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Abst rac t .  In a distributed system, high-level actions can be modeled by 
nonatomic events. Synchronization relations between distributed nonatomic 
events have been proposed to allow applications a fine choice in specify- 
ing synchronization conditions. This paper shows how these fine-grained 
relations can be used for various types of synchronization and coordina- 
tion in distributed computations. 

1 I n t r o d u c t i o n  

High-level actions in several distributed application executions are realistically 
modeled by nonatomic poset events (where at least some of the component  
atomic events of a nonatomic event occur concurrently), for example, in dis- 
tr ibuted multimedia support, coordination in mobile computing, distributed de- 
bugging, navigation, planning, industrial process control, and virtual reality. It 
is important  to provide these and emerging sophisticated applications a fine level 
of granularity in the specification of various synchronization~causality relations 
between nonatomic poset events. In addition, [20] stresses the theoretical and 
practical importance of the need for such relations. Most of the existing lit- 
erature, e.g., [1,2,4,5,7,  10, 13, 15, 18-20] does not address this issue. A set of 
causality relations between nonatomic poset events was proposed in [11, 12] to 
specify and reason with a fine-grained specification of causality. This set of rela- 
tions extended the hierarchy of the relations in [9, 14]. An axiom system on the 
proposed relations was given in [8]. The objective of this paper is to demonstrate  
the use of the relations in [11, 12]. 

The following poset event structure model is used as in [4,9,10,12, 14-16, 
20]. (E, -<) is a poset such that E represents points in space-time which are the 
primitive atomic events related by the causality relation -< which is an irreflex- 
ive partial ordering. Elements of E are parti t ioned into local executions at a 
coordinate in the space dimensions. In a distributed system, E represents a set 
of events and is discrete. Each local execution Ei is a linearly ordered set of 
events in parti t ion i. An event e in parti t ion i is denoted ei. For a distributed 
application, points in the space dimensions correspond to the set of processes 
(also termed nodes), and Ei is the set of events executed by process i. Causal- 
ity between events at different nodes is imposed by message communication.  
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High-level actions in the computation are nonempty subsets of E.  Formally, if g 
denote the power set of E and .4 ( r  0) _C (g - 0), then each element A of A is 
termed an interval or a nonatomie event. It follows that  if A A Ei r ~, then (A 

Ei) has a least and a greatest event. ,4 is the set of all the sets that  represent 
a higher level grouping of the events of E that is of interest to an application. 

Table 1. Some causality relations [9]. 

Relation r 
R1 

Expression for r(X, Y)-] 

Vx E XVy  E Y,x -~ y 
Vy E YVx E X , x  -~ y R11 

R2 Vx E X 3 y  E Y, x -~ y 
R2' 3y E YVx E X,  x ~ y 
R3 3x E XVy  E Y, x -~ y 
R3 ~ Vy G YBx G X,  x -~ y 
R4 3x E X 3 y  E Y, x ~ y 
R4' 3y E Y3x  E X,  x -~ y 

The relations in [9] formed an exhaustive set of causality relations to express 
the possible interactions between a pair of linear intervals. These relations R1 - 
R4 and RI '  - R4 ~ from [9] are expressed in terms of the quantifiers over X and Y 
in Table 1. Observe that  R2 ~ and R3 ~ are different from R2 and R3, respectively, 
when applied to posers. Table 1 gives the hierarchy and inclusion relationship of 
the causality re la t ions / t l  -/~4. Each cell in the grid indicates the relationship of 
the row header to the column header. The notation for the inclusion relationship 
between causality relations is as follows. The inclusion relation "is a subrelation 
of" is denoted 'C'  and its inverse is 'B' .  For relations rl  and r2, we define r l  II 
r2 to be (rl ~ r2 A r2 ~ rt).  The relations { R1, R2, R3, R4 } form a lattice 
hierarchy ordered by _.  

Table 2. Inclusion relationships between relations of Table 1 [9]. 

relation of row 1/eader lml/~21 fi31R411 
to column header I / I 

R1 = ~ t  C 

m tlt 2 R3 ~ II = 
...... R4 ~ -7 

The relations in [9] formed a comprehensive set of causality relations to ex- 
press all possible interactions between a pair of linear intervals using only the 
-~ relation between atomic events, and extended the partial hierarchy of rela- 
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tions of [14]. However, when the relations of [9] are applied to a pair of poset 
intervals, the hierarchy they form is incomplete. Causality relations between a 
pair of nonatomic poset intervals were formulated by extending the results [8, 
9] to nonatomic poset events [11, 12]. The relations form a "comprehensive" set 
of causality relations between nonatomic poset events using first-order predicate 
logic and only the -4 relation between atomic events, and fill in the existing par- 
tial hierarchy formed by relations in [9, 14]. A relational algebra for the relations 
in [11, 12] is given in [8]. Given any relation(s) between X and Y, the relational 
algebra allows the derivation of conjunctions, disjunctions, and negations of all 
other relations that are also valid between X and Y, as well as between Y and 
X. 

Section 2 reviews the hierarchy of causality relations [11, 12]. Section 3 gives 
the uses of each of the relations. Some uses of the relations include model- 
ing various forms of synchronization for group mutual exclusion, initiation of 
nested computing, termination of nested processing, and monitoring the start 
of a computation. Section 4 gives concluding remarks. The results of this paper 
are included in [8]. 

2 R e l a t i o n s  b e t w e e n  N o n a t o m i c  P o s e t  E v e n t s  

Previous work on linear intervals and time durations, e.g., [1,2, 4, 5], identifies 
an interval by the instants of its beginning and end. Given a nonatomic poset 
interval, one needs to define counterparts for the beginning and end instants. 
These counterparts serve as "proxy" events for the poset interval just as the 
events at the beginning and end of linear intervals such as time durations serve 
as proxies for the linear interval. The proxies identify the durations on each 
node, in which the nonatomic event occurs. Two possible definitions of proxies 
are (i) L x  = {el E X ] Ye~ E X ,  ei __. e~} and Ux = {el E X ] Ye~ E X ,  ei ~" e~}, 
and (ii) L x  = {e E X lye '  E X,e  ~r e'} and Ux = {e E X l ye '  E X,e  ;~ e'). 
Assume that  one definition of proxies is consistently used, depending on context 
and application. Fig. 1 depicts the proxies of X and Y. 

There are two aspects of a relation that  can be specified between poset inter- 
vals. One aspect deals with the determination of an appropriate proxy for each 
interval. A proxy for X and Y can be chosen in four ways corresponding to the 
relations in {R1, R2, R3, R4). From Table 1, it follows that  these four relations 
form a lattice ordered by U. The second aspect deals with how the atomic ele- 
ments of the chosen proxies are related by causality. The chosen proxies can be 
related by the eight relations R1, _R1/, R2, R2 ~, R3, R3 ~, R4, R41 of Table 1, 
which are renamed a, a ~, b, b ~, c, c ~, d, d ~, respectively, to avoid confusion with 
their original names used for the first aspect of specifying the relations between 
poset intervals. The inclusion hierarchy among the six distinct relations forms a 
lattice ordered by ___; see Table 3. 

The two aspects of deriving causality relations, described above, are combined 
to define the relations. The lattice of relations { RI*, R2*, R3*, R4* ) between 
proxies of X and Y, and the lattice of relations { a, a ~, b, b ~, c, d ,  d, d t } between 
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F ig .  1. Poset events X and Y and their proxies. 

T a b l e  3. Full hierarchy of relations of Table 1 [9]. Relations R1, RI ' ,  R2, R2',  R3, 
R3 t, R4, R4 t of Table 1 are renamed a, a t, b, b t, c, c', d, d', respectively. Relations in 
the row and column headers are defined between X and Y. 

Relation names: 
its.quantifiers forx -~ y 

~l,a (--nl',a'~ (VxV,j(= v,jVx) 
l'~2,b: Vx3y 

R2',b': 3yVx 
I~3,c: 3xVy 

Rl,a (=Rl',a'):[R2,bi[ n2',b' :lR3,c:[n3',c' :ln4,d (=R4',d'): 
v~v~ (=v,jv!:) iWa~l a~w p.v~ I v~,3. 13~3~ (=3~3x) 

.7" 
7 

-1 
113 I,d; Vy3x 

R4,d (=R4r,d'): ' 3x3yi-- '  3y3x) 

" ~_ II il c 
c = II il c 
II II = c ~ ..... 
!1 II ~_ = c 
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b' b R2b' R2b 

3 R3c R3c' 

Fig. 2. Hierarchy of relations in [11, 12]. 

the elements of the proxies, give a product lattice of 32 relations over .A • .4 
to express r(X,Y).  The resulting set of poset relations, denoted 7~, is given 
in Table 4. The relations in T~ form a lattice of 24 unique elements as shown 
in Fig. 2. 7~ is comprehensive using first-order predicate logic and only the -~ 
relation between atomic events. Relation R?# (X ,  Y) means that  proxies of X 
and Y are chosen as per ?, and events in the proxies are related by ~ .  The two 
relations in [14], viz., > and - -  -% correspond to Rla and R4d, respectively, 
whereas the relations in [9] and listed in Table 1 correspond to the these relations 
as follows: RI=RF, R2, R2 ~, R3, R3 ~, R4=R4 ~ correspond to Rla, R2b, R2E, 
R3c, R3c ~, R4d, respectively. 

3 S i g n i f i c a n c e  o f  t h e  R e l a t i o n s  

The hierarchy of causality relations is useful for applications which use nonatomic- 
ity in reasoning and modeling and need a fine level of granularity of causality 
relations to specify synchronization relations and their composite global pred- 
icates between nonatomic events. Such applications include industrial process 
control applications, distributed debugging, navigation, planning, robotics, di- 
agnostics, virtual reality, and coordination in mobile systems. The hierarchy 
provides a range of relations, and an application can use those that  are relevant 
and useful to it. The relations and their composite (global) predicates provide a 
precise handle to express a naturally occurring or enforce a desired fine-grained 
level of causality or synchronization in the computation. A specific meaning of 
each relation and a brief discussion of how it can be enforced is now given. In 



Table 4. Relations r(X, Y) in 7~ [11,12]. 

Relation Relation definition Relation Relation definition 
r( X, Y) specified by r( X, Y) specified by 

quantifiers for x -4 y, quantifiers for x -4 y, 
w h e r e x � 9 1 4 9  w h e r e x � 9 1 4 9  

Rla Vx �9 UxVy �9 Ly R3a Vx �9 �9 Ly 
Rla' (=R!a) Vy �9 LyYx �9 Ux R3a' (=R3a) Yy �9 LyVx �9 Lx 

Rib Vx �9 Ux3y �9 Ly Vx �9 Lx3y E L y  
Rib' 
Rlc 

By �9  LyVx �9 Ux 
Bx �9 UxVy �9 Ly 

R3b 
R3b' 
R3c 
R3c' 

3y �9 LyVx �9 Lx" 
3x �9 Lx'iy �9 Ly 
Vy �9 Ly3X �9 Lx Rlc' Vy E Lygx �9 Ux 

Rld Bx �9 Ux~y E Ly R3d 3x E Lx3y �9 Lv 
Rld' (=Rld) By �9 LyBx �9 Ux R3d' (--R3d) By �9 LyBx �9 Lx 

R2a Vx �9 UxVy �9 Uy R4a 'r �9 LxVy �9 Uy 
R2a' (=R2a) Vy �9 UyVx �9 Ux R4a' (=.R4a!,, Vy �9 VyVx �9 Lx 

R2b Vx �9 Ux3y �9 Uy ~/X �9 Lx3y �9 Uv 
3y �9 UvVx E Ux 
3x �9 UxVy E Uy 
Vy E Uy~X �9 UX 
3x �9 Ux3y E Uv 
3y E Uv3x E Ux 

R2b ~ 
R2c 

R4b 
R4b r 
R4c 
R4d 
R4d 

R4d' (=R4d) 

R2c' 
R2d 

m e  (=R2d)] 

3y E UyVx �9 Lx 
3x �9 LxVy �9 Uy 
Yy E Uy3a �9 Lx 
3x �9 L x 3y �9 Uy 
3y E Uv3x �9 Lx 
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the following discussion, the "X computation" and "Y computation" refer to 
the computation performed by the nonatomic events X and Y, respectively. A 
proxy of X is denoted X. 

We first consider the significance of the groups of relations R*a(X, Y), R*b(X, Y), 
R*b'(X, Y),  R*c(X, Y),  R*c'(X, Y),  and R*d(X, Y).  Each group deals with a 
particular proxy X and Y. 

- R*a(X, Y): All events in ]Y know the results of the X computation (if any,) 
upto all the events in X. This is a strong form of synchronization between 
X and Y. 

- R*b(X,Y):  For each event in )f ,  some event in ~" knows the results of the X 
computation (if any,) upto that event in _~. The Y computation may then 
exchange information about the X computation upto X, among the nodes 
participating in the Y computation. 

- R*b'(X,Y):  Some event in ]Y knows the results of the X computation (if 
any,) upto all events in )f.  These relations are useful when it is sufficient for 
one node in N? to detect a global predicate across all nodes in N 2 .  If  the 
event in ~z is at a node that  behaves as the group leader of N]~, then it can 
either inform the other nodes in N~ or make decisions on their behalf. 

- R*c(X,Y) :  All events in 1~ know the results of the X computation (if any,) 
upto some common event in )(. This group of relations is useful when it 
is sufficient for one node in N2 to inform all the nodes in NIp of its state, 
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such as when all the nodes in N t have a similar state. If the node at which 

the event in X occurs has already collected information about the results/  
states of the X computation upto )~ from other nodes in N 2 (thus, tha t  
node behaves as the group leader of )() ,  then the events in 17 will know the 
states of the X computation upto X.  

- R*cI(X, Y): Each event in Y knows the results of the X computat ion (if 
any,) upto some event in )( .  If it is important  to the application, then the 
state at each event in )~ should be communicated to some event in I 7. 

- R*d(X, Y): Some event in 17 knows the results of the X computat ion (if 
any,) upto some event in .~. The nodes under consideration at which the 
events in ]? and X, respectively, occur may be the group leaders of N~. and 
N2,  respectively. This group leader of N)~ may have collected relevant state 
information from other nodes in N~,  and conveys this information to the 
group leader of N? ,  which in turn distributes the information to all nodes 
in N? .  

The above significance of each group of relations applies to each individual re- 
lation of that  group. The specific use and meaning of each of the 24 relations in 
7~ is given next. We do not restrict the explanation that  follows to any specific 
application. 

1" (X, Y): This group of relations deals with Ux and Ly .  Each relation signifies 
different degree of transfer of control for synchronization, as in group mutual  

~xclusion (gmutex), from the X computation to the Y computation.  

- R la (X ,Y ) :  The Y computation at any node in Ny begins only after that  
node knows that  the X computation at each node in Nx  has ended, e.g., 
a conventional distributed gmutex in which each node in Ny waits for an 
indication from each node in Nx  that  it has relinquished control. 

- R lb (X ,Y) :  For every node in Nx,  the final value of its X computat ion is 
known by (or its mutex token is transferred to) some node in Ny before 
that  node in Ny begins its Y computation.  Thus, nodes in Ny collectively 
(but not individually) know the final value of the X computat ion before 
the last among them begins its Y computation.  This is a weak version of 
synchronization/gmutex. 

- RlbI(X, Y): Before beginning its Y computation,  some node in Ny knows the 
final value of the X computation at each node in Nx.  This is a weak version 
of synchronizat ion/gmutex (but stronger than Rlb) with the property that  
at least one node in Ny cannot begin its Y computat ion until the final value 
of the X computation at each node in Nx  is known to it. 

- R lc (X ,Y ) :  The final value of the X computat ion at some node in N x  is 
known to all the nodes in Ny before they begin their Y computation.  This 
is a weak form of synchronization/gmutex which is useful when it suffices for 
a particular node in Nx to grant all the nodes in Ny gmutex permission to 
proceed with the Y computation; this node in Nx  may be the group leader 
of N x ,  or simply all the nodes in f i x  have the same final local state of the 
X computat ion within this application. 
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- R l d ( X ,  Y): Each node in Ny begins its Y computat ion only after it knows 
the final value of the X computation of some node in Nx .  This is a weak 
form of synchronization/gmutex (weaker than Rlc) which requires each node 
in ivy to receive a final value (or gmutex token) from at least one node in 
Nx  before starting its Y computation. This relation is sufficient for some 
applications such as those requiring that  at most one (additional) process 
be admitted to join those in the critical section when one process leaves it. 

- Rld (X ,Y ) :  Some node in Ny begins its Y computation only after it knows 
the final value of (or receives a gmutex token from) the X computat ion at 
some node in Nx.  This is the weakest form of synchronization/gmutex.  

R2*(X,Y):  This group of relations deMs with Ux and Uy. The relations can 
signify various degrees of synchronization between the termination of computa-  
tions X and Y, where X is nested within Y or X is a subcomputat ion of Y. 
Alternately, Y could denote activity at processes that  have Mready spawned X 
activity in threads, and Y can complete only after X completes. 

- R2a(X, Y): The Y computation at any node in Ny can terminate only after 
that  node knows the final value of (or termination of) the X computat ion 
at each node in Nx.  This is a strong synchronization before termination,  
between X and Y. 

- R2b(X,Y): For every node in Nx,  the final value of its X computat ion is 
known by at least one node in Ny before that  node in Ny terminates its Y 
computation.  Thus, all the nodes in Ny collectively (but not individually) 
know the final values of the X computat ion before they terminate their Y 
computation.  This is a weak synchronization before termination. 

- R2b'(X, Y): Before terminating its Y computation,  some node in Ny knows 
the final value of the X computation at all nodes in Nx.  This is a stronger 
synchronization before termination than R2b, wherein at least one node in 
Ny cannot terminate its Y computation without knowing the final state 
of the X computation at all nodes in Nx.  This suffices for M1 applications 
in which it is adequate for one node in Nv to detect the termination of 
the X computat ion at each node in Nx before that  node terminates its Y 
computation.  

- R2c(X,Y):  The final value of the X computation at some node in Nx is 
known to all the Ny nodes before they terminate the Y computation.  This 
is a weak form of synchronization. The pertinent node in Nx  could represent 
a critical thread in the X computation, or could be the group leader of N x  
that  represents the X computation at all nodes in Nx.  

- R2c'(X,Y):  Each node in Ny terminates its Y computat ion only after it 
knows the final value of the X computat ion at some node in Nx .  This is a 
weak form of synchronization before termination (weaker than R2c), but  is 
adequate when all the nodes in Nx  are performing a similar X computation.  

- R2d(X, Y): Some node in .IVy terminates its Y computat ion after it knows 
the final value of the X computation at some node in Nx.  This is a weak 
form of synchronization; however, if the concerned nodes in Nx  and Ny are 
the respective group leaders of the X and Y computations and, respectively, 
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collect/distributed information f rom/ to  their groups, then a strong form of 
synchronization can be implicitly enforced because when Y terminates, it is 
known to each node in Ny that  the X computat ion has terminated. 

R3*(X, Y): This group of relations deals with L x  and Ly.  The relations can 
signify various degrees of synchronization between the initiation of computat ions 
X and Y, where Y is nested within X or Y is a subcomputat ion of X.  Alternately, 
X could denote activity at processes that  have already spawned Y activity in 
threads. 

- R3a(X, Y): The Y computation at any node in Ny begins after that  node 
knows the initial values of the X computat ion at each node in N x .  This is 
a strong form of synchronization between the beginnings of the X and Y 
computations. 

- R3b(X, Y): For each node in Nx ,  the initial state of its X computat ion is 
known to some node in Ny before that node in Ny begins its Y computa-  
tion. Thus, all the nodes in N r  collectively (but not individually) know the 
initial state of the X computation. This synchronization is sufficient when 
the forked Y computations at each node in Ny are only loosely coupled and 
should not know each others' initial states communicated by the X com- 
putation; while at the same time ensuring that the initial state of the X 
computat ion at each node in N x  is available to at least one node in Ny 
before it commences its Y computation.  

- R3b~(X,Y): Before beginning its Y computation,  some node in Ny knows 
the initial state of the X computat ion at all the nodes in N x .  Thus the 
Y computation at this node can run a parallel X computat ion for fault- 
tolerance, or can be made an entirely deterministic function of the inputs to 
the X computation. The subject node in Ny can coordinate the Y compu- 
tation of the other nodes in Ny. This synchronization is weaker than R3a 
but stronger than R3b. 

- R3c(X, Y): The initial state of the X computat ion at some node in Nx is 
known to all the nodes in N r  before they begin their Y computat ion.  This 
is a weak synchronization; however, it is adequate when the subject node in 
N x  has forked all the threads that  will perform Y, and behaves as the group 
leader of X that initiates the nested computation Y. 

- R3cI(X,Y):  Each node in N r  begins its Y computation only after it knows 
the initial state of the X computat ion at some node in Nx.  Thus each node 
executing the computation Y has its Y computation forked or spawned by 
some node in N x  and its Y computat ion corresponds to a nested branch 
of X. The nodes in N r  may not know each others' initial values for the Y 
computation; the X computations at (some of) the N x  nodes have semi- 
independently forked the Y computations at the nodes in Ny.  

- R3d(X, Y): Some node in N r  begins its Y computat ion only after it knows 
the initial state of the X computation at some node in N x .  This is a weak 
form of synchronization in which only one node in N x  and one node in N r  
coordinate their respective initial states of their local X and Y computa- 
tions. However, if the node in N x  that  initiated the X computat ion forks off 
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the main thread for the Y computation, then this form of synchronization 
between the initiations of X and Y is adequate to have Y as an entirely 
nested computat ion within X. 

R4* (X, Y): This group of relations deals with Lx and Uy. The relations signify 
different degrees of synchronization between a monitoring computat ion Y tha t  
knows the initial vMues with which the X computat ion begins, and then the 
monitoring computat ion Y terminates. 

- R4a(X, Y): The Y computation at any node in Ny terminates only after 
tha t  node knows the initial values of the X computat ion at each node in 
Nx.  This is a strong form of synchronization between the start  of X and the 
end of Y. 

- R4b(X, Y): For every node in Nx,  the initial state of its X computat ion 
is known by at least one node in Ny  before that  node in Ny terminates 
its Y computation.  Even if there is no exchange of information in the Y 
computat ion about the state of the X computation at individual nodes in 
Nx,  this relation guarantees that when Y completes, the (initial) local states 
at each of the Nx nodes are collectively (but not individually) known by Ny. 

- R4b~(X, Y): Before terminating its Y computation,  some node in Ny knows 
the initial state of the X computation at all the nodes in Nx.  This node 
in Ny can detect if an initial global predicate of the X computat ion across 
the nodes in Nx is satisfied, before it terminates its Y computation.  If this 
node in N r  is a group leader, it can then inform the other nodes in Ny to 
terminate their Y computations. 

- R4c(X,Y): The initial state of the X computation at some node in Nx is 
known to all the nodes in Ny before they terminate their Y computat ion.  
This weak synchronization is adequate for applications where all the Nx  
nodes start  their X computat ion with similar values. Alternately, if the node 
in Nx behaves as a group leader, it can first detect the initial global state 
of the X computat ion and then inform all the nodes in Ny. 

- R4c'(X,Y): Each node in Ny terminates its Y computat ion only after it 
knows the initial state of the X computat ion at some node in Nx.  This is a 
weaker form of synchronization than R4c because the states of M1 nodes in 
Nx may not be observed before the nodes in Ny terminate their Y compu- 
tation. But  this will be adequate for applications in which each node in Nx 
is reporting the same state/value of the X computation,  and each node in 
Ny simply needs a confirmation from some node in Nx before it terminates 
its Y computation.  For example, a mobile host (an Ny node) may simply 
need a confirmation from some base station (an Nx  node) before it exits its 
Y computation.  

- R4d(X,Y): Some node in N r  terminates its Y computat ion after it knows 
the initial state of the X computat ion at some node in Nx.  This weak form of 
synchronization is sufficient when the group leader of X which is responsible 
for kicking off the rest of X informs some node (or the group leader) of 
the monitoring distributed program Y that  computat ion X has successfully 
begun. 
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Consider enforcing group mutual exclusion (gmutex) between two groups of pro- 
cesses G1 and G2. Multiple processes of either group, but not both groups, are 
permitted to access some critical resources, such as distributed database records, 
at any time. Relations RI* represent different degrees of gmutex that can be en- 
forced, as explained for RI*(X,Y) earlier in this section. Also, the strongest 
form of gmutex, Rla, can also be enforced by RIU, Rlc, and Rld, if the com- 
municating nodes in G1 /G2 are the respective group leaders. Thus, for Rlb', 
the nodes in G1 communicate their states (gmutex tokens) to the group leader 
of G2 which then collects all these states (gmutex tokens), and distributes them 
within G2. For Rlc, the group leader of G1 collects all the gmutex tokens from 
G1, then informs all the nodes in G2. For Rld, the group leader of G1 collects 
all the gmutex tokens from G1, then informs the group leader of G2 which then 
informs all the nodes in G2. The above four ways of expressing the distributed 
mutual exclusion provide a choice in trade-offs of (i) knowledge of membership of 
G1 and/or G2, by members and/or group leaders, within each group and across 
groups (this is further complicated with mobile processes), (ii) different delay 
or the number of message exchange phases to achieve gmutex, (it is critical to 
have rapid exchange of access rights to the distributed database), (iii) different 
number of messages exchanged to achieve gmutex, (bandwidth is a constraint, 
particularly with the use of crypto techniques), and (iv) fault-tolerance implica- 
tions (critical to sensitive applications). 

4 C o n c l u d i n g  R e m a r k s  

We showed the uses of fine-grained synchronization relations by applications 
that use nonatomicity in modeling actions and need a fine degree of granular- 
ity to specify synchronization relations and their composite global predicates. 
We showed the specific meaning and significance of each relation. Some uses 
of the relations in a distributed system include modeling various forms of syn- 
chronization for group mutual exclusion, initiation of nested computing, termi- 
nation of nested computing, and monitoring the start of a computation. The 
synchronization between any X and Y computations can be performed at any 
"synchronization barrier" for the X and Y computations of any application. For 
example, R2*(X,Y) synchronization can be performed at a barrier to ensure 
that subcomputation X which is nested in subcomputation Y completes before 
subcomputation Y completes, following which R3*(Y, X) synchronization can 
be performed to kick off another nested subcomputation X within Y. This bar- 
rier synchronization may involve blocking of processes which need to wait for 
expected messages, analogous to the barrier synchronization for multiprocessor 
systems [17]. 

The synchronization relations provide a precise handle to express various 
types of synchronization conditions in first-order logic. Each synchronization 
performed satisfies a global predicate in the execution. (A classification of some 
types of global predicates is given in [3,6].) Complex global predicates can be 
formed by logical expressions on such synchronization relations. It is an inter- 
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esting problem to classify the global predicates that  can be specified using the 
synchronization relations. 

Observe that  performing a synchronization (corresponding to one of the rela- 
tions) involves message passing, and hence also provides a direct way to evaluate 
global state functions and global predicates involving the nodes participating in 
the synchronization. Thus, performing the synchronization enables the detection 
of global predicates. Also, global predicates can be enforced by initiating the syn- 
chronization only when some local predicates become true. Identifying the types 
of global predicates that  can be detected or enforced using the synchronization 
relations is an interesting problem. The design of algorithms to enforce global 
predicates is also a topic for study. 
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