (i) all events
of type (6), and (ii) further events to ensure that the resulting local states of
processes are mutually consistent. With either approach, a consistent execution
prefix exists, namely, the global state at tA which satisfies both sets of conditions.
Observe that all events of type (1) precede all events of type (6). Let S(t) be the
prefix of the execution at global time t. We now have the following.

– From Figure 1, we have S(tZ end) ⊆ S(tA) ⊆ S(tA start), where tA start

denotes the time instant of the first local recording of phase II among all the
processes, and tZ end denotes the time instant of the last local recording of
phase I among all the processes.
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– Let Smax be Z + the largest prefix from Slice A that does not include an
event of type (6). Note that Smax may not be consistent.

– A tight lower bound on Smax is the value of S(tA start). A tight upper bound
on Smax is the value of S(tA end), where tA end denotes the time instant of the
last local recording of phase II among all the processes. Thus, S(tA start) ⊆
Smax ⊆ A ⊆ S(tA end).

The algorithm computes the largest consistent snapshot S such that
S(tA start) ⊆ S ⊆ Smax ⊆ A ⊆ S(tA end), by removing the minimum slice
suffix from Smax to get a consistent global state.

The third phase of recordings plays two roles.

– For both versions of the algorithm, Slice B helps to identify Smax by identi-
fying messages sent in Slice B that were received in Slice A.

– Slice B also helps to identify the in-transit messages by ensuring that all the
messages that have been sent up to and including in Slice A are received
before the recording of the end of Slice B. This mechanism works only if
FIFO channels are assumed.

The two versions of the algorithm are presented together in Figs. 3 and 4.

2.1 Consistent State Recording Under Non-FIFO Channels

This section describes a global snapshot algorithm that works with non-FIFO
channels and satisfies properties (P1) to (P4). This algorithm records a consistent
global state but does not capture channel states.

Figure 3 gives the code for the three-phase processing. The underlined pseu-
docode and data structures are ignored by this (version of the) algorithm. Step
(1) describes the processing followed by the initiator. Step (2) describes the pro-
cessing at all the nodes. In the first phase, an acknowledgement is sufficient from
the nodes to the initiator; the local states are not required to be reported. When
Slice A and Slice B are recorded, observe the following.

– Only the relevant local and send/receive events, of interest to the application
or predicate being monitored, are recorded in the log of the slice.

– Messages are not modified with sequence numbers to conform to require-
ments (P1)-(P4). In addition, no counters for sequence numbers for the mes-
sages sent or received, or for the event count, are required at processes. A
hash or checksum (O(1) space) computed on each message sent or received
is stored in the log of the slice, to enable matching a message in the sender’s
log with the same message in the receiver’s log. No messages are stored.

– Within the log of a slice at a process, sequence numbers are assigned to
events. However, these sequence numbers are of significance only to that
process and within the slice. The sequence numbers have no global signif-
icance to the processes, or even within a process outside its slice. These
numbers are used by the initiator to perform a simple ordering among the
process events included in the slice.
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(variables at an initiator)
array of states: Z[1 . . . n]; // Phase 1 recordings
array of sequence of events: Slice A[1 . . . n]; // Phase 2 recordings
array of sequence of events: Slice B[1 . . . n]; // Phase 3 recordings
array of int: Global Sent[1 . . . n, 1 . . . n]; //Global Sent[i, j] ≡ # msgs, Pi to Pj

array of int: Global Received[1 . . . n, 1 . . . n];
//Global Received[i, j] ≡ # messages received by Pi from Pj

(variables at each process)
array of local events: Slice Log; // log of local events
array of int: Sent[1 . . . n]; // Sent[k] ≡ # messages sent to Pk

array of int: Received[1 . . . n]; // Received[k] ≡ # messages received from Pk

array of int: Must Receive[1 . . . n];
// Must Receive[k] ≡ # messages to be recd. from Pk before Phase III report

(1) Process Pinit initiates the algorithm, where 1 ≤ init ≤ n.
(1a) send Request(Phase 1 Report) to all Pj ;
(1b) await Report(Phase 1 Report) from all processes;
(1c) (∀j) Z[j] ←− Phase 1 Report.State received from Pj ;
(1d) (∀j) Global Received[j][1 . . . n] ←− Phase 1 Report.Received[1 . . . n];
(1e) send Request(Phase 2 Report) to all Pj ;
(1f) await Report(Phase 2 Report) from all processes;
(1g) (∀j) Slice A[j] ←− Phase 2 Report.Slice Log received from Pj ;
(1h) (∀j) Global Sent[j][1 . . . n] ←− Phase 2 Report.Sent[1 . . . n] from Pj ;
(1i) send to all Pj , Request(Phase 3 Report) + Global Sent[1 . . . n][j] piggybacked;
(1j) await Report(Phase 3 Report) from all processes;
(1k) (∀j) Slice B[j] ←− Phase 3 report received from Pj ;
(1l) S ←− Compute Consistent Snapshot(Slice A, Slice B);
(1m) Compute In-transit Messages(S).

(2) Process Pj executes the following, where 1 ≤ j ≤ n.
(2a) On receiving Request(Phase 1 Report) from Pinit,
(2b) send local state and Received[1 . . . n] in Report(Phase 1 Report) to Pinit;
(2c) Begin recording log of events in Slice Log;
(2d) On receiving Request(Phase 2 Report) from Pinit,
(2e) send Slice Log and Sent[1 . . . n] in Report(Phase 2 Report) to Pinit;
(2f) Reset Slice Log;
(2g) On receiving Request(Phase 3 Report) and Must Receive[1 . . . n] from Pinit,
(2h) Await until, (∀k), Received[k] ≥ Must Receive[k];
(2i) send Slice Log in Report(Phase 3 Report) to Pinit;
(2j) Stop recording events in Slice Log.

Fig. 3. Three-phase algorithm to record a global snapshot. Underlined code is executed
if channel states are needed in a FIFO system.

After Slice A and Slice B have been collected at the end of the three phases,
the initiator invokes procedure Compute Consistent Snapshot in Figure 4 to
compute a consistent cut S from Slice A and Slice B. This cut S satisfies
S(tA start) ⊆ S ⊆ Smax ⊆ A ⊆ S(tA end) and is computed by iteratively re-
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(3) Process Pinit executes Compute Consistent Snapshot(Slice A, Slice B).
array of int: Smax, S, T , U , V ;
array of array of int: Slice A events[1 . . . i . . . n][1 . . . ai];
array of array of int: Slice B events[1 . . . i . . . n][1 . . . bi];

// Alternate representation of slices

(3a) for i = 1 to n do
(3b) if Slice A[i][x + 1] is the 1st receive in Slice A[i] of a msg. sent in Slice B then
(3c) Smax[i] ←− x
(3d) else Smax[i] ←− ai;
(3e) S, T, U ←− Smax;
(3f) for i = 1 to n do
(3g) V [i] ←− ai;
(3h) repeat
(3i) for i = 1 to n do
(3j) for y = T [i] + 1 to V [i] do
(3k) if message(Slice A events[i][y], Slice A events[j][z]) then
(3l) U [j] ←− min(U [j], z − 1); // modify U to make it consistent
(3m) if T = U(= S) then return(S);
(3n) S ←− min(T, U); // S ≡ current upper bound on consistent state
(3o) V ←− max(T, U); //current upper bound on source of inconsistency
(3p) T, U ←− S;
(3q) forever.

(4) Process Pinit executes Compute In-transit Messages(S).
(4a) (∀i∀j) transit(S[i], S[j]) ←− ∅;
(4b) (∀i) compute Global Sent[i, 1 . . . n] for S[i] using Slice A, Global Sent[i, 1 . . . n];
(4c) for j = 1 to n do
(4d) for each successive event ex

j in Slice A[j][1 . . . aj ] and Slice B[j][1 . . . bj ] do
(4e) if a message M was received from i (at this event with seq. # x) then
(4f) Global Received[j, i] + +;
(4g) if Global Sent[i, j] ≥ Global Received[j, i] and x > S[j] then
(4h) transit(S[i], S[j]) ←− transit(S[i], S[j]) ∪ {M}.

Fig. 4. Finding a consistent state iteratively, and computing in-transit messages. Un-
derlined code is executed if channel states are needed in a FIFO system.

moving the minimum slice suffix from Smax to get a consistent global state. For
convenience, this procedure represents each of the two slices as an array [1 . . . n]
of an array of integers. For example, Slice A events[1 . . . i . . . n][1 . . . ai], where
Slice A events[i][j] denotes the jth event at process Pi, represents Slice A.

In Figure 4, lines (3a)-(3d) identify Smax. Line (3e) initializes the integer
vector variables S, T , and U to Smax. These vectors denote global states but
the integer values denoting sequence numbers of the states in the slice have
significance local to the initiator only. For example, S[i] was assigned by Pi

relative to the start of the slice and represents the sequence number of a local
state of Pi in the slice. Lines (3f-3g) initialize the vector variable V to the state
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at the end of Slice A, namely, the state A. S is always set to the current known
upper bound of the consistent global state that is sought. Vector V denotes the
state that is the best known upper bound on the global state such that messages
sent in the slice V \ S may cause S to be inconsistent. Vectors T and U are
working variables used to update S and V .

The main loop (3h)-(3q) updates S and V iteratively. In lines (3i)-(3l), U is
used to track the prefix of the current S such that there are no inconsistencies
caused by messages sent in V \ S. A message at the sender is matched with the
same message at the receiver by comparing their hashes or checksums (line (3k)).
If the message sent at Slice A events[i][y] is received at Slice A events[j][z],
then U [j] is updated to the minimum of its current value and z − 1 (line (3l)).
An inconsistency, if any, is thus eliminated by removing the minimum suffix from
the execution slice for the receiver Pj . However, messages sent in the slice S \ U
may still cause U to be inconsistent; this needs to be tested in the next iteration.
Lines (3n)-(3p) initialize the values of S, T , U , and V for the next iteration. The
procedure finishes when the loop (3i)-(3l) does not find any inconsistencies in
the current value of S in line (3m).

2.2 Consistent State and Channel Recording Under FIFO Channels

This section presents an enhanced algorithm that also records channel states
if channels are FIFO. Figure 3 gives the code for the three-phase processing.
Underlined pseudo-code and data structures are also executed by this version of
the algorithm. Procedure Compute Consistent Snapshot in Figure 4 computes a
consistent cut from Slice A and Slice B, and is common to both versions of the
algorithm.

Procedure Compute In Transit Messages is used to compute the channel
states. This procedure requires the data structures Z[1 . . . n] and integer ar-
rays Global Sent[1 . . . n, 1 . . . n] and Global Received[1 . . . n, 1 . . . n] at the ini-
tiator during the processing of the algorithm. Integer vectors Received[1 . . . n],
Sent[1 . . . n], and Must Receive[1 . . . n] must also be maintained at each node.
Sent[j] and Received[j] track the count of the number of messages sent to and
received from process Pj , respectively. The main idea is simple. The state of
channel 〈Pi, Pj〉 in a global state containing local states S[i] and S[j] at the
processes, denoted as transit(S[i], S[j]), is simply those messages sent by Pi till
state S[i] that are not received until state S[j] at Pj . One important difference
from the previous version is that sequence numbers used to count events at a
process are not local to a slice, but local to the entire execution of that process.
This is to capture in-transit messages for channel states. Such messages could
have been sent before Slice A and need to be detected. To compute the channel
state while satisfying conditions (P1) – (P4) and specifically that no sequence
numbers can be tagged on messages, three issues need to be addressed.

1. Messages sent by Pi to Pj before state S[i] must have reached Pj by the end
of Slice B.
This is ensured by using the local Sent vector at each process and the
Global Sent array at the initiator. In the Phase II recording reported to



Nonintrusive Snapshots Using Thin Slices 581

the initiator, the Sent vectors reported (line (2e)) are used to populate
Global Sent (line (1h)). The Phase III request sent to each process contains
the piggybacked information about how many messages have been sent to
that process by other processes (line (1i)). A process postpones its Phase III
recording of the end of Slice B until all these number of messages, remem-
bered in array Must Receive, have been delivered locally (line (2h)).

2. The set of messages sent by Pi to Pj up to the snapshot state S[i], denoted
here as X , should be identifiable. There are two parts to this.
– This set contains all the messages received by Pj from Pi with sequence

numbers less than the value of Sent[j] at S[i]. This value of Sent[j] at S[i]
is computed (line (4b)) using Global Sent, constructed from the Phase
II report, and working backwards using the log Slice A, also reported in
Phase II. The resulting message count (i.e., the value of Sent[j] at S[i])
is stored in-situ in the data structure Global Sent[i, j] as it is updated.

– The messages received by Pj are enumerated as per the sequence num-
bers assigned by Pi, in lines (4d)-(4e). The enumeration of the sequence
numbers is done in lines (4c)-(4f) using Global Received, reported in
Phase I to the initiator (line (1d)), and working forwards using the log
Slice A reported in Phase II and the log Slice B reported in Phase III.
The enumeration is done in-situ in Global Received[j, i].

If Global Received[j, i] ≤ Global Sent[i, j] for a message, then that message
belongs to X .

3. The set of messages received by Pj from Pi after the snapshot state S[j],
denoted here as Y, should be identifiable.
These are the messages received from Pi at Pj in states numbered x such
that x > S[j].

From (2) and (3) above, transit(S[i], S[j]) = X ∩ Y, is expressible as {M
recd by Pj at event x | Global Received[j, i] ≤ Global Sent[i, j]

∧
x > S[j]}.

Unlike the algorithm in Section 2.1, Slice Log, Slice A, Slice B record messages
for send and receive events if the contents of in-transit messages are required.
The pseudo-code data structures do not reflect this for simplicity.

3 Complexity

The complexity analysis assumes a flat tree topology with the initiator as the
root. A similar analysis can be conducted for the ring and more general tree
topologies. Table 2 summarizes the complexity results. Note that the slices
Slice A and Slice B are both thin slices, and their expected size is the same.
Hence, the complexity is expressed in terms of Slice A only. The expected width
of Slice A is the execution log that occurs in r̂ttmax, the expected round-trip
time between the two furthest nodes in the network. Let max(owtA) denote
the maximum time for a message sent in Slice A to reach its destination. The
expected width of Slice B is max(rttmax, owtA) which is also r̂ttmax.
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Table 2. Complexity of the proposed non-inhibitory nonintrusive snapshot algorithm.
Both Slice A and Slice B are thin slices, and their expected size is the same.

Metric Recording snapshot (non- Recording snapshot + channel
-FIFO, no channel states) states (w/ FIFO channels)

# messages 6(n − 1) 6(n − 1)
Msg. space (total) O(|Slice A|) O(|Slice A|) + O(n2)
Time complexity O(|Slice A|)+ O(|Slice A|)+
(initiator) O(1/n × |Slice A|2) +O(n2) O(1/n × |Slice A|2) +O(n2)
Time complexity O(|Slice A|) O(|Slice A|) + O(n)
(non-initiator)
Space complexity O(|Slice A|) O(|Slice A|) + O(n2)
(initiator)
Space complexity O(1/n · |Slice A|) avg. O(1/n · |Slice A|) avg. +O(n2)
(noninitiator)
Properties No inhibition No inhibition

App. messages unmodified App. messages unmodified
execution unmodified execution unmodified

no log of history no log of history
+ Sent, Received vecs/process +

Global Sent, Global Receive at init

4 Detecting Stable Predicates

The proposed algorithm to record a consistent global state can be used to detect
any stable predicate. (See [7] for details.) Each process records the (possibly
changing) values of the variables over which the predicate is defined, in Slice A.
When the initiator computes the consistent state S, it can also evaluate the

Table 3. Comparing algorithms to detect stable predicates

Marzullo & Schiper & Proposed Proposed
Sabel [13] & Sandoz [15] V.1 V.2

Detectable locally stable strong stable locally stable all stable
predicates
overhead at vector clock, O(n) vector clock, O(n) – Sent/Received
nodes (= + entire log + entire log of event log in (O(n)) + event &
control msg of msgs & events msgs & events slice during msgs. log in slice
overhead) w/timestamps w/timestamps 3-phase during 3-phase
App. msg vector clock, O(n) vector clock, O(n) – –
overhead
processing by initiator by initiator by initiator by initiator
Channels FIFO non-FIFO non-FIFO FIFO
# control (n − 1) (n − 1) 6(n − 1) 6(n − 1)
messages
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predicate over these variables in state S. If the predicate is evaluated as true,
then it is true and remains true henceforth because it is stable.

– Version 1 can detect locally stable predicates predicates.
– Version 2 can detect any stable predicate.

Table 3 compares the features and the complexities of the proposed algorithm
with those of the algorithms by Marzullo-Sabel [13] and Schiper-Sandoz [15].

The full version of the results of this paper, including the correctness proofs
and the complexity analysis, is in [7].
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