
Efficient Synchronization of Asynchronous

Processes

Sandeep Lodha1, Punit Chandra2, Ajay Kshemkalyani2, and Mayank Rawat2

1 Riverstone Networks Inc.
Santa Clara, CA 95054, USA.

2 EECS Department, University of Illinois at Chicago
Chicago, IL 60607-7053, USA.

Abstract. Concurrent programming languages including CSP and Ada
use synchronous message-passing to define communication between a
pair of asynchronous processes. This paper presents an efficient way to
synchronize these processes by improving on Bagrodia’s algorithm that
provides binary rendezvous. Simulation results are presented to show the
better performance of the optimized algorithm for two cases - the case
where the interaction set is composed of all possible pairs and the case
where the set of next allowable interactions is of cardinality one. For the
latter, the optimized algorithm also improves upon the best case delay
for synchronization. The client-server computing model, the producer-
consumer interaction, and interaction between processes executing par-
allelized tasks represent some broad classes of computations which can
leverage the proposed improvements.

1 Introduction

Concurrent programming languages including CSP [6] and Ada [1] use syn-
chronous message-passing to define communication between a pair of asyn-
chronous processes. Although this synchronous style of programming compro-
mises the possible concurrency in the computation, it offers simplicity in program
design and verification. The synchronous programming style is also known as bi-
nary rendezvous which is a special case of multiway rendezvous, also known as
the barrier or committee coordination problem [5].

The generalized alternate command of CSP allows a process to select any one
of several binary rendezvous, identified by the interaction set, for the next in-
teraction or rendezvous. Several algorithms implement this rendezvous [3,8,7,9].
Buckley and Silberschatz [4] presented four criteria to determine the “effective-
ness” of algorithms that implement this construct. Using these criteria, they
pointed out some major drawbacks of previously published algorithms and pre-
sented an algorithm that meets the criteria. Bagrodia [2] came up with an al-
gorithm that was simpler and more efficient than [4]. This paper describes an
algorithm that improves upon the message overhead of Bagrodia’s algorithm,
and presents simulation results for the same. Section 2 describes the proposed
enhancements. Section 3 gives the results of the simulation. Section 4 concludes.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 352–357, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Efficient Synchronization of Asynchronous Processes 353

2 Bagrodia’s Algorithm and Proposed Enhancements

2.1 Bagrodia’s Algorithm

Bagrodia’s algorithm associates a unique token with each synchronization, also
known as interaction. The token contains the ProcessIDs of the two processes
involved in the interaction. When some process Pi becomes IDLE, it determines
if an interaction (Pi, Pj) with process Pj can be executed by requesting that
interaction. An IDLE process requests interactions from its interaction-set in
increasing order of priority. A process may request only those interactions for
which it possesses the corresponding token. When Pi requests an interaction
(Pi, Pj), it sends the corresponding token to Pj . A process may request at most
one interaction at any time.

On receiving a token, a process Pj may either commit to the corresponding
interaction, refuse to do so, or delay its response. If Pj is IDLE, it commits to
the interaction. A process commits to an interaction by sending the token back
to the requesting process. On the other hand, if Pj is ACTIV E, it refuses the
interaction. A process refuses an interaction by capturing the token and sending
a CANCEL message to the requesting process. This implies that the process
that last refused an interaction has the responsibility to initiate the next request
for the interaction. A process that has requested an interaction but has not
received a response to its request is a REQ process. A REQ process may receive
(zero or more) requests for other interactions, before receiving a response to its
own request. A REQ process Pj that receives a token for another interaction Ek

delays the request Ek if priority of Ek is more than that of the interaction Pj is
currently requesting, otherwise it refuses the interaction and sends a CANCEL
message. This prevents deadlocks in the system. If a REQ process Pi delays an
interaction, the algorithm guarantees that Pi will either commit to its requested
interaction or to the delayed interaction. Thus, it is only necessary for a process
to delay at most one interaction. Tokens received by a REQ process that has
delayed an interaction can immediately be refused by the process, irrespective
of the relative priority of the two interactions.

2.2 Proposed Enhancements

We observe the following two drawbacks of Bagrodia’s algorithm that cause some
inefficiencies, and propose improvements to overcome them.

– First, when a process that is committed to an interaction or is ACTIVE re-
ceives a token from another process, it sends a CANCEL to that process and
later bears the responsibility of initiating the interaction with that process.
This leads to a total of four messages to set up the interaction. There is a
wide range of applications for which the interaction set of at least one of the
processes participating in an interaction is one. It is unnecessary to send a
CANCEL to such a process and later try to reestablish the interaction. The
proposed improvement is that instead of sending the CANCEL, the token



354 Sandeep Lodha et al.

requesting the interaction can be queued up and later responded to, thereby
cutting down on the message overhead.
Some classes of applications that have an interaction-set size of one are
described here. The producer-consumer problem is one example where the
producer’s interaction-set size is one. The producer needs to interact only
with the buffer-process. So once the producer is ready with the data, it
cannot proceed unless it delivers the data to the buffer-process. Even if
the buffer-process sends a CANCEL message to the producer, the producer
cannot proceed. In such cases, we can avoid CANCEL messages by mak-
ing the producer block on the buffer-process. Client-server applications form
another class where this proposed improvement is useful. A client in the
client-server model has to interact only with the server; thus all clients have
an interaction-set size of one. A client that wants to synchronize (interact)
with the server cannot proceed unless synchronized. In such applications,
we can avoid CANCEL messages by making clients block on the server. Ap-
plications that have a high degree of parallelism form another class where
the proposed improvement is particularly useful. All worker processes have
to interact only with the master process. Thus all worker processes have an
interaction-set size of one. Divide-and-conquer class of problems is an exam-
ple where the worker processes, when done with the assigned computation,
cannot proceed unless synchronized with the central process. In such appli-
cations, one can avoid CANCEL messages by making worker processes block
on the central process.

– The second drawback of Bagrodia’s algorithm is that a process that is ready
to synchronize cannot initiate the synchronization if it does not have the
token. If both processes involved in an interaction have a token each, then
this process can initiate the interaction. Its token could then be kept pending
at the other end until that process was ready to perform the interaction, at
which time, only a single message transmission overhead would be incurred
to complete the interaction setup. This scheme is the proposed enhancement.
This scheme also increases concurrency in the system when both processes
become ready to interact at the same physical time, and reduces the best
case delay for synchronization, as explained below. Thus, each interaction
can be assigned two tokens, one for each partner.

The proposed algorithm is an extension to Bagrodia’s algorithm and ad-
dresses the aforementioned drawbacks. In the proposed algorithm, there are
either two tokens or a unique token for each interaction, depending on the
interaction-set size. There is a unique token for interactions between Pi and Pj

if both Pi and Pj have an interaction-set size of more than one. This avoids
the danger of extra CANCEL messages. For a pair of processes Pi and Pj such
that one of the processes, say Pi (Pi could be the client/worker/producer pro-
cess in the application), has an interaction-set size of one (Pi always interacts
with Pj), there is either one token or two tokens for this interaction. It is up
to the application process to decide. The number of messages is independent of
the number of tokens in this case. For interactions between processes Pi and Pj ,



Efficient Synchronization of Asynchronous Processes 355

which have two tokens – one with Pi, the other with Pj – either Pi or Pj can
send a REQUEST carrying the correct token to the other. Both processes can
send their REQUESTs concurrently. This increases concurrency in the system.
If Pi sends a REQUEST to Pj and receives a concurrent REQUEST from Pj ,
then this REQUEST from Pj acts as a REPLY. On P ′

js side, P ′
is REQUEST

serves as a REPLY. This improves the best case delay for synchronization (from
round-trip delay to one-way delay).

As mentioned above, in Bagrodia’s algorithm, an ACTIV E process Pj always
refuses the interaction. In the proposed algorithm, a REQUEST from process Pi,
where Pi interacts only with Pj , is not refused. Instead, this request is kept in the
DelaySetj of Pj . Pi should have a way to let Pj know that Pi wants to block on Pj

(Pj is the only process that Pi interacts with). So in the proposed algorithm, we
have an extra bit in the token, called BlockF lag, for this purpose. Pi sets it to
true if it wants to block on Pj , else it is false. This saves two messages. In the
proposed algorithm, a CANCEL message is sent either to prevent a deadlock in
the system or when the requesting process does not want to block.

3 Results

To demonstrate the efficiency of the optimized algorithm, we simulated both
Bagrodia’s algorithm (henceforth called BA) and the optimized BA. We com-
pared the average number of messages of the optimized BA and the BA al-
gorithms. The experiments were conducted using Intel Pentium III 866MHz
computers with 128 Mb SDRAM, running RedHat Linux, with the algorithms
implemented using C++.

The simulation model explored two cases - the first was a client-server type
of communication pattern where clients had interaction set size of one, while
the other had interactions between all pairs of processes (completely connected
graph). The tokens were distributed randomly for both the cases in BA.

In the experiments, the message transfer time was assumed to be negligible.
Thus, we abstracted away network latency. The active time - the time for which
the process is in ACTIV E state - was a configurable parameter. For a given
number of processes, the simulation was repeated 10 times. The variance in the
number of messages was negligible (see full paper for details).
Client-server case: As expected, the optimized BA gives better results. The
mean number of messages per interaction for BA is nearly 3.06 while it is 2 for
the optimized BA. So in the case of the client-server architecture, optimized BA
is 35% more efficient than BA (Figure 1). The performance of the optimized BA
is independent of the active time.
Fully connected case: The average number of messages for both BA and op-
timized BA varies with the active time parameter; the graph (Figure 2) shows
the results for 10,000 clock ticks. The optimized algorithm shows only a slight
improvement over Bagrodia’s algorithm. This is largely because as the interac-
tions complete, the system’s communication pattern gradually moves towards a
client-server system (where the size of the interaction set of clients is one), for



356 Sandeep Lodha et al.

Fig. 1. The client-server case Fig. 2. The fully connected case

which the optimized BA algorithm has a lower message overhead. Furthermore,
it appears that as the system size increases, the optimized BA seems to behave
increasingly better than BA.

4 Concluding Remarks

Concurrent programming languages such as CSP and Ada use synchronous
message-passing to define communication between a pair of asynchronous pro-
cesses. We presented an efficient way to synchronize processes by improving on
Bagrodia’s algorithm which is one of the best known algorithms to implement
synchronous communication between asynchronous processes. Simulation results
showed that the optimized BA is always more efficient than BA. An efficiency
gain of nearly 35% was achieved for a wide class of applications in which the set
of next allowable interactions is of cardinality one.

Acknowledgements

This work was supported by the U.S. National Science Foundation grants CCR-
9875617 and EIA-9871345.

References

1. Ada 95 Reference Manual (RM) Version 6.0: Intermetrics, Inc., January 1995.
(URL http://lglwww.epfl.ch/Ada/rm95) 352

2. R. Bagrodia, Synchronization of asynchronous processes in CSP, ACM TOPLAS,
11(4):585-597, 1989. 352

3. A. Bernstein, Output guards and nondeterminism in communicating sequential
processes, ACM TOPLAS, 2(2):234-238, April 1980. 352

4. G. Buckley, A, Silberschatz, An effective implementation of the generalized input-
output construct of CSP, ACM TOPLAS, 5(2):223-235, April 1983. 352



Efficient Synchronization of Asynchronous Processes 357

5. M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley,
1978. 352

6. C. A. R. Hoare, Communication sequential processes, CACM, 21(8):666-677, Aug.
1978. 352

7. F. Schneider, Synchronization in distributed processes, ACM TOPLAS, 4(2): 125-
148, April 1982. 352

8. J. Schwarz, Distributed synchronization of communicating sequential processes,
Tech. Report, University of Edinburgh, July 1978. 352

9. Van de Snepscheut, Synchronous communication between asynchronous compo-
nents, Information Processing Letters, 13(3): 127-130, Dec. 1981. 352


	Efficient Synchronization of Asynchronous Processes
	Introduction
	Bagrodia's Algorithm and Proposed Enhancements
	Bagrodia's Algorithm
	Proposed Enhancements

	Results
	Concluding Remarks


