
Significance and Uses of Fine-Grained
Synchronization Relations

Ajay D. Kshemkalyani

Dept. of Electrical &: Computer Engg. and Computer Science
University of Cincinnati, P. O. Box 210030, Cincinnati, OH 45221-0030, USA

aj ayk@ececs .uc. edu

Abst rac t . In a distributed system, high-level actions can be modeled by
nonatomic events. Synchronization relations between distributed nonatomic
events have been proposed to allow applications a fine choice in specify-
ing synchronization conditions. This paper shows how these fine-grained
relations can be used for various types of synchronization and coordina-
tion in distributed computations.

1 I n t r o d u c t i o n

High-level actions in several distributed application executions are realistically
modeled by nonatomic poset events (where at least some of the component
atomic events of a nonatomic event occur concurrently), for example, in dis-
tr ibuted multimedia support, coordination in mobile computing, distributed de-
bugging, navigation, planning, industrial process control, and virtual reality. It
is important to provide these and emerging sophisticated applications a fine level
of granularity in the specification of various synchronization~causality relations
between nonatomic poset events. In addition, [20] stresses the theoretical and
practical importance of the need for such relations. Most of the existing lit-
erature, e.g., [1,2,4,5,7, 10, 13, 15, 18-20] does not address this issue. A set of
causality relations between nonatomic poset events was proposed in [11, 12] to
specify and reason with a fine-grained specification of causality. This set of rela-
tions extended the hierarchy of the relations in [9, 14]. An axiom system on the
proposed relations was given in [8]. The objective of this paper is to demonstrate
the use of the relations in [11, 12].

The following poset event structure model is used as in [4,9,10,12, 14-16,
20]. (E, -<) is a poset such that E represents points in space-time which are the
primitive atomic events related by the causality relation -< which is an irreflex-
ive partial ordering. Elements of E are parti t ioned into local executions at a
coordinate in the space dimensions. In a distributed system, E represents a set
of events and is discrete. Each local execution Ei is a linearly ordered set of
events in parti t ion i. An event e in parti t ion i is denoted ei. For a distributed
application, points in the space dimensions correspond to the set of processes
(also termed nodes), and Ei is the set of events executed by process i. Causal-
ity between events at different nodes is imposed by message communication.

579

High-level actions in the computation are nonempty subsets of E. Formally, if g
denote the power set of E and .4 (r 0) _C (g - 0), then each element A of A is
termed an interval or a nonatomie event. It follows that if A A Ei r ~, then (A

Ei) has a least and a greatest event. ,4 is the set of all the sets that represent
a higher level grouping of the events of E that is of interest to an application.

Table 1. Some causality relations [9].

Relation r
R1

Expression for r(X, Y)-]

Vx E XVy E Y,x -~ y
Vy E YVx E X , x -~ y R11

R2 Vx E X 3 y E Y, x -~ y
R2' 3y E YVx E X, x ~ y
R3 3x E XVy E Y, x -~ y
R3 ~ Vy G YBx G X, x -~ y
R4 3x E X 3 y E Y, x ~ y
R4' 3y E Y3x E X, x -~ y

The relations in [9] formed an exhaustive set of causality relations to express
the possible interactions between a pair of linear intervals. These relations R1 -
R4 and RI ' - R4 ~ from [9] are expressed in terms of the quantifiers over X and Y
in Table 1. Observe that R2 ~ and R3 ~ are different from R2 and R3, respectively,
when applied to posers. Table 1 gives the hierarchy and inclusion relationship of
the causality re la t ions / t l -/~4. Each cell in the grid indicates the relationship of
the row header to the column header. The notation for the inclusion relationship
between causality relations is as follows. The inclusion relation "is a subrelation
of" is denoted 'C' and its inverse is 'B' . For relations rl and r2, we define r l II
r2 to be (rl ~ r2 A r2 ~ rt). The relations { R1, R2, R3, R4 } form a lattice
hierarchy ordered by _.

Table 2. Inclusion relationships between relations of Table 1 [9].

relation of row 1/eader lml/~21 fi31R411
to column header I / I

R1 = ~ t C

m tlt 2 R3 ~ II =
...... R4 ~ -7

The relations in [9] formed a comprehensive set of causality relations to ex-
press all possible interactions between a pair of linear intervals using only the
-~ relation between atomic events, and extended the partial hierarchy of rela-

580

tions of [14]. However, when the relations of [9] are applied to a pair of poset
intervals, the hierarchy they form is incomplete. Causality relations between a
pair of nonatomic poset intervals were formulated by extending the results [8,
9] to nonatomic poset events [11, 12]. The relations form a "comprehensive" set
of causality relations between nonatomic poset events using first-order predicate
logic and only the -4 relation between atomic events, and fill in the existing par-
tial hierarchy formed by relations in [9, 14]. A relational algebra for the relations
in [11, 12] is given in [8]. Given any relation(s) between X and Y, the relational
algebra allows the derivation of conjunctions, disjunctions, and negations of all
other relations that are also valid between X and Y, as well as between Y and
X.

Section 2 reviews the hierarchy of causality relations [11, 12]. Section 3 gives
the uses of each of the relations. Some uses of the relations include model-
ing various forms of synchronization for group mutual exclusion, initiation of
nested computing, termination of nested processing, and monitoring the start
of a computation. Section 4 gives concluding remarks. The results of this paper
are included in [8].

2 R e l a t i o n s b e t w e e n N o n a t o m i c P o s e t E v e n t s

Previous work on linear intervals and time durations, e.g., [1,2, 4, 5], identifies
an interval by the instants of its beginning and end. Given a nonatomic poset
interval, one needs to define counterparts for the beginning and end instants.
These counterparts serve as "proxy" events for the poset interval just as the
events at the beginning and end of linear intervals such as time durations serve
as proxies for the linear interval. The proxies identify the durations on each
node, in which the nonatomic event occurs. Two possible definitions of proxies
are (i) L x = {el E X] Ye~ E X , ei __. e~} and Ux = {el E X] Ye~ E X , ei ~" e~},
and (ii) L x = {e E X lye ' E X,e ~r e'} and Ux = {e E X l ye ' E X,e ;~ e').
Assume that one definition of proxies is consistently used, depending on context
and application. Fig. 1 depicts the proxies of X and Y.

There are two aspects of a relation that can be specified between poset inter-
vals. One aspect deals with the determination of an appropriate proxy for each
interval. A proxy for X and Y can be chosen in four ways corresponding to the
relations in {R1, R2, R3, R4). From Table 1, it follows that these four relations
form a lattice ordered by U. The second aspect deals with how the atomic ele-
ments of the chosen proxies are related by causality. The chosen proxies can be
related by the eight relations R1, _R1/, R2, R2 ~, R3, R3 ~, R4, R41 of Table 1,
which are renamed a, a ~, b, b ~, c, c ~, d, d ~, respectively, to avoid confusion with
their original names used for the first aspect of specifying the relations between
poset intervals. The inclusion hierarchy among the six distinct relations forms a
lattice ordered by ___; see Table 3.

The two aspects of deriving causality relations, described above, are combined
to define the relations. The lattice of relations { RI*, R2*, R3*, R4*) between
proxies of X and Y, and the lattice of relations { a, a ~, b, b ~, c, d , d, d t } between

581

X

(. . \ - " -" .

I . ') .

w

Ly/~ U

/ . 7 . /:J."

|

Y

atomic event

space

time

F ig . 1. Poset events X and Y and their proxies.

T a b l e 3. Full hierarchy of relations of Table 1 [9]. Relations R1, RI ' , R2, R2', R3,
R3 t, R4, R4 t of Table 1 are renamed a, a t, b, b t, c, c', d, d', respectively. Relations in
the row and column headers are defined between X and Y.

Relation names:
its.quantifiers forx -~ y

~l,a (--nl',a'~ (VxV,j(= v,jVx)
l'~2,b: Vx3y

R2',b': 3yVx
I~3,c: 3xVy

Rl,a (=Rl',a'):[R2,bi[n2',b' :lR3,c:[n3',c' :ln4,d (=R4',d'):
v~v~ (=v,jv!:) iWa~l a~w p.v~ I v~,3. 13~3~ (=3~3x)

.7"
7

-1
113 I,d; Vy3x

R4,d (=R4r,d'): ' 3x3yi-- ' 3y3x)

" ~_ II il c
c = II il c
II II = c ~
!1 II ~_ = c

582

b' b R2b' R2b

3 R3c R3c'

Fig. 2. Hierarchy of relations in [11, 12].

the elements of the proxies, give a product lattice of 32 relations over .A • .4
to express r(X,Y). The resulting set of poset relations, denoted 7~, is given
in Table 4. The relations in T~ form a lattice of 24 unique elements as shown
in Fig. 2. 7~ is comprehensive using first-order predicate logic and only the -~
relation between atomic events. Relation R?# (X , Y) means that proxies of X
and Y are chosen as per ?, and events in the proxies are related by ~ . The two
relations in [14], viz., > and - - -% correspond to Rla and R4d, respectively,
whereas the relations in [9] and listed in Table 1 correspond to the these relations
as follows: RI=RF, R2, R2 ~, R3, R3 ~, R4=R4 ~ correspond to Rla, R2b, R2E,
R3c, R3c ~, R4d, respectively.

3 S i g n i f i c a n c e o f t h e R e l a t i o n s

The hierarchy of causality relations is useful for applications which use nonatomic-
ity in reasoning and modeling and need a fine level of granularity of causality
relations to specify synchronization relations and their composite global pred-
icates between nonatomic events. Such applications include industrial process
control applications, distributed debugging, navigation, planning, robotics, di-
agnostics, virtual reality, and coordination in mobile systems. The hierarchy
provides a range of relations, and an application can use those that are relevant
and useful to it. The relations and their composite (global) predicates provide a
precise handle to express a naturally occurring or enforce a desired fine-grained
level of causality or synchronization in the computation. A specific meaning of
each relation and a brief discussion of how it can be enforced is now given. In

Table 4. Relations r(X, Y) in 7~ [11,12].

Relation Relation definition Relation Relation definition
r(X, Y) specified by r(X, Y) specified by

quantifiers for x -4 y, quantifiers for x -4 y,
w h e r e x � 9 1 4 9 w h e r e x � 9 1 4 9

Rla Vx �9 UxVy �9 Ly R3a Vx �9 �9 Ly
Rla' (=R!a) Vy �9 LyYx �9 Ux R3a' (=R3a) Yy �9 LyVx �9 Lx

Rib Vx �9 Ux3y �9 Ly Vx �9 Lx3y E L y
Rib'
Rlc

By �9 LyVx �9 Ux
Bx �9 UxVy �9 Ly

R3b
R3b'
R3c
R3c'

3y �9 LyVx �9 Lx"
3x �9 Lx'iy �9 Ly
Vy �9 Ly3X �9 Lx Rlc' Vy E Lygx �9 Ux

Rld Bx �9 Ux~y E Ly R3d 3x E Lx3y �9 Lv
Rld' (=Rld) By �9 LyBx �9 Ux R3d' (--R3d) By �9 LyBx �9 Lx

R2a Vx �9 UxVy �9 Uy R4a 'r �9 LxVy �9 Uy
R2a' (=R2a) Vy �9 UyVx �9 Ux R4a' (=.R4a!,, Vy �9 VyVx �9 Lx

R2b Vx �9 Ux3y �9 Uy ~/X �9 Lx3y �9 Uv
3y �9 UvVx E Ux
3x �9 UxVy E Uy
Vy E Uy~X �9 UX
3x �9 Ux3y E Uv
3y E Uv3x E Ux

R2b ~
R2c

R4b
R4b r
R4c
R4d
R4d

R4d' (=R4d)

R2c'
R2d

m e (=R2d)]

3y E UyVx �9 Lx
3x �9 LxVy �9 Uy
Yy E Uy3a �9 Lx
3x �9 L x 3y �9 Uy
3y E Uv3x �9 Lx

583

the following discussion, the "X computation" and "Y computation" refer to
the computation performed by the nonatomic events X and Y, respectively. A
proxy of X is denoted X.

We first consider the significance of the groups of relations R*a(X, Y), R*b(X, Y),
R*b'(X, Y), R*c(X, Y), R*c'(X, Y), and R*d(X, Y). Each group deals with a
particular proxy X and Y.

- R*a(X, Y): All events in]Y know the results of the X computation (if any,)
upto all the events in X. This is a strong form of synchronization between
X and Y.

- R*b(X,Y): For each event in)f , some event in ~" knows the results of the X
computation (if any,) upto that event in _~. The Y computation may then
exchange information about the X computation upto X, among the nodes
participating in the Y computation.

- R*b'(X,Y): Some event in]Y knows the results of the X computation (if
any,) upto all events in)f. These relations are useful when it is sufficient for
one node in N? to detect a global predicate across all nodes in N 2 . If the
event in ~z is at a node that behaves as the group leader of N]~, then it can
either inform the other nodes in N~ or make decisions on their behalf.

- R*c(X,Y) : All events in 1~ know the results of the X computation (if any,)
upto some common event in)(. This group of relations is useful when it
is sufficient for one node in N2 to inform all the nodes in NIp of its state,

584

such as when all the nodes in N t have a similar state. If the node at which

the event in X occurs has already collected information about the results/
states of the X computation upto)~ from other nodes in N 2 (thus, tha t
node behaves as the group leader of)() , then the events in 17 will know the
states of the X computation upto X.

- R*cI(X, Y): Each event in Y knows the results of the X computat ion (if
any,) upto some event in)(. If it is important to the application, then the
state at each event in)~ should be communicated to some event in I 7.

- R*d(X, Y): Some event in 17 knows the results of the X computat ion (if
any,) upto some event in .~. The nodes under consideration at which the
events in]? and X, respectively, occur may be the group leaders of N~. and
N2, respectively. This group leader of N)~ may have collected relevant state
information from other nodes in N~, and conveys this information to the
group leader of N? , which in turn distributes the information to all nodes
in N? .

The above significance of each group of relations applies to each individual re-
lation of that group. The specific use and meaning of each of the 24 relations in
7~ is given next. We do not restrict the explanation that follows to any specific
application.

1" (X, Y): This group of relations deals with Ux and Ly . Each relation signifies
different degree of transfer of control for synchronization, as in group mutual

~xclusion (gmutex), from the X computation to the Y computation.

- R la (X ,Y) : The Y computation at any node in Ny begins only after that
node knows that the X computation at each node in Nx has ended, e.g.,
a conventional distributed gmutex in which each node in Ny waits for an
indication from each node in Nx that it has relinquished control.

- R lb (X ,Y) : For every node in Nx, the final value of its X computat ion is
known by (or its mutex token is transferred to) some node in Ny before
that node in Ny begins its Y computation. Thus, nodes in Ny collectively
(but not individually) know the final value of the X computat ion before
the last among them begins its Y computation. This is a weak version of
synchronization/gmutex.

- RlbI(X, Y): Before beginning its Y computation, some node in Ny knows the
final value of the X computation at each node in Nx. This is a weak version
of synchronizat ion/gmutex (but stronger than Rlb) with the property that
at least one node in Ny cannot begin its Y computat ion until the final value
of the X computation at each node in Nx is known to it.

- R lc (X ,Y) : The final value of the X computat ion at some node in N x is
known to all the nodes in Ny before they begin their Y computation. This
is a weak form of synchronization/gmutex which is useful when it suffices for
a particular node in Nx to grant all the nodes in Ny gmutex permission to
proceed with the Y computation; this node in Nx may be the group leader
of N x , or simply all the nodes in f i x have the same final local state of the
X computat ion within this application.

585

- R l d (X , Y): Each node in Ny begins its Y computat ion only after it knows
the final value of the X computation of some node in Nx . This is a weak
form of synchronization/gmutex (weaker than Rlc) which requires each node
in ivy to receive a final value (or gmutex token) from at least one node in
Nx before starting its Y computation. This relation is sufficient for some
applications such as those requiring that at most one (additional) process
be admitted to join those in the critical section when one process leaves it.

- Rld (X ,Y) : Some node in Ny begins its Y computation only after it knows
the final value of (or receives a gmutex token from) the X computat ion at
some node in Nx. This is the weakest form of synchronization/gmutex.

R2*(X,Y): This group of relations deMs with Ux and Uy. The relations can
signify various degrees of synchronization between the termination of computa-
tions X and Y, where X is nested within Y or X is a subcomputat ion of Y.
Alternately, Y could denote activity at processes that have Mready spawned X
activity in threads, and Y can complete only after X completes.

- R2a(X, Y): The Y computation at any node in Ny can terminate only after
that node knows the final value of (or termination of) the X computat ion
at each node in Nx. This is a strong synchronization before termination,
between X and Y.

- R2b(X,Y): For every node in Nx, the final value of its X computat ion is
known by at least one node in Ny before that node in Ny terminates its Y
computation. Thus, all the nodes in Ny collectively (but not individually)
know the final values of the X computat ion before they terminate their Y
computation. This is a weak synchronization before termination.

- R2b'(X, Y): Before terminating its Y computation, some node in Ny knows
the final value of the X computation at all nodes in Nx. This is a stronger
synchronization before termination than R2b, wherein at least one node in
Ny cannot terminate its Y computation without knowing the final state
of the X computation at all nodes in Nx. This suffices for M1 applications
in which it is adequate for one node in Nv to detect the termination of
the X computat ion at each node in Nx before that node terminates its Y
computation.

- R2c(X,Y): The final value of the X computation at some node in Nx is
known to all the Ny nodes before they terminate the Y computation. This
is a weak form of synchronization. The pertinent node in Nx could represent
a critical thread in the X computation, or could be the group leader of N x
that represents the X computation at all nodes in Nx.

- R2c'(X,Y): Each node in Ny terminates its Y computat ion only after it
knows the final value of the X computat ion at some node in Nx . This is a
weak form of synchronization before termination (weaker than R2c), but is
adequate when all the nodes in Nx are performing a similar X computation.

- R2d(X, Y): Some node in .IVy terminates its Y computat ion after it knows
the final value of the X computation at some node in Nx. This is a weak
form of synchronization; however, if the concerned nodes in Nx and Ny are
the respective group leaders of the X and Y computations and, respectively,

586

collect/distributed information f rom/ to their groups, then a strong form of
synchronization can be implicitly enforced because when Y terminates, it is
known to each node in Ny that the X computat ion has terminated.

R3*(X, Y): This group of relations deals with L x and Ly. The relations can
signify various degrees of synchronization between the initiation of computat ions
X and Y, where Y is nested within X or Y is a subcomputat ion of X. Alternately,
X could denote activity at processes that have already spawned Y activity in
threads.

- R3a(X, Y): The Y computation at any node in Ny begins after that node
knows the initial values of the X computat ion at each node in N x . This is
a strong form of synchronization between the beginnings of the X and Y
computations.

- R3b(X, Y): For each node in Nx , the initial state of its X computat ion is
known to some node in Ny before that node in Ny begins its Y computa-
tion. Thus, all the nodes in N r collectively (but not individually) know the
initial state of the X computation. This synchronization is sufficient when
the forked Y computations at each node in Ny are only loosely coupled and
should not know each others' initial states communicated by the X com-
putation; while at the same time ensuring that the initial state of the X
computat ion at each node in N x is available to at least one node in Ny
before it commences its Y computation.

- R3b~(X,Y): Before beginning its Y computation, some node in Ny knows
the initial state of the X computat ion at all the nodes in N x . Thus the
Y computation at this node can run a parallel X computat ion for fault-
tolerance, or can be made an entirely deterministic function of the inputs to
the X computation. The subject node in Ny can coordinate the Y compu-
tation of the other nodes in Ny. This synchronization is weaker than R3a
but stronger than R3b.

- R3c(X, Y): The initial state of the X computat ion at some node in Nx is
known to all the nodes in N r before they begin their Y computat ion. This
is a weak synchronization; however, it is adequate when the subject node in
N x has forked all the threads that will perform Y, and behaves as the group
leader of X that initiates the nested computation Y.

- R3cI(X,Y): Each node in N r begins its Y computation only after it knows
the initial state of the X computat ion at some node in Nx. Thus each node
executing the computation Y has its Y computation forked or spawned by
some node in N x and its Y computat ion corresponds to a nested branch
of X. The nodes in N r may not know each others' initial values for the Y
computation; the X computations at (some of) the N x nodes have semi-
independently forked the Y computations at the nodes in Ny.

- R3d(X, Y): Some node in N r begins its Y computat ion only after it knows
the initial state of the X computation at some node in N x . This is a weak
form of synchronization in which only one node in N x and one node in N r
coordinate their respective initial states of their local X and Y computa-
tions. However, if the node in N x that initiated the X computat ion forks off

587

the main thread for the Y computation, then this form of synchronization
between the initiations of X and Y is adequate to have Y as an entirely
nested computat ion within X.

R4* (X, Y): This group of relations deals with Lx and Uy. The relations signify
different degrees of synchronization between a monitoring computat ion Y tha t
knows the initial vMues with which the X computat ion begins, and then the
monitoring computat ion Y terminates.

- R4a(X, Y): The Y computation at any node in Ny terminates only after
tha t node knows the initial values of the X computat ion at each node in
Nx. This is a strong form of synchronization between the start of X and the
end of Y.

- R4b(X, Y): For every node in Nx, the initial state of its X computat ion
is known by at least one node in Ny before that node in Ny terminates
its Y computation. Even if there is no exchange of information in the Y
computat ion about the state of the X computation at individual nodes in
Nx, this relation guarantees that when Y completes, the (initial) local states
at each of the Nx nodes are collectively (but not individually) known by Ny.

- R4b~(X, Y): Before terminating its Y computation, some node in Ny knows
the initial state of the X computation at all the nodes in Nx. This node
in Ny can detect if an initial global predicate of the X computat ion across
the nodes in Nx is satisfied, before it terminates its Y computation. If this
node in N r is a group leader, it can then inform the other nodes in Ny to
terminate their Y computations.

- R4c(X,Y): The initial state of the X computation at some node in Nx is
known to all the nodes in Ny before they terminate their Y computat ion.
This weak synchronization is adequate for applications where all the Nx
nodes start their X computat ion with similar values. Alternately, if the node
in Nx behaves as a group leader, it can first detect the initial global state
of the X computat ion and then inform all the nodes in Ny.

- R4c'(X,Y): Each node in Ny terminates its Y computat ion only after it
knows the initial state of the X computat ion at some node in Nx. This is a
weaker form of synchronization than R4c because the states of M1 nodes in
Nx may not be observed before the nodes in Ny terminate their Y compu-
tation. But this will be adequate for applications in which each node in Nx
is reporting the same state/value of the X computation, and each node in
Ny simply needs a confirmation from some node in Nx before it terminates
its Y computation. For example, a mobile host (an Ny node) may simply
need a confirmation from some base station (an Nx node) before it exits its
Y computation.

- R4d(X,Y): Some node in N r terminates its Y computat ion after it knows
the initial state of the X computat ion at some node in Nx. This weak form of
synchronization is sufficient when the group leader of X which is responsible
for kicking off the rest of X informs some node (or the group leader) of
the monitoring distributed program Y that computat ion X has successfully
begun.

588

Consider enforcing group mutual exclusion (gmutex) between two groups of pro-
cesses G1 and G2. Multiple processes of either group, but not both groups, are
permitted to access some critical resources, such as distributed database records,
at any time. Relations RI* represent different degrees of gmutex that can be en-
forced, as explained for RI*(X,Y) earlier in this section. Also, the strongest
form of gmutex, Rla, can also be enforced by RIU, Rlc, and Rld, if the com-
municating nodes in G1 /G2 are the respective group leaders. Thus, for Rlb',
the nodes in G1 communicate their states (gmutex tokens) to the group leader
of G2 which then collects all these states (gmutex tokens), and distributes them
within G2. For Rlc, the group leader of G1 collects all the gmutex tokens from
G1, then informs all the nodes in G2. For Rld, the group leader of G1 collects
all the gmutex tokens from G1, then informs the group leader of G2 which then
informs all the nodes in G2. The above four ways of expressing the distributed
mutual exclusion provide a choice in trade-offs of (i) knowledge of membership of
G1 and/or G2, by members and/or group leaders, within each group and across
groups (this is further complicated with mobile processes), (ii) different delay
or the number of message exchange phases to achieve gmutex, (it is critical to
have rapid exchange of access rights to the distributed database), (iii) different
number of messages exchanged to achieve gmutex, (bandwidth is a constraint,
particularly with the use of crypto techniques), and (iv) fault-tolerance implica-
tions (critical to sensitive applications).

4 C o n c l u d i n g R e m a r k s

We showed the uses of fine-grained synchronization relations by applications
that use nonatomicity in modeling actions and need a fine degree of granular-
ity to specify synchronization relations and their composite global predicates.
We showed the specific meaning and significance of each relation. Some uses
of the relations in a distributed system include modeling various forms of syn-
chronization for group mutual exclusion, initiation of nested computing, termi-
nation of nested computing, and monitoring the start of a computation. The
synchronization between any X and Y computations can be performed at any
"synchronization barrier" for the X and Y computations of any application. For
example, R2*(X,Y) synchronization can be performed at a barrier to ensure
that subcomputation X which is nested in subcomputation Y completes before
subcomputation Y completes, following which R3*(Y, X) synchronization can
be performed to kick off another nested subcomputation X within Y. This bar-
rier synchronization may involve blocking of processes which need to wait for
expected messages, analogous to the barrier synchronization for multiprocessor
systems [17].

The synchronization relations provide a precise handle to express various
types of synchronization conditions in first-order logic. Each synchronization
performed satisfies a global predicate in the execution. (A classification of some
types of global predicates is given in [3,6].) Complex global predicates can be
formed by logical expressions on such synchronization relations. It is an inter-

589

esting problem to classify the global predicates that can be specified using the
synchronization relations.

Observe that performing a synchronization (corresponding to one of the rela-
tions) involves message passing, and hence also provides a direct way to evaluate
global state functions and global predicates involving the nodes participating in
the synchronization. Thus, performing the synchronization enables the detection
of global predicates. Also, global predicates can be enforced by initiating the syn-
chronization only when some local predicates become true. Identifying the types
of global predicates that can be detected or enforced using the synchronization
relations is an interesting problem. The design of algorithms to enforce global
predicates is also a topic for study.

R e f e r e n c e s

1. Linear time, branching time, and partial orders in logics and models of concurrency,
J. W. de Bakker, W. P. de Roever, G. Rozenberg (Eds.), LNCS 354, Springer-
Veriag, 1989.

2. J. V. Benthem, The Logic of Time, Kluwer Academic Publishers, (led. 1983), 2ed.
1991.

3. R. Cooper, K. Marzullo, Consistent detection of global predicates, A CM/ONR
Workshop on Parallel and Distributed Debugging, 163-173, May 1991.

4. C. A. Fidge, Timestamps in message-passing systems that preserve partial order-
ing, Australian Computer Science Communications, Vol. 10, No. 1, 56-66, Feb.
1988.

5. P. C. Fishburn, Interval Orders and Interval Graphs: A Study of Partially Ordered
Sets, J. Wiley & Sons, 1985.

6. V. Garg, B. Waldecker, Detection of weak unstable predicates in distributed pro-
grams, IEEE Transactions on Parallel and Distributed Systems, 5(3), 299-307,
March 1994.

7. W. Janssen, M. Pod, J. Zwiers, Action systems and action refinement in the devel-
opment of parallel systems, In J.C. Baeten, J.F. Groote, (Eds.) Concur91, LNCS
527, Springer-Verlag, 298-316, 1991.

8. A. Kshemkalyani, Temporal interactions of intervals in distributed systems, TR-
29.1933, IBM, Sept. 1994.

9. A. Kshemkalyani, Temporal interactions of intervals in distributed systems, Jour-
nal of Computer and System Sciences, 52(2), 287-298, April 1996. (Contains some
parts of [8]).

10. A. Kshemkalyani, Framework for viewing atomic events in distributed computa-
tions, Theoretical Computer Science, 196(1-2): 45-70, April 1998.

11. A. Kshemkalyani, Relative timing constraints between complex events, 8th
IASTED Conf. on Parallel and Distributed Computing and Systems, 324-326, Oct.
1996.

12. A. Kshemkalyani, Synchronization for distributed real-time applications, 5th Work-
shop on Parallel and Distributed Real-time Systems, IEEE CS Press, 81-90, April
1997.

13. L. Lamport, Time, clocks, and the ordering of events in a distributed system,
CACM, 558-565, 21(7), July 1978.

14. L. Lamport, On interprocess communication, Part h Basic formalism, Part Ih
Algorithras, Distributed Computing, 1:77-101, 1986.

590

15. F. Mattern, Virtual time and global states of distributed systems, Parallel and
Distributed Algorithms, North-Holland, 215-226, 1989.

16. F. Mattern, On the relativistic structure of logical time in distributed systems, In:
Datation et Controle des Executions Reparties, Bigre, 78 (ISSN 0221-525), 3-20,
1992.

17. J. Mellor-Crummey, M. Scott, Algorithms for scalable synchronization on shared-
memory multiprocessors, ACM Transactions on Computer Systems, 9(1): 21-65,
Feb. 1991.

18. E.R. Olderog, Nets, Terms, and Formulas, Cambridge Tracts in Theoretical Com-
puter Science, 1991.

19. A. Rensink, Models and Methods for Action Refinement, Ph.D. thesis, University
of Twente, The Netherlands, Aug. 1993.

20. R. Schwarz, F. Mattern, Detecting causal relationships in distributed computa-
tions: In search of the holy grail, Distributed Computing, 7:149-174, 1994.

