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Abstract 

In a connection-oriented communication network, a computed net- 
work path can be stored in the local cache of the source node for later 
reuse. We propose that network path caching can provide an efficient 
way to eliminate, whenever possible, the expensive path computation 
algorithm that has to be performed in setting up a network connection. 
This paper is the first known work on network path caching in decen- 
tralized connection-oriented networks. We first identify and analyze 
the issues that arise in caching network paths. Based on our extensive 
study of network path caching schemes, we then propose two path 
caching algorithms to reduce the number of path computations in the 
network when a new connection is to be established. A simulation 
study of the two algorithms is then presented. We conclude that both 
algorithms perform very well and significantly reduce the number of 
path computations in setting up connections. 

1 Introduction 
There is a critical need to be able to setup new network con- 

nections efficiently and rapidly because of the growth of high-speed 
wide-area connection-oriented communication networks such as the 
Asynchronous Transfer Mode (ATM) [ 131. A new connection request 
arrives with its quality of service (QoS) requirements and an appropri- 
ate network path that meets the QoS requirements must be determined 
before the network connection can be established. Paths in decen- 
tralized connection-oriented networks are computed at the source by 
running a path selection algorithm on a topology database that rep- 
resents a recent topology snapshot of the network. Numerous path 
selection algorithms have been proposed in the literature to optimize 
various parameters such as the number of hops or a specific cost func- 
tion [4, 7, 12, 161. Running an optimal path selection algorithm is 
computationally intractable [8]. Although some of the various algo- 
rithms in literature use heuristics, they are also very expensive and 
may introduce large delays before the connection can be established. 
Furthermore, other network resources are not optimized. 

The following trends in networking complicate the problem of high 
overhead for path selection. Firstly, the expansion of wide-area net- 
works introduces more nodes and links in the network topology, which 
adds complexity to the path selection. Secondly, private networks are 
being increasingly interconnected using protocols such as ATM Private 
Network Node Interface (PNNI) [I 51, which further increases the size 
of the network topology graph on which a path selection algorithm has 
to be run. Thirdly, as more high-speed links are introduced in the sys- 
tem and message transmission times decrease, the bottleneck in estab- 
lishing a connection becomes the path selection algorithm. Fourthly, 
as real-time constraints on the establishment of a connection become 

more common due to the proliferation of real-time applications, the 
path selection algorithm becomes a bottleneck. 

We propose that caching of network paths that have been precom- 
puted can reduce the connection establishment time for subsequent 
connection requests by an efficient reuse of stored paths without having 
to rerun a path computation algorithm. Caching schemes have been 
extensively studied in memory systems [I], multiprocessor memory 
systems [ 1, 51, error recovery in multiprocessors [ 1 I], distributed sys- 
tems [6], and network file systems [14]. To the best of our knowledge, 
there has been no prior published work on caching of network paths in 
decentralized connection-oriented networks. The closest known work 
is [2] which restricts its traffic QoS to very specific values required 
by interactive video. Their scheme builds and maintains a delay table 
on each node so that path selection can be solved by a simple table 
lookup; hence it uses a very different concept and assumptions than 
those we use. 

Manipulating a local cache of network paths computed in the past 
differs from manipulating a cache for a memory system,multiprocessor 
system, network file system or a distributed system in several aspects. 
We identify and discuss such aspects. We have examined various 
schemes for adding cache entries and deleting cache entries to discard 
obsolete path information. Based on our analysis of various network 
path caching schemes, we present two algorithms for network path 
caching. Algorithm 1 discard cached path entries based on the number 
of topology updates to any one link in the path. We found this to 
be the most effective and simple criterion from among the criteria we 
considered. Algorithm 1 discards a cached path if any one of the links 
on the path has received N topology updates, where N is a tunable 
parameter, since insertion of the path in the cache. If a cached path 
entry results in a failed connection setup, then the connection request 
is rejected. Algorithm 2 is a special case of Algorithm 1 where N is 
CO and differs in that if a cached path results in a failed connection 
setup, a path computation attempts to setup the connection before 
the connection request is rejected. We present an extensive simulation 
study of these two algorithms and compare them with the case when no 
path caching is done. We conclude that both these algorithms perform 
very well and substantially reduce the number of path computations. 
Moreover, the algorithms are simple to implement. 

This paper is organized as follows: Section 2 presents a simple 
network model for decentralized/distributed connection-oriented net- 
works. Section 3 discusses the issues involved in caching network 
paths, and how path caching differs from traditional forms of caching 
such as memory caches, multiprocessor caches and caches for net- 
work file systems. Section 4 presents two algorithms for network path 
caching. Section 5 presents a simulation study of network path caching 
and compares the performance of the two proposed path caching algo- 
rithms. Section 6 gives the conclusions. 
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2 System Model 

The network model for decentralized connection-oriented networks 
we use for our study of the path caching problem is described in this 
section. The network model borrows some concepts from connec- 
tion setup of [3], and ATM PNNI [15], a decentralized type of net- 
work which provides connection-oriented services using the concept 
of source routing and link state. PNNI provides connections between 
different networks which are organized in an hierarchical manner. A 
node is provided complete knowledge of the topology of its own net- 
work and an aggregated view of the topology of other networks. Each 
node maintains a topology database that contains the latest information 
about the topology of all the networks’, including the link states. In 
source routing using link states, the source computes a complete route 
from the source to the destination based on its knowledge about the 
current states and utilizations of the links in the global network. Each 
link is owned by a link manager (LM), and when a significant link state 
change occurs, the link manager broadcasts the information to all the 
nodes in the network in PTSEs (PNNI Topology State Elements) using 
a hierarchical flooding mechanism. Link and node failures are also 
advertised by broadcasting PTSEs. Each link manager, independent of 
other link managers, decides whether it can accept a new connection 
when it receives a connection setup request. Thus, there is no concept 
of centralized control. 

The topology database is never completely synchronized with the 
real topology for the following reasons: (i) there is a delay in the 
propagation ofthe PTSE broadcasts which themselves occur only when 
a significant change in the link state or node state occurs, and (ii) 
the aggregated information broadcast from other private networks is 
inherently inaccurate due to approximation in the aggregation process. 

The setup of a connection proceeds as follows: The origin com- 
putes a complete route fiom the origin to the destination based on its 
knowledge about the current states and utilizations of the links. Then, 
the origin constructs a connection setup request for the connection and 
sends i t  to all the link managers along the computed route. A link 
manager along the route accepts the connection and returns a positive 
reply only if it can provide the resources to accommodate the connec- 
tion. Otherwise, it rejects the connection and returns a negative reply 
to the origin. If a link manager accepts a connection, it allocates the 
requested resources for the connection. When the origin receives the 
replies it determines whether a connection setup is successful. The 
connection setup is successful only if all the replies are positive. If 
the connection setup is unsuccessful, the origin computes a new route 
(which excludes the links that replied unfavorably) and repeats the 
setup process. When the connection setup is unsuccessful, the origin 
also sends a path takedown request to the link managers along the 
path of the connection that replied favorably. When a link manager re- 
ceives a path takedown request for a connection, it releases the network 
resources associated with that connection. 

A link manager that processes a setup request when not enough 
resources are available selects connections to be preempted from the 
set of all connections currently using the link with priorities lower than 
the priority ofthe requestingconnection [9]. Preemption is triggered at 
a link by the link manager only if enough resources can be released by 
preemption to accommodatethe requesting connection at that link. For 
each connection to be preempted, the link manager sends a preemption 
notification message to the origin of the connection. At the receipt of 

‘Henceforth, unless otherwise specified, the term “network” will refer to the 
global network formed by the conglomeration of networks that are connected 
using PNNI. 

the preemption notification message, the origin takes some actions to 
reroute the connection. First, it takes down the connection by sending 
a path takedown request to all the link managers along the path of 
the connection. Then, it computes a new route for the preempted 
connection and starts the setup process. 

When a link or an intermediate node along the path of an ongoing 
connection fails, our protocol switches the connection to an alternate 
path. Link and node failures are detected by both origin and destination 
nodes via topology database update broadcasts. When a link or an 
intermediate node along the path of an ongoing connection fails, both 
the origin and destination send path takedown requests along the path 
of the connection. Then, the origin computes a new route which 
excludes the failed links or nodes and uses the procedure described 
above to perform the connection setup. 

When the origin or destination wants to terminate a connection, it 
constructs and sends a path takedown request to all the link managers 
along the path of the connection. 

2.1 Problem Statement 

A connection request arrives at a node with its QoS requirements, 
a predefined priority, and a predefined bandwidth. No knowledge 
of the holding time or the future arrivals of connection requests is 
available. The path caching problem is to determine how to use a 
cache of network paths computed in the past when a hture connection 
setup request arrives, so as to minimize the overhead of a new path 
computation for each arriving connection request. 

3 Path Caching 

When a path caching scheme in conjunction with path computation 
is used at a node to find routes for connections, a “cache table” has to 
be maintained at that node. Each entry in the cache table gives a path 
to a destination node. Associated with each path entry are attributes 
such as destination node, number of hops, maximum delay, maximum 
packet size, packet loss probability, and security level. 

To provide a path for a connection request, the cache table is 
searched first to check whether there is a path entry in the cache 
table that meets the connection QoS requirements such as maximum 
delay, maximum number of hops, and packet loss probability. If such 
a path is found, then the node’s local topology database is used to 
examine whether the links along the path are up and have enough free 
bandwidth to support the connection. If the local topology database 
confirms that the links along the path meet the connection’s QoS and 
bandwidth requirements, then the path computation part of the connec- 
tion establishment process is skipped and the path obtained from the 
cache table is used instead. Otherwise, the node attempts to compute 
a route for the connection. 

Caching schemes used in each of the different contexts such as 
memory systems, network file systems, and multiprocessors have the 
following components: 

e Cache update policy: This policy determines whether an entry 
for a specific path should be inserted into the cache. 

e Cache invalidation policy: This policy determines how an 
entry in the cache is determined to have become invalid. 

e Cache replacement policy: This policy determines the choice 
of an enhy in the cache that needs to be replaced in order to 
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make space for another entry that is to be inserted in the cache. 
This policy arises because the cache is typically of finite sue. 

The various schemesdiffer in the implementation ofthesepolicies. We 
now consider how caching of network paths differs from caching used 
in other contexts. We then consider the various schemes for network 
path caching that we considered before choosing the schemes used in 
our algorithms in Section 4. 

Network path caching varies from the well-studied and imple- 
mented forms of caching such as in memory systems [I], multipro- 
cessor memory systems [ I ,  51, error recovery in multiprocessors [ 1 11, 
distributed systems [6], and network file systems [ 141, in the following 
respects: 

1. The penalty for the use of an outdated network path cache entry 
is higher due to the time and message overhead for a failed 
connection setup, Hence, it is important to determine a good 
path caching scheme. 

2. Cache size which is usually a constraint in traditional mem- 
ory system caches is not a constraint in caching network paths 
because of two reasons. First, the number of network paths 
originating from a node is relatively small, as compared to the 
number of variables or pages that a multiprocessor or a dis- 
tributed memory system may want to cache. Second, the cache 
memory used for network caches can be primary (main) mem- 
ory-the savings in usingcachedpaths is the use ofprecomputed 
paths which avoids the expensive path selection algorithms, as 
opposed to the savings offered by traditional memory caches 
by avoiding access to main memory and instead accessing fast 
volatile memory. In this sense, the usage of the term “cache” 
to refer to stonng of precomputed network paths in primary 
memory is a misnomer. 

3. For memory caches, multiprocessor caches, and caches used 
in operating systems, the currency of a cache entry is boolean: 
valid or invalid. Therefore, an invalid cache entry is easily 
detected by the receipt of a single invalidation message that is 
broadcast. There is no easy way to determine when a particular 
cache entry for a precomputed network path is invalid because 
the validity of a cachednetwork path is “analog”. When a PTSE 
about a change in the link capacity of a certain link is received 
in a network, the cached path entry for the path that contains the 
link is not quite invalidated; only some of its parameters may 
change based on the information in the received PTSE. The 
path itself may be good for future connection requests, with 
the difference that its characteristics are slightly different from 
those advertised in the cache entry for the path. Therefore, an 
invalid cached path entry is extremely difficult to detect even 
using the information in the amving PTSEs. 

The following assumptions about network path caching schemes 
are made in our study: 

When a PTSE about a link or a node is received, the algorithm 
will not scan and update the cached path entries for paths that 
pass through the link or the node using the changed capac- 
ity/metrics in the PTSE because that is computationally expen- 
sive. 

In the simulation study of path caching we do not put a hard 
bound on the cache size. This is mainly because the number of 
paths with a fixed sourcenode is relatively small compared to 

the cache sizes used for memory caches and caches in multipro- 
cessor systems. In addition, as explained before, main memory 
which is virtually unbounded can be used for storing precom- 
puted paths; the fast but expensive volatile cache memory that is 
required by traditional forms of caching is not required. Hence, 
we do not specifically formulate a cache replacement policy for 
simulation purposes. However, for implementation in real sys- 
tems, in case cache shortage occurs, the path with the longest 
lifetime since its last successful use should be deleted. 

We have examined various schemes for cache invalidation to dis- 
card obsolete path information. For example, (i) deleting entries for 
those paths that have low bandwidth because they are more likely to 
be preempted, or (ii) deleting entries for those paths that have high hop 
count because these paths are more likely to cease existence due to 
involvement of multiple links, or (iii) monitoring the change in band- 
width of the links involved in each path based on information in the 
topology database and deleting entries for those paths for which the 
change in bandwidth for any link crosses a tunable threshold. The 
scheme (iii) is not favored because it is expensive due to the expen- 
sive updating of bandwidths for cached paths on a continuous basis. 
More complicated schemes such as deleting path entries based on their 
lifetime since insertion in the cache were also considered but were not 
pursued because they require a lot of information that adds overhead 
to the cache maintenance. We found that from among the criteria 
we considered, the most effective and simple criterion was to discard 
cached path entries based on the number of topology updates to any 
one link in the path. 

4 Path Caching Algorithms 

We present two algorithms for network path caching based on our 
analysis of various network path caching schemes. Algorithm 1 dis- 
cards cached path entries based on the number of topology updates to 
any one link in the path. We found this to be the most effective and 
simple criterion from among the criteria nsidered. Algorithm 1 
discards a cached path if any one of the links on the path has received 
N updates, where N is a tunable parameter, since insertion of the path 
in the cache. If a cached path entry results in a failed connection setup, 
then the connection request is rejected. Algorithm 2 is a special case 
of Algorithm 1 where N is 00; it differs in that if a cached path results 
in a failed connection setup, a path computation attempts to setup the 
connection before a connection request is rejected. 

Variables/Constants used by algorithms: 

0 N :  constant integer (used by Algorithm 1 only); 
PI: ( ( e , , ,  update , ,  ), ( e,,, update , ,  ), . . . . . . ( e, ,  , update , ,  ) ); 

where P, is a path of length I in cache, e,, is a link along the path 
P,, and update , ,  stores the number of PTSEs received for link e 
Algorithm 2 does not use the variable u p d a t e .  (The path attributes 
such as number of hops, maximum delay, maximum packet size and 
packet loss probability are not shown here.) 
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4.1 Algorithm 1 
Receive a connection request with destination and QoS requirements 

1. if the cache contains a path to the same destination that satisfies 
the QoS of the request and the topology database confirms this 
path then 

attempt to setup a path to destination. 
if connection setup succeeds then 

else 
accept the request 

reject the connection request. 
else 

invoke path computation; 
attempt to setup a path to destination. 
if connection setup succeeds then 

(Cache update policy:) store the connection’s path 
along with its attributes in the cache and for each 
link e,, in the path, set update,, to 0. 

reject the connection request 
else 

2. Cache invalidation policy: Before storing a new path in the 
cache, remove all the exiting entries that have the same desti- 
nation. An implementation may choose to keep more than one 
path for the same destination in the cache; this can be done 
by storing paths based on their QoS parameters. This has the 
danger of letting the cache grow big. 

Receive a PTSE for link e t ,  (Cache invalidation policy): 

for each path P, in the cache do 
if e,, belongs to the path then 

if P,.update,, > N then 
P,.update , ,  := P,.update , ,  + 1 

delete path P, from cache. 

There are two components ofthe cache invalidation policy by which 
a path us removed from the cache. First, when a new path to the same 
destination with the same QoS is stored, the existing cache entry for 
the path is deleted. Second, a parameter ( N )  which depends on the 
number of PTSEs that a node receives from a LM associated with a 
link, is used to delete cache entries. After a node receives N + 1 PTSEs 
from a link, it removes all the paths that use that link from its cache 
table. In a sense, a node ignores N PTSEs received from a link and 
acts when it receives the ( N  + I)th PTSE. N is a tunable parameter 
and its value can be anywhere from 0 to 00. When N = 0, no PTSE is 
ignored, that is every time a PTSE is received from a link all the paths 
that use that link are removed from the cache table. When N = 00, 

no path is removed from the cache table based on receiving a PTSE 
from a link. In a sense, entries are not removed from the cache table 
for ( 1  OO.N)/( N + 1) percent of the PTSEs received from a link. The 
underlying reason for this scheme is to keep the paths in the cache 
table current. 

4.2 Algorithm 2 
Algorithm 2 is the same as Algorithm 1 except as follows. Algo- 

rithm 2 gives a connection one more chance to be setup if the previous 
setup failed and the path was obtained from the cache table; the second 
setup attempt finds a path (if one is available) using the path computa- 
tion method. In addition, Algorithm 2 does not remove any paths from 
the cachetable when a PTSE (from a link) is received. This is the same 
as setting N to 00 in Algorithm I .  Algorithm 2 is now presented. 

Receive a connection request with destination and QoS requirements 
1. if the cache contains a path to the same destination that satisfies 

the QoS of the request and the topology database confirms this 
path then 

attempt to setup a path to destination. 
if connection setup succeeds then 

else 
accept the request 

invoke path computation; 
attempt to setup a path to destination. 
if connection setup succeeds then 

(Cache update policy:) store the connection’s 
path along with its attributes in the cache. 

reject the connection request 
else 

else 
invoke path computation; 
attempt to setup a path to destination. 
if connection setup succeeds then 

(Cache update policy:) store the connection’s path 
along with its attributes in the cache 

reject the connection request. 
else 

2. Cache invalidation policy: Before storing a new path in the 
cache, remove all the exiting entries that have the same desti- 
nation. An implementation may choose to keep more than one 
path for the same destination in the cache; this can be done 
by storing paths based on their QoS parameters. This has the 
danger of letting the cache grow big. 

5 Simulation 
5.1 Model 

A connection-level simulation was used to study path caching and 
compare the two proposed algorithms in a dynamic network environ- 
ment where connections come and go. The simulation model has most 
mechanisms of typical connection-oriented networks. Its main compo- 
nents are a path selection algorithm which selects a minimum-hop path 
between an origin-destination pair, a connection setup and takedown 
protocol, and a topology information distribution protocol. In addition 
to the above components, the model also has a connection preemption 
protocol and a path-switch mechanism which reroutes connections 
preempted due to link/node failure or preemption. The simulation pro- 
gram is written in C and SIMSCRIPT and has about 4000 lines of code 
and consists of a number of processes which execute several dynamic 
objects and routines. A process is created at a simulated time and it 
performs a sequence of events separated by lapses oftime. The process 
concept is used to represent connections, connection generation, and 
messages, while routines are used to represent static objects such as 
route computation. 

The input to the simulation program includes a network configura- 
tion - the nodes, the transmission links with their propagation delays 
and capacities, - source/destination distribution, connections’ char- 
acteristics, link failure events, and other controlling parameters such 
as simulation time, simulation seeds, and maximum connection hops. 
As will be described later, the program collects and reports a number 
of statistics. 

The program simulates the lives of connections from the time they 
are created until they terminate. Connection interarrival times are 
exponentially distributed. Upon arrival of a connection to the network, 
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its source and destination nodes, priority, bandwidth, holding time, and 
delay are chosen probabilistically. Once the connection’s parameters 
are selected, the source process examines the local cache to determine if 
a path satisfying the connection’s parameters is already precomputed 
and stored in the cache. If the local cache does not contain such a 
path, a path selection algorithm is run and a path in the network is 
determined. This algorithm attempts to find a path that has a minimum 
number of hops while satisfying the connection’s quality of service 
parameters. If there are several eligible paths with the same number 
of hops then one of them is chosen based on lowest “weight” of the 
path. This weight is the sum of weights of the individual links. This 
path selection algorithm and the notion of link weights are described 
in detail in [IO]. 

Once a path has been selected, the connection control protocol de- 
scribed in Section 2 attempts to establish the connection. Basically, 
when a connection request arrives, a connection is establishedifthe net- 
work has the bandwidth to support the connection. Once established, 
the connection begins its “talk” phase. However, if there is not enough 
bandwidth to establish the connection, then if there are sufficient low- 
priority connections that can be preempted to free enough bandwidth 
for this connection, then those low-priority connections will be pre- 
empted and the connection request gets satisfied. When the connection 
request cannot be accommodated, it is rejected. When a connection 
is preempted, it is treated like a new connection. When a connection 
successfully completes its talk phase, it gets taken down. So, note that 
a successfully completed connection may have been rerouted one or 
more times due to preemption, link failure, or node failure. 

Nodes Source probability 

12 0.41 
3,4,5,6,7,8 0.0 1 

1648 

Destination probability 
(given that source # destination) 

0.47 
0.01 

.....,. 0 

Connect- 
- ion 

priority 16 Mbps, 20 m q  . . . . . . . . . . . .__. . . .  

Bandwidth Number of Mean holding Delay 
range BW types time (in ms) 

(in Kbps) in BW range (in secs) (uniform 
(uniform (exponential distribution) 

32 Mbps, 15 ms I 
Figure 1. Network topology and structure. 

Nodes Source probability Destination probability 
(given that source # destination) 

0.2 0.2 

Table 2. Load Distribution B (symmetric load: for 
Expt. 3). 

When a connection is accepted on a link or removed from a link, a 
bandwidth reservation table for that link is updated. When a significant 
change in the link bandwidth reservation occurs, a PTSE is broadcast 
to every node in the network. This is done only if the change in the 
reservation level for the link is significant, i.e., if it exceeds some 
threshold value defined for that link. A PTSE 
a link fails or comes up. So, a connection se 
successfid for two reasons: the topology database at the originating 
node may not be “current” and/or multiple sources may compete for a 
limited available bandwidth by sending connection setup requests to a 
particular link almost simultaneously. 

5.2 Experiments 
We have conducted wide-range simulation with various network 

conditions such as network topology, number of priority levels, link 
bandwidth, and traffic pattem to study path caching and the behavior 
of the two proposed algorithms. 

Network Structure: The simulation experiments used the following 
network model which is an abstraction of a real network. The net- 
work, shown in Figure 1, is two-tiered and consists of 8 nodes and 26 
unidirectional links. The inner links are 32 Mbps links with a prop- 
agation delay of 1 Sms, and the outer links are 16 Mbps links with a 
propagation delay of 20ms. In the experiments, two types of network 
load distributions were used by adjusting the selection of the origin 
and destination pairs for the connections. The two network load distri- 
butions, denoted Distribution A and Distribution B, were obtained by 
varying the probabilities of origin and destination pairs of connections, 
as shown in Tables 1 and 2, respectively. In Distribution A, the origin 
and destination pairs for the connections were selected such that the 

Table 3. Traffic Characteristic A (for Expt. 1). 
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Run Path 
Caching 

Algo. 

Connection inter-arrival N for Algo. 1 Average link Cache hit Connection Number 
period for entire (% of WSEs reservation Probability success of path 
network (sec) ignored) level (if path caching is used) probability computations 

Connect- 
- ion 

priority 

1 
2 
3 
4 

load in the network is asymmetric, with nodes 1 and 2 experiencing 
very high load. In Distribution B, the selection of the source and des- 
tination pairs for the connections was such that the network load is 
uniformly distributed. 

Bandwidth Number of Mean holding Delay 
range BW types time (in ms) 

(in Kbps) in BW range (in secs) (uniform 

distribution) distribution) 

320-3200 I O  100 10-60 

(uniform (exponential distribution) 

320-3200 IO 100 10-60 

320-3200 10 100 10-60 
320-3200 I O  IO0 10-60 

Raffic Profile: Two types of traffic profiles were used in the simu- 
lation experiments. The two traffic profiles, denoted Characteristic A 
and Characteristic B, are shown in Tables 3 and 4, respectively. For 
Characteristic A, all network connections were of a single priority and 
had a bandwidth of 800 Kbps. The connections’ holding times are 
assumed to be exponentially distributed with a mean of 100 seconds. 
For Characteristic B, many connection.types in terms of bandwidth 
size, holding time, and delay requirement were used along with four 
priority levels. The distribution of the priority levels is uniform, i.e., 
on the average the number of connection requests for each priority 
level is the same. The bandwidth range for connections is between 
320 Kbps to 3200 Kbps. The distribution of bandwidth within this 
range is also uniform. The connections’ holding times are assumed to 
be exponentially distributed with a mean of 100 seconds. 

Performance Metrics: The simulation program collects and reports a 
large number of statistics which are averaged over the life of simulation. 
In this study we concentrate on the following four measures. 

1. Average Link Reservation Level: This is the percentage of the 

links’ reservable capacity used by connections averaged over 
all links. 
Cache Hit Probability: This is the probability that a path ob- 
tained from the cache table results in a successhl setup. 
Connection Success Probability: This is the probability that a 
connection is successfully setup and completes the talk phase. 
Note that a connection can be rerouted due to preemption or 
due to link failure and may still be able to complete. 
Number of Path Computations: This is the total number of path 
computations during the simulation life for the entire network. 
There are separate measures for PTSEs sent due to different 
events. 

Nature of experiments: We report three experiments that we have run 
in the example network shown in Figure 1. Each experiment consists 
of 3 sets of runs and each set consists of 6 runs. In each experiment, 
we considered three connection arrival rates (or network load): high, 
medium, and low. These correspondto sets H ,  M ,  and L,  respectively. 
Within each set, Run 1 is for the case in which no path caching is done. 
For runs 2 through 5 ,  we run Algorithm 1 with the value of N chosen 
to be 0, 1,3, and 9, respectively. Run 6 is for Algorithm 2. 

Simulation results for Experiment 1: Table 5 presents the simulation 
results of Experiment 1. Statistics are collected for 10000 seconds 
of simulation time and runs are made for network load distribution 
A (Table 1) and network traffic characteristic A (Table 3). As all 
connections are of same priority note that there is no preemption due 
to priorities. 

When comparing runs *H,*M,*L, where * is a number from I 
to 6, which correspond to the varying network loads, the connection 
success probability decreased as the network load increased. Also, 
for any given set of runs, the connection success probability was ap- 
proximately the same without caching, and with Algorithm 2; the 
connection success probability for Algorithm 1 was lower than this 
value and decreased as the parameter N increased. 

When comparing runs *H,*M,*L, where * is a number from 1 
to 6, which correspond to the varying network loads, the number of 
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Table 6. Simulation results of Experiment 2. 

path computations during the simulation time decreased as the network 
load decreased. Also, for any given set of runs, the number of path 
computations was highest when no caching was used; followed by the 
number of computations when Algorithm 2 was used; the number of 
path computations for Algorithm 1 was lower than both these values 
and decreased as the parameter N increased. 

When comparing runs *H,*M,*L, where * is a number from 1 
to 6, which correspond to the varying network loads, the cache hit 
probability increased as the network load decreased. Also, for any 
given set of runs, the cache hit probability for Algorithm 2 was higher 
than it was for Algorithm 1 although this difference decreased as the 
network load decreased. For any given set of runs, the cache hit 
probability for Algorithm 1 decreased as the parameter N increased. 

When comparing runs *H,*M,*L, where * is a number from 1 
to 6,  which correspond to the varying network loads, the average link 
reservation level decreased as the network load decreased. Also, for 
any given set of runs, the average link reservation level was somewhat 
higher for Algorithm 2 than what it was without caching; the average 
link reservation level for Algorithm 1 was lower than both these values 
and decreased as the parameter N increased. 

It is interesting to observe that for any given set of runs, as the 
cache hit probability drops, the number of path computations also 
drops. This appears counterintuitive but can be explained as follows: 
In Algorithm 1 ,  the cache hit ratio drops as the value of parameter N 
increases. However, as N increases, the entries in the cache are inval- 
idated less frequently and therefore the cache contains more entries. 
(The lower cache hit ratio simply reflects the fact that these entries are 
more outdated and result in a lower percentage of successful connec- 
tions). As the cache contains more path entries, therefore fewer path 
computations are attempted, as per Algorithm 1. 

Simulation results for Experiment 2: Table 6 presents the simulation 
results of Experiment 2.  Statistics are collected for 10000 seconds of 
simulation time and runs are made for network load distribution A 
(Table 1) and network traffic characteristic B (Table 4). 

The observations are largely similar to those made for Experiment 
1, although the range of network loads considered is lower for Exper- 

iment 1. The only differences are the following. For any given set of 
runs, the cache hit probability for Algorithm 2 was approximately the 
same as it was for Algorithm 1 .  

Simulation results for Experiment3: Table 7 presentsthe simulation 
results of Experiment 3 .  Statishcs are collected for 10000 seconds of 
simulation time and runs are made for network load distribution B 
(Table 2 )  and network traffic characteristic B (Table 4). 

The observations are largely similar to those made for Experiment 1 ,  
although the range ofnetwork loads considered is lower for Experiment 
1 .  The only differences are the following. 

For any given set of runs, the connection success probability was 
slightly higher without caching than with Algorithm 2; the connection 
success probability for Algorithm 1 was lower than this value without 
caching, and decreased as the parameter N increased. 

For any given set of runs, the number of path computations was 
highest when no caching was used; the number of path computations for 
Algorithm I was lower than this value and decreased as the parameter 
N increased. 

For any given set of runs, the cache hit probability for Algorithm 
2 was lower than it was for Algorithm 1 although this difference 
decreased as the network load decreased. 

For any given set of runs, the average link reservation level for 
Algorithm 1 was approximately the same as that without caching and 
did not show any variation pattern as N was varied. 

Comparison of Algorithms: Algorithm 1 required fewer path com- 
putations than Algorithm 2 although its connection success probability 
was slightly lower. Algorithm 1 performs reasonably well in terms of 
the connection success probability, particularly at high network loads, 
and very significantly reduces the number of path computations when 
compared to the case without path caching. In terms of the connection 
success probability, Algorithm 2 consistently performs very well, al- 
most as good as without path caching, while reducing the number of 
path computations significantly. 
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Run Path Connection inter-arrival N for Algo. 1 Average link Cache hit Connection Number 
Caching period for entire (% of PTSEs reservation Probability success ofpath 

Algo. network (sec) ignored) level (if path caching is used) probability computations 

6 Conclusions 
We lhave proposed network path caching as a means to reduce the 

connection setup time for a connection request in a general decentral- 
ized connection-oriented network by bypassing the time-consuming 
path computation phase. This is an important contribution because in 
high-speed networks where the transmission times are low, the path 
computation becomes the bottleneck for setting up the connection 
quickly,. The lengthy path computation process also lowers utilization 
of other network resources. To the best of our knowledge, this is 
the only study of network path caching in a decentralized/distributed 
network. We investigated several issues in the network path caching 
problem. Then we proposed two simple and efficient algorithms for 
network path caching. We presented a comprehensivesimulation study 
of the two path caching algorithms which were seen to perform very 
well and significantly reduce the number of path computations. The 
reductions in the number of path computations in the simulation exper- 
iments were anywhere from 80% to 90%. Our simulation study also 
provided insights into network path cachingand network dimensioning 
problems in order to achieve a desired level of network availability, 
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