
Concurrent Knowledge and Logical Clock

Abstractions

Ajay D. Kshemkalyani

Dept. of EECS, University of Illinois at Chicago, Chicago, IL 60607-7053, USA
ajayk@eecs.uic.edu

Abstract. Vector and matrix clocks are extensively used in asynchro-
nous distributed systems. This paper asks, “how does the clock abstrac-
tion generalize?” and casts the problem in terms of concurrent knowl-
edge. To this end, the paper motivates and proposes logical clocks of
arbitrary dimensions. It then identifies and explores the conceptual link
between such clocks and knowledge. It establishes the necessary and
sufficient conditions on the size and dimension of clocks required to de-
clare k-level concurrent knowledge about the most recent global facts
for which this is possible without using control messages. It then gives
algorithms to compute the latest global fact about which a specified level
of knowledge is attainable in a given state, and to compute the earliest
state in which a specified level of knowledge about a given global fact is
attainable.

1 Introduction

1.1 Motivation

A large number of application areas in asynchronous distributed message-passing
systems use vector clocks and matrix clocks. Some example areas that use vec-
tor clocks [6,14] are checkpointing, garbage collection, causal memory, maintain-
ing consistency of replicated files, taking efficient snapshots of a system, global
time approximation, termination detection, bounded multiwriter construction of
shared variables, mutual exclusion, debugging, and defining concurrency mea-
sures. Some example areas that use matrix clocks are designing fault-tolerant
protocols and distributed database protocols [9,20], including protocols to dis-
card obsolete information in distributed databases [18], and protocols to solve
the replicated log and replicated dictionary problems [20].

Vector clocks can be thought of as imparting knowledge to a process: when
V [i] = x at process h, process h knows that process i has executed at least x
events. Matrix clocks give one more level of knowledge: when M [i, j] = x at pro-
cess h, process h knows that process i knows that process j has executed at least
x events. Vector and matrix clocks are convenient as they are updated without
sending additional messages; knowledge is imparted via the inhibition-free ambi-
ent message passing that (i) eliminates control messages by using piggybacking,
and (ii) diffuses knowledge using only computation messages, whenever sent.

S. Kapoor and S. Prasad (Eds.): FST TCS 2000, LNCS 1974, pp. 489–502, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

490 Ajay D. Kshemkalyani

This paper asks the question: “how does this clock abstraction generalize?”
The problem is cast in terms of concurrent knowledge (“everybody knows on
consistent cuts”), which is a form of knowledge appropriate for (time-free) asyn-
chronous distributed systems [16] — all the applications mentioned above im-
plicitly use concurrent knowledge that is not common knowledge in their clock
algorithms, although this has never been formally studied as such.

1.2 Background

A distributed system can be modeled by a network (N,L), where N is the set of
processes that communicate by message passing over L, the set of logical links.
We assume an asynchronous distributed (message passing) system, i.e., there
is no global clock or shared memory, relative process speeds are independent,
and message delivery times are finite but unbounded [2,16]. Common knowledge,
which has been proposed as a definition of agreement in distributed systems, is
defined as follows [8]. A process i that knows a fact φ is said to have knowledge
Ki(φ), and if “every process in the system knows φ”, then the system exhibits
knowledge E1(φ) =

∧
i∈N Ki(φ). A knowledge level of E2(φ) indicates that every

process knows E1(φ), i.e., E2(φ) = E (E1(φ)). Inductively, a hierarchy of levels
of knowledge Ej(φ) (j > 0) gets defined, where Ek+1(φ) =⇒ Ek(φ). Common
knowledge of φ, denoted as C(φ), is defined as the knowledge X which is the
greatest fixed point of E(φ ∧X) and is equivalent to

∧
j∈Z∗ Ej(φ), where Z∗ is

used to denote the set of whole numbers. Common knowledge requires simulta-
neous action for its achievement and is therefore unattainable in asynchronous
distributed systems [5,7,8,17].

Panangaden and Taylor proposed concurrent common knowledge (CCK)
which is required to be attained simultaneously in logical time based on causality
[13], and is attainable in asynchronous distributed systems [16]. Specifically, CCK
can be attained at a “consistent cut” or possible global state [1] in the system
execution. To define concurrent common knowledge, [16] first defines Pi(φ) to
represent the statement “there is some consistent global state of the current ex-
ecution that includes i’s local state, in which φ is true.” EC(φ) =

∧
i∈N KiPi(φ)

and is attainable by the processes at a consistent global state. Likewise, higher
levels of knowledge (EC)k(φ), for k > 1, are attainable by the processes at a
consistent global state. Concurrent common knowledge of φ, denoted by CC(φ),
is defined as the knowledge X which is the greatest fixed point of EC(φ ∧ X)
and is equivalent to

∧
j∈Z∗(EC)j(φ). This form of knowledge underlies many

existing protocols involving processes reaching agreement about some property
of a consistent global state, defined using logical time and causality.

CC(φ) =⇒ (EC)j(φ)(j ∈ Z∗). Several applications (see Section 1.1) need
only lower levels of such knowledge. Vector clocks [6,14] provide specific knowl-
edge of a global fact/state φ, equivalent to concurrent knowledge (EC)0(φ), in
the application domain. However, vector clocks are not sufficient for other ap-
plications, for which it is necessary to use matrix clocks. Matrix clocks provide
concurrent knowledge (EC)1(φ) about facts φ in the application domain. Thus,
although levels of concurrent knowledge (besides CCK) have not received formal

Concurrent Knowledge and Logical Clock Abstractions 491

attention besides [16], they are implicitly used in a wide range of applications.
Hence, studying levels of concurrent knowledge is important.

Two important and desirable characteristics of the clock protocols used to
achieve (EC)0(φ) and (EC)1(φ) are that they do not use any control messages
and they diffuse knowledge on a continual basis, using piggybacked timestamps
on the application messages as and when they are sent (see Section 1.1). These
clock protocols are not full-information protocols [5], yet for each of the above
applications, they suffice to provide the required degree of concurrent knowledge
because the clocks are defined so as to capture the property of interest.

All other known protocols to attain concurrent common knowledge and levels
of concurrent knowledge are variants of the global state recording algorithm
[1,4,16]. Such global state protocols require (i) O(min(k · |N |, |L|)) messages to
attain (EC)k(φ) and O(|L|) messages to attain CC(φ); (ii) O(d) communication
time steps, where d is the network diameter. In the above, the |L| factor in the
message complexity can be reduced to |N | if inhibitory protocols are used, at the
cost of inhibitory time delays [4]. All protocols based on global state recording
require control messages for a one-time knowledge attainment of each fact, and
may additionally use freezing/inhibition. Hence, they are not considered further.

In Theorem 1, we show that for the class of facts we consider and which
includes the applications listed in Section 1.1, (EC)k(φ) is equivalent to Ek(φ).
So we also refer to (EC)k(φ) as just Ek(φ).

1.3 Objectives

This paper examines the feasibility of and mechanisms for achieving levels of
knowledge Ek(φ) (k > 0, 1) using ambient message passing, i.e.,

1. No control messages can be used. Control information may be piggybacked
on computation messages. Also, no freezing/inhibition is allowed.

2. The latest knowledge about the (past) computation should be diffused as
much as possible, using only the computation messages, whenever sent.

As justified in Section 1.2, we focus only on clock-based protocols. We now for-
malize the objectives. The full-information protocol (FIP) which attains common
knowledge (in a synchronous system) has been defined such that “at each step
(after each local event), a process broadcasts (via control messages) to other pro-
cesses its local state (which captures everything it knows)” [5]. The FIP is very
expensive, and does not meet our criteria. We now define a “no control messages”
protocol, the full-information piggybacking protocol (FIPP), to be one in which
on each computation message of the application, the local state information is
piggybacked by the sender. This protocol meets the criteria but is expensive
in terms of the information piggybacked. We define the k-bounded-information
piggybacking protocol to overcome this drawback of the FIPP.

Definition 1. The k-bounded-information piggybacking protocol (KIPP) is
such that on each computation message of the application, k-bounded state in-
formation1 is piggybacked by the sender j, where k-bounded information is in-
1 Presumably about some property of interest.

492 Ajay D. Kshemkalyani

formation of the form: Kj(Ki1(Ki2 . . . (Kik
(φ)) . . .)), where i1, i2, . . . ik ∈ N , for

any fact φ on the system state.

Facts about the property of interest, which are a function of the system state,
are represented by the timestamp of that system state in the applications of
Section 1.1. Similarly, 0- and 1-bounded information about these facts are also
represented as timestamps in these applications. Therefore, we will assume that
appropriate timestamps can represent facts relevant to the application, and k-
bounded information about them. The type of facts considered in Section 1.1
and which we will consider satisfy monotonicity. Informally, φ is a monotonic
fact in a run if φ holds in some global state, and for every later global state,
some ψ holds and ψ =⇒ φ in that later state (see Definition 5). Monotonic facts
are also stable. The paper answers the following questions.

Problem 1. In a system using the KIPP protocol, what are the necessary and
sufficient conditions on the timestamp information required to achieve and de-
clare Ek(φ), where φ is the greatest possible monotonic fact (most recent possible
system state) about which Ek(φ) is possible to be declared in the current state?

Problem 2. For any global monotonic fact φ on the system state, what is the
earliest global state in which Ek(φ) is attained using the KIPP protocol?

Problem 3. Given a timestamp of a system state, what is the maximum possible
monotonic fact φ (most recent possible system state) about which Ek(φ) can be
declared in the given state in a system using the KIPP protocol?

Section 2 describes the system model and existing clock systems. Section 3
defines monotonic facts. Section 4 proposes α-dimensional clocks. Section 5 an-
alyzes the levels of knowledge that can be inferred using α-dimensional clocks
and answers the above problems. Section 6 concludes. See [12] for the full paper.

2 Preliminaries

2.1 System Model

We assume an asynchronous distributed system (see the first paragraph of Sec-
tion 1.2). The notion of the local state of a process is primitive. An event e at
process i is denoted ei. An event causes a local state transition. The local history
of process i, denoted hi, is a possibly infinite sequence of alternating local states
(beginning with a distinguished initial state) and events [16]. It is equivalently
described by the initial state and the sequence of local events.

Formally, an asynchronous distributed system consists of (i) a network (N,L),
(ii) a set Hi of possible local histories for each process i, (iii) a set A of asyn-
chronous runs or executions, or computations, each of which is a vector of local
histories, one per process, and (iv) a set of messages sent in any possible asyn-
chronous run. The system follows the KIPP protocol (Definition 1).

Concurrent Knowledge and Logical Clock Abstractions 493

A given run of a distributed system has a poset event structure model as in
[13]. Let (H,≺) represent the set of events H in a system run that are related by
the causality relation ≺, an irreflexive partial order [13]. H is partitioned into
local executions, one per process. Each local execution defines the local history.
We assume the initial state of each process is common knowledge.

A global state (or cut) of run a is a n-vector of prefixes of local histories of a,
one prefix per process. It can be viewed equivalently as the union of the events
in prefixes of the local histories of a, one prefix per process. A consistent global
state (consistent cut) is a global state such that if the receipt of a message is
recorded, then the sending of that message is also recorded [1]. It can be viewed
equivalently as a downward-closed subset of H . Let H⊥ denote the empty cut.

For a given run, the set of all cuts, Cuts, forms a lattice ordered by “⊂”
(subset); the set of downward-closed cuts is its sublattice [14]. The seq. of states
in actual time is a chain in this sublattice. The sublattice is not visible to any
process, but gives the possible consistent cuts which could have occurred and
are “valid” views of the run. Our results implicitly deal with such a run.

We define F (Cut) to be the set consisting of the latest event at each process
in cut Cut. F (Cut) denotes the “front” of cut Cut.

Definition 2. F (Cut) =def {ei ∈ Cut | ∀e′i ∈ Cut, e′i � ei}

Given a cut Cut, its projection Fi(Cut) is the element of F (Cut) at process i.
Define ↓e as ↓e =def {e′ | e′ � e}. The cut ↓e has a unique maximal event e

and is downward-closed in (H,≺). As the set of all downward-closed cuts forms
a lattice, therefore

⋂
x∈X ↓x and

⋃
x∈X ↓x , also denoted as ∩⇓X and ∪⇓X,

resp., are downward-closed cuts for any set of events X . These cuts are used to
prove Theorems 6 and 7. Based on the definition of ↓e, we can assert as follows.

Proposition 1. e ∈ ∩⇓X ⇐⇒ ∀x ∈ X, e � x

∩⇓X , the largest set of events that causally precede every x ∈ X , represents
the largest execution prefix with the following property: any fact in this execution
prefix can be known in the local state of each process after event x ∈ X [11].

A Kripkean interpretation of knowledge modality requires the identification
of an appropriate set of possible worlds – in the system model, the possible
worlds are the (consistent) cuts of the set of possible asynchronous runs [7,8].
(a, c) denotes cut c in run a. Standard definitions for the modal operators Ki

and Pi, and for various forms of knowledge are used. The formal semantics are
given by the satisfaction relation |= and are the same as in [16]. Proposition 1
can now be expressed in this logic. Assuming that adequate knowledge about
local histories is propagated, for any cut X , (a,X) |= E(∩⇓F (X)), i.e., all the
processes know ∩⇓F (X) after execution of X .

2.2 Logical Clocks

Logical clocks track causality which determines the extent of the past computa-
tion that could possibly be known at any state/event. A clock is a function that

494 Ajay D. Kshemkalyani

maps cuts in a run to elements in the time domain T . Thus, Clk : Cuts �→ T .
Clocks provide a quantitative identifier for cuts. For any run, the timestamp of
a cut (which is the union of a prefix of the local history of each process), is
defined using timestamps of cuts of the form ↓e. When we say that an event e
is assigned a clock value/timestamp, more formally we mean that the cut ↓e is
assigned that clock value/timestamp. Also, a subscripted timestamp Ti denotes
a timestamp of an event at process i, and |N | is also denoted as n.

Scalar clocks [13], vector clocks [6,14], and matrix clocks [9,18,20] are the only
clocks proposed in the literature. A canonical clock updates the local component
of the clock by one at each local event. Henceforth, we assume canonical clocks.
A canonical vector clock assigns timestamps to an event as follows.

Definition 3. T (e) =def (i ∈ N) T (e)[i] = |{ei | ei � e }|, i.e., T (e)[i] is the
number of events on process i that causally precede or equal e.

For any run, vector clocks of size n track the progress at each process (and are
needed to capture concurrency; see discussion on dimension of (H,≺) [3]). For
cut Cut, we define its timestamp T (Cut) such that its ith component is the ith
component of the timestamp of event Fi(Cut) [11].

Definition 4. T (Cut) =def (i ∈ N) T (Cut)[i] = T (Fi(Cut))[i]

The vector timestamp of a cut identifies the number of events at each process
in the cut. For any run, there is an isomorphism between Cuts and T 1, the set
of canonical vector timestamps such that (T ∈ T 1) T [i] ≤ |hi| in that run.

Proposition 2. For a run (H,≺), (Cuts,⊂) is isomorphic to (T 1, <).

Lemma 1. The timestamp of cut
⋂

x∈X ↓x , denoted T (∩⇓X), is expressed as
a function of the timestamps of the members of X as follows. (i ∈ N) T (∩⇓X)[i]
= minx∈X(T (x)[i]).

In Lemma 1, X can be an arbitrary set of events, also termed a nonatomic
event [10,11]. Lemma 1 will be shown to have a counterpart Lemma 3 that is
based on higher dimensional clocks, and which is used in the proof of Theorem 7.

For any run (H,≺), observe from Definition 2 that there is a bijection from
the set containing each cut Cut to the set containing each front of a cut F (Cut).
So, the timestamp of F (Cut) is defined to be the timestamp of Cut.

3 Monotonic Facts

We now define monotonic facts – such facts capture the relevant properties of
the applications in Section 1.1, and it is this class of facts that we consider. Ex-
amples of such facts are “computation has progressed at least up to global state
state vector”, and “all logs upto global state state vector can be discarded”. As
in the applications in Section 1.1, we assume facts of interest are related by a
semantic inclusion relation “�” (if φ � ψ, then ψ semantically includes φ).

Concurrent Knowledge and Logical Clock Abstractions 495

Definition 5. For a given run a, any fact φ is monotonic iff for every cut c at
which (a, c) |= φ, and for every cut c′ such that c ≺ c′, there exists some fact ψ
such that (a, c′) |= ψ and (a, c′) |= (φ � ψ).

Monotonic facts are also stable; however, not all stable facts are monotonic.

Lemma 2. For a monotonic fact φ, the following are all stable facts: φ, Ki(φ),
KiPi(φ), E(φ), and Ek(φ).

Let ψ be any of φ, Ki(φ), KiPi(φ), E(φ), and Ek(φ), where φ is a monotonic
fact. When process m receives a message with ψ piggybacked on it from process
j at event ey

m resulting in local state sy
m, we have sy

m |= KmPmKj(ψ). Using
Lemma 2, we can show that “the Pm operator can be safely removed”, and hence
sy

m |= KmKj(ψ) (and also sy
m |= Km(ψ)). Similarly,

∧
i KiPi(ψ) is equivalent

to
∧

i Ki(ψ). Developing this idea further leads to Theorem 1 that allows us to
replace concurrent knowledge with the equivalent normal knowledge.

Theorem 1. In a system following the KIPP protocol, the greatest possible
monotonic fact φ about which (EC)k(φ) is possible to be declared in a given
state is the greatest possible monotonic fact φ′ about which Ek(φ′) is possible to
be declared in the given state.

As in the applications of Sect. 1.1, we assume that for any run, the set of
monotonic facts ordered by � is a lattice, there is a semantically greatest fact in
each state, and that there is an (iso/homo)morphism from (Cuts,⊂) to (M,�),
where M is the set that contains the greatest monotonic fact (of interest) at
each cut in (Cuts,⊂). Combining this (iso/homo)morphism with Prop. 2 (and
restricting to consistent states for semantic integrity) leads to Prop. 3.

Proposition 3. The (semantically greatest) monotonic fact of interest in a
global state, whose truth value is a function of that global state, will be uniquely
identified by the timestamp of that global state.

4 Clocks of Arbitrary Dimensions

Definition 6. An α-dimensional clock Clkα defines the mapping Clkα : Cuts �→
(Z∗)nα

(i.e., Clkα is an α-dimensional array of integers, where each dimension
is of size n), satisfying the following properties.

SP1. The local clock component at process j, Clkα
j [j, j, . . . , j], is common knowl-

edge in the initial system state, i.e., (a,H⊥) |= C(Clkα
j [j, j, . . . , j]).

SP2. The local clock component at process j, Clkα
j [j, j, . . . , j], must be incre-

mented by a natural number when a computation event occurs at j.
SP3. Any element Clkα(ej)[i1, i2, . . . , iα] is the maximum scalar clock value φiα

= Clkiα [iα, iα, . . . , iα] at iα such that Kj(Ki1(Ki2(Ki3(. . .Kiα(φiα) . . .)))).

496 Ajay D. Kshemkalyani

R0. (Initial state:) Clkα
i = α dimensional 0-vector

R1. (Internal event:) Before process i executes the event, Clkα
i [i, i, . . . , i] =

Clkα
i [i, i, . . . , i] + d (d > 0)

R2. (Send event:) Before process i executes the event, Clkα
i [i, i, . . . , i] =

Clkα
i [i, i, . . . , i] + d (d > 0). Send message timestamped with Clkα

i .
R3. (Receive event:) When process j receives a message with timestamp Tα from

process i,
1. for β = 1 to α− 1 do

∀q1 ∈ N \ {j}, ∀q2, q3, . . . , qβ ∈ N ,
Clkα

j [j, . . . , j︸ ︷︷ ︸
α−β times

, q1, q2, . . . , qβ︸ ︷︷ ︸
β entries

] =

max(Clkα
j [j, . . . , j︸ ︷︷ ︸

α−β times

, q1, q2, . . . , qβ︸ ︷︷ ︸
β entries

], Tα[i, . . . , i︸ ︷︷ ︸
α−β times

, q1, q2, . . . , qβ︸ ︷︷ ︸
β entries

])

2. ∀q1 ∈ N \ {j}, ∀q2, . . . , qα ∈ N ,
Clkα

j [q1, q2, . . . , qα] = max(Clkα
j [q1, q2, . . . , qα], T

α[q1, q2, . . . , qα])
3. Clkα

j [j, j, . . . , j] = Clkα
j [j, j, . . . , j] + d (d > 0)

4. Deliver the message.

Fig. 1. Protocol to operate α-dimension clocks

With canonical clocks, d = 1 and Clkα(e)[i1, i2, . . . , iα] = |Fiα(. . . ↓ Fi3(↓
Fi2(↓ Fi1 (↓ e))) . . .)|. The value of Clkα assigned as a timestamp is denoted
T α. T α[i], also represented as T α[i, ·], is a timestamp of dimension (α − 1)
and is derived from T α by instantiating the first dimension variable i1 by
i. T α(ep)[i, ·] is the (α − 1) dimensional timestamp of the most recent event
at process i, as known to process p after event ep. Moreover, this most re-
cent event at process i has a scalar timestamp T α(ep)[i, i, . . . , i]. In terms of
knowledge, T α(ex

p)[i, ·] represents the knowledge sx
p |= Kp(KiKi2Ki3 . . .Kiα(φ)),

where only i1 is instantiated by i in Kp(Ki1Ki2Ki3 . . .Kiα(φ)), for all
i1, i2, . . . iα ∈ N . Analogously, T α[a, b, . . . , f︸ ︷︷ ︸

β entries, β≥0

, ·] is a timestamp of

dimension (α − β). T α(ex
p)[a, b, . . . , f, ·] represents the knowledge sx

p |=
Kp(KaKb . . .KfKiβ+1Kiβ+2 . . .Kiα(φ)), where the first β dimension variables
i1, . . . , iβ are instantiated in Kp(Ki1Ki2Ki3 . . .Kiα(φ)), for all i1, i2, . . . iα ∈ N .
When p = (a = b = . . . = f), T α(ex

p)[a, b, . . . , f, ·] is effectively a (α− β) dimen-
sional timestamp of ex

p .

Theorem 2. The protocol in Fig. 1 implements the α-dimensional clock speci-
fication of Definition 6.

The protocol in Fig. 1 has a space and time complexity of Θ(nα). Rules (R3.1
and R3.2) can be simplified using simple observations, as shown in [12]. The size
of each clock of dimension α is nα integers. This clock/timestamp size may
be reduced by using information such as the message pattern, logical network
topology, and the partial order (H,≺), using analysis such as in [15,19,20], or
by using approximations to the true clock, using schemes such as in [9,20].

Concurrent Knowledge and Logical Clock Abstractions 497

The α-dimensional timestamp of a cut is defined using the (α−1)-dimensional
timestamp of the latest event at each process in that cut.

Definition 7. T α(Cut) =def (i ∈ N) T α(Cut)[i, ·] = T α(Fi(Cut))[i, ·]

Lemma 3. The timestamp of cut
⋂

x∈X ↓x , denoted T α(∩⇓X), is expressed
as a function of the timestamps of the members of X as follows. (i ∈
N)T α(∩⇓X)[i, ·] is the (α − 1)-dimensional timestamp T α(x′)[i, ·], where
T α(x′)[i, i, . . . , i] = minx∈X(T α(x)[i, i, . . . , i]).

Lemma 3 gives a way to implement the test for Proposition 1. It will be used
in Theorem 7 to identify the maximum computation prefix φ (cut) about which
knowledge Ek(φ) has been attained at a given cut Cut.

Recall that by Proposition 3, the problem of identifying the minimum possible
computation prefix (cut) c such that (a, c) |= Ek(φ) for a given φ (Problem 2)
is equivalent to the problem of identifying the minimum possible computation
prefix c such that (a, c) |= Ek(Cut), where Cut is the cut in which φ is true.
Likewise, the problem of identifying the maximum possible fact φ such that (a, c)
|= Ek(φ) at a given cut c (Problems 1 and 3), is equivalent to the problem of
identifying the maximum possible computation prefix Cut such that (a, c) |=
Ek(Cut). We now give the main results linking clocks and knowledge.

5 Attaining Knowledge Using Clocks

At process i, k-bounded knowledge (of global facts about a property of interest)
is of the form Ki(Ki1Ki2Ki3 . . .Kik

(φ)). The number of unique permutations of
the Kij operators that represent k-bounded knowledge is computed as follows.
i1 �= i, and ∀j ∈ [2, k], ij �= ij−1. Thus, ∀j ∈ [1, k], ij can take one of n−1 values,
giving (n−1)k permutations; each permutation denotes a global fact about which
k-bounded knowledge exists at process i. Each global fact is represented by a
cut and requires a vector (n integers). Thus, the space for k-bounded knowledge
at i is n · (n − 1)k integers. The space requirement for all levels of knowledge
upto k at process i is n ·

∑k
j=0(n − 1)j integers.

Lemma 4. Representation of k-bounded knowledge (of global facts about a prop-
erty of interest) needs n ·

∑k
j=0(n − 1)j integers.

From the inequality nk <> n ·
∑k

j=0(n−1)j < nk+1, we now get Theorem 3.

Theorem 3. k-bounded knowledge (of global facts about a property of interest)
cannot be represented by a k-dimensional clock system, but can be represented
by a (k + 1)-dimensional clock system.

By definition, Ek(φ) =
∧

i KiPi(Ek−1(φ)), i.e., each process knows Ek−1(φ)
along some (consistent) global state. To identify the bounds on space com-
plexity to determine Ek(φ) knowledge for the latest possible φ in a system

498 Ajay D. Kshemkalyani

(1) Problem Inputs:
(1a) array of int T 1

φ ; //vector timestamp of earliest state in which φ is true
(1b) int k; //level of knowledge Ek(φ) to be attained
(2) Problem Output:
(2a) array of int TS1 = Compute State(T 1

φ , k).

(2b) //vector timestamp of earliest state in which Ek(φ) is attained

(3) function Compute State(array of int T 1
φ ; int k) returns TS1

(4) for lvl = 1 to k + 1 do
(5) ∀p ∈ N do
(6) identify earliest event ep | T 1(ep) ≥ TS1;
(7) T ′1[p] = T 1(ep)[p];
(8) ∀p ∈ N do
(9) TS1[p] = max(T 1(e1)[p], T

1(e2)[p], . . . , T
1(en)[p]);

(10) // (a, TS1) |= Elvl(T 1
φ)

∧ 	 ∃ TS′1 | (TS′1 < TS1 ∧ (a, TS′1) |= Elvl(T 1
φ))

(11) return(TS1).

Fig. 2. Given φ, protocol to compute earliest system state in which Ek(φ) is
achievable

following the KIPP protocol (Problem 1), it can be shown that ∀i1, i2, . . . ik,
Ki(Ki1Ki2 . . . ,Kik

(ψi1,i2,...,ik
)) must be available at each process i, where

ψi1,i2,...,ik
is the max. execution prefix about which the corresponding knowl-

edge is available, i.e., “i knows i1 knows i2 knows . . . ik knows ψi1,i2,...,ik
”. The

max. execution prefix φ about which Ek(φ) is attained is given by
⋂

i1,i2,...,ik∈N

ψi1,i2,...,ik
.

Theorem 4. In a system following the KIPP protocol, k-bounded knowledge at
each process is required to attain and declare Ek(φ), where φ is the maximum
possible monotonic fact (most recent possible system state) about which Ek(φ)
is possible to be declared in the current state.

Theorem 5 (= Thms. 3 + 4) and Theorem 6 answer Problems 1 and 2, resp..

Theorem 5. In a system following the KIPP protocol, a (k+1)-dim clock system
is sufficient but a k-dim clock system is not sufficient to attain and declare Ek(φ),
where φ is the maximum possible monotonic fact (most recent possible system
state) about which Ek(φ) is possible to be declared in the current state.

Theorem 6. Given a global monotonic fact φ, the earliest global state in which
Ek(φ) is attained in a system following the KIPP protocol is given by the protocol
in Fig. 2.

Given the earliest cut where φ becomes true, specified by T 1
φ , (which by

Proposition 3 captures fact φ), Fig. 2 gives a protocol to determine the earliest
global state at which Ek(φ) can be attained. The protocol is iterative. Function
Compute State uses two inputs: (i) T 1

φ , the vector timestamp of the earliest

Concurrent Knowledge and Logical Clock Abstractions 499

state in which φ holds, and (ii) k, the level of knowledge Ek(φ) to be attained.
The output is TS1, the vector timestamp of the earliest state in which assertion
Ek(φ) can be made. The protocol is proved correct by showing that the invariant
in line (10) holds after each iteration. Note that in each iteration, T ′1 (line (7))
identifies a global state that may not be consistent; hence a consistent global
state TS1 (line (9)) is computed.
Complexity: Time complexity is (# send and receive events in (H,≺) after the
cut at which φ is defined). Space complexity is that of a vector clock system,
and also requires each process to store a trace of the timestamps of its send and
receive events beyond the cut at which φ is defined.

To answer Problem 3, “Given a timestamp T β+1 of a state, what is the
maximum φ such that (a, T β+1) |= Eβ(φ)?” we can apply the function min to
the nβ 1-dimensional timestamps of size n in the given T β+1. This requires n ·nβ

comparisons. Theorem 7 gives a solution of Θ(β · (n2 + n)) time complexity.

Theorem 7. Given a timestamp T β, the maximum possible monotonic fact φ
(most recent possible system state) about which Ek(φ), where k ≤ β − 1, can be
declared at the given state T β in a system following the KIPP protocol is given
by the protocol in Fig. 3.

The proof is by construction. Fig. 3 gives a protocol to derive the max.
computation prefix φ about which the processes have knowledge Ek(φ), given the
timestamp Ob T β, where β > k. Compute Phi has inputs (i) T α, the (variable
dim.) timestamp of the maximum cut about which knowledge Eatn is attained
in Ob T β, (ii) m, the level of knowledge that is yet to be attained, and (iii) atn,
the level of knowledge already attained. The output is the timestamp φ of the
max. cut about which Ek knowledge is attained in the given state Ob T β.

Compute Phi is invoked as Compute Phi(Ob T β, k, 0) and is tail-recursive.
T α is progressively decreased at each recursion level to add another level of
knowledge to what is known of T α at cut Ob T β. So at each additional recursion
level, T α therein converges towards φ. Each recursion level behaves as follows.

– Given T α(Cut), the loop in lines (5)-(6) computes the (α − 1)-dimensional
timestamp of Fp(Cut) which is the latest event of the cut Cut at process p,
(p ∈ N). T (α−1)(Fp(Cut)) is simply T α[p, ·].

– Let X denote the events F (Cut) identified in line (6). The loop in lines
(7)-(9) applies Lemma 3 to X to compute ∩⇓X . By doing so, it identifies
the timestamps T (α−2)(Fp(∩⇓X)) for each process p. Then T (α−1)(∩⇓X) is
simply the aggregation of the n timestamps T (α−2)(Fp(∩⇓X)), as shown in
line (10). By Proposition 1, T (α−1) is the timestamp of the maximal prefix
about which all the processes have knowledge at X = F (Cut) and this can
be asserted only at or after F (Cut). Thus, E(T (α−1)) holds in the state with
timestamp T α in this recursion level and we assert the invariant on line (11).

– The above steps also add a level of knowledge to that at the given initial state
Ob T β; we assert this in the invariant on line (13). If this is the desired level
of knowledge, then we have the terminating case for the recursion and the
value of T (α−1) is returned (lines (14)-(16)), else Compute Phi is recursively

500 Ajay D. Kshemkalyani

(1) Problem Inputs:

(1a) β-dim. array of int Ob T β; // timestamp of observation state
(1b) int k, where β > k ≥ 1; // level of knowledge to be attained
(2) Problem Output:
(2a) (β − k) dim. array of int φ = Compute Phi(Ob T β, k, 0).

(2b) //timestamp of maximum possible state such that (a,Ob T β) |= Ek(φ)

(3) function Compute Phi(var dim. array of int Tα; int m, atn) returns φ

(4a) // Tα is timestamp of the max. possible state such that (a,Ob T β) |= Eatn(Tα)
(4b) // m is the level of knowledge yet to be attained
(4c) // atn is the level of knowledge already attained. atn = k −m.
(5) ∀p ∈ N do
(6) Tα−1

p = Tα[p, ·];
(7) ∀p ∈ N do
(8) let r be such that Tα−1

r [p, p, . . . , p] = minq∈N (T
α−1
q [p, p, . . . , p]);

(9) Tα−2
p = Tα−1

r [p, ·];
(10) Tα−1 = [Tα−2

1 , Tα−2
2 , . . . , Tα−2

n];
(11) // (a, Tα) |= E1(Tα−1)

∧ 	 ∃ T ′α−1 | (T ′α−1 > Tα−1 ∧(a, Tα) |= E1(T ′α−1))
(12) atn = atn+ 1; m = m− 1;
(13)// (a,Ob T β) |=Eatn(Tα−1)

∧	 ∃T ′α−1| (T ′α−1>Tα−1∧(a,Ob T β) |=Eatn(T ′α−1))
(14) if m = 0 then
(15) φ = Tα−1;
(16) return(φ);
(17) else
(18) φ = Compute Phi(Tα−1, m, atn);
(19) // (a, Tα−1) |= Em(φ)

∧ 	 ∃ φ′ | (φ′ > φ ∧(a, Tα−1) |= Em(φ′))
(20) // (a, Tα) |= Em+1(φ)

∧ 	 ∃ φ′ | (φ′ > φ ∧(a, Tα) |= Em+1(φ′))
(21) // (a,Ob T β) |= Eatn+m(φ)

∧ 	 ∃ φ′ | (φ′ > φ ∧(a,Ob T β) |= Eatn+m(φ′))
(22) return(φ).

Fig. 3. Protocol to compute latest φ for which Ek(φ) holds in a state with
timestamp T β, where β > k

invoked to determine the greatest φ that is known at T (α−1) for the remaining
m levels of knowledge to be attained (lines (17)-(18)).

The invariants on lines (11,13,19,20,21) are seen to hold. Hence, φ is the max
prefix such that (a,Ob T β) |= Ek(φ), derived from the recursive use of Lemma 3.
Complexity: The time complexity is Θ(k · (n2 + n)). The space complexity is
that of β-dimensional clocks, which is Θ(nβ) integers and meets the tight bound
established by Theorem 5. The time complexity is less than the space complexity
because information is selectively accessed dynamically.
Necessary and sufficient conditions required to declare Ek(φ) using the KIPP:
Lemma 4 and Theorem 4 together give the conditions on the exact size of clocks,
whereas Theorem 5 gave the conditions on the dimension of clocks.

Concurrent Knowledge and Logical Clock Abstractions 501

6 Concluding Remarks

So far, concurrent knowledge has been studied much less than normal knowledge
although asynchronous systems are much more prevalent than synchronous ones.
This paper made significant contributions to the theory of concurrent common
knowledge and proposed logical clock systems of arbitrary dimensions. Specif-
ically, it made the following contributions. (i) It motivated and proposed log-
ical clocks of arbitrary dimensions, and also formalized the KIPP protocol for
knowledge transfer used by such clock systems. (ii) It showed that there exists a
tight relation between the dimension of logical clocks and the level of concurrent
knowledge attainable, and established some complexity bounds. Here it iden-
tified and explored an important conceptual link. (iii) It proposed algorithms
to compute the latest global fact about which a specified level of knowledge is
attainable in a given state, and to compute the earliest state in which a specified
level of knowledge about a given global fact is attainable.
Acknowledgements: This work was supported by the U.S. National Science
Foundation grant CCR-9875617.

References

1. M. Chandy, L. Lamport, Finding global states of a distributed system, ACM Trans-
actions on Computer Systems, 3(1): 63-75, 1985.

2. M. Chandy, J. Misra, How processes learn, Distributed Computing, 1: 40-52, 1986.

3. B. Charron-Bost, Concerning the size of clocks in distributed systems, Information
Processing Letters, 39: 11-16, 1991.

4. C. Critchlow, K. Taylor, The inhibition spectrum and the achievement of causal
consistency, Distributed Computing, 10(1): 11-27, 1996.

5. R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge, MIT Press,
1995.

6. C. Fidge, Timestamps in message-passing systems that preserve partial ordering,
Australian Computer Science Communications, 10(1): 56-66, Feb. 1988.

7. J. Halpern, R. Fagin, Modeling knowledge and action in distributed systems, Dis-
tributed Computing, 3(4): 139-179, 1989.

8. J. Halpern, Y. Moses, Knowledge and common knowledge in a distributed envi-
ronment, Journal of the ACM, 37(3): 549-587, 1990.

9. N. Krishnakumar, A. Bernstein, Bounded ignorance in replicated systems, Proc.
ACM Symp. on Principles of Database Systems, 1991.

10. A. Kshemkalyani, Temporal interactions of intervals in distributed systems, Jour-
nal of Computer and System Sciences, 52(2): 287-298, Apr. 1996.

11. A. Kshemkalyani, Causality and atomicity in distributed computations, Distributed
Computing, 11(4): 169-189, Oct. 1998.

12. A. Kshemkalyani, On continuously attaining levels of concurrent knowledge with-
out control messages, Tech. Rep. UIC-EECS-98-6, Univ. Illinois at Chicago, 1998.

13. L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21(7): 558-565, July 1978.

14. F. Mattern, Virtual time and global states of distributed systems, Parallel and
Distributed Algorithms, North-Holland, pp 215-226, 1989.

502 Ajay D. Kshemkalyani

15. S. Meldal, S. Sankar, J. Vera, Exploiting locality in maintaining potential causality,
Proc. 10th ACM Symp. on Principles of Distributed Computing, 231-239, 1991.

16. P. Panangaden, K. Taylor, Concurrent common knowledge: Defining agreement for
asynchronous systems, Distributed Computing, 6(2): 73-94, Sept. 1992.

17. R. Parikh, P. Krasucki, Levels of knowledge in distributed computing, Sadhana
Journal, 17(1): 167-191, 1992.

18. S. Sarin, N. Lynch, Discarding obsolete information in a distributed database sys-
tem, IEEE Transactions on Software Engineering, 13(1): 39-46, 1987.

19. M. Singhal, A. Kshemkalyani, Efficient implementation of vector clocks, Informa-
tion Processing Letters, 43, 47-52, Aug. 1992.

20. G. Wuu, A. Bernstein, Efficient solutions to the replicated log and dictionary prob-
lems, Proc. 3rd ACM Symp. on Principles of Distributed Computing, 232-242, 1984.

	Concurrent Knowledge and Logical Clock Abstractions
	Introduction
	Motivation
	Background
	Objectives

	Preliminaries
	System Model
	Logical Clocks

	Monotonic Facts
	Clocks of Arbitrary Dimensions
	Attaining Knowledge Using Clocks
	Concluding Remarks
	References

