
Reducing False Causality
in Causal Message Ordering

Pranav Gambhire and Ajay D. Kshemkalyani

Dept. of EECS, University of Illinois at Chicago, Chicago, IL 60607-7053, USA
{pgambhir, ajayk}@eecs.uic.edu

Abstract. A significant shortcoming of causal message ordering systems
is their inefficiency because of false causality. False causality is the result
of the inability of the “happens before” relation to model true causal
relationships among events. The inefficiency of causal message ordering
algorithms takes the form of additional delays in message delivery and
requirements for large message buffers. This paper gives a lightweight
causal message ordering algorithm based on a modified “happens before”
relation. This lightweight algorithm greatly reduces the inefficiencies that
traditional causal message ordering algorithms suffer from, by reducing
the problem of false causality.

1 Introduction

In a distributed system, causal message ordering is valuable to the application
programmer because it reduces the complexity of application logic and retains
much of the concurrency of a FIFO communication system. Causal message or-
dering is defined using the “happens before” relation, also known as the causality
relation and denoted −→, on the events in the system execution [11]. For two
events e1 and e2, e1−→ e2 iff one of the following conditions is true: (i) e1 and
e2 occur on the same process and e1 occurs before e2, (ii) e1 is the emission of
a message and e2 is the reception of that message, or (iii) there exists an event
e3 such that e1−→ e3 and e3−→ e2.

Let Send(M) denote the event of a process handing over the message M to
the communication subsystem. Let Deliver(M) denote the event of M being
delivered to a process after it is been received by its local communication sub-
system. The system respects causal message ordering (CO) [3] iff for any two
messages M1 and M2 sent to the same destination, (Send(M1) −→ Send(M2))
=⇒ (Deliver(M1) −→ Deliver(M2)). In Figure 1, causal message ordering is
respected if message M1 is delivered to process P3 before message M3.

When a message arrives out of order with respect to the above definition,
a causal message ordering system buffers it and delivers it only after all the
messages that should be seen before it in causal order, have arrived and have
been delivered.

Causal message ordering is very useful in several areas such as managing repli-
cated database updates, consistency enforcement in distributed shared memory,

M. Valero, V.K. Prasanna, and S. Vajapeyam (Eds.): HiPC 2000, LNCS 1970, pp. 61–72, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

62 P. Gambhire and A.D. Kshemkalyani

P1

P2

P3

M1 M2

M3

Time
Fig. 1. Causal message ordering.

enforcing fair distributed mutual exclusion, efficient snapshot recording, global
predicate evaluation, and data delivery in real-time multimedia systems. It has
been implemented in systems such as Isis [3], Transis [1], Horus, Delta-4, Psync
[12], and Amoeba [9]. The causal message ordering problem and various algo-
rithms to provide such an ordering have been studied in several works such as
[3,4,10,13,14,16] which also provide a survey of this area.

A causal message ordering abstraction and its implementation were given
by Raynal, Schiper and Toueg (RST) [13]. For a system with n processes,
the RST algorithm requires each process to maintain a n × n matrix - the
SENT matrix. SENT [i, j] is the process’s best knowledge of the number of
messages sent by process Pi to process Pj . A process also maintains an ar-
ray DELIV of size n, where DELIV [k] is the number of messages sent by
process Pk that have already been delivered locally. Every message carries pig-
gybacked on it, the SENT matrix of the sender process. A process Pj that
receives message M with the matrix SP piggybacked on it is delivered M only
if, ∀i, DELIV [i] ≥ SENT [i, j]. Pj then updates its local SENT matrix SENTj
as: ∀i∀j, SENTj [k, l] = max(SENTj [k, l], SP [k, l]). Several optimizations that
exploit topology, communication pattern, hardware broadcast, and underlying
synchronous support are surveyed in [10] which also identifies and formulates
the necessary and sufficient conditions on the information for causal message
ordering and their optimal implementation.

Cheriton and Skeen [6] pointed out several drawbacks of the causal mes-
sage ordering paradigm and these were further discussed in [2,5,15]. The most
significant was that every implementation of a CO system has to deal with
false causality. False causality is the insistence of the system to impose a partic-
ular causality ordering of events even though the application semantics do not
require such an ordering.

P1

P2

P3

Time

M1
M2

M3

Fig. 2. False causality. No semantic causal dependence between Send(M1) and
Send(M3).

Reducing False Causality in Causal Message Ordering 63

In Figure 2, Send(M1)−→ Send(M3). Assume that Send(M1) and Send(M3)
are not causally related according to the application semantics. Now supposeM3
reaches P3 before M1 does. In a causal message ordering system, it is required
that Deliver(M1) −→ Deliver(M3) and hence M3 is buffered till M1 is re-
ceived and delivered. Send(M1) and Send(M3) are not semantically related and
semantically P3’s behavior does not depend on the order in which it receives
and is delivered M1 and M3. Hence, buffering of M3 is really unnecessary. This
buffering is wasteful of system resources and the withholding of message delivery
unnecessarily delays the system execution.

This paper addresses the topic of reduction of false causality in causal mes-
sage ordering systems. We propose an algorithm in which the incidence of false
causality is much lower than in a conventional causal message ordering system
that is based purely on the “happens before” relationship.

The notion of false causality arising from the “happens before” relation itself
has been identified in several other contexts earlier, even before Cheriton and
Skeen pointed out its drawbacks in the performance of causal message ordering
algorithms. When Lamport defined the “happens before” relation −→ [11], he
had pointed out that “e1−→ e2 means that it is possible for event e1 to causally
affect event e2” but e1 and e2 need not necessarily have any semantic depen-
dency. Fidge proposed a clock system to track true causality more accurately in
a system with multithreaded processes [7]. However, this scheme and its vari-
ants are very expensive. Tarafdar and Garg pointed out the drawbacks of false
causality in detecting predicates in distributed computations [17].

Section 2 gives the system model and a framework to design relations that
have varying degrees of false causality. Section 3 presents a practical and easy
to implement partial order relation based on the framework of Section 2, that
reduces many of the false causal relationships modeled by the −→ relation.
Based on this new relation, the section then presents a lightweight algorithm
that reduces false causality in causal message ordering. Section 4 concludes.

2 System Model

A distributed system is modeled as a finite set of n processes communicating
with each other by asynchronous message passing over reliable logical channels.
There is no shared memory and no common clock in the system. We assume
that channels deliver messages in FIFO order. A process execution is modeled
as a set of events, the time of occurrence of each of which is distinct. An event
at a process could be a message send event, a message delivery event, or an
internal event. A message can be multicast at a send event, in which case it is
sent to multiple processes. A distributed computation or execution is the set
of all events ordered by the “happens before” relation −→ [11], also defined in
Section 1. Define e1 =−→ e2 as (e1 −→ e2) ∨ (e1 = e2). The jth event on process
Pi is denoted as e

j
i . Each process Pi has a default initialization event e

0
i . The

set of all events E forms a partial order (E,−→). The causal past of an event e
is denoted EC(e) = {e′ | e′ =−→ e}. The causal past of an event ei projected on

64 P. Gambhire and A.D. Kshemkalyani

Pj is denoted ECj(ei) = {e′j | e′j =−→ ei}. For any event eki , define a vector event
count ECV (eki) of size n such that ECV (eki)[j] = |ECj(eki)| − 1. ECV (eki)[j]
gives the number of computation events at Pj in the causal past of eki .

False causality is defined based on the true causality partial order relation
s−→ on events; the s−→ relation is the analog of the −→ relation, that accounts
only for semantically required causality, and is defined similar to that in [17].

Definition 1. Given two events e1 and e2, e1 semantically depends on e2, de-
noted as e1 s−→ e2, iff the action taken at e2 depends on the outcome of e1.

We assume that a message delivery event is always semantically dependent on
the corresponding message send event. Furthermore, if e1 and e2 are on different
processes and e1 s−→ e2, then ∃ M | e1 s−→ Send(M) s−→ Delivery(M) s−→ e2.
With this interpretation, s−→ is the transitive closure of a “local semantically
depends on” relation and the “happens before” imposed by message send and
corresponding delivery events.

By substituting s−→ for −→ in the traditional definition of causal message
ordering, the resulting definition will be termed “semantic causal ordering”. In
contrast, the traditional causal message ordering will be termed the “happens
before causal ordering”. We will also refer to the causal message ordering problem
as simply the causal ordering problem.

If the only ordering imposed on events is to respect the semantic causality
relation defined above, then there is no performance degradation due to false
causality. In other words, if messages M1 and M2 are sent to the same desti-
nation, then M1 need not be delivered before M2 if Send(M1) � s−→ Send(M2),
but M1 will be delivered before M2 if Send(M1)

s−→ Send(M2). This model
defines causality among events based on the application semantics. An imple-
mentation of this model requires that the semantic causal dependencies of each
event be available. Existing programming language paradigms do not permit
such specifications and neither does an API for such a specification seem prac-
tical. It is possible for a compiler to extract such information by analyzing data
dependencies. Alternatively, analogous to Fidge [7] and Tarafdar-Garg [17], we
can assume that this information is computable using techniques given in [7].
In fact, as we will show, the causal ordering algorithm we propose requires only
that the following information is available: for any event, information about the
most recent local event on which the event has a semantic dependency.

Definition 2. Given two events e1 and e2, e1 weakly causes e2, denoted as
e1 w−→ e2, iff e1 � s−→ e2 ∧ e1 −→ e2.

For a computation (E,−→) and a complete specification of the true causality
(E, s−→) in the computation, the amount of false causality is the size of the w−→
relation, which is −→(E × E) \ s−→(E × E).

Ideally, it is desired to implement the s−→ relation, and have w−→ be the
empty relation on E × E. The difficulties in having the programmer specify the

Reducing False Causality in Causal Message Ordering 65

s−→ relation are given above. Though a compiler or an alternate mechanism can
identify the exact set of all local and nonlocal events that semantically precede
the current event to implement true causality, the overhead of tracking such a set
of events as the computation progresses is nontrivial. Therefore, our objective
is to approximate s−→ at a low cost to make an implementation practical, and
minimize the size of the w−→ relation on E × E. To this end, we introduce the
vector MCV to track the latest event at each process such that if the happens-
before causal order for a message presently sent is enforced only with respect to
messages sent in the computation prefix identified by such events, then semantic
causal order is not violated. The vectorMCV naturally identifies a computation
prefix denotedMC. Thus, for a message sent at any event e, the vectorMCV (e)
ensures that if happens-before causal ordering is guaranteed with respect to mes-
sages sent in MC(e), then semantic causal ordering is guaranteed with respect
to all messages sent in the causal past of the event e.

Definition 3. For any event e, define vector MCV (e) and set MC(e) to have
the following properties.

– The maximum causality vector MCV (e) is a vector of length n with the
following properties:
• (Containment:) ∀j, MCV (e)[j] ≤ ECV (e)[j], and
• (Semantic dependency satisfaction:) elj

s−→ eki =⇒ l ≤MCV (eki)[j]

– MC(e) = {e′j | e′j −→ e
MCV (e)[j]
j }, i.e., MC(e) is the computation prefix

such that the latest event of this prefix at each process Pj is MCV (e)[j].

We now make the following Proposition 1 which holds because there is no
event that is not in MCV (e)[j] that semantically precedes the event e.

Proposition 1. For any event e, if every message sent by each Pj among its
first MCV (e)[j] events is delivered in happens-before causal order with respect
to any messages sent at event e, then every message sent in ECV (e) is delivered
in semantic causal order with respect to any messages sent at event e.

Observe that in general, there are multiple values of MCV that will satisfy
Definition 3. Any formulation of MCV consistent with Definition 3 can be used
by a causal ordering implementation to reduce false causality. Clearly, different
formulations of MCV reduce the false causality to various degrees and can be
implemented with varying degrees of ease. Two desirable properties of a good
formulation of MCV are:
– It should eliminate as much of the false causality as possible.
– It should be implementable with low overhead.

Happens-before causal ordering of a message sent at event e needs to be
enforced only with respect to messages sent in the computation prefix MC(e).
To implement this causal ordering, for each event eki , process Pi needs to track

the number of messages sent by each process Pj up to event e
MCV (eki)[j]
j to every

66 P. Gambhire and A.D. Kshemkalyani

other process. As observed by process Pi at eki , the count of all such messages

sent by each Pj up to e
MCV (eki)[j]
j to every other process Pl can be tracked by a

matrix SENT [1 . . . n, 1 . . . n], where SENT [j, l] is the number of messages sent

by Pj up to e
MCV (eki)[j]
j to Pl. Analogously, we track the count of all messages

sent by each Pj up to e
ECV (eki)[j]
j to each other process Pl, by using the matrix

SENT ECV [1 . . . n, 1 . . . n].
For a traditional causal ordering system, MCV (e) = ECV (e) and this im-

plementation exhibits the negative effects caused by the maximum amount of
false causality. Note that here SENT = SENT ECV and the matrix SENT
as we have defined then degenerates to the matrix SENT as defined in [13].

3 Algorithm

3.1 Preliminaries

We propose the following formulation of vector MCV (e), that is easy to imple-
ment and gives a good lightweight solution to the false causality problem. The
definition uses the max function on vectors, which gives the component-wise
maximum of the vectors.

Definition 4. 1. Initially, ∀i, MCV (e0
i) = [0, . . . , 0].

2. For an internal event or a send event eki ,

MCV (eki)= ECV (eki) if ∃ epq | MCV (ek−1
i)[q] < p ≤ ECV (eki)[q] ∧ epq

s−→ eki ,
MCV (ek−1

i)otherwise

3. For a delivery event eki of a message sent at e
r
m,

MCV (eki)= max(MCV (ek−1
i),MCV (erm))

Observe that the only way epq
s−→ eki , where q �= i, is if ∃ ek′i , ep

′
q such that

ek
′
i

s−→ eki , e
k′
i = Deliver(M), ep

′
q = Send(M), and epq

s−→ ep
′
q . Also observe

that the MCV of an event is the max of the ECV s of one or more events in
its causal past, and therefore, analogous to EC, if Deliver(M) belongs to the
MC of some event, then Send(M) also belongs to the MC of that event. Based
on the above two observations, it is possible to simplify the condition test in
Definition 4.2 as follows.

Definition 5. 1. Initially, ∀i, MCV (e0i) = [0, . . . , 0].
2. For an internal event or a send event eki ,

MCV (eki)= ECV (eki) if ∃ epi | MCV (ek−1i)[i] < p ≤ k ∧ epi
s−→ eki ,

MCV (ek−1i) otherwise

3. For a delivery event eki of a message sent at erm,

MCV (eki)= max(MCV (ek−1i),MCV (erm))

Reducing False Causality in Causal Message Ordering 67

Informally, the above formulation of MCV identifies the following events
at each process. For any event eki , (I) MCV (eki)[j], j �= i, identifies the latest
event ej such that some event at Pi occurring causally after ej and in EC(eki)
depends semantically on ej; (II) If eki depends semantically on some event at Pi
that occurs after MCV (ek−1i)[i], then MCV (eki) identifies eki at Pi; otherwise it
identifies MCV (ek−1i)[i] at Pi. Causal ordering of a message sent at eki needs to
be enforced only with respect to messages sent in the computation prefix up to
these identified events.

Lemma 1 shows that this formulation of MCV is an instantiation of Defi-
nition 3. Specifically, it states that each event that semantically happens before
eki belongs to the computation prefix up to the events indicated by MCV (eki).

Lemma 1. Definition 5 satisfies the “Containment” property and the “Seman-
tic Dependency Satisfaction” property of MCV described in Definition 3, i.e.,
(∀j, MCV (e)[j] ≤ ECV (e)[j]) and elj

s−→ eki ⇒ l ≤MCV (eki)[j].

The formulation of MCV in Definition 5 is easy to implement because we
can observe the following property.

Property 1. From Definition 5, it follows that

1. At a send event eki , determining MCV (eki) requires MCV (ek−1i) and iden-
tifying the most recent local event on which there is a semantic dependency
of eki . This information can be stored locally at a process.

2. At a delivery event eki of a message sent at event e
r
m, determiningMCV (eki)[j]

requiresMCV (ek−1i)[j] andMCV (erm)[j].MCV (erm)[j] can be piggybacked
on the message sent at erm.

The following property based on Definition 5 implies that the entries in the
SENT matrix at a process are monotonically nondecreasing in the computation.

Property 2. MCV (eki)[j] ≥ MCV (ek−1i)[j] i.e., MCV (e)[j] is monotonically
nondecreasing at any process.

3.2 Algorithm to Reduce False Causality

Definition 5 of MCV is realized by the algorithm presented in Figure 3. This
algorithm is based on the causal ordering abstraction of Raynal, Schiper and
Toueg [13] because it provides a convenient base to express the proposed ideas.
The proposed ideas can be superimposed on more efficient causal ordering algo-
rithms such as those proposed and surveyed in [10].

Recall that in [13], each send event and each delivery event updates the
SENT matrix to reflect the maximum available knowledge about the number of
messages sent from each process to every other process in the causal past. This
implies that any message M has to be delivered in causal order with respect
to all the messages sent in the causal past of the event Send(M), even though
there may be no semantic dependency between M and these messages. This is

68 P. Gambhire and A.D. Kshemkalyani

a source of false causality which can be minimized by the lightweight algorithm
proposed here.

Each process Pi maintains the data structures DELIVi, SENT CONCi and
SENT PREVi, described below.

– DELIVi: array[1..n] of integer.
DELIVi[j] is Pi’s knowledge of the number of messages from process Pj that
have been delivered to Pi thus far. It is initialized to zeros.

– SENT PREVi: array[1..n,1..n] of integer.
SENT PREVi[j, l] at eki is Pi’s knowledge of the number of messages sent

from Pj to Pl up to the event e
MCV (eki)[j]
j . It is initialized to zeros.

– SENT CONCi: array[1..n,1..n] of integer.
SENT CONCi[j, l] at eki is Pi’s knowledge of the number of messages sent

from Pj to Pl after the event e
MCV (eki)[j]
j . It is initialized to zeros.

Recall that the n×nmatrix SENT ECV at eki , defined in Section 2, gave the

count of all messages sent by each Pj up to e
ECV (eki)[j]
j to each other process Pl, in

SENT ECV [j, l]. The two matrices SENT PREV and SENT CONC at any
process have the invariant property that SENT PREVi[j, l] +
SENT CONCi[j, l] = SENT ECVi[j, l], as will be shown in Lemma 2. The row

SENT PREVi[j, ·] reflects the row SENT ECVi[j, ·] up to the event eMCV (eki)[j]
j ,

whereas the row SENT CONCi[j, ·] reflects the row SENT ECVi[j, ·] after
that event. The challenge is to maintain the SENT PREV and SENT CONC
matrices at a low cost so as to retain the above property.

The causal ordering algorithm that minimizes false causality is given in
Figure 3. At a message send event, steps (E1)-(E7) are executed atomically.
Step (E1) determines based on the sender’s semantics if the message being
sent, and implicitly all future messages sent in the system, should be deliv-
ered in causal order with respect to all messages sent so far, i.e., whether
MCV (eki) = ECV (eki). Specifically, the test should Semantically Precede uses
two inputs: MCV (ek−1i) and the latest local event on which there is a local de-
pendency (Property 1). These two inputs are used to check for Definition 5.2, i.e.,

to determine whether there exists an event epi such that e
MCV (ek−1

i
)[i]

i −→ epi ∧ epi
s−→ eki , in which case MCV (eki) will be greater than MCV (ek−1i). If MCV (eki)
is greater thanMCV (ek−1i), then the condition should Semantically Precede be-
comes true andMCV (eki) should be set to ECV (e

k
i). In this case, steps (E2)-(E5)

update the matrices SENT PREV and SENT CONC to reflect this; otherwise
SENT PREV and SENT CONC are left unchanged. Step (E6) sends the mes-
sage with the two matrices piggybacked on it. Step (E7) updates SENT CONC
to reflect the message(s) just sent.

When a message M , along with the sender’s SENT PREV and
SENT CONC matrices SP and SC piggybacked on it, is received by a pro-
cess, M can be delivered only if the number of messages delivered locally so far
is greater than or equals the number of messages sent to this process as per SP
(step (R1)). Steps (R2)-(R8) are executed atomically. The message gets deliv-

Reducing False Causality in Causal Message Ordering 69

Data structures at Pi
D1. DELIVi: array [1..n] of integer
D2. SENT PREVi: array [1..n,1..n] of integer
D3. SENT CONCi: array [1..n,1..n] of integer

Emission of message M from Pi to Pj
E1. if (should Semantically Precede) then
E2. for k = 1 to n do
E3. for l = 1 to n do
E4. SENT PREVi[k, l] = SENT PREVi[k, l] + SENT CONCi[k, l]
E5. SENT CONCi[k, l] = 0
E6. Send(M,SENT PREVi, SENT CONCi)
E7. SENT CONCi[i, j] = SENT CONCi[i, j] + 1

Reception of (M, SPM , SCM) at Pj from Pi
R1. Wait until (∀k, SPM [k, j] ≤ DELIVj [k])
R2. Deliver M
R3. SCM [i, j] = SCM [i, j] + 1
R4. DELIVj [i] = DELIVj [i] + 1
R5. for k = 1 to n do
R6. for l = 1 to n do
R7. SENT CONCj [k, l] = max(SENT CONCj [k, l] + SENT PREVj [k, l],

SPM [k, l] + SCM [k, l])− max(SENT PREVj [k, l], SPM [k, l])
R8. SENT PREVj [k, l] = max(SENT PREVj [k, l], SPM [k, l])

Fig. 3. Causal message ordering algorithm to minimize false causality.

ered in step (R2). Steps (R3)-(R4) update the data structures SC and DELIV
to reflect that the message was sent and has now been delivered, respectively.
Steps (R5)-(R8) update the data structures SENT CONC and SENT PREV .
These steps ensure that SENT PREV reflects the maximum knowledge about
the messages that were sent by events in the MC of the current event, while
SENT CONC reflects the maximum knowledge about the messages that were
not sent by events in the MC of the current event.

3.3 Correctness Proof

We state some lemmas and the main theorem that prove the correctness of the
algorithm. See the full paper for details [8].

Lemma 2 gives the invariant among SENT PREV , SENT CONC and
SENT ECV at any event.

Lemma 2. SENT PREVi + SENT CONCi = SENT ECVi

Lemma 3 states that the SENT PREV matrix reflects exactly all the mes-
sages sent by various processes up to MCV (e). This includes all the send events
that semantically precede all local events up to the current event.

Lemma 3. The messages sent by Pj until eMCV (eki)[j]
j correspond exactly to the

messages represented by SENT PREVi[j, ·] at eki .

70 P. Gambhire and A.D. Kshemkalyani

Lemma 4 states that messages represented by the matrix SENT CONC are
the messages sent concurrently in terms of semantic dependency with respect to
the current event. These are the messages with respect to which no “happens-
before” causal ordering needs to be enforced in order to meet the semantic causal
ordering requirements.

Lemma 4. The messages represented by SENT CONCi[j, ·] at eki correspond
exactly to the messages sent in the left-open right-closed duration (MCV (eki)[j],-
ECV (eki)[j]].

Theorem 1. The algorithm given in Figure 3 implements causal message or-
dering with respect to the relation s−→.

3.4 Algorithm Analysis

With the proposed approach, any message M multicast at event ei should be
delivered in causal order with respect to all the messages represented by SENT -
PREV , i.e., sent in the computation prefix MC(ei). Messages represented by
SENT CONC are those with respect to which no false causality is imposed
(follows from Lemma 4 and Proposition 1). The amount of false causality in
enforcing causal delivery of M is the size of w−→(MC(ei)×MC(ei)), in contrast
to the traditional causal ordering where the amount of false causality is the
size of w−→(EC(ei)×EC(ei)). While w−→(MC(ei)×MC(ei)) may still be large
(although smaller than that for the traditional approach), indicating that much
false causality may still exist, this is not so on close analysis. With the proposed
approach, false causality is potentially imposed only with respect to some of the
messages sent up to MCV . Each MCV (eki)[j] will usually be much less than
ECV (eki)[j]. Hence, false causality is potentially imposed only with respect to
some of the messages sent in the more distant past. In practice, message delivery
times tend to have an exponential distribution. Hence, messages sent in the
distant past up to the events indicated by MCV (eki) would have been delivered
with high probability and the present message could most likely be delivered as
soon as it arrives and without any buffering. Only in the case that some message
sent in the distant past has not been delivered, and a false causality exists on
such a message, that the proposed algorithm will unnecessarily delay the present
message and require some buffering. We expect that such a case will have a low
probability of occurrence, and when it occurs, the extra delay incurred by the
imposed false causality will be small.

The computational complexity of the proposed algorithm is the same as that
of the RST algorithm. The O(n2) extra computation in steps (R5)-(R7) is the
same order of magnitude as in the RST algorithm. The O(n2) extra computation
in steps (E1)-(E5) is of the same order of magnitude as in the RST algorithm.
In terms of space complexity, the RST algorithm requires n2×m bits of storage
space and message overhead, wherem is the size of the message counter, whereas
the proposed algorithm requires 2n2 × m bits of storage space and message
overhead, which are comparable.

Reducing False Causality in Causal Message Ordering 71

The only additional overhead is to implement Definition 5. By Property 1,
this requires the MCV vector of the previous local event and the identity of
the latest local event on which there is a semantic dependency. The former
information is already computed; the latter can be assumed to be available as
in [7,17] or can be extracted from compiler data.

4 Concluding Remarks

False causality in causal message ordering reduces the performance of the sys-
tem by unnecessarily delaying messages and requiring large buffers to hold the
delayed messages. We presented an efficient algorithm for implementing causal
ordering that eliminates much of the false causality. In particular, the algorithm
eliminates the false causality in the near past of any message send event. Some
false causality with respect to messages sent in the more distant past exists. It is
expected that such false causality will have a minimal degradation on the perfor-
mance of the ideal causal ordering implementation because messages sent in the
more distant past will have been delivered with high probability and cause buffer-
ing of the present message with low probability. The implementation presented
here is lightweight and requires about the same order of magnitude overhead as
the baseline RST algorithm, with minimal additional support.

Acknowledgements

This work was supported by the U.S. National Science Foundation grants CCR-
9875617 and EIA-9871345.

References

1. Y. Amir, D. Dolev, S. Kramer and D. Malki, Transis: A communication sub-system
for high-availability, Proc. 22nd International Symposium on Fault-tolerant Com-
puting, IEEE Computer Society Press, 337-346, 1991.

2. K. Birman, A response to Cheriton and Skeen’s criticism of causal and totally
ordered communication, Operating Systems Review, 28(1): 11-21, Jan. 1994.

3. K. Birman, T. Joseph, Reliable communication in the presence of failures, ACM
Transactions on Computer Systems, 5(1): 47-76, Feb. 1987.

4. K. Birman, A. Schiper and P. Stephenson, Lightweight causal and atomic group
multicast, ACM Transactions on Computer Systems, 9(3): 272-314, Aug. 1991.

5. J. Caroll, A. Borshchev, A deterministic model of time for distributed systems,
Proc. Eighth IEEE Symposium on Parallel and Distributed Processing, 593-598,
Oct. 1996.

6. D.R. Cheriton, D. Skeen, Understanding the limitations of causally and totally
ordered communication, Proc. 11th ACM Symposium on the Operating Systems
Principles, 44-57, Dec. 1993.

7. C. Fidge, Logical time in distributed computing systems, IEEE Computer, 24(8):
28-33, Aug. 1991.

72 P. Gambhire and A.D. Kshemkalyani

8. P. Gambhire, Efficient Causal Message Ordering, M.S. Thesis, University of Illinois
at Chicago, April 2000.

9. F. Kaashoek, A. Tanenbaum, Group communication in the Ameoba distributed
operating system, Proc. Fifth ACM Annual Symposium on Principles of Distributed
Computing, 125-136, 1986.

10. A. Kshemkalyani, M. Singhal, Necessary and sufficient conditions on information
for causal message ordering and their optimal implementation, Distributed Com-
puting, 11(2), 91-111, April 1998.

11. L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21(7): 558-565, July 1978.

12. L.L. Peterson, N.C. Bucholz and R.D. Schlichting, Preserving and using context
information in interprocess communication, ACM Transactions on Computer Sys-
tems 7(3), 217-246, 1989.

13. M. Raynal, A. Schiper, S. Toueg, The causal ordering abstraction and a simple
way to implement it, Information Processing Letters 39:343-350, 1991.

14. L. Rodrigues, P. Verissimo, Causal separators and topological timestamping: an
approach to support causal multicast in large-scale systems, Proc. 15th IEEE In-
ternational Conf. on Distributed Computing Systems, May 1995.

15. R. van Renesse, Causal controversy at Le Mont St. Michel, Operating Systems
Review, 27(2):44-53, April 1993.

16. A. Schiper, A. Eggli, A. Sandoz, A new algorithm to implement causal ordering,
Proc. Third International Workshop on Distributed Systems, Nice, France, LNCS
392, Springer-Verlag, 219-232, 1989.

17. A. Tarafdar, V. Garg, Addressing false causality while detecting predicates in dis-
tributed programs, Proc. 18th IEEE International Conf. on Distributed Computing
Systems, 94-101, May 1998.

	Introduction
	System Model
	Algorithm
	Preliminaries
	Algorithm to Reduce False Causality
	Correctness Proof
	Algorithm Analysis

	Concluding Remarks

