
Compact Routing in Directed Networks with
Stretch Factor of Two

Punit Chandra and Ajay D. Kshemkalyani

Dept. of Computer Science
University of Illinois at Chicago, Chicago, IL 60607-7053, USA.

pchandra@eecs.uic.edu, ajayk@cs.uic.edu

Abstract. This paper presents a compact routing algorithm with
stretch less than 3 for directed networks. Although for stretch less than
3, the lower bound for the total routing information in the network is
Ω(n2) bits, it is still worth examining to determine the best possible
saving in space. The routing algorithm uses header size of 4 log n and
provides round-trip stretch factor of 2, while bounding the local space
by [n − √

n(
√

1 − 7/4n) − 1/2] logn. These results for stretch less than
3 for directed networks match those for undirected networks.

1 Introduction

1.1 Background

As high-speed networking gains popularity, the routing bottleneck shifts from
the propagation delay to the route decision function. Therefore, simple routing
schemes implemented in hardware will be preferred in practice. The decision
function is bounded by the size of the routing table. The bigger the routing
table, the more time it takes to determine the next hop. Also, it is desirable that
the routing table be kept in fast memory such as cache. Furthermore, it is not
desirable for the memory requirements to grow fast with the size of the network,
since it means adding more hardware to all the routers in the network.

Compact routing addresses this problem by decreasing the table size and
hence the decision time. The trade-off involved here is the communication cost
of passing messages between a pair of nodes.

1.2 Existing Work

Early work on compact routing focused on routing schemes for special networks
such as rings, trees [14], and grids [9,10]. Peleg and Upfal [11,12] were the first to
construct an universal compact routing scheme. An universal routing scheme is
an algorithm which generates a routing scheme for every given network, that is,
for all sorts of topologies. A trivial version of an universal routing strategy stores
at each node a routing table which specifies an output port for each destination.
Although this routing strategy can guarantee routing through the shortest path,

B. Monien, V.K. Prasanna, S. Vajapeyam (Eds.): HiPC 2001, LNCS 2228, pp. 24–35, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Compact Routing in Directed Networks with Stretch Factor of Two 25

each router has to store locally O(n log d) bits of memory, where d is the degree
of the node and n is the total number of nodes in the network. As the network
grows in size, it becomes necessary to reduce the amount of memory kept at
each router. But there is a trade-off involved here between the memory and the
stretch factor, denoted here by s and defined as the maximum ratio between
the length of the path traversed by a message and that of the shortest path
between its source and destination. The lower bounds for routing information in
the network are:

For stretch factor s ≥ 1 Ω(n1+1/(2s+4)) bits [13]
For stretch factor s < 3 Ω(n2) bits [4, 6]
For stretch factor s = 1 Θ(n2 log n) bits (optimal) [5]

There are various algorithms for compact routing. The algorithm in [1] achives
a stretch of 3 while using O(n3/2 log n) bits in total, but some individual nodes
use O(n log n) bits. A recent algorithm of [7] uses interval routing for undi-
rected graphs to achieve a stretch of 5 while using local routing table size of
O(n1/2 log n) bits. More recently, [2] presented an hierarchical scheme which
uses a local routing table size of O(n2/3 log4/3 n) and guarantees a stretch of 3.

Most of the recent work done in routing has been for undirected graphs.
Directed networks are much harder than the undirected case because a deviation
from the exact shortest route has serious consequences. That is, if we take a walk
in the wrong direction for a few steps from u, in an undirected graph it is easier
to retrace our steps, but in a directed graph it might be extremely hard to get
back to u. So to overcome this difficulty, [3] used round-trip distance. The round-
trip distance is a measure of how easy it is to get back from an exploratory trip.
They achieved a roundtrip stretch of 2l+1 −1 using O(l log n) size addresses and
a O(ln1/(l+1)) sized routing table on the average on each node, where l is an
integer greater than 0 and denotes the level of landmark.

Although designing routing algorithms for stretch of less than 3 does not
seem so attractive because of the lower bound of Ω(n2) as shown in [4,6], it is
still worth examining to determine the best possible saving in space. Recently,
[8] addressed the problem of compact routing for stretch factor of less than
3 in undirected networks. It presented an algorithm whose local table size is
(n − √

n + 2) logn for a stretch factor of 2. In this paper, we propose a simple
routing scheme for directed networks. We use a scheme similar to [8], coupled
with the concept of round-trip distance which makes it a harder problem. The
algorithm uses node names of size 4 log n and has a round-trip stretch factor of
2, while bounding the local space by [n− √

n(
√

1 − 7/4n) − 1/2] log n.

2 Some Definitions Used in Compact Routing

Definition 1. Routing scheme (R)

Routing scheme (R) is a distributed algorithm that consists of distributed data
structures in the network and a delivery protocol.

26 P. Chandra and A.D. Kshemkalyani

Definition 2. Round-trip distance

Round-trip distance between any two nodes, say x and y, in a network is the
shortest distance from x to y and back. Formally,

RT (x, y) = d(x, y) + d(y, x)

where d(x, y) represents the shortest distance between x and y.
Definition 3. Round-trip distance for a routing scheme (R)
Round-trip distance for a routing scheme (R) between any two nodes, say x and
y, is the distance of the path taken by a packet going from x to y and back, in
accordance with the routing algorithm (R). Mathematically,

RT (R, x, y) = d(R, x, y) + d(R, y, x)

where d(R, x, y) represents the distance of the path taken by a packet going from
x to y in accordance with the algorithm.
Definition 4. Round-trip stretch of a routing scheme (R)
Round-trip stretch of a routing scheme (R) is defined as follows

Round-trip stretch (R) = max
d(R, x, y) + d(R, y, x)
d(x, y) + d(y, x)

3 Overview of the Algorithm

The initial step of the algorithm is to construct two sets U and W from the
set of the network nodes V such that U and W satisfy the following conditions:
V = U ∪W , U ∩W = φ and |U | = |W | = n/2. The sets are constructed in an
incremental fashion. At each step i, ui and wi are added to U andW respectively,
where 1 ≤ i ≤ n/2 and ui, wi ∈ V − {U +W}. The pair (ui, wi) is chosen such
that RT (ui, wi), the round-trip distance between ui and wi, is minimum among
all the pairs in V − {U +W}.

Now suppose ui, uj ∈ U , wi ∈ W , and i < j. Also let RT (ui, uj) = z,
RT (ui, wi) = y, and RT (uj , wi) = x. See figure 1.

jU

ii

x

y
U W

z

Fig. 1. Round-trip distance for ui,wi and uj

Compact Routing in Directed Networks with Stretch Factor of Two 27

Observation 1. Given the above construction, RT (wi, ui) ≤ RT (uj , wi) and
RT (wi, ui) ≤ RT (uj , ui), i.e., y ≤ x and y ≤ z.
Proof. The proof follows from the fact that if RT (uj , wi) was less than
RT (ui, wi), then the pair (uj , wi) would have been selected before (ui, wi). Sim-
ilar proof applies for (uj , ui). ��

Note the way the above construction scheme for U and W differs from
that used in [8]. The above scheme guarantees RT (wi, ui) ≤ RT (uj , wi) and
RT (wi, ui) ≤ RT (uj , ui) while that in [8] guarantees only d(wi, ui) ≤ d(uj , wi).
The second condition i.e., RT (wi, ui) ≤ RT (uj , ui), is crucial for the algorithm
to work in the case of directed networks.

Consider the case when z ≤ x. Using Observation 1, we can conclude that
z+ y ≤ 2x. In other words, a packet going from uj to wi can be routed via ui if
we are ready to tolerate a round-trip stretch of 2. Thus we can omit the entry
for wi in the routing table of uj . Let us now consider the other case when x ≤ z.
Again by Observation 1, we can conclude that x+ y ≤ 2z. Thus packets from uj

to ui can be routed via wi, making it possible to omit ui in uj ’s routing table.
By the above discussion, it is clear that we can always omit j − 1 entries

from uj and wj . The drawback of this scheme is that there is no lower bound on
the local space saved. For example at u1 and w1, no space is saved. To overcome
this, we use the approach used by Cowen [2] which stores the routing information
in the header of the packets. For the node u1, we choose k nodes from the set
V −{u1+w1}, and use headers of the form H(xi) = (xi, yi, (u1, P(xi,u1))), where
k is the minimum number of entries we want to save at each node. Here, H(xi)
represents the header of the packet with destination xi (one of the k nodes), xi

and yi are the nodes added to U andW respectively in the ith step , and P(xi,u1)
is the port on u1 which connects to the first node on the shortest path to xi.
Thus, we need not store an entry for xi or any of the k nodes at u1. In a similar
manner, we choose k nodes for w1 from the set V − {u1 + w1}.

In general for ui, k − i + 1 nodes are selected from the set V − {u1 + u2 +
....ui + w1 + w2 +wi}. If xi is one of the k − i+ 1 nodes, we set the header
of the packet with destination xi as H(xi) = (xi, yi, (ui, P(xi,ui))). This way we
can omit a total of (i− 1 + k − i+ 1) = k entries at every node.

Note that for ui, k−i+1 nodes are selected from the set V −{u1+u2+....ui+
w1+w2+wi}, which is a dynamic set, i.e., it varies with i, while in [8] the set
from which k−i+1 nodes were selected is V −{u1+u2+....uk+w1+w2+.....wk},
which is static. This leads to a more optimized bound on k in case of the above
algorithm.

4 The Algorithm

The routing algorithm consists of four parts: an initial construction where nodes
are divided and paired according to some set criterion, a header construction
where the header is constructed for each destination, a table construction which
describes the routing table stored at each node, and the delivery protocol which
describes how to identify the output port on which the packet gets sent, based
on the header and local routing table.

28 P. Chandra and A.D. Kshemkalyani

4.1 Initial Construction

Assume G = (V,E) is a connected directed network with n nodes. Here we
construct two equal sets U and W such that U ∪ W = V , U ∩ W = φ and
|U | = |W | = n/2.
– Initiate: U =W = φ

For i = 1 to n/2
Find (ui, wi) such that RT (ui, wi) is minimum in V − {U +W}
Add ui to U and wi to W

Note u1, w1 will have the minimum round-trip distance among all the nodes.

4.2 Header Construction

The header for any packet consists of a 3-tuple. The first entry for the header of
a packet with destination ui is ui itself, the second consists of wi. The third entry
consists of a pair: a node and a port on that node which leads to the shortest
path to ui.

Here we construct a mapping which helps in selecting the third entry in the
header. Map uk to un/2 and uk−1 to {un/2−1, un/2−2} where k < n. In general,
uk−i is mapped to {u

n/2−
∑i

j=1
j
, ,u

n/2−(
∑i+1

j=1
j)+1}, denoted by M(uk−i).

Note |M(uk−i)| = |M(wk−i)| = i + 1. For the nodes M(uk−i), the third entry
in the header is selected as (uk−i, P(x,uk−i)), where x ∈ M(uk−i). Formally, the
i+ 1 headers for packets whose destination is a node in M(uk−i) are

H(u
n/2−

∑i

j=1
j
) = (u

n/2−
∑i

j=1
j
, w

n/2−
∑i

j=1
j
, (uk−i, P(u

n/2−
∑i

j=1
j
,uk−i)))

.

.

H(u
n/2−(

∑i+1

j=1
j)+1) =

(u
n/2−(

∑i+1

j=1
j)+1, wn/2−(

∑i+1

j=1
j)+1, (uk−i, P(u

n/2−(
∑i+1

j=1
j)+1

,uk−i)))

The headers for destinations in W are constructed similarly.

4.3 Constructing Tables

The following procedure is used to construct the routing table at node uj . See
figure 2.

– A node, say ui, is not included in the routing table of uj if any of the following
conditions are satisfied.

Compact Routing in Directed Networks with Stretch Factor of Two 29

i WU

A

Uj

B

i Ui

Y

Wi

Fig. 2. Table construction for uj Fig. 3. The route from ui to wi

• The node ui ∈M(uj), i.e., the third element in the header of ui contains
the field uj .

• A ≥ B and RT (ui, wi) < RT (uj , ui).
• A ≥ B, RT (ui, wi) = RT (uj , ui), and either of the two conditions is

satisfied:
∗ uj does not lie on the round-trip path from ui to wi.
∗ uj lies on the round-trip path from ui to wi and j > i.

– Else, ui is included in the routing table of uj .

Similar procedure holds when deciding about wi, except that wi is not omitted
from u′

js routing table in the case when j > i and ui has been omitted from u′
js

routing table.

4.4 Delivery Protocol

A packet with header (u,w, (v, P(u,v)) at node x is routed according to the fol-
lowing procedure.

– If x = v, then route along the port P(u,v).
– Else if u is in x′s routing table, then route along the port P(u,x).
– Else if w is in x′s routing table, then route along the port P(w,x).
– Else route fails.

5 Correctness Proof

Theorem 1. The routing algorithm is correct.

Proof. There are four cases to consider.

Case 5.1. A packet has to be routed from x (= ui) to wi.
From the table construction scheme, it can be concluded that ui will have an
entry for wi. Let y (= uj) be any node between ui and wi (Fig. 3). Now we need
to show that y has an entry for wi. This gives five subcases.

1. d(y, ui) > d(y, wi): y will have an entry for wi because this subcase falls in
the else part of the table construction scheme.

2. d(y, ui) ≤ d(y, wi) and RT (y, wi) < RT (ui, wi): again y will include wi

because of the same reason as above.

30 P. Chandra and A.D. Kshemkalyani

��

����

�
�
�
�

��

X

Y

Ui Wi

��

Ui

jU

jW

Z

Wi

Fig. 4. The route from x to wi Fig. 5. The route from uj to wi and back

3. d(y, ui) ≤ d(y, wi), RT (y, wi) = RT (ui, wi), and j < i: this subcase also falls
in the else part of the table construction scheme. Hence, y will have an entry
for wi.

4. d(y, ui) ≤ d(y, wi), RT (y, wi) = RT (ui, wi), and j > i: By using Observation
1,RT (ui, wi) ≤ RT (y, ui). AlsoRT (ui, wi) ≥ RT (y, ui), as y is on the round-
trip path from ui to wi. This gives RT (ui, wi) = RT (y, ui). Expanding the
above expression gives

d(ui, y) + d(y, wi) + d(wi, ui) = d(ui, y) + d(y, ui)

This implies
d(y, wi) + d(wi, ui) = d(y, ui)

As d(wi, ui) > 0, we get d(y, wi) < d(y, ui) which contradicts the condition
assumed. Hence this subcase cannot exist.
Note that if a packet has to be routed from y to ui and j > i, then the path
taken by the packet is via wi. Also this path is equal to the shortest path
from y to ui as d(y, wi) + d(wi, ui) = d(y, ui).

5. d(y, ui) ≤ d(y, wi) and RT (y, wi) > RT (ui, wi): As y is an intermediate node
on a round-trip from ui to wi, hence RT (y, wi) ≤ RT (ui, wi). This is again
a contradiction. Thus this subcase cannot exist.

Hence the packet can always be routed from ui to wi.

Case 5.2. A packet has to be routed from x (�= ui) to wi and
d(x, ui) > d(x,wi) (Fig. 4).
As d(x, ui) > d(x,wi), x will have an entry for wi in its routing table. Let y be
any node on the shortest path from x to wi. Using the triangle inequality, we
have d(x, y) + d(y, ui) > d(x, ui). As d(x, ui) > d(x, y) + d(y, wi), we get

d(x, y) + d(y, ui) > d(x, ui) > d(x, y) + d(y, wi)

Thus, d(y, ui) > d(y, wi). This implies that y will also contain an entry for wi

and the packet will eventually reach wi.

Case 5.3. A packet has to be routed from x (�= ui) to wi with the following
conditions:

Compact Routing in Directed Networks with Stretch Factor of Two 31

d(x, ui) ≤ d(x,wi) and RT (x,wi) < RT (ui, wi)

The table construction scheme and the latter condition imply that x will contain
an entry for wi. Now suppose y is any node on the shortest path from x to wi

(Fig 4). Using the fact that RT (y, wi) ≤ RT (x,wi) and RT (x,wi) < RT (ui, wi),
it can be concluded that

RT (y, wi) < RT (ui, wi)

Hence, y will have an entry for wi.

Case 5.4. A packet has to be routed from x (�= ui) to wi with the following
conditions:

d(x, ui) ≤ d(x,wi) and RT (ui, wi) ≤ RT (x,wi)

If x is on the round-trip path from ui to wi, this reduces to Case 5.1. Otherwise
the entry for wi is omitted from x. Hence the packet moves towards ui. Let z
(= uj) be a node on the shortest path from x to ui. There are two subcases.

– z does not have an entry for wi. The packet is routed towards ui. Once it
reaches ui, this reduces to Case 5.1.

– z has an entry for wi. This is possible under three scenarios.
• d(z, wi) < d(z, ui)
• d(z, wi) ≥ d(z, ui) and RT (z, wi) < RT (ui, wi)
• z lies on the round-trip path from ui to wi, j < i, and RT (z, wi) =
RT (ui, wi).

The first two scenarios represent Case 5.2 and Case 5.3, respectively. The
third scenario reduces to Case 5.1. Hence the packet will be routed to wi via
z.

Similar proof holds for destination ui. ��

6 Complexity Analysis

In this section, we find the bounds on maximum space and round-trip stretch.

6.1 Round-Trip Stretch

Theorem 2. The upper bound on round-trip stretch for the algorithm presented
in Section 4 is two.

Proof. There are four cases to be considered. See figure 5.

Case 1. A packet has to be routed from x (= ui) to wi.

32 P. Chandra and A.D. Kshemkalyani

This corresponds to the first case in the previous section. Remember that any
node between ui and wi will have an entry for wi and a node between wi and ui

will have entry for ui. Thus the round-trip stretch for (ui, wi) is 1.
For the rest of the cases, we will consider the round-trip from x (�= ui) to wi

as the route for the packet.
Case 2. A packet has to be routed on the round-trip path from x (where x �= ui

and x = uj) to wi with the condition that x has an entry for wi and wi has an
entry for uj.

As uj has an entry for wi, so any node between uj and wi will also have an
entry for wi (Case 5.2.). Similar argument holds for any node between wi and
uj . Hence the packet will travel through the shortest round-trip path between
uj and wi. This again gives a round-trip stretch of 1.
Case 3. A packet has to be routed on the round-trip path from x (where x �= ui

and x = uj) to wi and x has an entry for wi while wi does not have an entry
for uj.

The packet will travel from uj to wi along the shortest path. From wi, it will be
routed towards wj . There are two subcases to be considered.

– None of the nodes between wi and wj has an entry for uj . In this subcase,
the packet reaches wj and from there it goes to uj . This gives

RT (R, uj , wi) = d(uj , wi) + d(wi, wj) + d(wj , uj)

Note, d(wi, wj) ≤ d(wi, uj) and RT (uj , wj) ≤ RT (uj , wi) because wi does
not have an entry for uj . Thus,

RT (R, uj , wi) ≤ d(uj , wi) + d(wi, uj) + d(wj , uj)
≤ RT (uj , wi) +RT (uj , wj)
≤ 2RT (uj , wi)

Hence we obtain a round-trip stretch of 2.
– There is a node between wi and wj which has an entry for uj . Let the

first node between wi and wj which has entry for uj be z. The path taken
by the packet is from wi to z and then z to uj . As d(wi, z) + d(z, uj) ≤
d(wi, wj) + d(wj , uj) and d(wi, wj) ≤ d(wi, uj), we get

RT (R, uj , wi) = d(uj , wi) + d(wi, z) + d(z, uj)
≤ d(uj , wi) + d(wi, uj) + d(wj , uj)
≤ RT (uj , wi) +RT (uj , wj)
≤ 2RT (uj , wi)

This also gives a round-trip stretch of 2.

Case 4. A packet has to be routed on the round-trip path from x (where x �= ui

and x = uj) to wi and wi has an entry for uj while uj does not have an entry
for wi.

Compact Routing in Directed Networks with Stretch Factor of Two 33

Using a similar argument as in the previous case, it can be proved that a round-
trip stretch of 2 results.

Note that we cannot have a case where neither uj has an entry for wi nor wi

has an entry for uj . Thus, the round-trip stretch for the algorithm is bounded
by 2. ��

6.2 Maximum Local Space

Lemma 1. Node ui has an entry for either uj or wj, where ui, uj, wj ∈ V and
i > j.

Proof. By using Observation 1, it can be concluded that RT (uj , wj) ≤
RT (uj , ui) and RT (uj , wj) ≤ RT (wj , ui). There are 2 cases to be considered.

Case 6.1. The round-trip path from uj to wj contains ui.
As ui is an intermediate node on the round-trip path from uj to wj , hence
RT (ui, wj) ≤ RT (uj , wj). Thus we can conclude that RT (ui, wj) = RT (uj , wj).
It can be easily verified that for the above condition, either wj or uj is included
in u′

is routing table.

Case 6.2. ui does not lie on the round-trip path from uj to wj.

There are three subcases to be considered.

– d(ui, uj) < d(ui, wj). From the table construction scheme, it can be con-
cluded that only uj is included in u′

is routing table.
– d(ui, uj) = d(ui, wj). Only wj will be included in u′

is routing table as
RT (ui, uj) ≥ RT (uj , wj).

– d(ui, uj) > d(ui, wj). Again, only wj will be included in u′
is routing table.

��

Theorem 3. The maximum local space at any node for the algorithm in Section
4 is [n− √

n(
√

1 − 7/4n) − 1/2] log n.

Proof. To get the upper bound for maximum local space, consider a node ui,
where i < k. Using Lemma 1 and the header construction scheme, we can omit
i− 1 + |M(ui)| = i− 1 + k − i+ 1 = k entries at ui. To bound k, note that

k∑

i=1

|M(ui)| =
k∑

j=1

j ≤ n/2 − 1

which gives k(k+1) ≤ n− 2. It can be easily verified the k = (−1+
√
4n− 7)/2

satisfies the inequality. Thus the maximum local space at any node is (n − 1 −
k) log n = [n− √

n(
√

1 − 7/4n) − 1/2] log n. ��

34 P. Chandra and A.D. Kshemkalyani

6.3 Maximum Global Space

From the algorithm, it can be seen that for any node ui or wi, where i ≤ k,
k entries are saved. This means that the total space occupied by the routing
table on the first k nodes in U and W is 2(n − 1 − k)k log n. For other nodes
ui and wi, i − 1 entries are saved on each node. This gives a total table space
of 2

∑n−1−k
i=n/2 i log n. Thus the total space for all the nodes is 2((n − k − 1)k +

∑n−1−k
i=n/2 i) log n. Substituting the value of k in the above expression gives the

total space as (3n2/4 − 3n/2 + 2) logn.
Note that this scheme saves on an additional n − 2 entries by using the

technique used by Cowen [2] to store the routing information in the packet’s
header.

7 Conclusion

We presented a compact routing algorithm with stretch less than 3 for directed
networks. Although for stretch less then 3, the lower bound for the total rout-
ing information on the network is Ω(n2) bits, nevertheless we examined it for
directed networks to determine the best possible saving in space. The minimum
local memory needed for stretch between 2 and 3 is (n − 2

√
n) log n for undi-

rected networks [8], while this algorithm requires a maximum local space of
[n− √

n(
√

1 − 7/4n) − 1/2] log n with a stretch of 2 for directed networks.

Acknowledgements. This work was supported by the U.S. National Science
Foundation grant CCR-9875617.

References
1. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved routing strategies with

succinct tables. Journal of Algorithms 11 (1990) 307-341
2. Cowen, L. J.: Compact routing with minimum stretch. In Proceedings of the 10th

Annual ACM-SIAM Symposium on Discrete Algorithms (1999) 255-260
3. Cowen, L. J., Wagner, C. G.: Compact roundtrip routing in directed networks.

In Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing (2000) 51-59

4. Fraigniaud, P., Gavoille, C.: Memory requirement for universal routing schemes.
In Proceedings of the 14th Annual ACM Symposium on Principles of Distributed
Computing (1995) 223-230

5. Gavoille, C., Perennes, S.: Memory requirement for routing in distributed networks.
In Proceedings of the 15th Annual ACM Symposium on Principles of Distributed
Computing (1996) 125-133

6. Gavoille, C., Gengler, M.: Space-efficiency of routing schemes of stretch factor
three. In Proceedings of the 4th International Colloquium on Structural Informa-
tion and Communication Complexity (1997)

7. Gavoille, C., Peleg, D.: Compact routing scheme with low stretch factor. In Pro-
ceedings of the 17th Annual ACM Symposium on Principles of Distributed Com-
puting (1998) 11-20

Compact Routing in Directed Networks with Stretch Factor of Two 35

8. Iwama, I., Kawachi, A.: Compact routing with stretch factor of less than three.
In Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing (2000) 337

9. Leeuwen, J. van, Tan, R.: Routing with compact routing tables. In G. Roznenberg
and A. Salomaa, editors, The Book of L. Springer-Verlag, New York, New York
(1986) 256-273

10. Leeuwen, J. van, Tan, R.: Interval routing. The Computer Journal 30 (1987) 259-
273

11. Peleg, D., Upfal, E.: A tradeoff between size and efficiency for routing tables. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing (1988)
43-52

12. Peleg, D., Upfal, E.: A tradeoff between size and efficiency for routing tables.
Journal of the ACM 36 (1989) 510-530

13. Peleg, D.: An overview of locality-sensitive distributed computing. Unpublished
Monograph, The Weizmann Institute, Rehovot, Israel, 1997

14. Santoro, N., Khatib, R.: Implicit routing in networks. The Computer Science Jour-
nal 28 (1985) 5-8

	Compact Routing in Directed Networks with Stretch Factor of Two
	Introduction
	Background
	Existing Work

	Some Definitions Used in Compact Routing
	Overview of the Algorithm
	The Algorithm
	Initial Construction
	Header Construction
	Constructing Tables
	Delivery Protocol

	Correctness Proof
	Complexity Analysis
	Round-Trip Stretch
	Maximum Local Space
	Maximum Global Space

	Conclusion
	Acknowledgements
	References

