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a b s t r a c t

Data replication is commonly used for fault-tolerance in reliable distributed systems. In large-scale
systems, it additionally provides low latency. Recently, causal consistency in such systems has received
much attention. However, existing works assume the data is fully replicated. This greatly simplifies
the design of the algorithms to implement causal consistency. In this paper, we propose that it can be
advantageous to have partial replication of data, and we propose two algorithms for achieving causal
consistency in such systems where the data is only partially replicated. This work provides the first
evidence that explores causal consistency for partially replicated distributed systems. We also give a
special case algorithm for causal consistency in the full-replication case. We give simulation results to
show the performance of our algorithms, and to present the advantage of partial replication over full
replication.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Reliable distributed shared services are growing in popularity
since they can provide fault tolerance and direct services closer to
end customers so as to lower access time anddrive up customer en-
gagement. Such services use the abstraction of distributed shared
memory (DSM) alongwith replication of the data under the covers.
With data replication, consistency of data in the face of concurrent
reads and updates becomes an important problem. There exists
a spectrum of consistency models in distributed shared memory
systems [1]: linearizability (the strongest), sequential consistency,
causal consistency, pipelined RAM, slow memory, and eventual
consistency (the weakest). These consistency models represent a
trade-off between cost and convenient semantics for the applica-
tion programmer.
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(A.D. Kshemkalyani), victor.nju@gmail.com (M. Shen).

Informally speaking, causal consistency first defines a certain
causality order on the read and write operations of an execution.
It then requires that all the write operations that can be related
by the causality order have to be seen by each application process
in the order defined by the causality order. Causal consistency in
DSM systems was proposed by Ahamad et al. [2], along with an
implementation algorithm. Later, Baldoni et al. gave an improved
implementation of causal memory [3]. Their implementation is
optimal in the sense that the protocol can update the local copy as
soon as possible, while respecting causal consistency. Specifically,
additional delays due to the inability of Lamport’s ‘‘happened be-
fore’’ relation [4] to map in a one-to-one way, cause–effect rela-
tions at the application level into relations at the implementation
level (a phenomenon called false causality) are eliminated. False
causality was identified by Lamport [4]. Causal consistency has
also been studied by Mahajan et al. [5], Belaramani et al. [6], and
Petersen et al. [7]. Lazy replication [8] is a client–server framework
to provide causal consistency using vector clocks, where the size
of the vector is equal to the number of replicas. A client can issue
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updates and queries to any replica, and replicas exchange gossip
messages to keep their data up-to-date.

Recently, consistency models have received attention in the
context of cloud computing with data centers and geo-replicated
storage, with product designs from industry, e.g., Google, Amazon,
Microsoft, LinkedIn, and Facebook. The CAP Theorem by Brewer [9]
states that for a replicated, distributed data store, it is possible to
provide at most two of the three features: Consistency of replicas
(C), Availability of Writes (A), and Partition tolerance (P). In the
face of this theorem, most systems such as Amazon’s Dynamo [10]
chose to implement eventual consistency [11], which states that
eventually, all copies of each data item converge to the same value.
Besides the above three features, two other desirable features of
large-scale distributed data stores are: low Latency and high Scal-
ability [12]. Causal consistency is the strongest form of consistency
that satisfies low Latency [12], defined as the latency less than the
maximum (round-trip) wide-area delay between replicas. More
recently, in the past few years, causal consistency has been studied
and/or implemented by numerous researchers [12–19] in the con-
text of geo-replicated storage. However, these implementations do
not achieve optimality in the sense defined by Baldoni et al., and
some of these do not provide scalability as they use a form of log
serialization and exchange to implement causal consistency.

A few of the recent works on causal consistency in the geo-
replicated cloud are outlined next. COPS [12] implements a
causally consistent key-value store system. It computes a list of
dependencies whenever an update occurs, and the update op-
eration is not performed until updates in the dependencies are
applied. The transitivity rule of the causality relationship is used to
prune the size of the dependency list. Eiger [19], an improvement
over COPS, provides scalable causal consistency for the complex
column-family data model, as well as non-blocking algorithms for
read-only and write-only transactions. The Orbe [16] key-value
storage system provides two different protocols to provide causal
consistency – the DM protocol uses two-dimensional matrices to
track the dependencies, and the DM-Clock protocol uses loosely
synchronized physical clocks to support read-only transactions.
The GentleRain [17] causally consistent key-value store uses a
periodic aggregation protocol to determine whether updates can
be made visible in accordance with causal consistency. Rather
than using explicit dependency check messages, it tracks causal
consistency by attaching to updates, scalar timestamps derived
from loosely synchronized physical clocks. Swiftcloud [20] pro-
vides efficient reads and writes using an occasionally stale but
causally consistent client-side local cache mechanism. The size of
the meta-data is proportional to the number of data centers used
to store data.

All the above works, including Ahamad et al. [2] and Baldoni
et al. [3], assume Complete Replication and Propagation (CRP)
based protocols. These protocols assume full replication and do not
consider the case of partial replication. This is primarily because
full replication makes it easy to implement causal consistency.
Concurrently with our work on partial replication, Crain et al. [21]
outlined a causally consistent protocol for geo-distributed partial
replication with dependency vectors. The main idea used is that
the sender, instead of the receiver, checks the dependencies when
propagating updates among data centers. However, it still consid-
ers imprecise representation of dependencies, which can result in
false dependencies.

Case for partial replication

Our proposed protocols for causal consistency are designed for
partial replication across the DSM system. We make a case for
partial replication.

1. Partial replication is more natural for some applications.
Consider the following example. A user U’s data is replicated
across multiple data centers located in different regions.
If user U’s connections are located mostly in the Chicago
region and the US West coast, the majority of views of user
U’s data will come from these two regions. In such a case,
it is an overkill to replicate user U’s data in data centers
outside these two regions, and partial replication has very
small impact on the overall latency in this scenario.

2. With p replicas placed at some p of the total of ndata centers,
each write operation that would have triggered an update
broadcast to the n data centers now becomes a multicast
to just p of the n data centers. This is a direct savings in
the number of messages and p is a tunable parameter. Thus,
partial replication reduces the number of messages sent
with eachwrite operation. Although the read operationmay
incur additional messages to read from a remote replica if
there is no local replica, the overall number of messages
will still be lower than the case of full replication if the
replication factor is low and the access pattern is such that
readers tend to read variables from the local replica instead
of remote ones. Hadoop HDFS and MapReduce is one such
example. The HDFS framework usually chooses a small con-
stant number as the replication factor even when the size of
the cluster is large. Furthermore, theMapReduce framework
tries its best to satisfy data locality, i.e., assigning tasks that
read only from the local machine. In such a case, partial
replication generates much less messages than full replica-
tion. For write-intensive workloads, it naturally follows that
partial replication gives a direct savings in the number of
messages without incurring any delay or latency for remote
reads.

3. Partial replication allows a direct savings in resources for
storage and networking hardware.

4. Recent researchers have explicitly acknowledged that pro-
viding causal consistency under partial replication is a
big challenge. For example, Lloyd et al. [12] and Bailis
et al. [14] write: ‘‘While weaker consistency models are
often amenable to partial replication, allowing flexibility in
the number of datacenters required in causally consistent
replication remains an interesting aspect of future work’’.
Although partial replication can avoid taking unnecessary
network capacity and hardware resources theoretically, it
is a challenge to implement partial replication compared
with full replication. This is primarily because of the higher
complexity and overheads (e.g., additional communication
workloads and larger meta-data) of tracking causal depen-
dency between operations.

5. The supposedly higher cost of tracking dependency meta-
data, which has deterred prior researchers from considering
partial replication, is relatively small for applications such
as Facebook, where photos, videos and large files are also
uploaded. Although light-weight data like comments, likes,
and chats are also posted, it is worth exploring the size of
meta-data overheads in our partial replication protocols.

Currently, there are no experimental or simulation results about
the analysis of the performance trade-off between full replication
and partial replication. Several algorithms that aim at achieving a
causal message ordering have been previously proposed [22–24].
Different from the DSM causal consistency algorithms reviewed
above, these algorithms are for message passing systems where
application processes communicate with each other via sending
and receiving messages. Putting aside this difference, none of
these causal message ordering algorithms assume that messages
get broadcast each time application processes communicate with
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each other. This is similar to partially replicated DSM systems,
where an individual application process writing a variable does
not write to all sites in the system. In both cases, the changes in
one application process do not get propagated to the entire system.
These algorithms provide a good starting point for the design of our
algorithms.

Contributions

Wepresent the first algorithms for implementing causal consis-
tency in partially replicated distributed shared memory systems.

1. Algorithm Full-Track is optimal in the sense defined by
Baldoni et al. [3], viz., the protocol can update the local copy
as soon as possible while respecting causal consistency. This
reduces the false causality in the system.

2. Algorithm Full-Track can be made further optimal in terms
of the size of the local logs maintained and the amount of
control information piggybacked on the update messages,
by achieving minimality. The resulting algorithmwhich op-
timally minimizes the size of meta-data is Algorithm Opt-
Track.

3. As a special case of Algorithm Opt-Track, we present Algo-
rithm Opt-Track-CRP, that is optimal in a fully replicated
distributed shared memory system. This algorithm is opti-
mal not only in the sense of Baldoni et al. but also in the
amount of control information used in local logs and on
update messages, which is considerably less than for algo-
rithm Opt-Track, making it highly scalable. The algorithm is
significantly more efficient than the Baldoni et al. protocol
optP [3] for the complete replication case.

This paper provides the first evidence that explores the trade-
off between partial replication and full replication analytically.
We quantitatively evaluate the performance of the three pro-
tocols – Full-Track, Opt-Track, and Opt-Track-CRP – for imple-
menting causal consistency under partial replication and under
full replication. We first simulate the Opt-Track and Full-Track
protocols within partially replicated systems to compare their
performance. We present that Opt-Track outperforms Full-Track
in network capacity and shows the advantage in write-intensive
workloads. Then, we simulate Opt-Track-CRP and optP [3] within
fully replicated systems to compare their efficiency. We present
that Opt-Track-CRP also significantly outperforms optP in scalabil-
ity and network capacity utilization.

In addition to simulating the performances within partially
replicated systems andwithin fully replicated systems, we also ex-
plore the trade-off between partial replication and full replication
analytically. We show the advantage of partial replication over full
replication.

Our protocols are applicable to large-scale DSM systems, and
in particular to those accommodating replications of medium or
large-sized data files (> 100 KB). An example of a real world
network which can benefit from our results is the multimedia
object oriented social network ‘flickr’ which is a photo-sharing
social community where the average file size is 0.6 MB.

We note that recent papers, such as COPS [12], Eiger [19],
Orbe [16] and GentleRain [17], implement causal consistency in
large geo-replicated data storage by using a two-level hierarchical
architecture (i.e., client-cluster framework) across the wide-area.
They all adopt the full-replication-centric model, though the data
is partitioned at each cluster in order to provide good scalability.
In this paper, we provide the first study of partial replication algo-
rithms for causal consistency, and we adopt a one-level architec-
ture, similar to [2,3]. We intend to adapt the results of this paper to
a two-level hierarchical partial geo-replication systemarchitecture
in the future.

A brief announcement of these results appears as [25] and an
earlier version of these results appears as [26,27].

Organization

Section 2 gives the causal distributed shared memory model.
Section 3 presents Algorithm Full-Track which implements causal
consistency in the partially replicated DSM system and is optimal
in the sense that it can apply updates as soon as possible. Section 4
presents Algorithm Opt-Track which implements causal consis-
tency in the partially replicated DSM system and is additionally
optimal in the sense that the size of local logs and message over-
heads areminimized. Section 5 presents AlgorithmOpt-Track-CRP,
which is a special case of Algorithm Opt-Track for fully replicated
systems. Section 6 analyzes the complexity of the algorithms.
Section 7 presents the communication models for simulating the
optimal protocols proposed under partial replication and under
full replication. Section 8 shows all the simulation results and
analytically illustrates the performance trade-off between partial
replication and full replication. Section 9 gives a discussion. Sec-
tion 10 concludes.

2. Systemmodel

2.1. Causally consistent memory

The systemmodel is based on that proposedbyAhamadet al. [2]
and Baldoni et al. [3]. We consider a system which consists of
n application processes ap1, ap2, . . . , apn interacting through a
shared memoryQ composed of q variables x1, . . . , xq. Each api can
perform either a read or awrite operation on any of the q variables.
A read operation performed by api on variable xj which returns
value v is denoted as ri(xj)v. Similarly, awrite operation performed
by api on variable xj which writes the value u is denoted as wi(xj)u.
Each variable has an initial value ⊥.

By performing a series of read andwrite operations, an applica-
tion process api generates a local history hi. If a local operation o1
precedes another local operation o2, we say o1 precedes o2 under
program order, denoted as o1≺poo2. The set of local histories hi from
all n application processes form the global history H . Operations
performed at distinct processes can also be related using the read-
from order, denoted as ≺ro. Two operations o1 and o2 from distinct
processes api and apj respectively have the relationship o1≺roo2
if there are variable x and value v such that o1 = w(x)v and
o2 = r(x)v, meaning that read operation o2 retrieves the value
written by the write operation o1. It is shown in [2] that

• for any operation o2, there is at most one operation o1 such
that o1≺roo2;

• if o2 = r(x)v for some x and there is no operation o1 such that
o1≺roo2, then v =⊥, meaning that a read with no preceding
write must read the initial value.

With both the program order and read-from order, the causality
order, denoted as ≺co, can be defined on the set of operations OH
in a history H . The causality order is the transitive closure of the
union of local histories’ program order and the read-from order.
Formally, for two operations o1 and o2 in OH , o1≺coo2 if and only if
one of the following conditions holds:

1. ∃api such that o1≺poo2 (program order)
2. ∃api, apj such that o1 and o2 are performed by api and apj

respectively, and o1≺roo2 (read-from order)
3. ∃o3 ∈ OH such that o1≺coo3 and o3≺coo2 (transitive clo-

sure).

Essentially, the causality order defines a partial order on the set of
operations OH . For a shared memory to be causal memory, all the
write operations that can be related by the causality order have
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to be seen by each application process in the order defined by the
causality order. More formally, we state as follows.

Given a history H , S is a serialization of H if S is a sequence con-
taining exactly the operations ofH such that each read operation of
a variable x returns the value written by themost recent precedent
write on x in S. A serialization respects a given order if, for any
two operations o1 and o2 in S, o1 precedes o2 in that order implies
that o1 precedes o2 in S. Let Hi+w be the history containing all the
operations in hi and all write operations of H .

Definition 1 (Causally Consistent History). A history is causally
consistent if for each application process api, there is a serialization
Si of Hi+w that respects the causality order ≺co.

Definition 2 (Causal Memory). Amemory is causal if it admits only
causally consistent histories.

2.2. Underlying distributed communication system

The DSM abstraction and its causal consistency model is im-
plemented by a memory consistency system (MCS) on top of the
underlying distributed message passing system which also con-
sists of n sites connected by FIFO channels. The distributed system
is asynchronous. We assume that all messaging primitives are
reliable. Message transfer delay is arbitrary but finite, and there
is no bound on the relative process speeds. Each site si hosts an
application process api. The local MCS process at si is denotedmpi.

With a partially replicated system, each site holds only a sub-
set of variables xh ∈ Q. For application process api, we denote
the subset of variables kept on the site si as Xi. We assume the
replication factor of the DSM system is p and the variables are
evenly replicated on all the sites. This assumption is justified from
a statistical viewpoint. It follows that the average size of Xi is pq

n .
If a variable xh is not locally replicated, then a read operation

fetches the value from one of the replica sites of xh. The replica site
could be chosen randomly from one of the sites that replicate xh.
(Alternatively, a policy decision could bemade to fetch the variable
from the closest replica.) For this, we assume a static system and
that complete knowledge about the partial replication scheme is
known to all replicas. Thus, for both a read and a write operation
on a variable, each site is assumed to know the replica set of that
variable.

To facilitate the read and write operations in the DSM ab-
straction, the underlying message passing system provides several
primitives to enable the reliable communication between different
sites. For the write operation, each time an application process
api performs w(x1)v, the local MCS process invokes the Multi-
cast(m) primitive to deliver the message m containing w(x1)v to
all sites that replicate the variable x1. For the read operation, there
is a possibility that an application process api performing read
operation r(x2)u needs to read x2’s value from a remote site since
x2 is not locally replicated. In such a case, the local MCS process
invokes the RemoteFetch(m) primitive to deliver the message
m to a random site replicating x2 to fetch its value u. This is a
synchronous primitive, meaning that it will complete when the
variable’s value is returned. If the variable to be read is locally
replicated, then the application process is simply returned the local
value.

The read and write operations performed by the application
processes cause events to be generated in the underlying message
passing system. More specifically, eachMCS processmpi generates
a set of events Ei. E = ⟨Ei, . . . , En⟩ is the global set of events,
ordered by Lamport’s ‘‘happened before’’ relation → [4]. The dis-
tributed computation Ê is the partial order induced on E by→. The
set of messages in Ê is denotedMÊ .

The following types of events are generated at each site:

• Send event. The invocation of Multicast(m) primitive by
MCS processmpi generates event sendi(m).

• Fetch event. The invocation of RemoteFetch(m) primitive
by MCS process mpi generates event fetchi(f (x)). Here, f (x)
denotes the variable being fetched.

• Receive event. The receipt of a messagem at site si generates
event receivei(m). Themessagem can correspond to either a
sendj(m) event or a fetchj(f (x)) event.

• Apply event.When applying the value written by the opera-
tion wj(xh)v to variable xh’s local replica at site si, an event
applyi(wj(xh)v) is generated.

• Remote return event.After the occurrence of event receivei(m)
corresponding to the remote read operation rj(xh)u per-
formed by apj, an event remote_returni(rj(xh)u) is generated
which transmits xh’s value u to site sj.

• Return event. Event returni(xh, v) corresponds to the return
of xh’s value v either fetched remotely through a previous
fetchi(f (x)) event or read from the local replica.

To implement the causal memory in the DSM abstraction, each
time an update message m corresponding to a write operation
wj(xh)v is received at site si, a new thread is spawned to checkwhen
to locally apply the update. The condition that the update is ready
to be applied locally is called, as in [3], the activation predicate. This
predicate, A(mwj(xh)v, e), is initially set to false and becomes true
only when the update mwj(xh)v can be applied after the occurrence
of local event e. The thread handling the local application of the
update will be blocked until the activation predicate becomes true,
atwhich time the threadwrites value v to variable xh’s local replica.
This will generate the applyi(wj(xh)v) event locally. Thus, the key to
implement the causal memory is the activation predicate.

2.3. Activation predicate

2.3.1. The →co relation
To formulate the activation predicate, Baldoni et al. [3] defined a

new relation, →co, on send events in Ê generated in the underlying
message passing system. We modify their definition by adding
condition (3) to accommodate the partial replication scenario.

Definition 3 (→co On Send Events). Let w(x)a and w(y)b be two
write operations in OH . Then, for their corresponding send events
in the underlying message passing system, sendi(mw(x)a)→co
sendj(mw(y)b) iff one of the following conditions holds:

1. i = j and sendi(mw(x)a) locally precedes sendj(mw(y)b)
2. i ̸= j and returnj(x, a) locally precedes sendj(mw(y)b)
3. i ̸= j and ∃l, such that applyl(w(x)a) locally precedes

remote_returnl(rj(x)a) which precedes (as per Lamport’s →

relation) returnj(x, a) which locally precedes sendj(mw(y)b)
4. ∃sendk(mw(z)c), such that sendi(mw(x)a) →co sendk(mw(z)c)

→co sendj(mw(y)b).

Actually, it is easy to show the following property, along the
lines of [3].

Property 1. sendi(mw(x)a) →co sendj(mw(y)b) ⇔ w(x)a ≺co w(y)b.

Definition 4 (Safety). Let Ê be a distributed computation gen-
erated by a protocol P . P is safe if and only if: ∀mw,mw′ ∈

MÊ, sendj(mw) →co sendk(mw′ ) implies that at all common desti-
nations si of the two updates, applyi(w) locally precedes applyi(w′).

An activation predicate of a safe protocol has to stop the ap-
plication of any update message mw that arrives out of order with
respect to →co.
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2.3.2. Optimal activation predicate
With the →co relation defined, Baldoni et al. gave an optimal

activation predicate in [3] as follows:

Definition 5 (Optimal Activation Predicate).

AOPT (mw, e) ≡ ∄mw′ : (sendj(mw′ ) →co sendk(mw)
∧applyi(w′) ̸∈ Ei|e)

where Ei|e is the set of events that happened at the site si up until
e (excluding e).

A protocol is optimal in terms of the activation predicate if its
activation predicate is false only if there exists an update message
mw′ such that sendj(mw′ ) →co sendk(mw) and mw′ has not yet
been applied locally at si. The key to design the optimal activation
predicate is to track dependencies under the →co relation and not
the Lamport’s → relation.

This activation predicate cleanly represents the causal mem-
ory’s requirement: a write operation shall not be seen by an appli-
cation process before any causally preceding write operations. It is
optimal because the moment this activation predicate AOPT (mw, e)
becomes true is the earliest instant that the update mw can be
applied.

3. Full-Track algorithm

3.1. Basic idea

Since the system is partially replicated, each application process
performing a write operation will only write to a subset of all the
sites in the system. Thus, for an application process api and a site
sj, not all write operations performed by api will be seen by sj. This
makes it necessary to distinguish the destinations of api’s write
operations. The activation predicate AOPT can be implemented by
tracking the number of updates received that causally happened
before under the →co relation. In order to do so in a partially repli-
cated scenario, it is necessary for each site si to track the number
of write operations performed by every application process apj to
every site sk. We denote this value as Writei[j][k]. Application pro-
cesses also piggyback this clock value on every outgoing message
generated by the Multicast(m) primitive. TheWritematrix clock
tracks the causal relation under the →co relation, rather than the
causal relation under the → relation.

Another implication of tracking under the →co relation is that
the way to merge the piggybacked clock with the local clock needs
to be changed. Under the →co relation, it is reading the value that
was written previously by another application process that gener-
ates a causal relationship between two processes. Thus, the Write
clock piggybacked on messages generated by the Multicast(m)
primitives should not be merged with the local Write clock at the
message reception or at the apply event. It should be delayed until
a later read operation which reads the value that comes with the
message and generates the corresponding return event.

3.2. The algorithm

With the above discussion, we now give the formal algorithm
in Algorithm 1. At each site si, the following data structures are
maintained:

1. Writei[1 . . . n, 1 . . . n]: the Write clock (initially set to 0s).
Writei[j, k] = a means that the number of updates sent
by application process apj to site sk that causally happened
before under the →co relation is a.

2. Applyi[1 . . . n]: an array of integers (initially set to 0s).
Applyi[j] = ameans that a total number of a updateswritten
by application process apj have been applied at site si.

Algorithm 1: Full-Track Algorithm (Code at site si)
WRITE(xh, v):

1 for all sites sj that replicate xh do
2 Writei[i, j] + +;
3 Multicast[m(xh, v,Writei)] to all sites sj (j ̸= i) that
replicate xh;

4 if xh is locally replicated then
5 xh := v;
6 Applyi[i] + +;
7 LastWriteOni⟨h⟩ := Writei;

READ(xh):
8 if xh is not locally replicated then
9 RemoteFetch[f (xh)] from any site sj that replicates xh to

get xh and LastWriteOnj⟨h⟩;
10 ∀k, l ∈ [1 . . . n],Writei[k, l] :=

max(Writei[k, l], LastWriteOnj⟨h⟩.Write[k, l]);
11 else
12 ∀k, l ∈ [1 . . . n],Writei[k, l] :=

max(Writei[k, l], LastWriteOni⟨h⟩.Write[k, l]);
13 return xh;

On receiving m(xh, v,W ) from site sj:
14 wait until

(∀k ̸= j, Applyi[k] ≥ W [k, i] ∧ Applyi[j] = W [j, i] − 1);
15 xh := v;
16 Applyi[j] + +;
17 LastWriteOni⟨h⟩ := W ;

On receiving f (xh) from site sj:
18 return xh and LastWriteOni⟨h⟩ to sj;

3. LastWriteOni⟨variable id,Write⟩: a hashmap ofWrite clocks.
LastWriteOni⟨h⟩ stores theWrite clock value associated with
the last write operation on variable xh which is locally repli-
cated at site si.

4. Opt-Track algorithm

4.1. Basic idea

Algorithm Full-Track achieves optimality in terms of the acti-
vation predicate. However, in other aspects, it can still be further
optimized. We notice that, each message corresponding to a write
operation piggybacks an O(n2) matrix, and the same storage cost is
also incurred at each site si. Kshemkalyani and Singhal proposed
the necessary and sufficient conditions on the information for
causal message ordering and designed an algorithm implementing
these optimality conditions [23,24] (hereafter referred to as the KS
algorithm). TheKS algorithmaims at reducing themessage size and
storage cost for causal message ordering algorithms in message
passing systems. The ideas behind the KS algorithm exploit the
transitive dependency of causal deliveries of messages and encode
the information being tracked.

We can adapt the KS algorithm to a partially replicated DSM
system to implement causal memory there. Now, each site si will
maintain a record of the most recent updates received from every
site, that causally happened before under the →co relation. Each
such record also keeps a list of destinations representing the set
of replicas receiving the corresponding update. When performing
a write operation, the outgoing update messages will piggyback
the currently stored records. When receiving an update message,
AOPT is used to determine when to apply the update. Once the
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Fig. 1. Illustration of the conditions for destination information to be redundant. For
causal memory algorithms, the information is ‘‘s2 is a destination of m’’. The causal
future of the relevant apply events and the causal future (under the →co relation)
of the relevant return events are shown in dotted lines.

update is applied, the piggybacked records will be associated with
the updated variable. When a later read operation is performed
on the updated variable, the records associated with the variable
will be merged into the locally stored records to reflect the causal
dependency between the read andwrite operations.We can prune
redundant destination information using the following conditions,
illustrated in Fig. 1. We use remembering implicitly which means
inferring that information from other later or more up to date log
entries, without storing that information.

• Propagation Condition 1: When an update m correspond-
ing to write operation w(x)v is applied at site s2, then the
information that s2 is part of the updatem’s destinations no
longer needs to be remembered in the causal future of the
event apply2(w).

• Pruning Condition 1: In addition, we implicitly remem-
ber in the causal future (under the →co relation) of event
return2(x, v) (and events remote_return2(r∗(x)v)) that m has
been delivered to s2, to clean the logs at other sites.

• Propagation Condition 2: For two updates mw(x)v and
m′

w′(y)v′ such that send(m)→co send(m′) and both updates
are sent to site s2, the information that s2 is part of update
m’s destinations is irrelevant in the causal future of the event
apply(w′) at all sites sk receiving update m′. (In fact, it is
redundant in the causal future of send(m′), other than m′

sent to s2.) This is because, by transitivity, applying update
m′ at s2 in causal order with respect to a message m′′ sent
causally later to s2 will infer the update m has already been
applied at s2.

• Pruning Condition 2: In addition, we implicitly remember
in the causal future (under the →co relation) of events
returnk(y, v′) (and events remote_returnk(r∗(y)v′)) that m is
transitively guaranteed to bedelivered to s2, to clean the logs
at other sites.

The logs at the sites are cleaned as follows. The algorithm
explicitly tracks (source, timestamp, Dests) per multicast message
M in the log and on the message overhead. Mi,a.Dests indicates
the set of destinations of this multicast sent from source i at local
timestamp a. Log entries are denoted by l and message overhead
entries are denoted by o. The algorithm implicitly tracks messages
that are delivered (Pruning Condition 1) or transitively guaranteed
to be delivered in causal order (Pruning Condition 2) as follows.

• Implicit Tracking 1: ∃d ∈ Mi,a.Dests such that d ∈

li,a.Dests
⋀

d ̸∈ oi,a.Dests. Then d can be deleted from
li,a.Dests because it can be inferred that Mi,a is delivered
to d or is transitively guaranteed to be delivered in causal

order. (Likewise with the roles of l and o reversed.) When
li,a.Dests = ∅, it can be inferred that Mi,a is delivered or is
transitively guaranteed to be delivered in causal order, to
all its destinations. Observe that entries of such format will
accumulate. Such entries can be discarded and implicitly
inferred as follows.

• Implicit Tracking 2: If a1 < a2 and li,a2 ∈ LOGj, then
li,a1 is implicitly or explicitly in LOGj. Entries of the form
li,a1 .Dests = ∅ can be inferred by their absence and should
not be stored.

Implicit Tracking 1 and Implicit Tracking 2 in a combined form
implement Pruning Condition 1 and Pruning Condition 2. When
doing Implicit Tracking 1 and Implicit Tracking 2, if explicitly
stored information is encountered, it must be deleted as soon as it
comes into the causal future of the implicitly tracked information.

4.2. The algorithm

We give the algorithm in Algorithm 2. The following data struc-
tures are maintained at each site:

1. clocki: local counter at site si for write operations performed
by application process api.

2. Applyi[1 . . . n]: an array of integers (initially set to 0s).
Applyi[j] = ameans that a total number of a updateswritten
by application process apj have been applied at site si.

3. LOGi = {⟨j, clockj,Dests⟩}: the local log (initially set to
empty). Each entry indicates a write operation initiated by
site sj at time clockj in the causal past. Dests is the destina-
tion list for that write operation. Only necessary destination
information is stored.

4. LastWriteOni⟨variable id, LOG⟩: a hash map of LOGs.
LastWriteOni⟨h⟩ stores the piggybacked LOG from the most
recent update applied at site si for locally replicated
variable xh.

In a write operation, the meta-data per replica site is tailored
in lines (2)–(9) to minimize its space overhead. Lw is the working
variable used to modify the local LOGi to send to each replica site.
Notice that lines (4)–(6) and lines (10)–(11) prune the destination
information using Propagation Condition 2, while lines (29)–(30)
use Propagation Condition 1 to prune the redundant information.
Also, in lines (7)–(8) and in the PURGE function (see Algorithm 3),
entries with empty destination list are kept as long as and only
as long as they are the most recent update from the sender. This
implements the optimality techniques of Implicit Tracking 2, de-
scribed before. AOPT is implemented in lines (24)–(25).

Algorithm 3 gives the procedures used by Algorithm Opt-Track
(Algorithm 2). Function PURGE removes old records with ∅ des-
tination lists, per sender process (Implicit Tracking 2). On a read
operation of variable xh, function MERGE merges the piggybacked
log of the corresponding write to xh with the local log LOGi. In
this function, new dependencies get added to LOGi and existing
dependencies in LOGi are pruned, based on the information in
the piggybacked data Lw . The merging implements the optimality
techniques of Implicit Tracking 1, described before.

5. Opt-Track-CRP: Adapting Opt-Track algorithm to fully-
replicated systems

5.1. Basic idea

Algorithm Opt-Track can be directly applied to fully replicated
DSM systems. In the full replication case, as every write operation
will be sent to the same set of sites, namely all of them, there is
no need to keep a list of the destination information with each
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Algorithm 2: Opt-Track Algorithm (Code at site si)
WRITE(xh, v):

1 clocki + +;
2 for all sites sj(j ̸= i) that replicate xh do
3 Lw := LOGi;
4 for all o ∈ Lw do
5 if sj ̸∈ o.Dests then o.Dests := o.Dests \ xh.replicas;
6 else o.Dests := o.Dests \ xh.replicas ∪ {sj};
7 for all oz,clockz ∈ Lw do
8 if oz,clockz .Dests = ∅ ∧ (∃o′

z,clock′z
∈ Lw|clockz < clock′

z)
then remove oz,clockz from Lw;

9 sendm(xh, v, i, clocki, xh.replicas, Lw) to site sj;
10 for all l ∈ LOGi do
11 l.Dests := l.Dests \ xh.replicas;
12 LOGi := LOGi ∪ {⟨i, clocki, xh.replicas \ {si}⟩};
13 PURGE;
14 if xh is locally replicated then
15 xh := v;
16 Applyi[i] + +;
17 LastWriteOni⟨h⟩ := LOGi;

READ(xh):
18 if xh is not locally replicated then
19 RemoteFetch[f (xh)] from any site sj that replicates xh to

get xh and LastWriteOnj⟨h⟩;
20 MERGE(LOGi, LastWriteOnj⟨h⟩);
21 else MERGE(LOGi, LastWriteOni⟨h⟩);
22 PURGE;
23 return xh;

On receivingm(xh, v, j, clockj, xh.replicas, Lw) from site sj:
24 for all oz,clockz ∈ Lw do
25 if si ∈ oz,clockz .Dests thenwait until clockz ≤ Applyi[z];
26 xh := v;
27 Applyi[j] := clockj;
28 Lw := Lw ∪ {⟨j, clockj, xh.replicas⟩};
29 for all oz,clockz ∈ Lw do
30 oz,clockz .Dests := oz,clockz .Dests \ {si};
31 LastWriteOni⟨h⟩ := Lw;

On receiving f (xh) from site sj:
32 return xh and LastWriteOni⟨h⟩ to sj;

write operation. Each time a write operation is sent, all the write
operations it piggybacks as its dependencies will share the same
set of destinations as the one being sent, and their destination list
will be pruned by Propagation Condition 2. Also, when a write
operation is received, all the write operations it piggybacks also
have the receiver as part of their destinations. So, when checking
for the activation predicate at lines (24)-(25) in Algorithm 2, all
piggybackedwrite operations need to be checked.With these addi-
tional properties in the full replication scenario, we can represent
each individual write operation using only a pair ⟨i, clocki⟩, where i
is the site id and clocki is the local write operation counter at site si
when thewrite operation is issued. In thisway, we bring the cost of
representing a write operation from potentially O(n) down to O(1).
This improves the algorithm’s scalabilitywhen the sharedmemory
is fully replicated.

In fact, Algorithm 2’s scalability can be further improved in the
fully replicated scenario. In the partially replicated case, keeping
entries with empty destination list as long as they represent the
most recent applied updates from some site is important, as it

Algorithm 3: Procedures used in Algorithm 2, Opt-Track Algo-
rithm (Code at site si)

PURGE:
1 for all lz,tz ∈ LOGi do
2 if lz,tz .Dests = ∅ ∧ (∃l′z,t ′z ∈ LOGi|tz < t ′z) then
3 remove lz,tz from LOGi;

MERGE(LOGi, Lw):
4 for all oz,t ∈ Lw and ls,t ′ ∈ LOGi such that s = z do
5 if t < t ′ ∧ ls,t ̸∈ LOGi thenmark oz,t for deletion;
6 if t ′ < t ∧ oz,t ′ ̸∈ Lw thenmark ls,t ′ for deletion;
7 delete marked entries;
8 if t = t ′ then
9 ls,t ′ .Dests := ls,t ′ .Dests ∩ oz,t .Dests;

10 delete oz,t from Lw;

11 LOGi := LOGi ∪ Lw;

Fig. 2. In fully replicated systems, the local log will be reset after each write
operation. Also, when a write operation is applied, only the write operation itself
needs to be remembered. For clarity, the apply events are omitted in this figure.

ensures the optimality that no redundant destination information
is transmitted. However, this will also require each site to almost
always maintain a total of n entries. In the fully replicated case,
we can also decrease this cost. We observe that, once a site s3
issues a write operation w′(x2)u, it no longer needs to remember
any previous write operations, such as w(x1)v, stored in the local
log. This is because all the write operations stored in the local log
share the samedestination list asw′. Thus, bymaking sure themost
recent write operation is applied in causal order, all the previous
write operations sent to all sites are guaranteed to be also applied
in causal order. Similarly, after the activation predicate becomes
true and the write operation w′ is applied at site s1, only w′ itself
needs to be remembered in LastWriteOn1⟨2⟩. This is illustrated in
Fig. 2.

This way of maintaining local logs essentially means that each
site si now only needs to maintain d + 1 entries at any time with
each entry incurring only an O(1) cost. Here, d is the number of
read operations performed locally since themost recent local write
operation (and is equal to the number of write operations stored in
the local log). This is because the local log always gets reset after
eachwrite operation, and each read operationwill add atmost one
new entry into the local log. Furthermore, if some of these read
operations read variables that are updated by the same application
process, only the entry associatedwith the very last read operation
needs to bemaintained in the local log. Thus, the number of entries
to be maintained in the full replication scenario will be at most n.

Furthermore, if the application running on top of the DSM
system is write-intensive, then the local log will be reset at the
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Table 1
Complexity measures of causal memory algorithms.

Metric Full-Track Opt-Track Opt-Track-CRP optP [3]

Message count ((p − 1) +
n−p
n )w + 2r (n−p)

n ((p − 1) +
n−p
n )w + 2r (n−p)

n (n − 1)w (n − 1)w

Message size O(n2pw + nr(n − p)) O(n2pw + nr(n − p)) O(nwd) O(n2w)
amortized O(npw + r(n − p))

Time complexity Write O(n2) Write O(n2p) Write O(d) Write O(n)
Read O(n2) Read O(n2) Read O(d) Read O(n)

Space complexity O(max(n2, npq)) O(max(n2, npq)) O(max(d, q)) O(nq)
amortized O(max(n, pq))

frequency of write operations issued at each site. This means, each
site simply cannot perform enough read operations to build up the
local log to reach a number of n entries. Even if the application is
read-intensive, this is still the case because read-intensive applica-
tions usually only have a limited subset of all the sites whose write
operations are read. Thus, in practice, the number of entries that
need to be maintained in the full replication scenario is much less
than n.

5.2. The algorithm

With the above discussion, we give the formal algorithm of a
special case of Algorithm2, optimized for the fully replicatedDSMs.
The algorithm is listed in Algorithm 4. Each site still maintains
the same data structures as in Algorithm 2, the main difference
lies in that there is no need to maintain the destination list for
each write operation in the local log, and hence the format of
the log entries becomes the pair ⟨i, clocki⟩. We also use a boolean,
unionflagi, to implement the MERGE function. Algorithm 4 assumes
a highly simplified form. However, it is very systematically derived
by adapting Algorithm 2 to the fully replicated case. Algorithm 4 is
significantly better than the algorithm in [3] in multiple respects.

FunctionMERGEworks similarly to that in Opt-Track. There are
two merge cases in Opt-Track-CRP. First, when any log entry ls,t
with clock time t for site s = j in LOGi is older than the piggybacked
log entry ⟨j, clockj⟩ (i.e., t < clockj), it implies that this entry
information is out of date compared with ⟨j, clockj⟩. It also means
that there is no entry in LOGi whose time clock is greater than clockj.
If so, this entry ls,t will be removed from LOGi and entry ⟨j, clockj⟩
needs to be united with LOGi. Note that, in full replication, it is
impossible that there aremultiple entrieswith the same site id and
different clock time marks (i.e., LOGi = {⟨j, clockj⟩, ⟨j, clock′

j⟩ . . . }).
Second, if there is no log entry ls,t in which site id s is equal to j,
then, the piggybacked log entry ⟨j, clockj⟩ will also be merged with
LOGi.

6. Complexity

We analyze the complexity of the algorithms proposed in this
paper. Four metrics are used.

• message count: count of the total number of messages gen-
erated.

• message size: the total size of all the messages generated by
the algorithm. It can be formalized as

∑
i(# type i messages

* size of type i messages).
• time complexity: the time complexity at each site si for

performing the write and read operations.
• space complexity: the space complexity at each site si for

storing local logs and the LastWriteOn log.

The following parameters are used in the analysis:

• n: the number of sites in the system
• q: the number of variables in the DSM system

Algorithm 4: Opt-Track-CRP Algorithm (Code at site si)
WRITE(xh, v):

1 clocki + +;
2 sendm(xh, v, i, clocki, LOGi) to all sites other than si;
3 LOGi := {⟨i, clocki⟩};
4 xh := v;
5 Applyi[i] := clocki;
6 LastWriteOni⟨h⟩ := ⟨i, clocki⟩;

READ(xh):
7 MERGE(LOGi, LastWriteOni⟨h⟩);
8 return xh;

On receivingm(xh, v, j, clockj, Lw) from site sj:
9 for all oz,clockz ∈ Lw do

10 wait until clockz ≤ Applyi[z];
11 xh := v;
12 Applyi[j] := clockj;
13 LastWriteOni⟨h⟩ := ⟨j, clockj⟩;

MERGE(LOGi, ⟨j, clockj⟩):
14 unionflagi := 1;
15 for all ls,t ∈ LOGi such that s = j do
16 if t < clockj then
17 delete ls,t from LOGi;
18 else
19 unionflagi := 0;

20 if unionflagi then LOGi := LOGi ∪ {⟨j, clockj⟩};

• p: the replication factor, i.e., the number of sites at which
each variable is replicated

• w: the number of write operations performed in the DSM
system

• r: the number of read operations performed in the DSM
system

• d: the number of write operations stored in local log (used
only in the analysis of Opt-Track-CRP algorithm). Note that
d ≤ n.

Table 1 summarizes the results.

6.1. Full-Track algorithm

Message count complexity. In Full-Track, each write operation will
incur (p − 1) +

n−p
n number of messages. However, since now

read operations might need to read from remote site, assuming
the variables are evenly replicated across the entire system and the
read operations read variables in a truly random manner, then an
additional 2(n−p)

n number of messages will be generated by a read
operation. In total, the message count complexity of Full-Track is
((p − 1) +

n−p
n )w +

2r(n−p)
n .

Message space complexity. Full-Track maintains a localWrite clock
n2 matrix. Since this clock is piggybacked with each message
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containing a write operation or a remote read operation, each
message generated by a send event and the remote return event in
Full-Track has a size of O(n2), (whereas eachmessage generated by
a fetch event has a small and constant byte count). Thus, the total
message size complexity of Full-Track is npw(n − 1) + nr(n − p),
which is O(n2pw + nr(n − p)).

Time complexity. Each write operation updates the local Write
clock for each of the p replicas before invoking the Multicast
primitive. This incurs an O(p) time complexity. There is an added
cost ofO(n2) for copyingwith the probability of p

n theWritei matrix
into the LastWriteOni log. For the read operation,merging theWrite
clock associated with the variable to be read with the local clock
incurs an O(n2) time complexity.

Space complexity. The total space cost comes from the local Write
clock and the LastWriteOn log. The local Write clock takes O(n2)
space. Each entry in the LastWriteOn log that is associatedwith a lo-
cally replicated variable is of size O(n2). Assuming the variables are
evenly distributed across the entire system, each site will replicate
a total of pq

n variables. Thus, the LastWriteOn log incurs an O(npq)
space complexity. The Full-Track algorithm’s space complexity is
O(max(n2, npq)).

6.2. Opt-Track algorithm

Message count complexity. As Opt-Track produces the same mes-
sage pattern as Full-Track, its message count complexity is also the
same, being ((p − 1) +

n−p
n )w +

2r(n−p)
n .

Message space complexity. Different from Full-Track, Opt-Track
keeps a log of only the necessary write operations from all that
happened in the causal past and guarantees that only the necessary
destination information are kept, and piggybacked. Each record of
awrite operation alsomaintains its destination list, which contains
up to p sites. Similar to Full-Track, each message generated by
a send event and a remote return event contributes to the main
meta-data overhead. The messages generated by a fetch event are
small and of constant byte size.

In the KS algorithm, the upper bound on the size of the log and
themessage overhead isO(n2) [24]. This has also been shown using
an adversarial argument [28], viz., if you cannot decide the distri-
bution of replicas, then partial replication incurs the same costs as
does full replication as each process has to manage information on
all the replicas. However, Chandra et al. [29,30] showed through
extensive simulations that the amortized log size and message
overhead size of the KS algorithm is approximately O(n). This is
because the optimality conditions implemented ensure that only
necessary destination information is kept in the log and purged
as soon as possible. This also applies to the Opt-Track algorithm
because the same optimization techniques are used. Since the log
is piggybacked with each message containing a write operation
and each message that returns a variable’s value to a remote site,
the total message size complexity of the Opt-Track algorithm is
O(n2pw + nr(n − p)). However, this is only the asymptotic upper
bound. The amortized message size complexity of the Opt-Track
algorithm is approximately O(npw + r(n − p)).

Time complexity. For a write operation, for each replica the algo-
rithm prunes the destination information stored in the local log
accordingly before piggybacking it with the message. This will
incur anO(n2p) time complexity. For the read operation, the MERGE
operationwillmerge the log associatedwith the variable to be read
with the local log. If the local logs aremaintained in such away that
all the entries lj,tj ∈ LOGi are stored in the ascending order of j and
tj, then the MERGE operation can be completed with only one pass
through both logs. Thus, the incurred time complexity of a read
operation is O(n2).

Space complexity. The total space cost comes from the local LOGi
log (of size O(n2)) and the LastWriteOn log. Since for each of the
qp
n locally replicated variables, Opt-Track needs to store the log
piggybacked with the most recent write operation updating that
particular variable, the size of the LastWriteOn log is O(npq). Thus,
the space complexity is O(max(n2, npq)). Still, this is only the
asymptotic upper bound. The amortized space complexity will be
approximately O(max(n, pq)), since the amortized size of the local
log is approximately O(n) on average, instead of O(n2) [29,30].

6.3. Opt-Track-CRP algorithm

Message count complexity. Each write operation incurs n− 1 mes-
sages, however the read operation will always read from the local
copy. The message count complexity of Opt-Track-CRP is (n−1)w.

Message space complexity. Being a special case of Opt-Track, Opt-
Track-CRP does not keep the destination list for each record of a
write operation, nor does it always maintain n entries in the local
log at each site (as discussed in Section 5). This means the size of
a write operation’s record is only O(1) and the size of the local
log is only determined by the number of entries in the local log,
which is denoted as d in this section. As discussed in Section 5, in
practice d is only a small constant number. Thus the size of the
log piggybacked with each message containing a write operation
is O(d) and the total message size complexity of the Opt-Track-CRP
algorithm is O(nwd).

Time complexity. For the write operation, the algorithm rewrites
the local log and thus incurs only anO(1) time complexity. The pro-
cessing on receiving awrite broadcast checks for each piggybacked
log entry, which is the size of the sender’s log, and takes O(d)
time. For the read operation, the MERGE operation merges the log
associated with the variable to be read with the local log. As each
log record stored in the LastWriteOnhashmap always contains only
onewrite operation, the MERGE operation can be completedwithin
O(d) time.

Space complexity. The total space cost comes from the LastWriteOn
log and the local log. The LastWriteOn log contains q logs, each
containing a single write operation; thus its size is O(q). For the
local log, it contains d entries of write operations, thus having a
size of O(d). The space complexity of the Opt-Track-CRP algorithm
is thus O(max(d, q)).

6.4. Analysis

Compared with the existing causal memory algorithms, our
suite of algorithms has advantages in several aspects. Similar to the
complete replication and propagation causal memory algorithm,
optP, proposed by Baldoni et al., our algorithm also adopts the
optimal activation predicate. However, compared with Opt-Track-
CRP, the optP algorithm incurs a higher cost in the message size
complexity, the time complexity for read andwrite operations, and
the space complexity. This is because the optP algorithm requires
each site to maintain aWrite clock of size n.

Compared with other causal consistency algorithms [5–7,12–
19], our algorithms have the additional ability to implement causal
consistency in partially replicated DSM systems. The performance
of Full-Track provides a baseline for measuring the optimality
performance of Opt-Track. The performance of algorithm optP
provides a baseline for measuring the optimality performance of
Opt-Track-CRP,which follows the same systemmodel; for the fully
replicated case, we do not compare the complexity of our algo-
rithmOpt-Track-CRPwith those of these other algorithms because
they use a different systemmodel and because the emphasis of this
paper is on partial replication protocols. The benefit of doing partial
replication compared with full replication lies in multiple aspects,
as described in Section 1.
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Message count. Of the fourmetrics in Table 1, message count is the
most important. As the formulas indicate, partial replication gives
a lower message count than full replication if(
(p − 1) +

(n − p)
n

)
w + 2r

(n − p)
n

< (n − 1)w

⇒ w > 2
r

n − 1
. (1)

This is equivalently stated as: partial replication has a lower
message count if the write rate (defined as wrate =

w
w+r ) is such

that

wrate >
2

1 + n
. (2)

Message size. Partial replication can also help to reduce the total
size of messages transmitted within the system. Although the
two partial replication causal memory algorithms proposed in this
paper (Full-Track and Opt-Track)might have a highermessage size
complexity compared with the algorithms for full replication (optP
and Opt-Track-CRP), this complexity measurement does not take
into account the size of the real payload data. In modern social
networks, multimedia files like images and videos are frequently
shared. These files are much larger than the meta-data control
information piggybacked with them. Doing full replication might
somewhat improve the file access latency, however it also incurs
a large overhead on the underlying system for transmitting and
storing these files across different sites.

Let f be the size of an image being written and let b be the
number of bytes in an integer.

Under full replication, the net message payload size for the
writemulticast is (n−1)f , and n(n−1)b for themessagemeta-data
overheads in the worst case of Opt-Track-CRP protocol [26]. The
read cost is zero. In practice, the size of a write operation’s record
is only O(1) and the size of the local log is determined only by the
number of entries in the local log, denoted as d; d is only a small
constant number. Thus, the message size cost introduced by one
write operation in full replication is (n − 1)f + db(n − 1).

Under partial replication using Opt-Track, the netmessage pay-
load size is ((p−1)+ (n−p)

n )f for thewritemulticast. The read cost is
( r
w
) (n−p)

n f because there are r
w
reads per write, and n−p

n of the reads
fetch the file from a remote location. The corresponding message
meta-data overheads are ((p−1)+ (n−p)

n )n2b+ ( r
w
) (n−p)

n (n2
+1)b in

the worst case. However, it was shown in [27] through extensive
simulations that the amortized log size andmessage overhead size
is approximately O(n), not O(n2). The amortized message meta-
data overheads are ((p − 1) + (n−p)

n )nb + ( r
w
) (n−p)

n (n + 1)b. Thus,
partial replication has lower message size in the worst case if

(n − 1)f + nb(n − 1) >(
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or, in practice, if

(n − 1)f + db(n − 1) >(
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)
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) (n − p)
n

f+(
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)
nb +
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w
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n
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(4)

7. Simulation systemmodel

We consider an asynchronous distributed system composed of
a finite set of asynchronous processes running onmultiple sites in-
terconnected through a communication network over a wide area.

Table 2
Message meta-data structures in partial replication protocols.

Full-Track Opt-Track

SM (Multicast) xh, v,Write xh, v, Siteid, clock, Lw

FM (Fetch) xh, v xh, v
RM (Remote return) v, LastWriteOn⟨h⟩ v, LastWriteOn⟨h⟩

To simplify and without loss of generality, we assume that there
is only one process on each site. Each site has a local memory and
can communicate by asynchronous message passing through TCP
channels of the underlying network. The communication network
is reliable and transmitsmessages in FIFO order without omissions
or duplications.

7.1. Process Model

7.1.1. Partial replication
A process consists of two major subsystems viz., the appli-

cation subsystem and message receipt subsystem. The application
subsystem is responsible for the functionality of scheduling op-
eration events (write/read) including two major functions, viz.,
Write and Read. The message response subsystem is responsible
for responding to remote request service, including two major
functions, viz., Applying Multicast and Responding Fetch. The appli-
cation subsystem executes write and read events. It also maintains
a floating point local clock to generate operation patterns based on
a temporal schedule. For a write operation w(xh)v, the application
subsystem delivers the messagem(w(xh)v) and the corresponding
meta-data – local log Lw (in Opt-Track protocol) or local Write
clock (in Full-Track protocol) – to other replicas. For a read op-
eration r(xh), the application subsystem returns the local variable
xh’s value or sends a fetchmessage fetch(xh) to a predesignated site
to get the remote variable xh’s value as well as the corresponding
meta-data LastWriteOn⟨h⟩.

Themessage receipt subsystemmonitors two kinds of incoming
messages. First, for a multicast message m(w(xh)v), the message
receipt subsystem determines when to apply a new value v to
the variable xh in a causally consistent manner and then update
the meta-data LastWriteOn⟨h⟩. Second, for a remote fetch message
m(fetch(xh)), it simply replies with the local value of the variable xh
and the correspondingmeta-data LastWriteOn⟨h⟩ to the requesting
site.

Message structure. A message is the fundamental entity that
delivers information from a sender process to one ormore receiver
processes. The structures of different kinds of messages typically
follow the data structures shown in Table 2 for the algorithms.
In partial replication protocols, there are three distinct messages.
SM corresponds to a multicast message generated by send event to
deliver the information of updating variable’s value. FM is a fetch
message caused by a fetch event. RM represents a remote return
message to respond to a remote read operation.

The Full-Track protocol imposes an n×nWritematrix structure
as part of the piggybacked meta-data in SM and RMmessages. The
Opt-Track protocol utilizes a list log to maintain causal ordering
information in SM and RMmessages.

7.1.2. Full replication
Similarly, a process also consists of two major subsystems viz.,

the application subsystem andmessage receipt subsystem, in the full
replication protocols. The functionalities of the two subsystems are
very similar to those of subsystems in partial replication proto-
cols. The application process consists of Write and Read functions.
Specially, the function Read(xh) only needs to merge the local
piggybacked log LastWriteOn⟨h⟩ into the local log LOG and then
return the local value of xh. Besides, themessage receipt subsystem
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only handles the function of Applying Multicast to determine when
to apply a write update.

Message structure. There is only one message type – SM
message corresponding to a write operation for multicasting –
in Opt-Track-CRP. SM message is represented by m(xh, v, Siteid,
clock, LOG).

7.2. Simulation parameters

The system parameters whose effects we examine on the per-
formance of the Opt-Track partial replication protocol and the Opt-
Track-CRP full replication protocol are n, q, p, w, r , and wrate. We
make some notes as follows.

• Number of Processes (n): Due to our hardware limitation,
we can simulate up to 40 processes in JDK8.

• Number of Variables (q): It is the number of variables
in the distributed shared memory system. In a super geo-
replicated cloud storage, q is unbounded. Due to thememory
limitation, q we used in the benchmark experiment is one
hundred.

• Replication Factor (p): It is defined as the number of sites
at which each variable is replicated. In full replication pro-
tocols, p = n. In partial replication protocols, we set p equal
to 0.3×n.

7.3. Process execution

All the processes in the system are symmetric and generate
operation events (write event or read event) according to an event
schedule planned in advance. The event schedule is randomly
generated. The time interval between two events is given from
5 to 2005 ms. The processes in the distributed system execute
concurrently. However, simulating each process as an independent
process at a site invoked interprocess communication.

When a process gets initialized, it first invokes the mes-
sage receipt subsystem. Then, the system executes Scheduled-
ExecutorService in JDK to drive the application subsystem which
extends TimerTask class – a JDK scheduling service to dispose of the
scheduling operation events. In the simulation, the system relies
on TCP channels to deliver messages. While TCP exploits slow start
to retransmit the lost packets, which can lead to high value of
transmission time, it guarantees that messages can be successfully
transmitted without any loss.

An application subsystem stops generating operation events
once it runs out of all the scheduling events and flags its status as
finished. The simulation stopswhen all the application subsystems
have their status set to ‘finished’.

8. Simulation results

The implementations of the four causal consistency replicated
protocols – Full-Track, Opt-Track, Opt-Track-CRP, and optP [3] –
were realized in the framework presented in Section 7. The per-
formance metrics we used are to measure the ratio of the total
message cost for Full-Track vs. Opt-Track and Opt-Track-CRP vs.
optP, and the average size of the messages transmitted in different
causal consistency replicated protocols.

We report two experiments for each protocol, in each of which
we vary one of the two parameters n and wrate, respectively. For
each combination of parameters in each experiment, multiple runs
were performed for each protocol. The experimental results of all
the runs did not have more than one percent variation. Thus, only
themean of themultiple runs is represented for each combination.
Each simulation execution runs 600n operation events totally.
Experimental data was stored after the first 15% operation events
to eliminate the side effects of startup.

Table 3
Average SM and RM space overhead for Opt-Track and Full-Track (KB).

wrate The number of processes, n

5 10 20 30 40

Opt-Track

SM
0.2 0.489 0.828 1.512 2.241 2.783
0.5 0.464 0.715 1.125 1.442 1.976
0.8 0.450 0.627 0.914 1.194 1.475

RM
0.2 0.432 0.774 1.530 2.351 3.184
0.5 0.436 0.702 1.235 1.656 2.197
0.8 0.555 0.632 0.948 1.288 1.599

Full-Track

SM
0.2 0.518 1.252 3.870 8.028 13.547
0.5 0.522 1.271 3.975 8.127 14.033
0.8 0.524 1.275 3.988 8.410 14.157

RM
0.2 0.493 1.220 3.817 7.959 13.461
0.5 0.497 1.205 3.941 8.117 13.983
0.8 0.499 1.250 3.966 8.369 14.099

8.1. Partial replication protocols: Meta-data size

As shown in Table 2, in Full-Track and Opt-Track, SM and RM
messages contribute to the meta-data overheads, whereas FM
messages are of small and constant byte size.

8.1.1. Scalability as a function of n
The number of processes was varied from 5 up to 40. The wrate

is set to be 0.2 (lower write rate), 0.5 (medium write rate), and
0.8 (higher write rate), respectively. The results for the ratio of
message space overhead (meta-data size) of Opt-Track to Full-
Track are shown in Fig. 3(a). With increasing n, the space overhead
ratio rapidly decreases. For the case of 40 processes, for all the
simulations of Opt-Track, the overheads are only around 10 ∼

20% those of Full-Track on different write rates. For the case of 5
processes, the overheads reported for Opt-Track for different write
rates are around 90% of the ones of Full-Track, but the overhead of
Full-Track itself is low for such a parameter setting. It can also be
seen from Fig. 3(a) that a higher write ratemagnifies the difference
of themessage space overhead between Opt-Track and Full-Track.

8.1.2. Impact of write rate wrate
The results for the average message space overhead are shown

in Figs. 3(b), 3(c), and 3(d) for different write rates, respectively.
As discussed before, the average message overheads of FM in Opt-
Track and Full-Track protocols are constant, very small, and the
same, regardless of write rates. In Full-Track protocol, the average
message space overheads of SM and RM quadratically increase
with n based on our previous discussion. However, the increasingly
lower overheads of SM and RM in Opt-Track protocol can be seen
from the results. Their overheads appear almost linear in n. This
observation can be explained as follows: Although more explicit
information of type ‘‘si is a destination of message m’’ needs to
be maintained in the logs, each log also involves more implicit
information. Additional implicit information provides incentive for
the Propagation Constraints to merge and prune the logs when
SM or RM messages are received. The observation from Figs. 3(b)
to 3(d) demonstrates the scalability of Opt-Track under partial
replication.

Furthermore, under the same number of processes, we also
compare the average SM and RM message sizes in different write
rates. (The FM message size is an invariant constant count that
is independent of n and wrate. In Full-Track and Opt-Track, their
FM sizes are the same since they use the same data structure for
FM message.) The analytic data is listed in Table 3 according to
Figs. 3(b) to 3(d). The average SM and RM overheads decrease
as the write rate increases in Opt-Track Protocol. The reason can
be explained as follows. A read operation will invoke a MERGE
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(a) Total message meta-data space overhead as a function of n and wrate
in partial replication protocols.

(b) Average message meta-data space overhead as a function of n with
lower wrate (0.2) in partial replication protocols.

(c) Average message meta-data space overhead as a function of n with
medium wrate (0.5) in partial replication protocols.

(d) Average message meta-data space overhead as a function of n with
higher wrate (0.8) in partial replication protocols.

Fig. 3. Meta-data space overhead in partial replication protocols.

function to merge the piggybacked log of the corresponding write
to that variable with the local log LOG. Thus, a higher read rate
may increase the likelihood that the size of LOG is enlarged. Fur-
thermore, although a write operation results in the increase of
explicit information, it comes with a PURGE function to prune the
redundant information, so that the size of LOG could be decreased.
Therefore, a higherwrite ratewith a corresponding lower read rate
results in fewer MERGE and more PURGE operations generated.
The simulation results show that Opt-Track has a better utilization
of network capacity in write-intensive workloads than in read-
intensive ones. On the other hand, in Full-Track, although the
average SM and RM overheads increase as the write rate does, the
increase percentage is only 3% ∼ 1%.

From the above analysis, it can be concluded that the imple-
mentation of the Opt-Track protocol has a better network capacity
utilization and better scalability than Full-Track. These improve-
ments increase in a higher write-intensive workload.

8.2. Full replication protocols: Meta-data size

TheOpt-Track-CRP protocol and the optP protocol both use only
SM messages, and no FM or RMmessages.

8.2.1. Scalability as a function of n
The results for the ratio of message space overhead of Opt-

Track-CRP to optP are shown in Fig. 4(a). With increasing n, the ra-
tio of total SM space overhead of Opt-Track-CRP vs. optP decreases.

For the case of 5 processes, the total SM overheads for Opt-Track-
CRP are consistently higher by around 10% of those for optP on a
variety of write rates. For the case of 10 processes, the SM space
overhead for Opt-Track-CRP is still close to that for optP in a lower
write rate 0.2. But their space overhead ratio is down to 90% in a
higher write rate 0.8. When the number of processes is up to 40,
the SM space overheads for Opt-Track-CRP are around 50% to 55%
for different write rates.

8.2.2. Impact of write rate wrate
As with partial replication protocols, a higher write rate makes

the total message space overhead ratio of Opt-Track-CRP vs. optP
smaller. The results for the average SM space overhead are shown
in Figs. 4(b), 4(c), and 4(d) in terms of different write rates. As
mentioned before, the average SM space complexity of Opt-Track-
CRP is O(d) but that of optP is O(n). According to Figs. 4(b) to
4(d), Table 4 presents the analytic data. Obviously, the average
SM space overhead of optP only depends on the number of pro-
cesses n, irrespective of wrate. However, under the same number
of processes, the SM space overheads of Opt-Track-CRP decrease
slightly with increasing wrate. This can be explained as follows: In
Opt-Track-CRP protocol, a write operation does not make the local
log size larger than one and does not change the remote log size
at a receiving site. But a read operation might incur a growth in
the local log size when it often reads different variables updated
via other remote sites. Therefore, lower write rate (corresponding
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(a) Total message meta-data space overhead as a function of n and wrate in
full replication protocols.

(b) Average message meta-data space overhead as a function of n with
lower wrate (0.2) in full replication protocols.

(c) Average message meta-data space overhead as a function of n with
medium wrate (0.5) in full replication protocols.

(d) Average message meta-data space overhead as a function of n with
higher wrate (0.8) in full replication protocols.

Fig. 4. Meta-data space overhead in full replication protocols.

Table 4
Average SM space overhead for Opt-Track-CRP (byte).

n wrate = .2 wrate = .5 wrate = .8 optP

5 287.3 277.5 272.9 259
10 300.3 284.3 278.2 309
20 315.5 294.9 288.3 409
30 327.1 305.2 298.4 509
35 332.8 310.1 303.4 559
40 338.4 315.3 308.4 609

to higher read rate) would cause higher meta-data overhead than
higher write rate. In other words, Opt-Track-CRP protocol has a
better utilization of network capacity inwrite-intensiveworkloads
than in read-intensive ones.

From the experimental analysis in full replication, we can con-
clude that Opt-Track-CRP protocol has a better scalability and
utilization than optP, especially in write-intensive workloads.

8.3. Partial replication vs. full replication: Message count

Compared with the existing causal distributed shared memory
protocols, our suite of protocols [26] has the additional ability to
implement causal consistency in partially replicated distributed
shared memory systems. Table 5 shows the results of running the
same operation event scheduling using Opt-Track-CRP and Opt-
Track, respectively. It presents the total message counts with dif-
ferent write rates in full replication and partial replication. Except

Table 5
Total message count for Full Replication (Opt-Track-CRP) VS. Partial Replication
(Opt-Track).

n Full replication Partial replication

(0.2) (0.5) (0.8) (0.2) (0.5) (0.8)

5 2036 4960 8004 3208 3463 3764
10 8910 22,266 35,892 8297 10,234 12,156
20 38,057 95,114 151,905 22,808 35,668 48,128
30 86,826 217,181 347,304 42,600 75,679 108,810
40 156,156 390,039 624,390 69,405 130,572 192,883

for when n = 5 and wrate = 0.2, the message counts for partial
replication are always less than the ones for full replication. The
results in Table 5 are in line with the necessary condition – Eq. (2).

8.4. Partial replication vs. full replication: Message size

Consider a system with n = 40, p = 12 and wrate = 0.5.
A extra_large/large/medium/small file of 100KB/10KB/1KB/0.1KB,
respectively, has to be stored and transmitted in a write operation.
Assume that one word holds 4 bytes (b=4B).

Table 6 summarizes the total message space overheads in the
worst cases, based on Eq. (3). Although full replication has lower
meta-data overheads, partial replication has smaller total message
space size when f is large (10KB or 100KB).

Table 7 shows the total message space overheads in the prac-
tical amortized sense, based on Eq. (4). Note that d < n. As the
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Table 6
Total message size for full replication (Opt-Track-CRP) and partial replication (Opt-Track), when n = 40, p = 12,
wrate = 0.5, in the worst case.

f = 100 KB f = 10 KB f = 1 KB f = 0.1 KB

Full replication 3900 KB + 6.09 KB 390 KB + 6.09 KB 39 KB + 6.09 KB 3.9 KB + 6.09 KB
Partial replication 1240 KB + 77.5 KB 124 KB + 77.5 KB 12.4 KB + 77.5 KB 1.24 KB + 77.5 KB

Table 7
Total message size for full replication (Opt-Track-CRP) and partial replication (Opt-Track), when n = 40, p = 12,
wrate = 0.5, in practice.

f = 100 KB f = 10 KB f = 1 KB f = 0.1 KB

Full replication 3900 KB+0.152d KB 390 KB+0.152d KB 39 KB+0.152d KB 3.9 KB+0.152d KB
Partial replication 1240 KB + 1.94 KB 124 KB + 1.94 KB 12.4 KB + 1.94 KB 1.24 KB + 1.94 KB

experiment results show in Table 4, the average meta-data over-
head is 315 B for Opt-Track-CRP; therefore d = 2. Whereas the
averagemeta-data overhead for Opt-Track is around 2.09 KB. Thus,
the experimental results closely corroborate the above theoretical
analysis. Apparently, partial replication, in practice, has lower total
message space overhead than full replication, no matter what
size of f . This makes partial replication a viable alternative to full
replication in DSM systems. Although the meta-data size of full
replication is still less than that of partial replication, the difference
is far less than the message payload size variation between full
replication and partial replication.

9. Discussion

We compared the performance of Full-Track and Opt-Track
(analytically and via simulations). These are the first algorithms
for causal consistency using partial replication. We also compared
analytically and via simulations the performance of the full repli-
cation protocol Opt-Track-CRPwith that by Baldoni et al. [3] which
uses the same system model [2]. We do not compare with full
replication geo-replicated protocols such as COPS [12], Eiger [19],
Orbe [16] and GentleRain [17] (which are all full replication pro-
tocols) because the emphasis of our work is on partial replication
protocols and because we use a different system model.

This paper targeted large-scale DSMsystems. Our systemmodel
is somewhat different from that of cloud and geo-replicated stores,
which use a two-level architecture wherein each data center par-
titions the data among servers and supports thousands of ap-
plication processes. Both clients and data storages track causal
dependencies. As future work, we would like to adapt our partial
replication protocols to the cloud and geo-replicated store archi-
tectures, where current state-of-the-art uses only full replication
protocols.

Algorithms Opt-Track and Opt-Track-CRP are optimal in the
size of meta-data stored locally and piggybacked on messages,
under our system model, wherein a single sequential application
process is assumed to run at a single site (partial replica). This
limits the amount of information that needs to be tracked.We note
that this does not scale well to the architecture of partitioned and
geo-replicated data storeswhich supportmultiple application pro-
cesses per site (replica). In our algorithms, each site, which is sup-
posed to be a data center composed of a large number of servers,
would need to handle the meta-data used to enforce causality in
a centralized manner within that data center. This can be done by
using a centralized component (whichmight be a bottleneck) or by
using coordination mechanisms between servers in a data center
(which might be expensive). Assuming a centralized component
greatly simplifies the design but has a drawback that all operations
executed by the multiple application processes at any site become
causally related under the program order relation. This artificially
introduces false causal dependencies among unrelated operations
of independent application processes. Nevertheless, the value of

our algorithms is that they are optimal under the system model
(same as in [2,3]), and represent the first algorithms assuming par-
tial replication.Making themscale to geo-replicated storeswithout
introducing artificial causal dependencies is a future challenge.

In future work, it is worth investigating how thewriting seman-
tics heuristic can be leveraged [31]. This heuristic is orthogonal to
the optimality techniques proposed here, and allows an out-of-
order write to be applied with the assumption that it immediately
overwrites the causally earlier write that was never applied. We
would also like to extend our optimality techniques to transac-
tional semantics [12,15,19,32].

Some of the algorithms for fully replicated data stores provide
causal+ consistency, or convergent consistency [12–15,19]: here,
once updates cease, all processes will eventually read the same
value (or set of values) of each variable. This provides liveness
guarantees. We can provide causal+ consistency for our partially
replicated systembyusing the rule of ‘‘lastwriterwins’’when there
are concurrent updates, as used in [12].

In our algorithms for partially replicated systems, a read may
be non-local. This can affect availability if the process read-from is
down. If a non-local readdoes not respond in a timeout period, then
a secondary process is contacted. This provides better availability
in light of the CAP Theorem.

The limitation of partial replication concerns relatively higher
meta-data overheads against full replication. However, when con-
sidering total data size, they can be negligible compared to much
higher payload overheads. Even when the payload data size is as
small as 100 B (the average size of a plain-text tweet is around
50 B ∼ 100 B), Table 7 has demonstrated that partial replication
has an advantage over full replication in network capacity. Opt-
Track has the apparentmerit of targeting large-scale DSM systems,
accommodating replications of relatively medium-size data files
(> 100 KB). Our systemmodel is especially suitable formultimedia
object oriented social networks. For a real world example, ‘flickr’
is a photo-sharing social community, whose average file size is
about 0.6 MB. Our model not only provides causal consistency
to improve user experience in the correct order, but also utilizes
partial replication to lower the data replication network capacity.

10. Conclusions

We considered the problem of providing causal consistency in
large-scale DSM systems under the assumption of partial repli-
cation. This work provides the first evidence that explores the
causal consistency problem for partially replicated systems and
fills in a gap in the literature on causal consistency in distributed
sharedmemory systems.We proposed two algorithms to solve the
problem. The first algorithm, Full-Track, is optimal in the sense
that each update is applied at the earliest instant while removing
false causality in the system. The second algorithm, Opt-Track,
is additionally optimal in the sense that it minimizes the size of
meta-information carried on messages and stored in local logs.
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Simulations showed that it is highly successful in trimming the
size ofmeta-data.We discussed the conditions underwhich partial
replication can provide less overhead (transmission and storage)
than the full replication case. In addition, as a derivative of the sec-
ond algorithm, we proposed an optimized algorithm, Opt-Track-
CRP, that reduces the message overhead, the processing time, and
the local storage cost at each site in the fully replicated scenario.
This algorithm is better than the Baldoni et al. algorithm [3] and
the Ahamad et al. algorithm [2].

We then conducted a performance analysis of the message
space and message count complexity of the algorithms under a
wide range of system conditions using simulations. The simula-
tions considered two partial replication protocols (Full-Track and
Opt-Track) and two full replication protocols (Opt-Track-CRP and
optP), and examined the performance by varying thewrite rate and
the number of processes. Opt-Track was seen to show significant
gains over Full-Track in partial replication. In full replication, the
results also supported that Opt-Track-CRP performed better than
optP in scalability and network capacity utilization. In particular, as
the size of the system increased to 40 processes, the two optimal
protocols performed very well and have lower meta-data over-
heads under high write-intensive workloads. This paper is also the
first suchwork that explored the trade-off between partial replica-
tion and full replication analytically. We showed the advantage of
partial replication and provided the conditions underwhich partial
replication can provide less overhead (transmission and storage)
than full replication.

Our future work will focus on extending Opt-Track into a het-
erogeneous geo-replicated system. It will implement a hierarchical
partial replication protocol for causal consistency. By introducing
an optimal replication strategy, we intend to propose a dynamic,
data-driven, optimized replication costmechanism applied to such
a system to ensure the desired data access availability.
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