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Abstract 

Recently, a set of causality relations between distributed 
nonatomic events was proposed to provide a fine level of 
granularity in the speciJication of synchronization condi- 
tions between the events. This set of causality relations is 
complete in first-order predicate logic. In this papel; we 
examine a set of axioms on the proposed causality relations. 
The axioms provide a mechanism for reasoning with the set 
of relations and can be used to derive all possible implied 
relations from any valid predicate on the relations. 

Keywords: Atomicity, Causality, Distributed system, Syn- 
chronization, Time. 

1 Introduction 

Motivation: Event abstraction in a computation (or system 
execution) deals with the grouping of elementary events 
in the computation into higher level nonatomic events 
[8, 11, 15, 181. Distributed applications such as industrial 
process control, distributed debugging, navigation, plan- 
ning, robotics, diagnostics, virtual reality, and coordination 
in mobile systems model such nonatomic events [9, 12, 131. 
These applications deal with nonatomic events that are non- 
linear, i.e., for each nonatomic event, at least two of its 
component atomic events occur concurrently at more than 
a single point in space [lo, 1.51. For these applications, 
the traditional causality relation [6, 14, 16, 191 defined be- 
tween individual points in space-time does not suffice for the 
following reason. The interaction and synchronization con- 
ditions between two nonatomic events cannot be captured or 
specified at a fine level of granularity using various degrees 
of causality, as required for a sophisticated and realistic 
modeling of these applications. So a rich set of causal- 
ity relations that allow the expression of various degrees of 
synchronization and causality to accurately represent and 
specify relationships between distributed nonatomic events 
was proposed [9, 12, 131. The relations can then be com- 
posed to form global predicates involving several distributed 
nonatomic events. We propose a system of axioms to reason 
with the proposed relations. 

Relation r 
R1 
R1‘ 
R2 
R2’ 
R3 
R3’ 
R4 
R4’ 

Expression for r(X, Yp 
vx E x v y  E Y,x < y 
v y  E YVX E x , x  4 y 
vx E x 3 y  E Y,  x 4 y 
3 y  E Y v x  E x,x 4 y 
3s E x v y  E Y ] X  4 y 
v y  E Y3x E x,x 4 y 
32 E x 3 y  E Y, x 4 y 
3y  E Y 3 x  E x , x  4 y 

Table 1. Relations in [lo]. 

Model: We use the space-time model for a system exe- 
cution. This model is a poset event structure model as in 
[IO,  15, 19, 201. Consider a poset ( E ,  4 )  where 4 is an ir- 
reflexive partial order. Let E denote the power set of E and 
let A (# 0) ( E  - 0). There is thus an implicit one-many 
mapping from A to E. Each element A of A is a non- 
empty subset of E ,  and is termed an interval or a nonatomic 
event. We will use the term “interval” interchangably with 
“event” when referring to nonatomic events. ( E ,  4 )  rep- 
resents points in space-time which are the most primitive 
atomic events related by the causality relation. Elements 
of E are partitioned into local executions at a coordinate in 
the space dimensions. Each local execution E, is a linearly 
ordered set of events in partition i. An event e in partition i 
is denoted e,. 
Previous Work: In the literature, relations between time 
durations and between instants have been studied in the 
context of time and interval algebras; several axiom systems 
have been proposed for these relations. Most previous work 
assumed that the nonatomic events were linearly ordered, 
e.g., [5 ,  61 - and confined the study of causality to relations 
between time durations or linear intervals. [6] includes an 
excellent review of related literature. The causality relations 
defined in the literature above also assumed that such linear 
nonatomic events occurred at a single point in space, imply- 
ing the existence of a global time axis. But in a distributed 
system, there is no global time axis [ l ,  14, 16, 191. The 
following literature deals with causality between nonatomic 
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relation of row header R1 R2 R3 R4 
to column header 

Table 2. Inclusion relationships between rela- 
tions, from [lo]. 

poset events in a distributed system execution and does not 
assume a global time axis. 

Lamport defined system executions using two relations 
--+ and -- + between primitive nonatomic elements and 
provided axioms A1 - A5 on these relations [ 1.51. Informally, 
these relations are as follows. Let a nonatomic event be a 
set of atomic events. For two nonatomic events X and Y in 
A, X + Y iff every atomic event in X causally precedes 
every atomic event in Y .  X - - -+ Y iff some atomic event 
in X causally precedes some atomic event in Y .  The model 
and axioms in [ 151 were further examined in [ 1, 31. 

Action refinement of posets is studied and surveyed along 
with a survey of related work in Petri nets in [8, 17, 181. In 
these areas, there is no known work that addresses specific 
causality relations between nonatomic poset events. 

It was shown earlier [ 101 that the two causality relations 
defined by Lamport are not sufficient to capture the essential 
temporal properties of system executions and specify syn- 
chronization and causality conditions between nonatomic 
events in distributed systems. In [lo], we proposed a set 
of new causality relations between nonatomic events in a 
distributed system to capture a range of causality and syn- 
chronization specifications, without assuming a global time 
axis. These relations R1 - R4 and R1’ - R4’ from [ lo]  
are expressed in terms of the quantifiers over X and Y in 
Table 1. 

Observe that all the relations in Table 1 are not indepen- 
dent relations. Table 2 gives the hierarchy and inclusion 
relationship of the causality relations R1 - R4. Each cell in 
the grid indicates the relationship of the row header to the 
column header. The notation for the inclusion relationship 
between causality relations on nonatomic events is as fol- 
lows. The inclusion relation “is a subrelation of” is denoted 
‘E’. - ‘J’ is the inverse of E. ‘=’ stands for equality between 
relations in addition to its standard usage as the equality in 
other contexts. For two causality relations T I  and 12, we 
define T I  1 1  1-2 to be (1-1 7-2 A ~2 T I ) .  The relations { R1, 
R2, R3, R4 } form a lattice hierarchy ordered by E. Table 1 
also defined relations Rl’, R2’, R3’, and R4’, for which the 
order of quantifiers was reversed from the order in R I ,  R2, 
R3, and R4, respectively. Note that the relations R2’ and 
R3’ are different from relations R2 and R3, respectively, 

when applied to posets. However, for a linear interval, they 
are the same as R2  and R 3 ,  respectively. R1‘ and R4’ are 
the same as R I  and R4, respectively. 

The set of relations proposed in [ 101 formed an exhaus- 
tive set of causality relations to express all possible inter- 
actions between a pair of linear intervals and extended the 
incomplete hierarchy of irelations in [ 151. However, when 
the relations of [ 101 are applied to a pair of poset intervals, 
the hierarchy they form iis incomplete. [9, 12, 131 formu- 
lated causality relations between a pair of nonatomic poset 
intervals by extending the: results [9, 101 to nonatomic poset 
events. The relations fonm an “exhaustive” set of causality 
relations between nonatomic poset events using first-order 
predicate logic and fill in the existing partial hierarchy of 
causality relations between nonatomic poset events, formed 
by relations in [ 10, 151. In this paper, we propose an axiom 
system on the causality relations, which extends the axiom 
systems of the relations in [lo, 151. The axioms provide a 
mechanism for reasoning with the set of relations and can be 
used to derive all possible implied relations from any valid 
predicate on the relations. 
Organization: Section 2 reviews the fine-grained hierarchy 
of causality relations from [9, 12, 131. Section 3 gives the 
axiom system on the relations. Section 4 concludes. The 
results of this paper are included in [9]. 

2 Relations between Nonatomic Poset Events 

Let A be the set of all the sets that represent higher level 
groupings of the events of E ,  that are of interest to the 
particular application. An element of A is denoted A. 

Definition 1 An interval A is linear ifs Vx, y E A, x 1 
Y V Y 5 X .  

0). 
Definition 2 NA, the node set of interval A, is {ZlEi n A # 

Our results apply to nonlinear, i.e., poset, intervals. 
The relations in [lo] are used to derive an exhaustive 

set of causality relations between nonatomic poset events, 
denoted ‘R. As an intermediate step, we propose definitions 
of certain proxies of a nonatomic event in Section 2.1. 

2.1 Proxies of Nonatomic Poset Events 

In the extensive literature on linear intervals and time 
durations, for example [ :5,  6, 71, an interval is identified by 
the instants of its beginning and end. The beginning and end 
instants of a linear interval are points in space-time which 
are atomic events in E. For a nonatomic poset interval, it 
is natural to identify counterparts for the beginning and end 
instants. These counterparts will serve as “proxy” events for 
the poset interval just as the events at the beginning and end 
of linear intervals such as time durations serve as proxies 
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Figure 1. Poset events X and Y and their proxies. 

Relation names: R1, a (=Rl', a'): R2, b: R2', 6': R3, c: R3', c': R4, d (=R4', d'):  
its quantifiers for x y vxvy (=VyVx) vx3y 3yvx 3xvy vy3x 3x3y (=3y3x) 

Table 3. Full hierarchy of relations of Table 1 [lo]. Relations R1, Rl', R2, R2', R3, R3', R4, R4' of 
Table 1 are renamed a,  U ' ,  b, b', c, c', d, d', respectively. Relations in the row and column headers are 
defined between X and Y .  

for the linear interval. The proxies identify the durations on 
each node, in which the nonatomic event occurs. 

We now define two proxies corresponding to the begin- 
ning and end of a nonatomic interval [9, 12, 131. 

Definition 3 0 LX = {ei E XlVei E XI ei 5 e:} 
0 UX = {ei E XlVei E X , e ;  p e:} 

For any poset X ,  L X  and UX are the sets of the minimal 
elements in X for each node and the set of the maximal 
elements in X for each node, respectively. LX and UX 
correspond to the beginning of the poset and the end of 
the poset, respectively, and can act as a proxy for poset X ,  
depending on context and application. By Definition 3, each 
of L X  and Ux contains one event from each node in Nx , 

An equally valid interpretation of the beginning and end 
of a poset are the sets of its minimal and maximal elements, 
respectively, as defined by the irreflexive partial order across 
the nodes. This gives an alternate definition of proxies. 

Definition 4 0 LX = { e  E XlVe' E X ,  e # e'} 
UX = { e  E XlVe' E X I  e # e '}  

LX is the largest anti-chain containing the minimal elements 
of X .  UX is the largest anti-chain containing the maximal 
elements of X .  

The causality relations between poset intervals are de- 
rived using proxies and depend on whether proxies are de- 
fined by Definition 3 or by Definition 4. Assume that any 
one of these definitions is consistently used, depending on 
context and application. Figure 1 depicts the proxies of X 
and Y and serves as a visual aid for the following discus- 
sion; recall that each poset X and Y represents a grouping 
of atomic events of interest to the application. 

2.2 Deriving the Relations 

The causality relations in [9, 12, 131 were defined using 
two aspects of specifying the relations. In the first aspect, a 
proxy needs to be chosen for X and Y ;  this can be done in 
4 ways corresponding to relations R1 - R4 between linear 
intervals. These four relations form a lattice hierarchy or- 
dered by ''," ('is a subrelation of'). The second aspect of 
defining relations between nonatomic poset events involved 
defining relations between the elements of the proxies - there 
are 4 combinations of distinct quantifications 3 and V over 
the proxies of X and Y to express r ( X ,  Y ) ,  and for each 
combination, there are 2 permutations of the proxies of X 
and Y .  The eight relations so formed correspond to R1, 
Rl ' ,  R2, R2', R3, R3', R4, R4' of Table 1 and are renamed 
a,  a', b, b', c, c', d, d', respectively, to avoid confusion with 
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Figure 2. Hierarchy of relations in R. 

their original names used for choosing the proxies. a’ and d’ 
are the same as a and d ,  respectively; the six unique relations 
are ordered by C, as shown in Table 3 ,  and form a lattice 
hierarchy. 

Each causality relation was formed by combining the 
two aspects of deriving causality relations described above. 
The relations { R I * ,  R2*, R3*, R4* } between proxies 
for X and Y ,  and the relations { a,  a’, b, b’, e, c‘, d ,  d’ } 
between the elements of the proxies, when multiplied give 
32 relations over the domain A x A to express r ( X ,  Y ) .  The 
resulting set of poset relations, denoted R and given in the 
second column of Table 4, forms a lattice hierarchy of 24 
unique relations as shown in Figure 2.  The set of relations 
is “complete” under first-order predicate logic and provides 
a fine-grained choice of causality relations. 

2.3 Discussion 

The set of relations [9, 12, 131 between nonatomic poset 
events is exhaustive using first-order predicate logic. The 
proposed relations form a lattice hierarchy. The strongest 
relation is R l a  and the weakest is R4d. The significance 
of a relation R?#(X,  Y )  is determined by examining ? for 
the choice of proxies of X and Y ,  and examining ## for how 
these proxies are related. The proposed set of causality re- 
lations between nonatomic poset events is richer than the 
specific causality relations in the literature. The suite of two 
relations in [15], viz., + and -- -+, correspond to R l a  
and R4d, respectively. The suite of relations in [ l o ]  and 
listed in Table I correspond to the new relations as follows: 
RI=Rl’,  R2, R2’, R3, R3’, R4=R4’ correspond to R l a ,  
R2b, R2b’, R3c, R ~ c ’ ,  R4d, respectively. (This mapping is 
independent of whether the proxies used to derive R are de- 
fined by Definition 3 or 4.) The significance of the complete 

hierarchy of causality relations in first-order predicate logic 
is given in Section 4. Examples of applications that use the 
fine-grained relations are given in [ 131. 

Note that by construction, (72, C) is a partial order. For a 
given pair of posets X and Y ,  a combination of the relations 
in R may hold. Specifically, if R ( X ,  Y )  holds, then VR’ I 
R_CR’, R ’ ( X ,  Y )  hold!j. Thus, if R ( X ,  Y >  holds, then for 
each R’ in the upward-closed subset of R, R ‘ ( X ,  Y )  holds. 
In the partial order (R, E), all upward-closed subsets of R 
correspond exactly to thle combinations of relations in R that 
can hold concurrently for a given pair of nonatomic poset 
events. It follows from the result in [2 ] ,  page 400, that there 
is a 1 - 1 correspondence between the set of all upward-closed 
subsets of a partial order and the set of anti-chains in the 
partial order. Therefore, an enumeration of the anti-chains 
in (R, &) gives an enumeration of the upward-closed subsets 
of (RI E) which correspond to all the combinations of the 
relations in R that can hold for a pair of nonatomic poset 
events. A recursive backtracking algorithm to enumerate 
the anti-chains of a poset is given in [4]. 

In the general case of defining causality between 
nonatomic events, causality between nonatomic events X 
and Y can be defined as “the composition of the causal- 
ity relation between individual atomic events in unspecified 
subsets of X and Y.” As applications become more sophis- 
ticated, they can use such causality relations. 

3 Axiom System 

The inclusion hierarchy of the relations in Table 4 is 
pictorally depicted in Figure 2. This hierarchy is captured by 
the following constraints (axioms) XP1-XP6. Let VI denote 
the set { 1,2,3,4}  and let Vz denote the set { a ,  b, b’, c, c’, d}. 
Then the axioms are: 
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XP1: R l ?  5 R2? R4?, where ? is instantiated from V2 

XP2: RI?  C R3? C R4?, where ? is instantiated from V2 

XP3: R2?1 I R3#, where ? and # are separately instantiated 

XP4: R?a L R?b' 5 R?b C R?d, where ? is instantiated 

from V2 

from V, 

XP5: R?a C R?c C R?c' 5 R?d, where ? is instantiated 
from VI 

XP6: R?b[jR?c', R?b'I[R?c', R?bl[R?c, R?b'[[R?c, where 
? is instantiated from VI 

Further axioms for the relations in Table 4 are derived 
from Tables 5 ,  6, 7 as follows. Table 5 is reproduced from 
[ 101 and represents the reflexivity, symmetry, and transitiv- 
ity ,for the relations RI - R4 defined in [ lo] .  Table 6 is 
reproduced from [ 101 and gives the transitive axioms on the 
relations RI - R4 defined in [lo].  Table 7 indicates that if 
the proxies of X and Y in T I  ( X ,  Y )  are related by the row 
header of the table, and if the proxies of Y and 2 in ~2 (Y, 2) 
are related by the column header of the table, then the corre- 
sponding proxies of X and 2 are related by the correspond- 
ing table entry; this entry is useful in deducing r ( X ,  2). If 
r1 ( X ,  Y )  and r2(Y, Z ) ,  then the transitive relation r ( X ,  2) 
is determined by the algorithm TransPosetAxioms using 
Tables 5 ,  6, 7 as follows. 

Algorithm TransJoset Axioms 

1 .  Use the first two characters (prefix) of the identifier 
strings of T I  ( X ,  Y )  and r2(Y, 2)  as the inputs to Ta- 
ble 5 or 6. (From Table 5 ,  R4 is not transitive. Hence, 
R 4 ( X ,  Y )  A R4(Y ,  2) 
temp1 := output of the appropriate table. 

true.) 

/* temp1 gives the relation between X and 2 if 
X ,  Y ,  Z were all linear intervals.*/ 

If templ  = true, then r ( X ,  2) := true; exit. 
I* no relation between X and Z can be inferred.*/ 

2. The row and column headers in Table 7 are the strings 
following the first two characters (sufiix) of the identi- 
fier strings of the poset relations R. Use the su&a of 
7-1 ( X ,  Y )  and rZ(Y, 2) as the row header and column 
header inputs, respectively, to Table 7. 
temp2 := output of Table 7.  
If temp2 = true, then r ( X ,  2) := true; exit. 

/* no relation between X and Z can be inferred.*/ 

3. Concatenate the values of templ and temp2 to get 
the value of T ( X ,  2). 

Example 1: If R l c ' ( X ,  Y )  A R3b(Y7 2) then the algorithm 
yields R l d ( X ,  2). In step 1, the inputs to Table 6 are R1 

and R3, and the output temp1 is RI .  In step 2, the inputs 
to Table 7 are c' and b, and its output temp2 is d. Step 3 
concatenates templ and temp2 to yield R l d .  
Example 2: If R 2 a ( X ,  Y )  A R l d ( Y ,  2) then the algorithm 
yields R l b ' ( X ,  2). In step 1, the inputs to Table 6 are R2 
and R1, and the output temp1 is R1. In step 2, the inputs 
to Table 7 are a and d, and its output temp2 is b'. Step 3 
concatenates templ and temp2 to yield Rlb'. 
Example 3: If R 3 a ( X ,  Y )  A R2b(Y, 2) then the algorithm 
yields R4b'(X, 2). In step 1 ,  the inputs to Table 6 are R3 
and R2, and the output templ is R4. In step 2, the inputs 
to Table 7 are a and b, and its output temp2 is b'. Step 3 
concatenates templ and temp2 to yield R4b'. 
Example 4: If R3b(X,  Y )  A R2c'(Y, 2) then the algorithm 
yields true. In step 1 ,  the inputs to Table 6 are R3 and R2, 
and the output templ is R4. In step 2, the inputs to Table 7 
are band c', and its output temp2 is true. Hence, no relation 
between X and 2 can be inferred. 

We specify the following axioms XP7-XP14 of the form 
r1 ( X ,  Y )  ==+ r2(Y, X )  for the nonatomic poset events. 
For each relation T I  ( X ,  Y ) ,  we determine the strongest rela- 
tion(s) rz(Y,  x )  that can be stated between Y and X in the 
hierarchy depicted in Figure 2 (Axioms XP1-XP6). Thus, 
given a relation between X and Y ,  the axioms give all pos- 
sible relations between Y and X .  The notation Ti indicates 
that the relation R is false. These axioms can be verified 
to be meaningful by examining each axiom with the aid of 
Figure 1 which shows X and Y in two-dimensional space- 
time. 

XP7: R l a ( X ,  Y )  V R l b ( X ,  Y )  V R l b ' ( X ,  Y )  V 
R l c ( X ,  Y )  V R l c ' ( X ,  Y )  ==+ R4d(Y, X )  

XP8: R l d ( X ,  Y )  -----r. R4b(Y, X )  A R4c'(Y, X )  

XP9: R 2 a ( X ,  Y )  V 
R2c(X ,  Y )  V R2c'(X, Y )  --r' R2d(Y, X )  

XP10: R 2 d ( X ,  Y )  ==+ R2b(Y, X )  A R2c'(Y, X }  

XP11: R 3 a ( X ,  Y )  V 

XP12: R 3 d ( X ,  Y )  e R3b(Y, X )  AR3c'(Y7 X )  

XP13: R 4 a ( X ,  Y )  V R4b(X,  Y )  R4b'(X, Y )  V 

XP14: R 4 d ( X ,  Y )  ==+ Rlb(Y, X )  A Rlc'(Y, X )  

In addition, we specify axiom XP15 that specifies the re- 
flexivity and symmetry of the relations in R. 
XP15: The relations in R are not reflexive and are not 
symmetric. 
X is the set of axioms XP1-XP6 (that specify hierarchy 

among relations), XP7-XP14 (that give all relations of the 

R2b(X,  Y )  V- R2b'(X, Y )  V 

R3b(X,  Y )  V- R3b'(X, Y )  V 
R3c(X ,  Y )  V R3c'(X,  Y )  6 R3d(Y, X )  

R4c(X,  Y )  v R4c'(X, Y )  ===? R l d ( Y ,  A-) 
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form T ~ ( Y , X ) ,  given T l ( X , Y ) ) ,  XP15 (that specifies re- 
flexivity and symmetry), and the axioms that can be derived 
from algorithm TrunsPusetAxiums to specify transitive re- 
lations. We do not attempt a completeness proof of this 
axiom system here. The axioms X provide a “sufficiently” 
rich framework to reason about poset intervals because: 

0 Axioms XP1-XP6, XP7-XP14 and XP15 give all enu- 
merations of relations T ( X , Y )  as well as relations 
r ( Y ,  X ) ,  implied by R ( X ,  Y ) ,  VrVR ER. 

0 Algorithm TrunsPusetAxiums enumerates all rela- 
tions T ( X ,  2)  implied by r1 ( X ,  Y )  A r2(Y, Z ) ,  Vr 
VTIVTZ E R .  
This set of axioms can be used to derive all possible 
implied relations from any given valid predicates on 
relations in R. 

Observe that depending on the choice of Definition 3 or 4 
used for the proxy, there are two different sets of 32 relations 
R, each of which satisfies the same set of axioms X. 

An application can specify global predicates using mul- 
tiple relations from R between a pair of nonatomic poset 
events as well as between different pairs of nonatomic poset 
events. All the relations in R that hold between the involved 
nonatomic poset events can be inferred using the axiom sys- 
tem. 

4 Conclusion 

We examined a hierarchy of synchronization relations 
between nonatomic nonlinear events in a distributed sys- 
tem. The hierarchy of relations is complete using first-order 
predicate logic. We then presented an axiom system for 
reasoning with the proposed relations. This set of axioms 
can be used to derive all possible implications from any 
given valid predicates on the relations. The hierarchy of 
synchronization relations as well as the axiom system on 
the relations extend and complete both the hierarchy as well 
as the axiom system of Lamport [ 151, and the hierarchy and 
axiom system of [ 101, to nonatomic nonlinear events. 

The results are useful for applications which use 
nonatomicity in reasoning and modeling and need a fine 
level of granularity of causality relations to specify syn- 
chronization relations and their composite global predicates. 
Each application can choose appropriate causality relations 
from the exhaustive fine-grained hierarchy to specify and 
capture causality and synchronization conditions between 
its nonatomic poset events at a fine level of granularity. 
The exhaustive classification gives an insight into the ex- 
isting possibilities and can be used to select a number of 
primitive relations with good properties and clear intuitions. 
Examples of the use of the proposed relations by distributed 
real-time applications are given in [ 131. The axiom system 
on the relations enables reasoning with different levels of 
causality relations between nonatomic poset events. 
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Relation name: 
its quantifiers 

for x 4 y 

Table 7. Intermediate table to derive further axioms for poset relations R. The relation names in the 
row and column headers are the suffixes of the poset relations R defined between X and Y .  

a (=a'): b: b' : C :  C' : d (=d'): 
vxvy vx3y 3 yvx 3xvy vy3x 3x3 y 
(=VyVx) (=3y3x) 

I Relation 

Relation 
R I  [is] 

R2 

R l a  
R 1 a' (=Rl a )  

R l b  
Rlb' 
R l c  
Rlc' 
R l d  

R 1 d' (= R 1 d )  
R2a 

reflexive '? symnictric ? transitive '? 

no no Y cs 
no no yes 

R2a' (=R2a) 
ll---XZ- 

AL6 
AL7 
AL8 

R2d' (=R2d) 
R3a 

I I , ,  

R 4 ( X 7  Y )  A R1 (Y, 2)  ==+ R 3 ( X ,  2) 
R 2 ( X ,  Y )  A R3(Y,  2) * true 
R 2 ( X ,  Y )  A R4(Y,  2) d true 

R3a' (= R3a) tK3i, 

AL9 
ALlO 
ALl1 
AL12 

R3d' (=R3d) 
\ , , I  \ I 

R 3 ( X ,  Y )  A R2(Yt  2) =+ R 4 ( X ,  2) 
R 4 ( X 7  Y )  A R2(Y,  2) * R 4 ( X ,  2) 
R 3 ( X ,  Y )  A R4(Y7 2) ==+ R 4 ( X ,  2) 

R 4 ( X ,  Y )  A R3(Y7 2) ==+ true t3F 
R4d' (=R4d) 

Relation definition specified 
by quantifiers for x < y, 

where x E X ,  y E Y 
vx E u x v y  E L y  
vu E L Y v x  E ux .. 
v i  E U& E L y  
3y E LyVx  E ux 
32 E uxvy E L y  
QY E L y 3 ~  E Ux 
3x E u x 3 y  E L y  
3y E L y 3 x  E ux 
vx E uxvy E uy 
vy E uyvx E U, 
vx E ux3w E uv - -  - 
3y E UyQx E U x  
3x E uwvu E u v  - 

vy E u y 3 x  E U ,  
3x E ux3y E U, 
3y E u y 3 x  E U, 
vx E L x v y  E L y  
vy E LyVx  E L x  
vx E L x 3 u  E L v  - -  - 
3u E LvVx E L x  
33: E LxVy  E L y  
vy E L y 3 x  E L x  
3x E L x 3 y  E L y  
3y E L y 3 x  E L x  
vx E LxVy  E uy 
v u  E uvvx E L x  
vx E L x 3 y  E uy 
3y E u y v x  E L x  
3x E L x v y  E uy 
Qy E Uy3x  E Lx 
3s E L x 3 y  E u y  
3y E u y 3 x  E L x  

I R3 I no I no I ves I 
I R4[15] 1 no 1 no I no I 

Table 5. Reflexivity, symmetry and transitivity 
of R1, R2, R3, R4 from [lo]. 

I Axiom Label I r1 ( X ,  Y )  A r*(Y, 2) ==+ r ( X ,  2) I 

Table 6. Axioms for causality relations R1, R2, 
R3, R4 from [lo]. 

Table 4. Relations T ( X ,  Y )  in R from [12, 131. 
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