
1644

Path Caching in Connection-Oriented Networks

Mohammad Peyravian and Ajay D. Kshemkalyani
IBM Corporation, P. 0. Box 12195, Research Triangle Park, NC 27709, U.S.A.

Abstract

In a connection-oriented communication network, a computed net-
work path can be stored in the local cache of the source node for later
reuse. We propose that network path caching can provide an efficient
way to eliminate, whenever possible, the expensive path computation
algorithm that has to be performed in setting up a network connection.
This paper is the first known work on network path caching in decen-
tralized connection-oriented networks. We first identify and analyze
the issues that arise in caching network paths. Based on our extensive
study of network path caching schemes, we then propose two path
caching algorithms to reduce the number of path computations in the
network when a new connection is to be established. A simulation
study of the two algorithms is then presented. We conclude that both
algorithms perform very well and significantly reduce the number of
path computations in setting up connections.

1 Introduction
There is a critical need to be able to setup new network con-

nections efficiently and rapidly because of the growth of high-speed
wide-area connection-oriented communication networks such as the
Asynchronous Transfer Mode (ATM) [131. A new connection request
arrives with its quality of service (QoS) requirements and an appropri-
ate network path that meets the QoS requirements must be determined
before the network connection can be established. Paths in decen-
tralized connection-oriented networks are computed at the source by
running a path selection algorithm on a topology database that rep-
resents a recent topology snapshot of the network. Numerous path
selection algorithms have been proposed in the literature to optimize
various parameters such as the number of hops or a specific cost func-
tion [4, 7, 12, 161. Running an optimal path selection algorithm is
computationally intractable [8]. Although some of the various algo-
rithms in literature use heuristics, they are also very expensive and
may introduce large delays before the connection can be established.
Furthermore, other network resources are not optimized.

The following trends in networking complicate the problem of high
overhead for path selection. Firstly, the expansion of wide-area net-
works introduces more nodes and links in the network topology, which
adds complexity to the path selection. Secondly, private networks are
being increasingly interconnected using protocols such as ATM Private
Network Node Interface (PNNI) [I 51, which further increases the size
of the network topology graph on which a path selection algorithm has
to be run. Thirdly, as more high-speed links are introduced in the sys-
tem and message transmission times decrease, the bottleneck in estab-
lishing a connection becomes the path selection algorithm. Fourthly,
as real-time constraints on the establishment of a connection become

more common due to the proliferation of real-time applications, the
path selection algorithm becomes a bottleneck.

We propose that caching of network paths that have been precom-
puted can reduce the connection establishment time for subsequent
connection requests by an efficient reuse of stored paths without having
to rerun a path computation algorithm. Caching schemes have been
extensively studied in memory systems [I], multiprocessor memory
systems [1, 51, error recovery in multiprocessors [1 I], distributed sys-
tems [6], and network file systems [14]. To the best of our knowledge,
there has been no prior published work on caching of network paths in
decentralized connection-oriented networks. The closest known work
is [2] which restricts its traffic QoS to very specific values required
by interactive video. Their scheme builds and maintains a delay table
on each node so that path selection can be solved by a simple table
lookup; hence it uses a very different concept and assumptions than
those we use.

Manipulating a local cache of network paths computed in the past
differs from manipulating a cache for a memory system,multiprocessor
system, network file system or a distributed system in several aspects.
We identify and discuss such aspects. We have examined various
schemes for adding cache entries and deleting cache entries to discard
obsolete path information. Based on our analysis of various network
path caching schemes, we present two algorithms for network path
caching. Algorithm 1 discard cached path entries based on the number
of topology updates to any one link in the path. We found this to
be the most effective and simple criterion from among the criteria we
considered. Algorithm 1 discards a cached path if any one of the links
on the path has received N topology updates, where N is a tunable
parameter, since insertion of the path in the cache. If a cached path
entry results in a failed connection setup, then the connection request
is rejected. Algorithm 2 is a special case of Algorithm 1 where N is
CO and differs in that if a cached path results in a failed connection
setup, a path computation attempts to setup the connection before
the connection request is rejected. We present an extensive simulation
study of these two algorithms and compare them with the case when no
path caching is done. We conclude that both these algorithms perform
very well and substantially reduce the number of path computations.
Moreover, the algorithms are simple to implement.

This paper is organized as follows: Section 2 presents a simple
network model for decentralized/distributed connection-oriented net-
works. Section 3 discusses the issues involved in caching network
paths, and how path caching differs from traditional forms of caching
such as memory caches, multiprocessor caches and caches for net-
work file systems. Section 4 presents two algorithms for network path
caching. Section 5 presents a simulation study of network path caching
and compares the performance of the two proposed path caching algo-
rithms. Section 6 gives the conclusions.

0-7803-3336-5/96 $5.00 0 1996 IEEE

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:48:08 UTC from IEEE Xplore. Restrictions apply.

1645

2 System Model

The network model for decentralized connection-oriented networks
we use for our study of the path caching problem is described in this
section. The network model borrows some concepts from connec-
tion setup of [3], and ATM PNNI [15], a decentralized type of net-
work which provides connection-oriented services using the concept
of source routing and link state. PNNI provides connections between
different networks which are organized in an hierarchical manner. A
node is provided complete knowledge of the topology of its own net-
work and an aggregated view of the topology of other networks. Each
node maintains a topology database that contains the latest information
about the topology of all the networks’, including the link states. In
source routing using link states, the source computes a complete route
from the source to the destination based on its knowledge about the
current states and utilizations of the links in the global network. Each
link is owned by a link manager (LM), and when a significant link state
change occurs, the link manager broadcasts the information to all the
nodes in the network in PTSEs (PNNI Topology State Elements) using
a hierarchical flooding mechanism. Link and node failures are also
advertised by broadcasting PTSEs. Each link manager, independent of
other link managers, decides whether it can accept a new connection
when it receives a connection setup request. Thus, there is no concept
of centralized control.

The topology database is never completely synchronized with the
real topology for the following reasons: (i) there is a delay in the
propagation ofthe PTSE broadcasts which themselves occur only when
a significant change in the link state or node state occurs, and (ii)
the aggregated information broadcast from other private networks is
inherently inaccurate due to approximation in the aggregation process.

The setup of a connection proceeds as follows: The origin com-
putes a complete route fiom the origin to the destination based on its
knowledge about the current states and utilizations of the links. Then,
the origin constructs a connection setup request for the connection and
sends i t to all the link managers along the computed route. A link
manager along the route accepts the connection and returns a positive
reply only if it can provide the resources to accommodate the connec-
tion. Otherwise, it rejects the connection and returns a negative reply
to the origin. If a link manager accepts a connection, it allocates the
requested resources for the connection. When the origin receives the
replies it determines whether a connection setup is successful. The
connection setup is successful only if all the replies are positive. If
the connection setup is unsuccessful, the origin computes a new route
(which excludes the links that replied unfavorably) and repeats the
setup process. When the connection setup is unsuccessful, the origin
also sends a path takedown request to the link managers along the
path of the connection that replied favorably. When a link manager re-
ceives a path takedown request for a connection, it releases the network
resources associated with that connection.

A link manager that processes a setup request when not enough
resources are available selects connections to be preempted from the
set of all connections currently using the link with priorities lower than
the priority ofthe requestingconnection [9]. Preemption is triggered at
a link by the link manager only if enough resources can be released by
preemption to accommodatethe requesting connection at that link. For
each connection to be preempted, the link manager sends a preemption
notification message to the origin of the connection. At the receipt of

‘Henceforth, unless otherwise specified, the term “network” will refer to the
global network formed by the conglomeration of networks that are connected
using PNNI.

the preemption notification message, the origin takes some actions to
reroute the connection. First, it takes down the connection by sending
a path takedown request to all the link managers along the path of
the connection. Then, it computes a new route for the preempted
connection and starts the setup process.

When a link or an intermediate node along the path of an ongoing
connection fails, our protocol switches the connection to an alternate
path. Link and node failures are detected by both origin and destination
nodes via topology database update broadcasts. When a link or an
intermediate node along the path of an ongoing connection fails, both
the origin and destination send path takedown requests along the path
of the connection. Then, the origin computes a new route which
excludes the failed links or nodes and uses the procedure described
above to perform the connection setup.

When the origin or destination wants to terminate a connection, it
constructs and sends a path takedown request to all the link managers
along the path of the connection.

2.1 Problem Statement

A connection request arrives at a node with its QoS requirements,
a predefined priority, and a predefined bandwidth. No knowledge
of the holding time or the future arrivals of connection requests is
available. The path caching problem is to determine how to use a
cache of network paths computed in the past when a hture connection
setup request arrives, so as to minimize the overhead of a new path
computation for each arriving connection request.

3 Path Caching

When a path caching scheme in conjunction with path computation
is used at a node to find routes for connections, a “cache table” has to
be maintained at that node. Each entry in the cache table gives a path
to a destination node. Associated with each path entry are attributes
such as destination node, number of hops, maximum delay, maximum
packet size, packet loss probability, and security level.

To provide a path for a connection request, the cache table is
searched first to check whether there is a path entry in the cache
table that meets the connection QoS requirements such as maximum
delay, maximum number of hops, and packet loss probability. If such
a path is found, then the node’s local topology database is used to
examine whether the links along the path are up and have enough free
bandwidth to support the connection. If the local topology database
confirms that the links along the path meet the connection’s QoS and
bandwidth requirements, then the path computation part of the connec-
tion establishment process is skipped and the path obtained from the
cache table is used instead. Otherwise, the node attempts to compute
a route for the connection.

Caching schemes used in each of the different contexts such as
memory systems, network file systems, and multiprocessors have the
following components:

e Cache update policy: This policy determines whether an entry
for a specific path should be inserted into the cache.

e Cache invalidation policy: This policy determines how an
entry in the cache is determined to have become invalid.

e Cache replacement policy: This policy determines the choice
of an enhy in the cache that needs to be replaced in order to

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:48:08 UTC from IEEE Xplore. Restrictions apply.

1646

make space for another entry that is to be inserted in the cache.
This policy arises because the cache is typically of finite sue.

The various schemesdiffer in the implementation ofthesepolicies. We
now consider how caching of network paths differs from caching used
in other contexts. We then consider the various schemes for network
path caching that we considered before choosing the schemes used in
our algorithms in Section 4.

Network path caching varies from the well-studied and imple-
mented forms of caching such as in memory systems [I], multipro-
cessor memory systems [I , 51, error recovery in multiprocessors [1 11,
distributed systems [6], and network file systems [141, in the following
respects:

1. The penalty for the use of an outdated network path cache entry
is higher due to the time and message overhead for a failed
connection setup, Hence, it is important to determine a good
path caching scheme.

2. Cache size which is usually a constraint in traditional mem-
ory system caches is not a constraint in caching network paths
because of two reasons. First, the number of network paths
originating from a node is relatively small, as compared to the
number of variables or pages that a multiprocessor or a dis-
tributed memory system may want to cache. Second, the cache
memory used for network caches can be primary (main) mem-
ory-the savings in usingcachedpaths is the use ofprecomputed
paths which avoids the expensive path selection algorithms, as
opposed to the savings offered by traditional memory caches
by avoiding access to main memory and instead accessing fast
volatile memory. In this sense, the usage of the term “cache”
to refer to stonng of precomputed network paths in primary
memory is a misnomer.

3. For memory caches, multiprocessor caches, and caches used
in operating systems, the currency of a cache entry is boolean:
valid or invalid. Therefore, an invalid cache entry is easily
detected by the receipt of a single invalidation message that is
broadcast. There is no easy way to determine when a particular
cache entry for a precomputed network path is invalid because
the validity of a cachednetwork path is “analog”. When a PTSE
about a change in the link capacity of a certain link is received
in a network, the cached path entry for the path that contains the
link is not quite invalidated; only some of its parameters may
change based on the information in the received PTSE. The
path itself may be good for future connection requests, with
the difference that its characteristics are slightly different from
those advertised in the cache entry for the path. Therefore, an
invalid cached path entry is extremely difficult to detect even
using the information in the amving PTSEs.

The following assumptions about network path caching schemes
are made in our study:

When a PTSE about a link or a node is received, the algorithm
will not scan and update the cached path entries for paths that
pass through the link or the node using the changed capac-
ity/metrics in the PTSE because that is computationally expen-
sive.

In the simulation study of path caching we do not put a hard
bound on the cache size. This is mainly because the number of
paths with a fixed sourcenode is relatively small compared to

the cache sizes used for memory caches and caches in multipro-
cessor systems. In addition, as explained before, main memory
which is virtually unbounded can be used for storing precom-
puted paths; the fast but expensive volatile cache memory that is
required by traditional forms of caching is not required. Hence,
we do not specifically formulate a cache replacement policy for
simulation purposes. However, for implementation in real sys-
tems, in case cache shortage occurs, the path with the longest
lifetime since its last successful use should be deleted.

We have examined various schemes for cache invalidation to dis-
card obsolete path information. For example, (i) deleting entries for
those paths that have low bandwidth because they are more likely to
be preempted, or (ii) deleting entries for those paths that have high hop
count because these paths are more likely to cease existence due to
involvement of multiple links, or (iii) monitoring the change in band-
width of the links involved in each path based on information in the
topology database and deleting entries for those paths for which the
change in bandwidth for any link crosses a tunable threshold. The
scheme (iii) is not favored because it is expensive due to the expen-
sive updating of bandwidths for cached paths on a continuous basis.
More complicated schemes such as deleting path entries based on their
lifetime since insertion in the cache were also considered but were not
pursued because they require a lot of information that adds overhead
to the cache maintenance. We found that from among the criteria
we considered, the most effective and simple criterion was to discard
cached path entries based on the number of topology updates to any
one link in the path.

4 Path Caching Algorithms

We present two algorithms for network path caching based on our
analysis of various network path caching schemes. Algorithm 1 dis-
cards cached path entries based on the number of topology updates to
any one link in the path. We found this to be the most effective and
simple criterion from among the criteria nsidered. Algorithm 1
discards a cached path if any one of the links on the path has received
N updates, where N is a tunable parameter, since insertion of the path
in the cache. If a cached path entry results in a failed connection setup,
then the connection request is rejected. Algorithm 2 is a special case
of Algorithm 1 where N is 00; it differs in that if a cached path results
in a failed connection setup, a path computation attempts to setup the
connection before a connection request is rejected.

Variables/Constants used by algorithms:

0 N : constant integer (used by Algorithm 1 only);
PI: ((e , , , update , ,), (e,,, update , ,), (e, , , update , ,));

where P, is a path of length I in cache, e,, is a link along the path
P,, and update , , stores the number of PTSEs received for link e
Algorithm 2 does not use the variable u p d a t e . (The path attributes
such as number of hops, maximum delay, maximum packet size and
packet loss probability are not shown here.)

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:48:08 UTC from IEEE Xplore. Restrictions apply.

1647

4.1 Algorithm 1
Receive a connection request with destination and QoS requirements

1. if the cache contains a path to the same destination that satisfies
the QoS of the request and the topology database confirms this
path then

attempt to setup a path to destination.
if connection setup succeeds then

else
accept the request

reject the connection request.
else

invoke path computation;
attempt to setup a path to destination.
if connection setup succeeds then

(Cache update policy:) store the connection’s path
along with its attributes in the cache and for each
link e,, in the path, set update,, to 0.

reject the connection request
else

2. Cache invalidation policy: Before storing a new path in the
cache, remove all the exiting entries that have the same desti-
nation. An implementation may choose to keep more than one
path for the same destination in the cache; this can be done
by storing paths based on their QoS parameters. This has the
danger of letting the cache grow big.

Receive a PTSE for link e t , (Cache invalidation policy):

for each path P, in the cache do
if e,, belongs to the path then

if P,.update,, > N then
P,.update , , := P,.update , , + 1

delete path P, from cache.

There are two components ofthe cache invalidation policy by which
a path us removed from the cache. First, when a new path to the same
destination with the same QoS is stored, the existing cache entry for
the path is deleted. Second, a parameter (N) which depends on the
number of PTSEs that a node receives from a LM associated with a
link, is used to delete cache entries. After a node receives N + 1 PTSEs
from a link, it removes all the paths that use that link from its cache
table. In a sense, a node ignores N PTSEs received from a link and
acts when it receives the (N + I)th PTSE. N is a tunable parameter
and its value can be anywhere from 0 to 00. When N = 0, no PTSE is
ignored, that is every time a PTSE is received from a link all the paths
that use that link are removed from the cache table. When N = 00,

no path is removed from the cache table based on receiving a PTSE
from a link. In a sense, entries are not removed from the cache table
for (1 OO.N)/(N + 1) percent of the PTSEs received from a link. The
underlying reason for this scheme is to keep the paths in the cache
table current.

4.2 Algorithm 2
Algorithm 2 is the same as Algorithm 1 except as follows. Algo-

rithm 2 gives a connection one more chance to be setup if the previous
setup failed and the path was obtained from the cache table; the second
setup attempt finds a path (if one is available) using the path computa-
tion method. In addition, Algorithm 2 does not remove any paths from
the cachetable when a PTSE (from a link) is received. This is the same
as setting N to 00 in Algorithm I . Algorithm 2 is now presented.

Receive a connection request with destination and QoS requirements
1. if the cache contains a path to the same destination that satisfies

the QoS of the request and the topology database confirms this
path then

attempt to setup a path to destination.
if connection setup succeeds then

else
accept the request

invoke path computation;
attempt to setup a path to destination.
if connection setup succeeds then

(Cache update policy:) store the connection’s
path along with its attributes in the cache.

reject the connection request
else

else
invoke path computation;
attempt to setup a path to destination.
if connection setup succeeds then

(Cache update policy:) store the connection’s path
along with its attributes in the cache

reject the connection request.
else

2. Cache invalidation policy: Before storing a new path in the
cache, remove all the exiting entries that have the same desti-
nation. An implementation may choose to keep more than one
path for the same destination in the cache; this can be done
by storing paths based on their QoS parameters. This has the
danger of letting the cache grow big.

5 Simulation
5.1 Model

A connection-level simulation was used to study path caching and
compare the two proposed algorithms in a dynamic network environ-
ment where connections come and go. The simulation model has most
mechanisms of typical connection-oriented networks. Its main compo-
nents are a path selection algorithm which selects a minimum-hop path
between an origin-destination pair, a connection setup and takedown
protocol, and a topology information distribution protocol. In addition
to the above components, the model also has a connection preemption
protocol and a path-switch mechanism which reroutes connections
preempted due to link/node failure or preemption. The simulation pro-
gram is written in C and SIMSCRIPT and has about 4000 lines of code
and consists of a number of processes which execute several dynamic
objects and routines. A process is created at a simulated time and it
performs a sequence of events separated by lapses oftime. The process
concept is used to represent connections, connection generation, and
messages, while routines are used to represent static objects such as
route computation.

The input to the simulation program includes a network configura-
tion - the nodes, the transmission links with their propagation delays
and capacities, - source/destination distribution, connections’ char-
acteristics, link failure events, and other controlling parameters such
as simulation time, simulation seeds, and maximum connection hops.
As will be described later, the program collects and reports a number
of statistics.

The program simulates the lives of connections from the time they
are created until they terminate. Connection interarrival times are
exponentially distributed. Upon arrival of a connection to the network,

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:48:08 UTC from IEEE Xplore. Restrictions apply.

its source and destination nodes, priority, bandwidth, holding time, and
delay are chosen probabilistically. Once the connection’s parameters
are selected, the source process examines the local cache to determine if
a path satisfying the connection’s parameters is already precomputed
and stored in the cache. If the local cache does not contain such a
path, a path selection algorithm is run and a path in the network is
determined. This algorithm attempts to find a path that has a minimum
number of hops while satisfying the connection’s quality of service
parameters. If there are several eligible paths with the same number
of hops then one of them is chosen based on lowest “weight” of the
path. This weight is the sum of weights of the individual links. This
path selection algorithm and the notion of link weights are described
in detail in [IO].

Once a path has been selected, the connection control protocol de-
scribed in Section 2 attempts to establish the connection. Basically,
when a connection request arrives, a connection is establishedifthe net-
work has the bandwidth to support the connection. Once established,
the connection begins its “talk” phase. However, if there is not enough
bandwidth to establish the connection, then if there are sufficient low-
priority connections that can be preempted to free enough bandwidth
for this connection, then those low-priority connections will be pre-
empted and the connection request gets satisfied. When the connection
request cannot be accommodated, it is rejected. When a connection
is preempted, it is treated like a new connection. When a connection
successfully completes its talk phase, it gets taken down. So, note that
a successfully completed connection may have been rerouted one or
more times due to preemption, link failure, or node failure.

Nodes Source probability

12 0.41
3,4,5,6,7,8 0.0 1

1648

Destination probability
(given that source # destination)

0.47
0.01

.....,. 0

Connect-
- ion

priority 16 Mbps, 20 m q __. . . .

Bandwidth Number of Mean holding Delay
range BW types time (in ms)

(in Kbps) in BW range (in secs) (uniform
(uniform (exponential distribution)

32 Mbps, 15 ms I
Figure 1. Network topology and structure.

Nodes Source probability Destination probability
(given that source # destination)

0.2 0.2

Table 2. Load Distribution B (symmetric load: for
Expt. 3).

When a connection is accepted on a link or removed from a link, a
bandwidth reservation table for that link is updated. When a significant
change in the link bandwidth reservation occurs, a PTSE is broadcast
to every node in the network. This is done only if the change in the
reservation level for the link is significant, i.e., if it exceeds some
threshold value defined for that link. A PTSE
a link fails or comes up. So, a connection se
successfid for two reasons: the topology database at the originating
node may not be “current” and/or multiple sources may compete for a
limited available bandwidth by sending connection setup requests to a
particular link almost simultaneously.

5.2 Experiments
We have conducted wide-range simulation with various network

conditions such as network topology, number of priority levels, link
bandwidth, and traffic pattem to study path caching and the behavior
of the two proposed algorithms.

Network Structure: The simulation experiments used the following
network model which is an abstraction of a real network. The net-
work, shown in Figure 1, is two-tiered and consists of 8 nodes and 26
unidirectional links. The inner links are 32 Mbps links with a prop-
agation delay of 1 Sms, and the outer links are 16 Mbps links with a
propagation delay of 20ms. In the experiments, two types of network
load distributions were used by adjusting the selection of the origin
and destination pairs for the connections. The two network load distri-
butions, denoted Distribution A and Distribution B, were obtained by
varying the probabilities of origin and destination pairs of connections,
as shown in Tables 1 and 2, respectively. In Distribution A, the origin
and destination pairs for the connections were selected such that the

Table 3. Traffic Characteristic A (for Expt. 1).

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:48:08 UTC from IEEE Xplore. Restrictions apply.

1649

Run Path
Caching

Algo.

Connection inter-arrival N for Algo. 1 Average link Cache hit Connection Number
period for entire (% of WSEs reservation Probability success of path
network (sec) ignored) level (if path caching is used) probability computations

Connect-
- ion

priority

1
2
3
4

load in the network is asymmetric, with nodes 1 and 2 experiencing
very high load. In Distribution B, the selection of the source and des-
tination pairs for the connections was such that the network load is
uniformly distributed.

Bandwidth Number of Mean holding Delay
range BW types time (in ms)

(in Kbps) in BW range (in secs) (uniform

distribution) distribution)

320-3200 I O 100 10-60

(uniform (exponential distribution)

320-3200 IO 100 10-60

320-3200 10 100 10-60
320-3200 I O IO0 10-60

Raffic Profile: Two types of traffic profiles were used in the simu-
lation experiments. The two traffic profiles, denoted Characteristic A
and Characteristic B, are shown in Tables 3 and 4, respectively. For
Characteristic A, all network connections were of a single priority and
had a bandwidth of 800 Kbps. The connections’ holding times are
assumed to be exponentially distributed with a mean of 100 seconds.
For Characteristic B, many connection.types in terms of bandwidth
size, holding time, and delay requirement were used along with four
priority levels. The distribution of the priority levels is uniform, i.e.,
on the average the number of connection requests for each priority
level is the same. The bandwidth range for connections is between
320 Kbps to 3200 Kbps. The distribution of bandwidth within this
range is also uniform. The connections’ holding times are assumed to
be exponentially distributed with a mean of 100 seconds.

Performance Metrics: The simulation program collects and reports a
large number of statistics which are averaged over the life of simulation.
In this study we concentrate on the following four measures.

1. Average Link Reservation Level: This is the percentage of the

links’ reservable capacity used by connections averaged over
all links.
Cache Hit Probability: This is the probability that a path ob-
tained from the cache table results in a successhl setup.
Connection Success Probability: This is the probability that a
connection is successfully setup and completes the talk phase.
Note that a connection can be rerouted due to preemption or
due to link failure and may still be able to complete.
Number of Path Computations: This is the total number of path
computations during the simulation life for the entire network.
There are separate measures for PTSEs sent due to different
events.

Nature of experiments: We report three experiments that we have run
in the example network shown in Figure 1. Each experiment consists
of 3 sets of runs and each set consists of 6 runs. In each experiment,
we considered three connection arrival rates (or network load): high,
medium, and low. These correspondto sets H , M , and L, respectively.
Within each set, Run 1 is for the case in which no path caching is done.
For runs 2 through 5 , we run Algorithm 1 with the value of N chosen
to be 0, 1,3, and 9, respectively. Run 6 is for Algorithm 2.

Simulation results for Experiment 1: Table 5 presents the simulation
results of Experiment 1. Statistics are collected for 10000 seconds
of simulation time and runs are made for network load distribution
A (Table 1) and network traffic characteristic A (Table 3). As all
connections are of same priority note that there is no preemption due
to priorities.

When comparing runs *H,*M,*L, where * is a number from I
to 6, which correspond to the varying network loads, the connection
success probability decreased as the network load increased. Also,
for any given set of runs, the connection success probability was ap-
proximately the same without caching, and with Algorithm 2; the
connection success probability for Algorithm 1 was lower than this
value and decreased as the parameter N increased.

When comparing runs *H,*M,*L, where * is a number from 1
to 6, which correspond to the varying network loads, the number of

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:48:08 UTC from IEEE Xplore. Restrictions apply.

1650

Table 6. Simulation results of Experiment 2.

path computations during the simulation time decreased as the network
load decreased. Also, for any given set of runs, the number of path
computations was highest when no caching was used; followed by the
number of computations when Algorithm 2 was used; the number of
path computations for Algorithm 1 was lower than both these values
and decreased as the parameter N increased.

When comparing runs *H,*M,*L, where * is a number from 1
to 6, which correspond to the varying network loads, the cache hit
probability increased as the network load decreased. Also, for any
given set of runs, the cache hit probability for Algorithm 2 was higher
than it was for Algorithm 1 although this difference decreased as the
network load decreased. For any given set of runs, the cache hit
probability for Algorithm 1 decreased as the parameter N increased.

When comparing runs *H,*M,*L, where * is a number from 1
to 6, which correspond to the varying network loads, the average link
reservation level decreased as the network load decreased. Also, for
any given set of runs, the average link reservation level was somewhat
higher for Algorithm 2 than what it was without caching; the average
link reservation level for Algorithm 1 was lower than both these values
and decreased as the parameter N increased.

It is interesting to observe that for any given set of runs, as the
cache hit probability drops, the number of path computations also
drops. This appears counterintuitive but can be explained as follows:
In Algorithm 1 , the cache hit ratio drops as the value of parameter N
increases. However, as N increases, the entries in the cache are inval-
idated less frequently and therefore the cache contains more entries.
(The lower cache hit ratio simply reflects the fact that these entries are
more outdated and result in a lower percentage of successful connec-
tions). As the cache contains more path entries, therefore fewer path
computations are attempted, as per Algorithm 1.

Simulation results for Experiment 2: Table 6 presents the simulation
results of Experiment 2. Statistics are collected for 10000 seconds of
simulation time and runs are made for network load distribution A
(Table 1) and network traffic characteristic B (Table 4).

The observations are largely similar to those made for Experiment
1, although the range of network loads considered is lower for Exper-

iment 1. The only differences are the following. For any given set of
runs, the cache hit probability for Algorithm 2 was approximately the
same as it was for Algorithm 1 .

Simulation results for Experiment3: Table 7 presentsthe simulation
results of Experiment 3 . Statishcs are collected for 10000 seconds of
simulation time and runs are made for network load distribution B
(Table 2) and network traffic characteristic B (Table 4).

The observations are largely similar to those made for Experiment 1 ,
although the range ofnetwork loads considered is lower for Experiment
1 . The only differences are the following.

For any given set of runs, the connection success probability was
slightly higher without caching than with Algorithm 2; the connection
success probability for Algorithm 1 was lower than this value without
caching, and decreased as the parameter N increased.

For any given set of runs, the number of path computations was
highest when no caching was used; the number of path computations for
Algorithm I was lower than this value and decreased as the parameter
N increased.

For any given set of runs, the cache hit probability for Algorithm
2 was lower than it was for Algorithm 1 although this difference
decreased as the network load decreased.

For any given set of runs, the average link reservation level for
Algorithm 1 was approximately the same as that without caching and
did not show any variation pattern as N was varied.

Comparison of Algorithms: Algorithm 1 required fewer path com-
putations than Algorithm 2 although its connection success probability
was slightly lower. Algorithm 1 performs reasonably well in terms of
the connection success probability, particularly at high network loads,
and very significantly reduces the number of path computations when
compared to the case without path caching. In terms of the connection
success probability, Algorithm 2 consistently performs very well, al-
most as good as without path caching, while reducing the number of
path computations significantly.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:48:08 UTC from IEEE Xplore. Restrictions apply.

1651

Run Path Connection inter-arrival N for Algo. 1 Average link Cache hit Connection Number
Caching period for entire (% of PTSEs reservation Probability success ofpath

Algo. network (sec) ignored) level (if path caching is used) probability computations

6 Conclusions
We lhave proposed network path caching as a means to reduce the

connection setup time for a connection request in a general decentral-
ized connection-oriented network by bypassing the time-consuming
path computation phase. This is an important contribution because in
high-speed networks where the transmission times are low, the path
computation becomes the bottleneck for setting up the connection
quickly,. The lengthy path computation process also lowers utilization
of other network resources. To the best of our knowledge, this is
the only study of network path caching in a decentralized/distributed
network. We investigated several issues in the network path caching
problem. Then we proposed two simple and efficient algorithms for
network path caching. We presented a comprehensivesimulation study
of the two path caching algorithms which were seen to perform very
well and significantly reduce the number of path computations. The
reductions in the number of path computations in the simulation exper-
iments were anywhere from 80% to 90%. Our simulation study also
provided insights into network path cachingand network dimensioning
problems in order to achieve a desired level of network availability,

References
J. Archibald, J. Baer, “Cache Coherence Protocols: Evaluation
using a multiprocessor simulation model,” ACM Trans. on Com-
puter Systems, 4(4):273-298, Nov. 1986.
C.-C. Chou, K. G. Shin, “A Distributed Table-Driven Route
Selection Scheme for Establishing Real-time Video Channels,”
Proc. 15th IEEE Int. Conf. on Distributed Computing Systems,
52-59, June 1995.
I. Cidon, I. Gopal, A. Segall, “Fast Connection Establishment in
High-speed Networks.” Proc. SIGCOMM 1990.
E. W. Dijkstra, “A Note on Two Problems in Connexion with
Graphs,” Numerische Mathematik I, 1957.
M. Dubois, C. Scheurich, F. Briggs, “Synchronization, Coher-
ence, and Event Ordering in Multiprocessors,” IEEE Computer,
21(2), 9-21, Feb. 1988.

D. Duchamp, “Optimistic Lookup of Whole NFS Paths in a
Single Operation,” Proc. 1994 Summer Usenix Conference, 161 -
169, June 1994.
C. Galand, P. Scotten, “Automatic Network Clustering for Fast
Path Selection,” Proc. 5th Int. Conf. on High Performance Net-
working, IFIP Transactions C: Communication Systems, July
1994, Elsevie?
M. R. Garey and D. S . Johnson, “Computers and Interactability,”
W.H. Freeman, San Francisco, 1979.
M. Peyravian, “Providing Different Levels of Network Avail-
ability in High-speed Networks,” Proc. Globecom’94,941-945,
1994.
L. Gun and R. Guerin, “Bandwidth Management and Congestion
Control Framework of the Broadband Network Architecture,”
Computer Networks and ISDN Systems, 26(1), 61-78, Sept.
1993.
B. Janssens, W. K. Fuchs, “The Performance of Cache-Based
Error Recovery in Multiprocessors,” IEEE Trans. on Parallel
and Distributed Systems, 5(IO), 1033-1043, Oct. 1994.
D. Kandlur, K. G. Shin, D. Ferrari, “Real-Time Communication
in Multihop Networks,” IEEE Trans. on Parallel and Distributed
Systems, 5(IO), 1044-1 056, Oct. 1994.
D. E. McDysan and D. L. Spohn, “ATM: Theory and Applica-
tion,” McGraw-Hill, New York, 1994.
M. Nelson, B. Welch, J. Ousterhout, “Caching in the Sprite
Network File System,” ACM Trans. on Computer Systems,
6(1):134-154, Feb. 1988.
PNNI Draft Spec., ATM Forum 95-0471Rl4, Dec. 1995.
A. Przygienda, “Link State Routing with QoS in ATM LANs,”
PhD thesis, Eidgenossischen Technischen Hochschule, Zurich,
1995.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on June 22,2020 at 22:48:08 UTC from IEEE Xplore. Restrictions apply.

