
Universal Constructs in Distributed

Computations

Ajay D. Kshemkalyani1 and Mukesh Singhal2

1 Dept. of EECS, University of Illinois at Chicago, Chicago, IL 60607-7053, USA
ajayk@eecs.uic.edu

2 Dept. of CIS, The Ohio State University, Columbus, OH 43210, USA
singhal@cis.ohio-state.edu

Abstract. This paper identifies two classes of communication patterns
that occur in distributed computations and explores their properties. It
first examines local patterns, primarily IO and OI intervals, that occur
at nodes in distributed computations. These local patterns form building
blocks that are then used to define the global patterns, termed segments
and paths, that occur across nodes in distributed computations. By con-
trolling the predicates on the local patterns used to define segments and
paths, various types of segments and paths can be defined. A number of
key concepts and structures characterizing distributed computations are
special cases of and are expressed in terms of the patterns identified.

1 Introduction

Analyzing the structure of a distributed computation helps to understand the
concurrency and leads to a better design of distributed applications, algorithms,
and systems. To this end, this paper identifies two classes of communication pat-
terns that occur in every distributed computation and examines their properties.
The first class of patterns consists of local patterns or intervals, primarily IO
and OI intervals, that occur at processes [6]. These local patterns are specified
in terms of messages received and messages sent by a process, and are distin-
guished by the order in which a pair of messages is sent and/or received by a
process. Domain-specific predicates can be defined on how the interval at one
process is related to the interval at another process. The use of such predicates
on intervals at different processes allows intervals to be used as building blocks to
formulate the second class of patterns, which is comprised of two global patterns,
termed segments and paths. These global patterns occur across processes in a
distributed computation and signify the flow of information and coupling among
the events at different processes. Segments and paths generalize causal chains.
While a causal chain only captures the causal relation, certain other message se-
quences also play a significant role in the analysis of a distributed computation.
This paper generalizes segments and paths identified in [6]. By controlling the
predicates on the intervals used to define segments and paths, different types of
segments and paths can be defined.

Several key concepts and structures characterizing distributed computations
are special cases of and can be expressed using the identified patterns. These
patterns are shown to be useful in areas such as synchronous and causally ordered

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 795–805, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

796 Ajay D. Kshemkalyani and Mukesh Singhal

communication [4], transfer of knowledge [3], concurrency measures [5], necessary
and sufficient conditions for a consistent global state [2, 9] which is useful in
checkpointing and recovery [1], and distributed deadlock detection [6].

Section 2 gives the system model. Section 3 defines the local patterns and
gives their properties. Section 4 defines the global patterns that occur across
nodes and shows their applications. Section 5 concludes. The full paper is in [7].

2 System Model

The system is a network of N nodes (sites) with a logical channel between each
pair of nodes. The nodes communicate by passing messages over the logical chan-
nels and do not share memory. We assume without loss of generality that each
node in the system has one process running on it. Hence, nodes are synony-
mous to processes. Process execution and message transfers are asynchronous.
Messages are delivered reliably but not necessarily in the order sent.

The execution of a computation at a node is modeled by three types of events:
message send events, message receive events, and internal events. Let sx

i and rx
j

denote the send and the receive events at which the message with label x is sent
at node i and received at node j, respectively. The superscript and/or subscript
will be omitted when it is not important. Let dest(sx

i) denote the destination
of the message sent at sx

i . An execution of a distributed computation associates
with each node i a totally ordered set Ci of events. Let C =

⋃
Ci be the

possibly infinite set of all events. The state of a node is defined by the values of
the variables associated with its computation, which are a function of the history
of events executed by it at any time. A distributed computation is represented
by the poset (C,≺), where ≺ is the causality relation on C [8].

3 Local Communication Patterns: Intervals at a Node

This section formalizes the local communication patterns that occur at nodes.
The next section shows how these patterns are used as building blocks to for-
mulate two global patterns that occur across nodes.

At the time a node i sends a message at si, an “outward dependency” gets
established at i. At the time a node i receives a message at ri, an “inward
dependency” gets established at i. An interval at a node is the period between
the times that two such dependencies get established [6]. There are two main
types of intervals, shown in Fig. 1 (a) and (b), based on whether the inward
dependency is established before the outward dependency or vice-versa. The
former interval is an IO interval and the latter is an OI interval. Analogous to
IO and OI intervals, II intervals and OO intervals can also be defined.

An interval begins at node i whenever one of the following two events occurs
(see Fig. 1): (a) i receives a message from some node j, or (b) i sends a message
to some node k. For the two cases (a) and (b) in which an interval begins, the
IO or OI interval completes when, in case (a), i sends a message to some node
k, and in case (b), i receives a message from some node j, respectively. Similar
explanations hold for II and OO intervals.

The formation of an interval at a node signifies the participation of the node
in global communication patterns that span across nodes. Note that intervals

Universal Constructs in Distributed Computations 797

Node j

Node i

Node k

(a) IO interval at node i (b) OI interval at node i

r

r

r

js sj

i

is si

i

k rk

Fig. 1. IO and OI intervals [6].

at a node can overlap. For example, in Fig. 2, the following pairs of intervals
overlap at node 3: (i) the OI interval between s3

3 and r2
3, the OI interval between

s3
3 and r5

3; (ii) the IO interval between r2
3 and s6

3, the IO interval between r5
3 and

s6
3; and (iii) the OI interval between s3

3 and r5
3, the IO interval between r2

3 and
s6
3. There are numerous intervals at each process in the computation.

Each node has a set of application-specific semantic-defined “distinguished”
events that are identified by monotonically increasing functions such as the se-
quence number of the events at the node. An example of a distinguished event
is a checkpointing of the local state of a node. The time span from the xth
to the (x + 1)th distinguished event at node i is called the xth duration at i.
IO or OI intervals of interest to an application are those that satisfy a certain
application-specific relationship on the durations in which the send and receive
events identifying the interval occur. Each duration x at node i is associated
with a predicate Φi,x which is true only during that duration. The duration at
node i in which an event ei occurs is denoted by D(ei). A send event si and a
receive event ri can be related at a node i in one of the following ways:

1. D(si) – D(ri) = 0. Events si and ri belong to the same duration and identify
an IO or an OI interval, based on whether ri ≺ si, or vice-versa, resp..

2. D(si) – D(ri) > 0. In this case, events si and ri identify an IO interval.
3. D(si) – D(ri) < 0. In this case, events si and ri identify an OI interval.

The semantics attached to an IO or OI interval can be of the following types
(classification of global communication patterns uses these semantics):

1. No semantics is attached to the events of an OI or an IO interval. No con-
ditions are imposed on the relation between D(si) and D(ri).

2. The si and ri events of an interval satisfy constraints on D(si) and D(ri), the
local durations to which they belong. For example, events of an IO interval
are in two different local durations, but the events of an OI interval are in
the same duration.

3. The events of an interval satisfy certain constraints on the durations they
belong to and on the durations of the events in their causal past.

4 Global Communication Patterns: Paths and Segments

This section defines global patterns that span nodes in a computation. It then
shows that several key concepts and structures characterizing distributed com-
putations are special cases of and can be expressed using these patterns.

798 Ajay D. Kshemkalyani and Mukesh Singhal

Domain-specific predicates can be defined on how the IO or OI interval at
one node is related to the IO or OI interval at another node. The use of such
predicates on IO and OI intervals at different nodes allows IO and OI intervals
to be used as building blocks to formulate the global patterns: segments and
paths. These global patterns occur across different nodes and signify a sequence
of message exchanges such that any two adjacent messages in the sequence are
related at a node by an IO or an OI interval. By controlling the predicates
(or conditions) on the IO and OI intervals used to define segments and paths,
different types of segments and paths can be defined.

Based on the semantics attached to the events identifying IO and OI intervals,
three versions of segments and paths are presented. The first version (Sect. 4.1)
is for a general computation where no restrictions are imposed and any si and
any ri events at a node i participate in OI and IO intervals. This version has
applications in characterizing distributed computations by identifying structures
like a crown, deriving concurrency measures, and analyzing knowledge transfer.
In the second version (Sect. 4.2), distinguished events are assigned values of
a monotonically nondecreasing function. This version has applications in char-
acterizing global checkpoints. In the last version (Sect. 4.3), the distinguished
events signify participation in a stable property. This version has applications in
characterizing stable properties like distributed deadlocks.

Before defining the global patterns, we introduce some primitive predicates
(conditions) on a distributed computation. The global patterns for various se-
mantic models are defined using these conditions. In a computation, at any
instant, there could have existed a sequence 〈si1 , si2 , . . . , sin〉 of send events on
nodes ij ∈ {i1, i2, . . . , in} satisfying a combination of the following conditions
(henceforth, ij ∈ {i1, i2, . . . , in}):

(C1) Convey predicate to successor: D(sij) = xij and dest(sij)=ij+1, for
1 ≤ j ≤ n − 1.

(C2) Predicate conveyed from predecessor: A node ij (except for j = 1)
has received the message sent by ij−1 at sij−1 before sij .

(C3) No local violation of predecessor’s predicate: Each node ij (except
for j = 1) has not invalidated the predicate Φij−1,xij−1

at node ij−1.
(C4) No violation of predecessor’s predicate: A node ij (except for j =

1) has not received any message, in the causal past of which ij−1’s predicate
Φij−1,xij−1

got invalidated.
(C5) Local predicate valid in duration: Each node ij is in its xij th dura-

tion and Φij ,xij
is currently true.

(C6)Duration of send event does not occur before duration of receive
event: D(sij) ≥ D(rij).

4.1 Segments and Paths for General Computations

In a general computation, no semantics is attached to the events of an interval
and no constraints are imposed on the relation between D(si) and D(ri).

Definition 1. A “segment” for a general computation, denoted Sg(si1 , rin+1),
is a sequence of events 〈si1 , si2 , . . . , sin〉 satisfying (C1)

∧
(C2).

Universal Constructs in Distributed Computations 799

Every event in a segment occurs at a node that has sent a message to the node
at which the successor event in the segment occurs. (Henceforth, a reference to “a
node on a segment/path” will mean “a node with an event on a segment/path”.)
Moreover, when a node ij sends the message at sij (as per (C1)), the message
sent at the previous event sij−1 in the sequence has been received (as per (C2)).
Therefore, a segment denotes a sequence of nodes such that the dependencies on
their successor nodes in the segment are created sequentially. That is, ∀ij:1 ≤
j < n :: sij � sij+1 . A segment thus denotes a causal chain of messages in
which the events signify completed IO intervals.

For a sequence of events 〈si1 , si2 , . . . , sin〉 such that dest(sij) = ij+1 for
1 ≤ i ≤ n − 1, it may happen that ∃j: sij 6≺ sij+1 , that is, node ij+1 has an
OI interval. A path is defined next to capture such a sequence of events.

Definition 2. A “path” for a general computation, denoted Pg(si1 , rin+1), is a
sequence of events 〈si1 , si2 , . . . , sin〉 satisfying (C1).

The formation of an interval at a node signifies the participation of the node
in a path or a segment. In a path, successive messages are related by either
an IO or an OI interval. In a segment, successive messages are related only
by IO intervals. Thus, the successive events in a sequence at which outward
dependencies are established satisfy a weaker causal relationship in a path than
in a segment. A path may contain several segments; a segment is always a path.

Node 1

Node 2

Node 3

Node 4

1

1
23

3

r

s

s

6

s2
2

6
3

4
3

m1

m3

m4

m5

m6

2
4

r
s 3

5r

s1

r

1

r4
4 s5

4

m2
r2

3

Fig. 2. An example computation.

Fig. 2 gives examples of paths and segments. Some segments are: 〈 s1
1, s4

2, s5
4,

s6
3 〉, 〈 s2

2, s6
3 〉, 〈 s3

3, s5
4, s6

3 〉, and all subsequences of the above. By definition, each
segment is a path. The following are some paths with at least one OI interval:
〈s1

1, s2
2, s3

3 〉, 〈 s1
1, s2

2, s6
3 〉, 〈 s2

2, s3
3, s5

4, s6
3 〉. Subsequences of these are also paths.

A maximal path is a path which cannot be extended by the addition of a send
event at either end. For example, in Fig. 2, 〈 s1

1, s2
2, s3

3, s5
4, s6

3 〉 is a maximal
path. The longest maximal path in the computation is 〈 s2

2, s3
3, s5

4 s6
3, s1

1, s4
2 〉

which happens to consist of all the messages in the computation. A maximal
segment is defined likewise. In Fig. 2, 〈 s1

1, s4
2, s5

4, s6
3 〉 is a maximal segment.

Maximal segments and maximal paths are useful concepts in analyzing prop-
erties of a distributed computation. A maximal segment is a causal chain that

800 Ajay D. Kshemkalyani and Mukesh Singhal

signifies the maximum length of the serial execution of “thread of control” rep-
resented by the segment. On the other hand, a maximal path whose events are
related by OI intervals at nodes provides a measure of the concurrency in a com-
putation. The higher the number of OI intervals, the higher the concurrency in
the computation. The ratio of the average of the sizes of maximal paths to the
average of the sizes of maximal segments in a distributed computation is a good
indicator of the concurrency in the computation [5].

We next show how segments and paths can be used to express some commu-
nication patterns that are important in analyzing distributed computations.

Realizable Synchronous Computations: The Crown Criterion. Charron-
Bost et al. observed that a distributed algorithm designed to run correctly on
asynchronous systems (called A-computations) may not run correctly on syn-
chronous systems – an algorithm that runs on an asynchronous system may
deadlock on a synchronous system [4].

A-computations that can be realized under synchronous communication are
called Realizable with Synchronous Communication (RSC) computations. For-
mally, a computation C is RSC if there exists a non-separated linear extension
of the poset (C,≺). A non-separated linear extension of (C,≺) is a linear exten-
sion of (C,≺) such that for each pair of send event s and corresponding receive
event r, the interval { x ∈ C | s ≺ x ≺ r } is empty. [4] showed that RSC
computations are a proper subset of causally ordered computations, which are
a proper subset of FIFO computations.

Charron-Bost et al. [4] developed a criterion (called the crown criterion) to
determine if an A-computation can be realized on a system with synchronous
communication. This criterion uses a structure called crown, defined next.

Definition 3. Let C be a computation. A crown of size k in C is a sequence
〈 (si,ri), i ∈ { 0, . . ., k-1 } 〉 of pairs of corresponding send and receive events
such that: s0 ≺ r1, s1 ≺ r2, sk−2 ≺ rk−1, sk−1 ≺ r0.

Charron-Bost et al. [4] showed that a computation is RSC iff it contains no
crown.

Fig. 3 shows a crown having six pairs of corresponding send and receive
events (si, ri), i ∈ [0, 5]. There is also a causal chain from si to r(i+1)mod 6, for
i ∈ [0, 5]. Defn. 3 specifies the constraints between si and r(i+1)mod k, for i ∈
[0, k − 1]. Each such constraint simply represents a segment Sg(si, r(i+1)mod k).
We next define crowns in terms of segments.

Definition 4. In terms of segments, a crown of size k in a computation is a
sequence 〈 (si,ri), i ∈ { 0, . . ., k-1 } 〉 of pairs of corresponding send and receive
events such that ∀i ∈ [0, k−1], Sg(si, r(i+1)mod k). (To simply notation, the crown
will also be expressed by just the conditions {Sg(si, r(i+1)mod k) : i ∈ [0, k − 1]}.)
Example 1 (Crown in Fig. 3): CROWN = {Sg(si, r(i+1)mod k) : i ∈ [0, 5]} .
Refinement of Defn. 4: Defn. 4 expresses a crown of size k in terms of k
segments. A crown of size k can generally be expressed in terms of less than k
segments and paths.

A segment Sg(si, rj) such that events si and rj lie on the same node is called
a local segment. Note that in Fig. 3, (i) segments Sg(s2, r3) and Sg(s3, r4) are

Universal Constructs in Distributed Computations 801

Message

2

5

24

s s

r

r
rr

s1

s3 s0

s

0

1r3

5

4

m5

m0

m1

m2
m3

m4

r

time

Causal chain

Fig. 3. A crown of size 6.

local segments and (ii) these two segments are connected by message (s3,r3). In
this situation, segments Sg(s2, r3) and Sg(s3, r4) can be represented by path 〈s4,
s3, s2 〉. Consequently, the conditions represented by segments Sg(s2, r3) and
Sg(s3, r4) in the expression of the crown can be equivalently stated in terms of
path 〈 s4, s3, s2 〉 (which happens to contain only OI intervals). Given a crown,
we present an algorithm that replaces clusters of local segments connected by
messages, by equivalent paths. This algorithm compacts consecutive segments
into paths wherever possible. (Such paths consist of OI intervals only and a cyclic
path with OI intervals only is always a crown.)
A Crown-Compaction Algorithm:

1. CR ALT = CROWN ;
2. Identify each maximal sequence of consecutive integers, modulo k, from x to

y satisfying ∀ j ∈ [x, (y)mod k], sj and r(j+1)mod k occur on the same node.
For each such sequence, do the following.
(a) CR ALT = CR ALT \ {Sg(si, r(i+1)mod k) : i ∈ [x, (y)mod k]}
(b) CR ALT = CR ALT

⋃ {〈s(y+1)mod k, sy, s(y−1)mod k, s(x+1)mod k,
sx〉}

Example 1 (contd.): In the crown in Fig. 3, s2 and r3 lie on the same node, and
s3 and r4 lie on the same node. As there is a range of consecutive integers [x, y]
= [2, 3] such that ∀i ∈ [2, 3], si and r(i+1)mod k lie on the same node, segments
Sg(s2, r3) and Sg(s3, r4) can be replaced by path 〈s4, s3, s2〉. Hence, CR ALT

= {Sg(si, r(i+1)mod k) : i ∈ {0, 1, 4, 5}} ⋃ {〈s4, s3, s2〉} .
Thus, a crown which is an example of various structures in distributed com-

putations can be expressed more compactly in terms of paths and segments.

Knowledge Transfer. Knowledge in distributed systems refers to the states
of the nodes and is defined as temporal and spatial predicates over the vari-
ables of the nodes. Knowledge plays a significant role in the evaluation of global

802 Ajay D. Kshemkalyani and Mukesh Singhal

predicates, debugging, monitoring, establishing breakpoints, evaluating triggers,
industrial process control, and controlling a distributed execution [11].

Knowledge is transferred among nodes through send and receive events [3];
the extent of knowledge dissemination is determined by the message communi-
cation pattern among nodes and is identified by the causality relation between
events. A segment from event ei to event ej signifies the flow of knowledge of
node i’s state preceding event ei to all the events following ej . In Fig. 2, mes-
sages forming segment 〈s1

1, s
4
2, s

5
4〉 transfer the knowledge about the local state

of node 1 just before event s1
1 to event r5

3. A path with an OI interval denotes
a disrupted transfer of knowledge among the nodes along the path. In Fig. 2,
knowledge about the local state of node 1 just before event s1

1 is not transferred
to event r2

3. The knowledge transfer is disrupted at node 2 due to the OI interval
formed by s2

2 and r1
2. Thus, paths and segments are useful tools to identify the

extent of knowledge transfer.

4.2 Segments and Paths for Monotonically Nondecr. Functions

In distributed computations with monotonically nondecreasing functions at
nodes (e.g., the local clock time at the occurrence of an event [8]), the dis-
tinguished events at a node are associated with monotonically nondecreasing
values.

The definition of a segment for a monotonically nondecreasing function
(Defn. 5) is the same as for a general function (Defn. 1). The definition of a
path for a monotonically nondecreasing function (Defn. 6) differs from the cor-
responding Defn. 2 in that the events of an OI interval must belong to the same
duration.

Definition 5. A “segment” for a monotonically nondecreasing computation, de-
noted Sm(si1 ,rin+1), is a sequence of events 〈si1 , si2 , . . . , sin〉 satisfying (C1)

∧

(C2).

Definition 6. A “path” for a monotonically nondecreasing function, denoted
Pm(si1 ,rin+1), is a sequence of events 〈si1 , si2 , . . . , sin〉 satisfying (C1)

∧
(C6).

A closed path for a monotonically nondecreasing function is a path Pm(si1 ,
rin+1) such that events si1 and rin+1 occur at the same node (i.e., i1=in+1).

Necessary and Sufficient Conditions for a Global Snapshot: Zigzag
Paths. Checkpointing is used in fault-tolerant computing [1], and parallel and
distributed debugging [11]. Each node can take local checkpoints asynchronously;
a consistent global checkpoint is constructed by chosing a local checkpoint from
each node. Checkpoints are the “distinguished events” which demarcate consec-
utive durations at nodes. The xth duration (or xth checkpoint interval) at a node
denotes the computation from its xth to its x + 1th checkpoint.

An important problem is to determine if an arbitrary set of local checkpoints
belongs to a consistent global checkpoint [2]. Netzer and Xu used the zigzag
path, a generalization of Lamport’s causality relation [8], and showed that two
local checkpoints cannot lie on a consistent global checkpoint iff a zigzag path
exists between the checkpoints [9]. Let Ci,x denote the xth local checkpoint at
node i and let ei,x denote the event of taking Ci,x.

Universal Constructs in Distributed Computations 803

Definition 7. A zigzag path exists from Ci,x to Cj,y iff there are messages m1,
m2, . . ., mn (n > 1) such that

1. m1 is sent by node i after Ci,x

2. if mk (1 ≤ k < n) is received at node r, then mk+1 is sent by r in the same
or a later checkpoint interval

3. mn is received by process j before Cj,y.

In Fig. 4, m1, m2, and m3 form a zigzag path from checkpoint C11 at node 1
to checkpoint C32 at node 3. Likewise, m4, m5, and m6 form a zigzag path from
checkpoint C12 at node 1 to checkpoint C42 at node 4. Note from Defn. 7 that
a zigzag path is a chain of messages that are connected by OI or IO intervals
at nodes. Thus, a zigzag path is nothing but a “path” (Defn. 6) and can be
expressed using paths as follows:

Node

Node

Node

Node

2

4

3
m2

m3

m1 m4

m5

1

C

C

C

C C

C C

C C

C

11 12

21 22 23

31 32 33

13

41 C
42

m6

Fig. 4. Zigzag paths.

Definition 8. A zigzag path exists from Ci,x to Cj,y iff ∃ Pm = 〈si1 , si2 , . . . ,
sin〉 such that (i) ei,x ≺ si1 , and (ii) a message sent at sin to j is received before
ej,y.

A checkpoint is on a Z-cycle iff there is a zigzag path from the checkpoint to
itself. In Fig. 4, checkpoint C32 lies on a Z-cycle consisting of messages m6 and
m3. A checkpoint can be part of a consistent snapshot iff it is not involved in a
Z-cycle. Observe that a Z-cycle is nothing but a closed path.

4.3 Segments and Paths for Stable Properties

A stable property is a property of the system state such that once it becomes
true, it continues to hold unless there is external intervention [10]. Examples of
such properties are deadlocks, termination of a computation, etc. In this section,
segments and paths are defined for stable properties, with special emphasis on
deadlocks [6]. A similar approach can be used for other stable properties.

Conditions for Deadlocks. We consider deadlocks in the request-reply model.
In this model, a process sends a request and blocks until it receives a reply to
its request. “Distinguished” events at a node are the events at which a node
sends a request and blocks waiting for a reply. The predicate Φi,x stands for

804 Ajay D. Kshemkalyani and Mukesh Singhal

“node i is blocked on the request it sent at its xth distinguished event”. This
predicate becomes true at the start of the duration between two distinguished
events and becomes false on the receipt of the reply at some time before the next
distinguished event. In this context, a segment and a path are defined next [6].

Definition 9. A “segment” in the request-reply model, denoted Sd(si1 ,rin+1), is
a sequence of events 〈si1 , si2 , . . . , sin〉 satisfying the following conditions :
(I) (C1)

∧
(C2)

∧
(C3)

∧
(C4). /* conditions on distinguished events. */

(II) (C5). /* conditions when the system is observed. */

Definition 10. A “path” in the request-reply model, denoted Pd(si1 ,rin+1), is
a sequence of events 〈si1 , si2 , . . . , sin〉 satisfying the following conditions:
(I) (C1)

∧
((C2) =⇒ ((C3)

∧
(C4))). /* conditions on distinguished events. */

(II) (C5). /* conditions when the system is observed. */

Condition (C2) indicates that the request sent at sij−1 has been received
before sij . Condition (C3) indicates that ij has not sent back a reply to ij−1 and
thus has not invalidated Φij−1,xij−1

. By Condition (C4), ij has not received a
message indicating that ij−1 got unblocked, i.e., Φij−1,xij−1

got invalidated. As no
node in a distributed system has instantaneous knowledge of the entire system,
while declaring a segment/path, it must be ensured that the nodes that are
believed to be blocked are still blocked; Condition (C5) asserts this. A detailed
explanation of Defns. 9 and 10 is given in [6].

Paths in which each node is blocked waiting for a reply from its successor
and the last node never receives a reply denote deadlocks.

Definition 11. A closed path is a path Pd(si1 , rin+1) such that events si1 and
rin+1 occur at the same node (i.e., i1=in+1).

A closed path denotes a deadlock because no node with an event on the closed
path will ever receive a reply and get unblocked. A closed path has at least one
OI interval, i.e., at least two segments. Condition (C5) helps to ensure that false
deadlocks are not detected.

5 Conclusion

We identified two classes of universal communication patterns in distributed
computations. IO, OI, II and OO intervals are local patterns that occur at nodes,
whereas paths and segments are global patterns which occur across nodes in a
distributed computation and are defined in terms of the local patterns. It is
seen that the communication patterns identified are universal to all distributed
computations. We showed that a number of key concepts and structures char-
acterizing distributed computations are special cases of the proposed patterns
and can be expressed using these patterns. By controlling the predicates on lo-
cal patterns used to define segments and paths, different types of segments and
paths can be defined to address the needs of other applications also.

Universal Constructs in Distributed Computations 805

References

[1] B. Bhargava, S.R. Lian, Checkpointing and rollback recovery in distributed sys-
tems – an optimistic approach, Proc. 7th IEEE SRDS, 3-12, Oct. 1988.

[2] K. M. Chandy, L. Lamport, Distributed snapshots: Global states of a distributed
system, ACM Trans. Comput. Systems, 3(1):63-75, 1985.

[3] K. M. Chandy, J. Misra, How processes learn, Distributed Computing, 1, 40-52,
1986.

[4] B. Charron-Bost, F. Mattern, G. Tel, Synchronous, asynchronous, and causally
ordered communication, Distributed Computing, 9(4):173–191, 1996.

[5] C. J. Fidge, A simple run-time concurrency measure, In: T. Bossomaier et al.
(Eds.), The Transputer in Australasia (ATOUG-3), 92-41, IOS Press, 1990.

[6] A. D. Kshemkalyani, M. Singhal, On characterization and correctness of dis-
tributed deadlock detection, Journal of Parallel and Distributed Computing, 22(1),
44-59, July 1994. (Tech. Rep. TR-06/90-TR15, Ohio State Univ., 1990.)

[7] A. D. Kshemkalyani, M. Singhal, Universal constructs in distributed computa-
tions, Technical Report 29.2136, IBM, March 1996.

[8] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21(7):558-565, July 1978.

[9] R. Netzer, J. Xu, Necessary and sufficient conditions for consistent global snap-
shots, IEEE Trans. on Parallel and Distributed Systems, 6(2):165-169, 1995.

[10] A. Schiper, A. Sandoz, Strong stable properties in distributed systems, Distributed
Computing, 8:93-103, 1994.

[11] M. Spezialetti, R. Gupta, Debugging distributed programs through the detection
of simultaneous events, Proc. 14th IEEE ICDCS, 634-641, June 1994.

	Introduction
	System Model
	Local Communication Patterns: Intervals at a Node
	Global Communication Patterns: Paths and Segments
	Segments and Paths for General Computations
	Segments and Paths for Monotonically Nondecr. Functions
	Segments and Paths for Stable Properties

	Conclusion

