
Evaluation of the Optimal Causal Message
Ordering Algorithm

Pranav Gambhire and Ajay D. Kshemkalyani

Dept. of EECS, University of Illinois at Chicago, Chicago, IL 60607-7053, USA
{pgambhir, ajayk}@eecs.uic.edu

Abstract. An optimal causal message ordering algorithm was recently
proposed by Kshemkalyani and Singhal, and its optimality was proved
theoretically. For a system of n processes, although the space complexity
of this algorithm was shown to be O(n2) integers, it was expected that
the actual space overhead would be much less than n2. In this paper, we
determine the overhead of the optimal causal message ordering algorithm
via simulation under a wide range of system conditions. The optimal
algorithm is seen to display significantly less message overhead and log
space overhead than the canonical Raynal-Schiper-Toueg algorithm.

1 Introduction

A distributed system consists of a number of processes communicating with each
other by asynchronous message passing over reliable logical channels. There is
no shared memory and no common clock in the system. A process execution is
modeled as a set of events, the time of occurrence of each of which is distinct.
A message can be multicast, in which case it is sent to multiple other processes.
The ordering of events in a distributed system execution is given by the “happens
before” or the causality relation [6], denoted by −→. For two events e1 and e2,
e1 −→ e2 iff one of the following conditions is true (i) e1 and e2 occur on the
same process and e1 occurs before e2, (ii) e1 is the send of a message and e2 is
the delivery of that message, or (iii) there exists an event e3 such that e1 −→ e3
and e3 −→ e2.

Let Send(M) denote the event of a process handing over the message M to
the communication subsystem. Let Deliver(M) denote the event of M being
delivered to a process after it is been received by its local communication sub-
system. The system respects causal message ordering (CO) [2] iff for any pair of
messages M1 and M2 sent to the same destination, (Send(M1) −→ Send(M2))
=⇒ (Deliver(M1) −→ Deliver(M2)).

Causal message ordering is valuable to the application programmer because it
reduces the complexity of application logic and retains much of the concurrency
of a FIFO communication system. Causal message ordering is useful in numerous
areas such as managing replicated database updates, consistency enforcement in
distributed shared memory, enforcing fair distributed mutual exclusion, efficient
snapshot recording, and data delivery in real-time multimedia systems. Many

M. Valero, V.K. Prasanna, and S. Vajapeyam (Eds.): HiPC 2000, LNCS 1970, pp. 83–95, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

84 P. Gambhire and A.D. Kshemkalyani

causal message ordering algorithms have been proposed in the literature. See
[2,3,5,8,9] for an extensive survey of applications and algorithms. Causal message
ordering has been implemented in many systems such as Isis [2], Transis [1],
Horus [3], Delta-4, Psync [7], and Amoeba [4].

Any causal message ordering algorithm implementation has two forms of
space overheads, viz., the size of control information on each message and the
size of memory buffer space at each process. It is important to have efficient
implementations of causal message ordering protocols due to their wide appli-
cability. The causal message ordering algorithm given by Raynal, Schiper and
Toueg [8], hereafter referred to as the RST algorithm, is a canonical solution to
the causal message ordering problem. It has a fixed message overhead and mem-
ory buffer space overhead of n2 integers, where n (also denoted interchangeably
as N) is the number of processes in the system. The Horus [3], Transis [1], and
Amoeba [4] implementations of causal message ordering are essentially variants
of the RST algorithm.

Recently, Kshemkalyani and Singhal identified and formulated the neces-
sary and sufficient conditions on the information required for causal message
ordering, and provided an optimal algorithm to realize these conditions [5]. This
algorithm was proved to be optimal in space complexity under all network condi-
tions and without making any simplifying system/communication assumptions.
The authors also showed that the worst-case space complexity of the algorithm
is O(n2) integers but argued that in real executions, the actual complexity was
expected to be much less than n2 integers, the overhead of the RST algorithm.

Although the Kshemkalyani-Singhal algorithm was proved to be optimal in
space complexity by using a rigorous optimality proof, there are no experimen-
tal or simulation results about the quantitative improvement it offers over the
canonical RST algorithm. The purpose of this paper is to quantitatively deter-
mine the performance improvement offered by the optimal Kshemkalyani-Singhal
algorithm, hereafter referred to as the KS algorithm, over the RST algorithm.
This is done by simulating the KS algorithm and comparing the amount of con-
trol information sent per message and the amount of the memory buffer space
requirements, with the fixed overheads of the RST algorithm. The results over a
wide range of parameters indicate that the KS algorithm performs significantly
better than the RST algorithm, and as the network scales up, the performance
benefits are magnified. With N = 40, the KS algorithm has about 10% of the
overhead of the RST algorithm.

Note that the space overhead is the only metric of causal message ordering
algorithms studied in this simulation because it was shown in [5] that the time
(computational) overhead at each process for message send and delivery events
was similar for the KS algorithm and for the canonical RST algorithm, namely
O(n2).

Section 2 outlines the RST algorithm and the KS algorithm. Section 3 presents
the model of the message passing distributed system in which the KS algorithm
is simulated. Section 4 shows the simulation results of the KS algorithm in com-
parison to the results expected from the RST algorithm. Section 5 concludes.

Evaluation of the Optimal Causal Message Ordering Algorithm 85

2 Overview of the CO Algorithms

This section briefly introduces the RST algorithm [8] and the optimal KS algo-
rithm [5] for causal message ordering. Both the algorithms assume FIFO com-
munication channels and that processes fail by stopping.

2.1 The RST Algorithm

Every process in a system of n processes maintains a n× n matrix - the SENT
matrix. SENT [i, j] is the process’s best knowledge of the number of messages
sent by process Pi to process Pj . A process also maintains an array DELIV
of size n, where DELIV [k] is the number of messages sent by process Pk that
have already been delivered locally. Every message carries piggybacked on it,
the SENT matrix of the sender process. A process Pj that receives message M
with the matrix SP piggybacked on it is delivered M only if, ∀ i, DELIV [i]
≥ SENT [i, j]. Pj then updates its local SENT matrix SENTj as: ∀k∀l ∈
{1, . . . , n}, SENTj [k, l] = max(SENTj [k, l], SP [k, l]). The space overhead on
each message and in local storage at each process is the size of the matrix
SENT , which is n2 integers.

2.2 The KS Algorithm

Kshemkalyani and Singhal identified the necessary and sufficient conditions on
the information required for causal message ordering, and proposed an algorithm
that implements these conditions. To outline the algorithm, we first introduce
some formalisms. The set of all events E in the distributed execution (computa-
tion) forms a partial order (E,−→) which can also be viewed as a computation
graph: (i) there is a one-one mapping between the set of vertices in the graph
and the set of events E, and (ii) there is a directed edge between two vertices iff
either these vertices correspond to two consecutive events at a process or corre-
spond to a message send event and a delivery event, respectively, for the same
message. The causal past (resp., future) of an event e is the set {e′ | e′ −→ e}
(resp., {e′ | e −→ e′}). A path in the computation graph is termed a causal path.
Deliverd(M) denotes the event Deliver(M) at process d.

The KS algorithm achieves optimality by storing in local message logs and
propagating on messages, information of the form “d is a destination of M”
about a message M sent in the causal past, as long as and only as long as
(Propagation Constraint I:) it is not known that the message M is delivered to

d, and
(Propagation Constraint II:) it is not guaranteed that the message M will be

delivered to d in CO.
In addition to the Propagation Constraints, the algorithm follows a Delivery
Condition which states the following. A message M∗ that carries information “d
is a destination of M”, where message M was sent to d in the causal past of
Send(M∗), is not delivered to d if M has not yet been delivered to d.

86 P. Gambhire and A.D. Kshemkalyani

Constraint (I) and the Delivery Condition contribute to optimality as follows:
To ensure that M is delivered to d in CO, the information “d is a destination of
M” is stored/propagated on and only on all causal paths starting from Send(M),
but nowhere in the causal future of Deliverd(M).

Constraint (II) and the Delivery Condition contribute to optimality by the
following transitive reasoning: Let messages M , M ′ and M ′′ be sent to d, where
Send(M) −→ Send(M ′) −→ Send(M ′′) and M ′ is the first message sent to
d on all causal chains between the events Send(M) and Send(M ′). M will be
delivered optimally in CO to d with respect to (w.r.t.) M ′′ if (i) M is guaranteed
to be delivered optimally in CO to d w.r.t. M ′, and (ii) M ′ is guaranteed to be
delivered optimally in CO to d w.r.t. M ′′. Condition (i) holds if the information
“d is a destination of M” is stored/propagated on and only on all causal paths
from Send(M), but nowhere in the causal future of Send(M ′) other than on
message M ′ sent to d. This follows from the Delivery Condition. Condition (ii)
can be shown to hold by applying a transitive argument comprising of conditions
(II)(i) and (I). To achieve optimality, the information “d is a destination of M”
must not be stored/propagated in the causal future of Send(M ′) other than on
message M ′ sent to d (follows from condition (II)(i)) or in the causal future of
Deliverd(M) (condition (I)).

Information about a message (I) not known to be delivered to d and (II) not
guaranteed to be delivered to d in CO, is explicitly tracked by the algorithm using
the triple (source, destination, scalar timestamp). This information is deleted as
soon as either (I) or (II) becomes false. As the information “d is a destination
of M” propagates along various causal paths, the earliest event(s) at which
(I) becomes false, or (II) becomes false, are known as Propagation Constraint
Points PCP1 and PCP2, respectively, for that information. The information
never propagates beyond its Propagation Constraint Points. With this approach,
the space overhead on messages and in the local log at processes is less than the
n2 overhead of the RST algorithm, and is proved to be always optimal.

The information “d is a destination of M” is also denoted as “d ∈M.Dests”,
where M.Dests is the set of destinations of M for each of which (I) and (II)
are true. In an implementation, M.Dests can be represented in the local logs
at processes and piggybacked on messages using the data structures shown in
figure 1.

type LogStruct = record type MsgOvhdStruct = record
sender : process id; sender: process id;
clock: integer; clock: integer;
numdests: integer; numdests: integer;
dests: array[1..numdests] of process id; numLogEntries: integer;

end dests: array[1..numdests] of process id;
olog: array[1..numLogEntries] of LogStruct;

end

Fig. 1. The log data structure and message overhead data structure.

Evaluation of the Optimal Causal Message Ordering Algorithm 87

The log is a variable length array of type LogStruct. Assuming that pro-
cess id is an integer, the size of a LogStruct structure is 3+size(dests) integers,
where size(X) is the number of elements in the set X. The log space overhead
is the sum of the sizes of all the entries in the log. The amount of overhead
on a message required by the KS algorithm is the size of the MsgOvhdStruct
structure sent on it. The size of the MsgOvhdStruct structure can be determined
as 4 + size(dests) + SIZE(olog), where SIZE(X) is the sum of the sizes of all
the entries in the set X of LogStructs. The message and log space overheads
are determined in this manner in our simulation system.

3 Simulation System Model

A distributed system consists of asynchronous processes running on processors
which are typically distributed over a wide area and are connected by a network.
It can be assumed without any loss of generality that each processor runs a single
process. Each process can access the communication network to communicate
with any other process in the system using asynchronous message passing. The
communication network is reliable and delivers messages in FIFO order between
any pair of processes.

3.1 Process Model

A process is composed of two subsystems viz., the application subsystem and
the communication subsystem. The application subsystem is responsible for the
functionality of the process and the communication subsystem is responsible
for providing it with causally ordered messaging service. The communication
subsystem implements the causal message ordering algorithm in the simulation.
The application subsystem generates message patterns that exercise the causal
message ordering algorithm. The communication subsystem maintains a float-
ing point clock, that is different from any clock in the causal message ordering
algorithm. This clock is initialized to zero and tracks the elapsed run time of
the process. Every process has a priority queue called the in queue that holds
incoming messages. This queue is always kept sorted in increasing order of the
arrival times of messages in it.

Message structure: A message is the fundamental entity that transfers
information from a sender process to one or more receiver processes. Each mes-
sage M has a causal info field, time stamp field, and a payload field. The
causal info field is just a sequence of bytes on which a particular structure
is imposed by the causal message ordering algorithm. The RST algorithm im-
poses a N × N matrix structure on the causal info field. The KS algorithm
imposes the structure given in figure 1. The communication subsystem uses the
time stamp field to simulate the message transmission times. The in queues
are kept sorted by the time stamp field. The information that is contained in
a message is referred to as its payload. In a real system, this would contain
the application-specific packet of information according to the application-level
protocol.

88 P. Gambhire and A.D. Kshemkalyani

3.2 Simulation Parameters

The system parameters that are likely to affect the performance of the KS algo-
rithm are discussed next.

– Number of processes (N): While most causal message ordering algo-
rithms show good performance for a small number of processes, a good causal
message ordering algorithm would continue to do so for a large number of
processes. It is hence necessary to simulate any causal message ordering algo-
rithm over a wide range of the number of processes. The number of processes
in the system is limited only by the memory size and processor speed of the
machine running the simulation. On an Intel Pentium III machine with 128
MB of RAM and the simulation framework being implemented in Java, we
could simulate up to 40 processes.

– Mean inter-message time (MIMT): The mean inter-message time is the
average period of time between two message send events at any process. It
determines the frequency at which processes generate messages. The inter-
message time is modeled as an exponential distribution about this parameter.

– Multicast frequency (M/T): The behavior of the KS algorithm may be
sensitive to the number of multicasts. The ratio of multicasts to the total
number of message sends (M/T) is the parameter on the basis of which the
multicast sensitivity of the KS algorithm can be determined. Processes like
distributed database updators have M/T = 100% and a collection of FTP
clients have M/T = 0. We simulate the KS algorithm with M/T varying
from 0 to 100%. The number of destinations of a multicast is best described
by a uniform distribution ranging from 1 to N .

– Mean transmission time (MTT): The transmission time of a message
here implicitly refers to the msg. size/bandwidth + propagation delay. We
model this time as an exponential distribution about the mean, MTT. For
the purpose of enforcing this mean, multicasts are treated as multiple uni-
casts and transmission time is independently determined for each unicast.
When a process needs to send a message, it determines the transmission
time according to the formula Transmission time = −MTT ∗ ln(R), where
R is a perfect random number in the range [0,1]. This formulation of the
transmission time can violate FIFO order. As most causal message ordering
algorithms assume FIFO ordering, it is implemented explicitly in our sys-
tem. Every process maintains an array LM of size n to track the arrival
time of the last message sent to each other process. LM [i] is the time at
which the last message from the current process to process Pi will reach Pi.
Should the transmission time determined be such that the arrival time for
the next message at Pi is less than LM [i], then the arrival time is fixed at
(LM [i] + 1)ms. LM [i] is updated after every message send to Pi.
MTT is a measure of the speed of the network, with fast networks having
small MTTs. We have varied MTT from 50ms to 5000ms in these simulations
so as to model a wide range of networks.

Evaluation of the Optimal Causal Message Ordering Algorithm 89

3.3 Process Execution

All the processes in the system are symmetric and generate messages according
to the same MIMT and M/T. The processes in a distributed system execute
concurrently. But simulating each process as an independent process/thread in-
volves inter-process/thread communication and the involved delays are not easy
to control. Instead, a round-robin scheme was used to simulate the concurrent
processes. Each simulated process is given control for a time slot of 500ms. A
systemwide clock keeps track of the current time slot.

When a process is in control, it generates messages according to the MIMT.
The sender of a message determines the transmission time using MTT, adds it to
its current clock, and writes the result into the time stamp field of the message.
It then inserts this message into the in queue of the destination process.

When a process gets control, it first invokes the communication subsystem.
The communication subsystem looks at the head of its in queue to determine if
there are any messages whose time stamp is lesser than or equal to the current
value of the process clock. Such messages are the ones that must have already
arrived and hence should have been processed before/during this time slot. All
such messages are extracted from the queue and handed over to the causal
message ordering delivery procedure in the order of their timestamps. The causal
delivery procedure will buffer messages that arrived out of causal order. Note that
this buffer is distinct from the in queue. Messages in causal order are delivered
immediately to the application subsystem. Blocked messages remain blocked till
the messages that causally precede them have been delivered. The application
subsystem then gets control and it generates messages according to the MIMT.
The messages are handed over to the communication subsystem for delivery.

A process Pi stops generating messages once it has generated a sufficient
number of messages (see Section 4) and flags its status as completed. The sim-
ulation stops when all the processes have their status flagged as completed.

4 Simulation Results

The KS algorithm was simulated in the framework presented in Section 3. The
framework and the algorithm were implemented in Java using ObjectSpace JGL.
The performance metrics used are the following.

– The average number of integers sent per message under various combinations
of the system parameters, viz., N , MTT , MIMT , and M/T .

– The average size of the log in integers, under the same conditions.

Simulation experiments were conducted for different combinations of the pa-
rameters. For each combination, four runs was executed; the results of the four
runs did not differ from each other by more than a percent. Hence, only the
mean of the four runs is reported for each combination and the variance is not
reported.

For each simulation run, data was collected for 25,000 messages after the first
5000 system-wide messages to eliminate the effects of startup. Every process Pi

90 P. Gambhire and A.D. Kshemkalyani

in the system accumulates the sum of the number of integers Ii that it sends
out on outgoing messages. After every message send event and every message
delivery event, it determines the log size and accumulates it into a variable Li.
It also tracks ms

i , the number of messages sent, and mr
i , the number of messages

delivered, during its lifetime. Once Pi has sent out ms
i = 30, 000/N number of

messages, it flags its status as complete and computes its mean message overhead
MMVi = Ii/m

s
i and its log space overhead LVi = Li/(mr

i + ms
i). These results

are then sent to process P0 which computes the systemwide average message
overhead

∑
MMVi/N and the systemwide average log space overhead

∑
Li/N .

All the overheads are reported as a percentage of their corresponding determin-
istic overhead n2 of the RST algorithm.

It is seen that the results for the log size overhead followed the same pattern
as the results for the message size overhead in all the experiments. Hence, the
log size overhead plots are not shown in this paper for space considerations.

4.1 Scalability with Increasing N

RST scales poorly to networks with a large number of processes because of its
fixed overhead of n2 integers. Although KS algorithm has O(n2) overhead, it
is expected that the actual overhead will be much lower than n2. We test the
scalability of the KS algorithm by simulation.

Fig. 2. Average message overhead as a function of N

The first three simulations were performed for (MTT, MIMT, M/T) fixed
at S1(50ms, 100ms, 0.1), S2(50ms, 400ms, 0.1) and S3(50ms, 1600ms, 0.1). The
number of processes was increased in steps of 5 starting from 5 up to 40. The
results for the average message overhead are shown in figure 2. Observe that
with increasing N , the message overhead rapidly decreases as a percentage of
RST. Note that in all these simulations, the overhead is always significantly less

Evaluation of the Optimal Causal Message Ordering Algorithm 91

than that of RST. For the case of 40 processes, for all the simulations, the over-
head is only 10% that of RST. For a small number of processes, the overheads
reported by KS are 80% of those of RST, but the overhead of RST itself is
low for such systems. Similar results are seen for the next three simulations:
(MTT, MIMT, M/T) fixed at S4(400ms, 100ms, 0.1), S5(100ms, 200ms, 0.3),
and S6(100ms, 200ms, 0.99) (the other three curves in figure 2). The latter two
simulations show that the improvement in overhead is unaffected by increasing
the traffic, modeled by increasing the multicast frequency to 30% and 99%.

It can be seen from figure 2 that the performance (overhead relative to the
RST algorithm) gets better when the number of processes is increased keeping
MTT, MIMT, and M/T constant. This is because increasing the number of pro-
cesses implies an increase in the rate of generation of messages, given a constant
MIMT. As MTT is held constant, all these messages reach their destinations in
the same amount of time as with a lower number of processes. Hence, there is
greater dissemination of log information among the processes, thereby providing
impetus for the Propagation Constraints to work with more up to date informa-
tion and purge more information from the logs. Thus as n increases, the logs get
purged more quickly and their size tends to be an increasingly smaller fraction
of n2, the size of logs in the RST algorithm.

From all the simulations S1 through S6 and the above analysis, it can be
concluded that the KS algorithm has a better network capacity utilization and
hence better scalability when compared to RST.

4.2 Impact of Increasing Transmission Time

Increasing MTT is indicative of decrease in available bandwidth and increasing
network congestion. The space overheads of the RST algorithm are fixed at n2,
irrespective of network congestion conditions. We ran simulations for systems
consisting of 10, 15, and 20 processes under varying MIMT and M/T to analyze
the impact of increasing MTT. The results for the average message overhead are
shown in figure 3.

The first three simulations fixed (N, MIMT, M/T) at S1(15, 400ms, 0.1),
S2(15, 800ms, 0.1) and S3(15, 1600ms, 0.1), respectively. The MTT was increased
from 200ms to 4800ms progressively in steps of 100 initially, 200 later, and
multiples of 2 finally. The fineness of the initial samples was necessary to see that
the overheads were growing fast initially but soon settled to a maximum. The
overhead of the algorithm as a % of the RST overhead first increases gradually
but soon reaches steady state despite further increases in MTT. This is explained
as follows. At low values of MTT, message transmission is very fast and hence
log sizes at the processes are small. However as MTT grows even slightly, the
message transmission rate falls and the log sizes begin increasing in size. Hence
a growth in overheads can be seen in the initial parts of the curves. However
once MTT becomes large, all the log sizes tend to a “steady-state” proportion of
n2 (determined by other system parameters) but significantly less than n2. This
trend is because the pruning of the logs by the Propagation Constraints is still
effective. Also recall that the sizes of the logs are bounded [5]; once a process Pi

92 P. Gambhire and A.D. Kshemkalyani

Fig. 3. Average message overhead as a function of MTT

has a log record of a message send to process Pj , a log record of a new message
send to Pj can potentially erase all previous log records of messages sent to
Pj . At lower MTT, because of faster propagation of log information, pruning
logs using the Propagation Constraints is more effective and the logs are much
smaller.

Note that despite an initial increase, the overhead is always significantly less
than that of RST. For example, in simulations S1, S2, and S3, the message over-
head is never more than 40% that of RST. The next three simulations fixed (N,
MIMT, M/T) at S4(20, 500ms, 0.3), S5(20, 500ms, 0.99), and S6(10, 400ms, 0.1).
For simulations S4 and S5, the overhead is always less than 24% of that of RST.

The runs S4 and S5 show that increasing multicast frequency, thus increasing
the network load, does not affect the overhead even under extreme network load
conditions, i.e., under high MTT. This is because the log sizes have already
reached a “steady-state” proportion of n2 and multicasts cannot increase them
much further. Besides, multicasts effectively distribute the log information faster
into the system because they convey information to more number of processes.
Thus when a multicast message is ultimately delivered, it can potentially cause a
lot of log pruning at the destination. Thus we can conclude that the KS algorithm
has better performance when compared to RST, even under high MTT.

4.3 Behavior under Decreasing Communication Load

The next set of simulations is aimed at determining the overhead behavior when
the KS algorithm is used in applications that use communication sparingly. The
values of (N, MTT, M/T) were fixed at S1(10, 100ms, 0.1), S2(15, 100ms, 0.1),
S3(15, 800ms, 0.1), and S4(20, 100ms, 0.1) while varying MIMT from 100ms to
12800ms, initially in steps of 100 and later in multiples of 2. The results for the
average message overhead are shown in figure 4. As we were testing the system

Evaluation of the Optimal Causal Message Ordering Algorithm 93

for behavior under light to moderate loads, we did not increase the traffic by
increasing M/T.

Fig. 4. Average message overhead as a function of MIMT

The results show a steep initial increase in overheads with increasing MIMT,
followed by a leveling off to a steady overhead. Low MIMT means that messages
are generated more frequently. As analyzed before, frequent message delivery dis-
seminates log information faster and thus helps purge log entries. With increasing
MIMT, message delivery information required by the Propagation Constraints
to perform pruning of logs takes longer time in reaching all the processes that
have the log record of a message send event. Hence the pruning of logs slows
and log records grow in size with increasing MIMT. However as MIMT becomes
very high, the generation of messages becomes infrequent. As new messages are
generated very infrequently, the growth of a process’s log is reduced. This causes
the log growth rates to level off for high MIMTs.

Note that despite the steep initial increase, the overheads are always much
less than those of RST. This is true even in the case of the 10 process simulation
where, though the overhead is higher than for all other runs, it is still always
lesser than 45% of that of RST.

4.4 Overhead for Increasing Multicast Frequency

The sensitivity of the KS algorithm to multicast frequency is of interest because
multicasts seem to favor the pruning of logs.

We ran six simulation runs increasing M/T from 0.1 to 1.0 in steps of 0.1. The
number of processes was varied starting from 25 and decreased to 12 across the
simulations. MTT was progressively increased from 50ms to 500ms across the
six runs. MIMT was varied from 400ms to 1000ms. The results for the average
message overhead are shown in figure 5.

For the two simulation runs (N, MTT, MIMT) = S1(25, 50ms, 400ms) and
S2(20, 50ms, 400ms), the overheads are almost constant. For all the other runs,

94 P. Gambhire and A.D. Kshemkalyani

Fig. 5. Average message overhead as a function of M/T

they decrease with increase in M/T. The two simulation runs S1 and S2 represent
networks of higher speed and more processes than the other runs. Because of the
prompt delivery of all messages, increasing multicast frequency cannot decrease
the overhead from the already existing minimal overhead. However for the other
simulations, which have high MTT and/or high MIMT, increasing multicasts
causes more efficient distribution of information which is useful to prune logs by
effective application of the Propagation Constraints.

This experiment reaffirms our guess about the performance under high loads.
Despite increasing network traffic by increasing M/T, the overheads decrease.

5 Concluding Remarks

This paper conducted a performance analysis of the space complexity of the
optimal KS algorithm under a wide range of system conditions using simulations.
The KS algorithm was seen to perform much better than the canonical RST
algorithm under the wide range of network conditions simulated. In particular,
as the size of the system increased, the KS algorithm performed very well and
had an overhead rate of less than 10% of that for the canonical RST algorithm.
The algorithm also performed very well under stressful network loads besides
showing better scalability. As such, the KS algorithm which has been shown
theoretically to be optimal in the space overhead does offer large savings over
the standard canonical RST algorithm, and is thus an attractive and efficient
way to implement the causal message ordering abstraction.

Acknowledgements

This work was supported by the U.S. National Science Foundation grants CCR-
9875617 and EIA-9871345.

Evaluation of the Optimal Causal Message Ordering Algorithm 95

References

1. Y. Amir, D. Dolev, S. Kramer and D. Malki, Transis: A communication sub-system
for high-availability, Proceedings of the 22nd International Symposium on Fault-
tolerant Computing, IEEE Computer Society Press, 337-346, 1991.

2. K. Birman, T. Joseph, Reliable communication in the presence of failures, ACM
Transactions on Computer Systems, 5(1): 47-76, Feb. 1987.

3. K. Birman, A. Schiper and P. Stephenson, Lightweight causal and atomic group
multicast, ACM Transactions on Computer Systems, 9(3): 272-314, Aug. 1991.

4. M. F. Kaashoek and A. S. Tanenbaum, Group communication in the Ameoba
distributed operating system, Proceedings of the Fifth ACM Annual Symposium
on Principles of Distributed Computing, 125-136, 1986.

5. A. Kshemkalyani and M. Singhal, Necessary and sufficient conditions on informa-
tion for causal message ordering and their optimal implementation, Distributed
Computing, 11(2), 91-111, April 1998.

6. L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21(7): 558-565, July 1978.

7. L. L. Peterson, N. C. Bucholz and R. D. Schlichting, Preserving and using con-
text information in interprocess communication, ACM Transactions on Computer
Systems, 7(3), 217-246, 1989.

8. M. Raynal, A. Schiper, S. Toueg, The causal ordering abstraction and a simple
way to implement it, Information Processing Letters, 39:343-350, 1991.

9. A. Schiper, A. Eggli, A. Sandoz, A new algorithm to implement causal ordering,
Proceedings of the Third International Workshop on Distributed Systems, Nice,
France, LNCS 392, Springer-Verlag, 219-232, 1989.

	Introduction
	Overview of the CO Algorithms
	The RST Algorithm
	The KS Algorithm

	Simulation System Model
	Process Model
	Simulation Parameters
	Process Execution

	Simulation Results
	Scalability with Increasing N
	Impact of Increasing Transmission Time
	Behavior under Decreasing Communication Load
	Overhead for Increasing Multicast Frequency

	Concluding Remarks

