
A Framework for Viewing Atomic Events in Distributed 
Computations 

Ajay D. Kshernkalyani 

IBM Corporation, R O. Box 12195, Research Triangle Park, NC 27709, USA 
Email: ajayk@vnet.ibm.com 

Abstract. We present a unifying framework for expressing and analyzing events 
at various levels of atomicity in distributed computations. In the framework, 
events at any level of atornicity are defined and composed in terms of events at 
a finer level of atomicity using hierarchical views. We identify and prove two 
properties that are satisfied by each level of atomicity. Results based on these 
properties that hold for any one level of atomicity apply to all levels of atomicity. 

I I n t r o d u c t i o n  
In the literature on distributed system executions (also known as computations), events 
have been implicitly modeled in the isolated contexts of various applications, e.g., de- 
signing communication primitives [2, 3, 7], global states [5], concurrency measures 
[6, 9], deadlock detection [12], clock systems [10, 14, 17], termination detection [16], 
mutual exclusion [20], debugging [8], fault-tolerance and transactions [4, 11, 19]. The 
events modeled have various levels of atomicity, and there is no prior treatment of the 
various levels of atomicity in a unifying framework. A formal treatment of grouping 
events in a distributed execution is crucial in modeling distributed activities to provide 
different abstract views. Lamport also argued that it is useful to assume that primitive 
elements between which concurrency is modeled are nonatomic for studying basic ques- 
tions about nonatomicity [ 15]. This paper provides a unifying framework for expressing 
and analyzing events at various levels of atomicity in distributed system executions; 
events at a particular level of atomicity are defined and hierarchically composed in 
terms of events at a finer level of atomicity. We define system executions for the various 
levels of atomicity by first defining a system execution dealing with the most elementary 
events, suitably identified. We then hierarchically compose system executions of coarser 
levels of atomicity by using the system executions at a finer level of atomicity. 

We also prove that each level of atomicity satisfies two properties. [Property PI:] 
The events at any level of atomicity partition the events at the finer level of atomicity 
in terrrts of which this level is defined. (See Defn. 3 and Theorems 1, 3, and 5 for the 
four levels of atomicity considered.) [Property P2:] The events at any level of atomicity 
ordered by the corresponding ordering relation form a partially ordered set (poset) (See 
Defn. 3 and Theorems 2, 4, and 6 for the four levels of atomicity considered.) P1 
implies that all the events at any level of atomicity are included implicitly in more 
abstract events at coarser levels of atomicity. Any result based on the graph property Pt 
or P2 that applies to any one level of atomicity applies to all levels of atomicity. 

Section 2 presents the system model. Section 3 presents the events at four levels 
of atomicity by a hierarchical composition, and gives their applications. Section 4 
concludes. The full paper [ 13] includes the proofs of theorems stated here. 



497 

2 S y s t e m  M o d e l  

A distributed system is a set of processes connected by communication channels. De- 
pending on the level of atomicity being modeled, both processes and channels are 
modeled as nodes, or only processes are modeled as nodes that communicate with each 
other. Let E be the set of the most elementary events in a system execution, i.e., a run 
of a computation. We assign a semantic meaning to E later. Events of E are partitioned 
into local computations at a node, assuming that each event of E occurs at one node 
only. Each local computation is a linearly ordered set. An event e in partition i is denoted 
ei. The computation at node i is a sequence of events and the system computation is the 
collection of computations at the various nodes. The initial event in each partition i is 
_1_~. For finite computations, the final event in each partition i is Ti. 

Nodes communicate with each other by passing messages. A channel cannot gener- 
ate, consume, or alter messages, but can permute the order of delivery of messages. The 
local action of sending (receiving) a message is a send (receive) event. The message 
sent at any send event is distinct from all messages sent at other send events at the 
level ofatomicity being considered. The transfer of a message between a pair of process 
nodes takes finite time on a global time scale but between a process node and a channel 
node, it is instantaneous. The set of events that occur on any one node in a run of a 
computation can be decomposed into the sets ~C, SD, and ZA/', which are the sets of 
events of  receiving a message from another node, sending a message to another node, 
and internal events, respectively. Individual events in the three sets are denoted by/~C, 
SD, and IN,  respectively. The sets 7~C, SD, and EAr will be defined at multiple levels 
of atomicity which will be differentiated by appropriate subscripts. 

Events in a computation are ordered by the causality relation < on E [14]. An 
edge that orders two events on the same node (different nodes) is termed a local edge 
(message edge). A cut C is a subset of E such that if  ei E C then Ve~ : e~ < el, we 
have e~ C C. A consistent cut is a downward-closed subset of E in (E, <). C, the set 
of cuts ofa  poset (E, <), forms a lattice (C, C) with the operations U and r]. cc, the 
set of  consistent cuts ofa poset (E, <), forms a sublattice of C, as shown in [17]. 

We use the formalism of hierarchical views of a system execution introduced by 
Lamport [15] to define events at various levels of  atomicity in terms of  elementary 
actions in a system. The choice of actions treated as elementary is based on the need to 
model sufficiently fine-grained actions for the known applications. 

The set of events in the system execution at an arbitrary level of atomicity z, as 
well as the ordering relation among the events at that level of atomicity is represented 
as a tuple ( .A~, <~ )..A~ and <~ are different for each level of atomicity x. The term 
"atom" will be used interchangably with "event"; individual events (or atoms) and the 
set of events (or atoms) are denoted A~ and .A~., respectively, to emphasize their atomic 
nature. The subscript will be dropped when the context is clear. 

Consider (.As, <4) and (.A/~, <~), where .As and .A~ are sets and <~ and <p are 
relations on the elements of.As and .A~, respectively. Let mapping it~ be a one-many 
surjective mapping that maps each element A~ of.A~ to a non-empty subset of.As. If  
/ ~ t  is a function then .A~ defines a partition on .A, - -  this means each element A~ 
of.A~ is contained in exactly one element A~ of.A~, and an element A~ may contain 
multiple elements from .As. Each element A~ in .A~ is a set that is a higher level 



498 

grouping of the events in A~ that is of interest to some application. ~r is specified so 
as to define meaningful events at an appropriate level of atomicity (Ap, <8) in terms 
of the events specified at the level of finer atomicity in (.As, <4). 

There are two cases to consider when we define a system execution S 0 = (A0, <~). 
(i) For system executions S~ at recursively higher levels of atomicity, we specify a 
mapping #~, which maps 5' 8 to a system execution S~ at a finer level of atomicity. 
A~ contains events at a coarser level of atomicity than As.  (ii) If S 0 is at the level of 
atomicity of the most elementary actions that we choose, F~0 maps S 0 to Sp and we 
provide a semantic model for S~. 

Definition 1 A system execution S~ is a tuple (A O, <p) where A s is a set and <p is a 
ordering relation on .A O. 

S~ is specified in terms of  a mapping tl~ : S O ~ S~, where S~, is a system 
execution at a finer level of  atomicity such that: 

1. I~ maps each element in A s to a subset of  A~. 
2. IZ~ defines </3 in terms o f  <~. 

l f  S~ is at the finest level of  atomicity, S~ = S o and we give a semantic model for Sp. 

At the finest level of atomicity, we will use the semantic model of E and the causality 
relation on E, i.e., (E, <}, for the system execution. 

3 Model ing Events in a Distributed Computation 
In Sections 3.1, 3.2, 3.3, and 3.4, we define four levels of atomicity 5'ai~t, Ssn ,  S r ~ ,  
and STL, respectively, in a hierarchical manner, starting with the finest level 5'ai** to 
which we assign the semantic model of (E, <}. 

3.1 Primitive Send and Receive Events 
To view the system execution at the finest level of atornicity S a ~ ,  we consider primitive 
send and receive events that are expressed by explicitly modeling channels that connect 
any two processes, and the input and output buffers of the two processes. Though 
there are many communication constructs to send and receive messages, they are not 
necessarily atomic. It is shown in [7] that all such constructs can be expressed as some 
combination of one of the following primitive events. 

1. POST-SEND, abbreviated PS, is a send event that initiates a message send to the 
destination process, and can complete even before the message is copied out of the 
sender's buffer. The set of all PS events is PS.  

2. WAIT-FOR-BUFFER-RELEASE, abbreviated WB, waits for the message to be 
copied out of the sender's buffer. Thus, it is a receive event at which it receives 
an acknowledgement from the channel that the message has been received by the 

channel. The set of all WB events is WI3. 
3. WAIT-FOR-SEND-TO-BE-MATCHED, abbreviated WSM, is a receive event that 

waits for an acknowledgement from the channel that the destination process has 
received the message. The set of all WSM events is W S . M .  

4. POST_RECEIVE, abbreviated PR, is a send event that requests the channel t~ deliver 
to it any incoming message that matches the parameters and the sender-id specified. 
This event can complete before the received message is stored in the receive buffer 
specified. The set of all PR events is PR,. 



499 

5, WAIT-FOR-RECEIVE-TO-BE-MATCHED, abbreviated WRM, is a receive event 
that completes only after the incoming message has been placed in the specified 
receive buffer. The set of all WRM events is WR.A4. 

The events in PS,  WB, WSA4, PTr and WTCA4 occur on process nodes. In order 
that the computation can progress, we also need to model and identify events at channel 
nodes, by viewing each channel as an active node. For each PS and PR event (which are 
send events) on a process node, there exists a correspondingreceive event on the channel 
node. For each WB, WSM and WRM event (which are receive events) on a process node, 
there exists a corresponding send event on the channel node. The following definition 
captures this relation. 

Definition 2 Ire is a SD or RC event, then match(e) is re~spectively the RC or SD event 
corresponding to the message that was sent at e. 

match(e) exists and is unique. (Its definition can be extended to multicasts.) Blocking 
PR WRM (=comp(PR)) 

match(PS) match(WB) l match(WSM) 

PS WB (=comp(PS)) WSM (=comp(PS)) 

�9 initial and final dummy events -------~time 

FII~. 1. Message Communication Events at the Finest Level of  Atomicity. 

and nonblocking, as welt as synchronous and asynchronous sends and receives can be 
executed using the above primitive events [3, 7]. 

Figure 1 illustrates the effects of events PS, WB, WSM, PR and WRM, as well as 
Definition 2, by showing the message transfer from process / to process j on channel 
cq. The message send initiated by the PS event could complete by either the WB event 
or the WSM event. Although both WB and WSM are shown in the figure, in practice at 
most one of them would be used. The notation comp(PS) and comp(PR) for the events 
will be explained subsequently by Definition 4. 

Ad~,t, the set of elementary events in Sdi,t, can now be defined using disjoint sets. 

- Adi,t = 79S U 14213 U }/YS./t4 LJ 797d O WTiM [.J {match(eS) : P S  E PS}  
LJ {match(W'B) : W B  E W~} U {match(WSM) : W S M  E }/VSM) U 
{match(PR) : P R  E 79Tr U {match(WRM) : W R M  E WT~M} U zA/'. 

The following decomposition of,Adist shows how the set is partitioned orthogonally to 
the above into internal events, send events, and receive events: 

- SI)dist = PS  U P ~  U {match(WB) : W t Y  C WB)  U {match(WSM) : 
I/V,5'M E WSA4} U {match(WRM) : W R M  E WT~M} 



500 

- "R.Cdi,t = 14218 U ~V,gM LJ V~7~M [.J {match(PS)  : P S  E P S }  LJ {ma tch (PR)  : 
P R  E PTt} 

- I N a ~  = I N  

We can now define Sai,~, the system execution at the finest level of atomicity in terms 
of the semantic model of (E, <). 

Dellnition 3 System execution Sdi,t - (Aai~, <a~t}, where #ei~t(Sdi,t ~ Sdi,O is 
a 1-I identity mapping. The semantic model o f  Sat** is (E, <), where .Asi~,t is E and 
<ai~ is the causality relation on Au~,t. 

From Definition 3, it follows that Saint satisfies- [Property P 1 :] Atoms of.Aai,t partition 
events (atoms) in E, and [Property P2:] (.Aaist, <dist) is a poset. 
Applications: Complex communication constructs for specific communication styles, 
such as remote procedure calls (RPC) [2], conversations or dialogs [3], and messaging 
and queuing constructs, can be designed using PS, WB, WSM, PR, and WRM events of 
Sdi~. The primitive events Of 3dist Can provide a yardstick for evaluating the flexibility 
of network programming style permitted by complex communication constructs. An- 
other application is the design ofnonblocking asynchronous programs at the application 
layer that use blocking synchronous communication at the transport layer between their 
output and input buffers. The synchronous communication between the sender's output 
buffer and the receiver's input buffer is done by a transport level acknowledgement. 
A specific example of this application is the implementation of causal ordering among 
message unicasts [ 18] without the application program blocking. 

3.2 Send and Receive Constructs 
Complex message send and receive events that atomically execute high-level com- 
munication constructs, e.g., constructs for various flavors of RPC [2] or the CPI-C 
communications programming interface [3], provide a higher level of abstraction than 
the primitive send and receive events ofSdi~.  A system execution at this level of atom- 
icity, denoted SsR, will be defined in terms of system execution Saist. Only process 
nodes are considered in the SsR view. 

Observe that in Sd~,,a receive initiated by aPR event completes at the corresponding 
WRM event. Similarly~ a send initiated by a PS event completes at the corresponding 
WB or WSM event. Based on this observation, we define the complement, (abbreviated 
eomp), of these events to define the relation between events at a process node that 
complement other events on the same process node. The eomp relation, along with 
the match relation (Definition 2) will be used to group events in Sdi~t together at the 
coarser level of atomicity Ssn. 

Definition 4 comp( e ) is defined as.follows [7]: 

1. I f  e is a PS event, then eomp(e) is the corresponding WB or WSM event, and 

viee-versa. 
2. I f  e is a PR event, then comp(e) is the corresponding WRJl4 event, and vice-versa. 

Any send or receive event e on a process node in Sdi~t identifies the set { e, eomp(e), 
match(e),  match(comp(e))  ) - t h i s  set will form an atomic event in Ssn .  



501 

Definition 5 System execution Ssn = (Ash,  <sn) is defined by a mapping #sn  : 
Ssn , Sdi.~t as follows: 

1. A s h  = Z.Mdi,t [.J {{e, match(e), comp(e), match(comp(e) ) } : e E (PS [.J WTg.M)} 
2. For any Ash  E Ash,  define key_member(Ash) as follows: 

- key_mcmber(Asn) a~f a P S  event in Ash ,  ifaPS event belongsto Ash 

-- key_mernber( As R ) ~e_.$ a W R M  event in Ash,  ifa WRM event belongsto Ash 

- key_member(Ash) d j  a I N  event in INsR, ifalNa,~t eventbelongsto Ash 
Then, Ash  <sn A'sn iffkey_member(Asn) <dist key_member(A'sn), 

It is shown in [13] that each event Ash in Ash has a uniquely defined k e y_me tuber(Ash) 
which is a PS, WRM, or IN event of.adist. Note that even if Ash  <sn A~sn, it may be 
that 3 Adist E ASR 3 Atdist E AISR " A'ai,t <dist Adi,t. 

Theorem 1 (PI:) The atoms of  Adi,t are partitioned into atoms in Ssn. 

The proof of Theorem 1 [13] also shows that A s h  can be partitioned into S7)sn,  
R.Csn, and IA/'sn, where: 

- SiDsn = { AsR E Ash  : key_member(AsR) E P S  } 
- TZCsn = { Ash  E Ash  : key_member(Ash) E W~A.'I } 
- :T.Afsn = { Ash  E .Ash : key-member(Ash) C ZAf } 

Theorem 2 (P2:) The atoms in .AsR ordered by <sR form poset (,4s1~, <sn). 

The following corollary is used to analyze system executions STL in Section 3.4. 

Corollary 1 Cgsn, the set of  consistent cuts of poset (Ash,  <Sn), forms a sublattice 
of  gsn, the set of all cuts of(.Asn, <sn). (from Theorem 2 and [17]). 

Applications: There are many applications for which each complex send and receive 
construct, and internal event in the computation is explicitly modeled as a single event 
at the process nodes in Ssn.  Global state and snapshot definition and computation 
[5], concurrency measures for a system execution [6, 9], clock systems for distributed 
computations [ 10, 14, 17], transfer of knowledge, checkpointing and recovery [4, 21 ], 
leader election, mutual exclusion algorithms [20], and distributed deadlock detection 
[12] all deal with send and receive events in the Ssn view of the system execution. 

3.3 Reactive Events 
A coarser atomicity of events than that of SDsn ,  RCsn or INsn  events is useful 
for applications such as termination detection [16] and debugging [8], even though it 
does not reflect all the concurrency of the original execution. Events at this coarser 
level of atomicity are reactive because the computation in an event begins in reaction 
to a received message. Thus, a reactive event begins when a node receives an external 
message, and then it does local processing and may send messages. The reactive event is 
defined to end when either: (i) an application-dependent locally determinable condition 

becomes tree at a distinguished auxiliary event C(r or (it) just before a message 
is received after this event has sent a message, in the Ssn view of  the execution. We 
define system execution S ~ r  in terms of system execution Ssn and using regular 
expressions over SDsn,  RCsn and 1Nsn events, and the auxiliary event C(r 



502 

Definition 6 System execution S~a~t = (A~s~,  < ~ t )  is defined by a mapping 
~ : S ~  ~ S s R  as fol lows: 

IA~C,I AX,2 AX,3 1. Reactive atoms at any node x form a sequence \ ~ , , . ~ ,  ~ . ~ ,  ~ ~ ,  . . .) where: 

~ ,  1 = the maximal sequence o f  events that belong to ~4,sn and occur on node 
x, that satisfy the reguIar expression ( • ~ ( I N s a l R C  s n ) * ( I N s R I S D s n )* (C(r 
Areact, i > 1 is the maxima/sequence o f  events that belong to .AsR and occur 
on node x, that satisfy the context-sensitive regular expression:" 

x,i--I x,i _ x,i--I * I * C * A~e~tA~ac , -Ar~t (RCsn( INsn[RCst~)  ( Nsn[SDsn) ( (r 

x,i ith A ~  is the reactive event on node x. The superscripts/subscript are dropped if  
there is no ambiguity. Figure 2 shows the reactive events in a distributed execution. 

Ai,~ Ai, 2 Ai,3 

" . k l  i 2  -- 

_A _ I I  

. A" __ 

I boun:ry ef reactive event m time 

i,1 ~ A i'2 ~ A i,3 

Fig. 2. Reactive Events. 

Theorem 3 (P|:) The atoms qf Asn are partitioned into atoms in Srsact. 

Theorem 4 (P2:) The atoms in A~sa~ ordered by <re~ct form poset (.A~,c~, <~e~). 

It follows that no event in a l , . ~  has both an edge that goes to another event in . A ~  
and an incoming edge from that other event. 
Applications: Computation termination [16] can be modeled by reactive events as 
follows. Consider a system in which: (i) A process node is either idle or active. (ii) An 
idle process may have only a R C s R  event, at Which time the process becomes active. 
(iii) An active process can become idle any time. A computation is terminated i f  each 
process is idle and the channels are empty. We express this as follows. Define r as "there 
is no A s R  event waiting to occur." A process is idle if the reactive event has ended 
and presently there is no event waiting to occur, i.e., r holds. A channel is empty if the 
number o f m a ~ c h ( P S )  events and m a l c h ( W I ~ M )  events is the same in the Sd~.~ view. 

A message race occurs at an R C s n  event if it can receive one of  multiple messages. 
Debugging based on controlled execution of  message races examines the possible 



503 

executions corresponding to one space-time diagram [8]. The definition of  reactive 
events (Defn. 6) for debugging does not use any auxiliary event C(~b), i.e., c}=false. A 
message that could be received in a reactive event A may have been sent in a reactive 
event A' such that A' < A V (A' r A/~ A ~ A'). For e.g., in Figure 2, i fA  is A t'2, 
then A t is any of A i,~ , A i,2, A i '3 , A L1 , A k ' l  , A ~'2, and A l ' l  . During controlled (replay) 
executions for event A, such events A t are forced to complete before A begins, before 
permuting the order of delivery of racing messages to RCsn  events in A. 

3.4 Events between Transitless Cuts 

System executions at the next higher level of atomicity STL are defined in terms of 
Ssn.  Events at this level of atomicity belong to multiple process nodes. 

Definition 7 A transitless cut T L C s n  is a consistent cut in (AsR, <sn) such that the 
only ordering edges between it and the rest of  A s h  are local edges at process nodes 
(defined in Section 2). 

The system state after the execution of events in a transitless cut is a transitless 
global state. Such states have the property that the effects of the past computation are 
contained in only local edges of process nodes in a Ssn  view of the execution, viz., the 
process states, and no messages are in transit. We examine this level ofatomicity using 
Corollary 1 [ 17] and properties of lattices, unlike previous work (see Applications). 

Lemma 1 T s s n, the set of  transitless cuts of  a poset (Ash ,  < s n ),.forms a sub tattice 
of  gC s n, the set of  all consistent cuts o f (Ash ,  < s n ), with operations [.J and [7. 

�9 initial and final dummy events ~_~ lime 

Fig. 3. Events between Transitless Global States. 

From Lemma 1, note that each member of lattice T s  is a set of events in A s h .  
Henceforth, a member of Tf-.Csn will be denoted by TLC.  For any two comparable 
elements T L C  ~ and T L C  z of a lattice, length[TLC;, T L C  ~] is the length of the 
longest maximal chain in the lattice between T L C  ~ and TLC" .  We now define the 
system execution STt, for transitless cuts using the lattice TECsn  and SSR. 

Definition 8 System execution STL = (.ATL, <TL) is defined by a mapping ~Tt. " 
STL ' Ssn  as follows: 



504 

1. .ATL = { (T L C  ~ - T L C  z) : T L C  u , T L C  t E 7-s A length[ TLCz, TLCU] = 
z} 

2. <TL is the transitive closure o f  <,lc where ( T L C  u - T L C  t) <~tc ( T L C  '~ - T L C  'l) 
i f f  (Be E ( T L C  u - TLCI) ,  3e' E ( T L C  '~' - T L C  'l) : e <sR e'). 

Events in ATL change the system state from one transitless state to another. Events in 
.4TL are defined only in terms of the set difference of two elements (of the form T L C  ~' 
- T L C  t) of lattice T s  that are separated by a length of one. The same event may 
be expressible as the difference of more than one pair of transitless cuts. This property 
is important and is used in the proof of Theorem 6. Figure 3 shows the events in STL. 
Each event in .ATL is marked by encircling the elements of .Ash to which #TL maps it. 
There is an initial dummy event, and a final dummy event for terminating computations. 
All the edges of (.Ash, <sn)  entering and leaving each event ATL in .ATL are local 
edges. An event ATL signifies that the computation it represents is affected only by 
the incoming local edges on processes in a Ssn  view, and it affects the rest of the 
computation only through outgoing local edges on processes in the Ssn  view. 

Theorem 5 (PI:) The atoms o f  .AsR are partitioned into atoms by STL. 

Theorem 6 (P2:) The atoms in .ATL ordered by <TL form poset (.ATL, <TL ). 

Applications: Transitless states are used in applications like fault-tolerance, check- 
pointing/recovery [4, 11, 21], synchronization [ 19], and transactions [4, 11]. Transitless 
states were forced in [11, 19] for synchronization and checkpointing/recovery. Trans- 
action systems create transitless states at the end of each transaction using commit 
protocols [4]. In these applications, the transitless states along the boundaries of only 
certain events in STL are recorded; in case of failure, the most recent recorded tran- 
sitless state is restored for recovery. Transitless states and their applications were also 
examined in [1]. Transitless states can also be shown to be useful to reset vector clocks 
[10, 17]; after reset at a transitless state, wrong inferences about causality cannot be 
drawn due to messages with high timestamp values sent before reset. 

4 Discussion 
We presented a unifying framework for expressing and analysing events at various 
levels of atomicity in distributed computations. In the framework, events at a coarser 
level of atomicity are defined in terms of events at a finer level of atomicity using 
hierarchical composition and lattices. The global states at various levels of atomicity 
correspond to embedded lattices of global states. The framework was applied to four 
levels of atomicity here, and can be applied to parallel system executions as shown in 
[13]. The system model can be varied to allow message losses and multicasts as in [ 13]. 

The system execution at every level of atomicity was shown to have two properties. 
[Property P1]: If  S~ is defined in terms of S~, then the atoms in S~ are partitioned into 
atoms in Sty. [Property P2]: the atoms at any level ofatomicity form a poset ordered by 
an ordering relation for that level of atomicity. Therefore, any result or proof that applies 
to one level of atomicity and is based on the above properties applies to all levels of 
atomicity. For example, the proof for execution Ssn  that synchronous communication 
between processes guarantees causal ordering of message unicasts applies without 



505 

change to the proof for execution Sd~s~ that asynchronous communication between 
processes, with synchronous communication over chamaels between the (infinite) output 
and input process buffers, respectively, guarantees causal ordering of message unicasts 
[18]. A second example is the reuse of  concurrency measures described in SsR [6, 9] for 
gauging concurrency of  incremental debugging in S,.~ct; this latter measure is useful 
to determine the number of  nondeterministic and deterministic replays. 

References 
1. Ahuja, M., Kshernkalyani, A. D., Carlson, T.: A Basic Unit of Computation in Distributed 

Systems. Proc. 10th IEEE Int. Conf. Distrib. Comput. Systems (1990) 12-19 
2. Ananda, A., Tay, B., Koh, E.: A Survey of Asynchronous RPC. ACM Operating Systems 

Review (1992) 
3. Amette, W., Kshemkalyani, A.D., Riley, W., Sanders, J., Schwaller, P., Terrien, J., Walker, 

J.: CPI-C: An API for Distributed Applications. IBM Systems Journal 34(3) (1995) 501-518 
4. Bemstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in 

Database Systems, Addison-Wesley (1987) 
5. Chandy, K.M., Lamport, L.: Distributed Snapshots: Global States of a Distributed System. 

ACM Trans. Comput. Systems 3(1) (1985) 63--75 
6. Charron-Bost, B.: Measure of Parallelism of Distributed Computations. Proc. STACS 89, In 

LNCS 349 Springer-Verlag (1989)434-445 
7. Cypher, R., Leu, E.: Repeatable and Portable Message-Passing Programs. Proc. 13th ACM 

Symp. on Principles of Distributed Computing (Aug. 1994) 22-31. 
8. Damodaran-Kamal, S., Francioni, J.: Nondeterminacy:Testing and Debugging in Message 

Passing Parallel Programs. ACM/ONR Workshop on Debugging (1993) 118-128 
9. Fidge, C.A.: A Simple Run-Time Concurrency Measure. The Transputer ha Australasia, Eds. 

T. Bossomaier, T. Hintz, J. Hulskamp, IOS Press (1990) 92-101 
10. Fidge, C.A.: Timestamps in Message-Passing Systems That Preserve Partial Ordering. Aus- 

tralian Computer Science Communications 10(1) (Feb. 1988) 56~6 
11. Fisher, M., Griffeth, N., Lynch, N.: Global States in a Distributed System. IEEE Trans. 

Software Engineering 8(3) (May 1982) 198-202 
12. Kshemkalyani, A.D., Singhal, M.: On Characterization and Correctness of Distributed Dead- 

lock Detection. Journal of Parallel and Distributed Computing 22(1) (July 1994) 44-59 
13. Kshemkalyani, A.D.: A Unifying Framework for Viewing Atomic Actions in Parallel and 

Distributed Systems. IBM Tech. Rep. TR29.2014 (1995) 
14. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Communi- 

cations of the ACM 21(7) (July 1978) 558-565 
15. L. Lamport.: On Interprocess Communication, Part I: Basic Formalism, Part II: Algorithms. 

Distributed Computing, 1 (1986) 77-101 
16. Mattem, F.: Algorithms for Distributed Termination Detection. Distributed Computing 2 

(1987) 161-175 

17. F. Mattem, Virtual Time and Global States of Distributed Systems. Parallel and Distributed 
Algorithms, North-Holland (1989) 215-226 

18. Mattem, F., Ffmfrocken, S.: A Nonblocking Lightweight Implementation of Causal Order 
Message Delivery. In LNCS 938 Spl'inger-Verlag (1995) 197-213 

19. Randell, B.: System Structure for Software Fault Tolerance. IEEE Trans. Software Engg. 
1(2) (1975) 220-232 

20. Singhal, M.: A Taxonoray o fDistdbuted Mutual Exclusion. Journal o fParallel and Distributed 
Computing, 18(1) 1993 94-101 

21. Strom, R.E., Yemini, S.: Optimistic Recovery in Distributed Systems. ACM Trans. on Com- 
puter Systems 3(3) (1985) 204-226 


